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Reward-based crowdfunding is a form of innovative financing that allows project creators to raise funds from

potential backers to start their ventures. A crowdfunding project is successfully funded if and only if the

predetermined funding goal is achieved within a given time. We study the optimal timing of contingently

placing a “fulcrum” in the random pledging process, with the potential of tilting it towards success, which

would be a win-win-win for the creator, backers, and platform. Specifically, we consider a model where

backers arrive sequentially at a crowdfunding project. Upon arrival, a backer makes her pledging decision

by taking into account the expected success of the project. We characterize the dynamics of the project’s

pledging process. We show that there exists a cascade effect on backers’ pledging, which is mainly driven by

the all-or-nothing nature of crowdfunding projects. According to our data collected from the most popular

online crowdfunding platform, Kickstarter, the majority of projects fail to achieve their goals. To address

this issue, we propose three contingent stimulus policies, namely, seeding, feature upgrade, and limited-time

offer. As a result of the cascade effect on backers’ pledging, the optimal timing to apply stimulus policies

has a cutoff-time structure. Lastly, we show that the benefit of contingent policies is greatest in the middle

of crowdfunding campaigns. Testing with the dataset of Kickstarter, we obtain empirical evidence that the

projects’ success rates improve by 14.6% on average with updates in the middle of the campaign and when

the pledging progress is lagging.
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1. Introduction

Reward-based crowdfunding is a form of innovative financing that has grown enormously in recent

years. It is reported that the crowdfunding industry will soon account for more funding than

venture capital (Barnett 2015). One of the leading crowdfunding platforms is Kickstarter, on which
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creators can raise funds from potential backers to start their ventures, and backers are rewarded

with variations of the products being produced. As of February 4, 2021, 195,671 projects have been

successfully funded on Kickstarter, raising around $5.02 billion from 19 million people from nearly

every country on the planet.1

A typical reward-based crowdfunding project has a predetermined monetary goal. The project

will be successfully funded only if the goal is reached within a specified time period. Improving

chances of successfully raising the required funds lies at the core of the design of crowdfunding

projects for project creators as well as for the platforms. Higher success rates benefit all parties:

creators receive much-needed funds to initiate their ventures; backers get a chance to support

their favorite projects and are rewarded with products being produced; and platforms receive a

commission from every successfully funded projects. However, owing to the unpredictability of

how many backers will arrive and what their preferences and valuations will be, there is much

uncertainty about the outcome of a project, especially since every project has a limited time to

meet its target. Using a dataset that we collected from Kickstarter from January 30 to June 27,

2015, we found that 63.4% (13,745) of the projects failed to collect more than 20% of their goals

before the deadline. An additional 8.45% (1,831) of projects collected at least 20% of their goals

but eventually failed to meet their target.

Traditionally, the effort to improve the success rates of projects concentrates on optimizing the

upfront design of project characteristics, such as the targeted amount, reward levels and corre-

sponding prices, which are fixed during the campaign horizon (e.g., Hu et al. 2015, Alaei et al. 2016

and Zhang et al. 2018). However, because of the inherent uncertainty and all-or-nothing mech-

anism of crowdfunding projects, we advocate that contingently providing incentives or adjusting

project characteristics over the course of a crowdfunding campaign is as important as, if not more

important than, the ex ante optimal design.

Most crowdfunding platforms do allow project creators to update their projects and post related

information on projects’ web pages. Updates can range from simple reminders and expressions of

appreciation to tangible modifications to the project, such as new designs or extra features. As a

matter of fact, both Kickstarter and Indiegogo describe updates as a good way to raise awareness

and boost success rates.2 Our data suggests that, on average, successful projects make 1.1 updates

per week, whereas the failed ones make only 0.2.

1 Source: https://www.kickstarter.com/help/stats.

2 See https://go.indiegogo.com/blog/2015/10/crowdfunding-statistics-trends-infographic.html.

https://www.kickstarter.com/help/stats
https://go.indiegogo.com/blog/2015/10/crowdfunding-statistics-trends-infographic.html


3

We use two projects posted on Kickstarter to illustrate the effect of contingent updates on

projects’ success. The creators of project “Cuberox” seek to develop a waterproof six-screen com-

puter powered by the Linux operating system. The project was launched on February 24, 2015,

aiming to gather $150,000 by March 30, 2015. Figure 1(a) displays the cumulative amount pledged

to the project during its crowdfunding campaign. As the figure suggests, at first the amount pledged

grew steadily; however the increase slowed down significantly in the middle of the campaign. A

few backers also expressed a concern that the project might not reach its goal. But the creators

did not take any action. The pledging almost halted, and the project eventually failed as shown in

Figure 1(a).

Figure 1 Pledging Trajectories of Two Projects on Kickstarter
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(a) Cuberox
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Note. The horizontal axis indicates the time, and the vertical axis indicates the cumulative amount pledged. The

dashed horizontal lines represent the targeted amount.

Another project launched around the same time is “Looking Up, Way Up!”, which is a proposed

documentary about Burt Rutan, a celebrated aerospace engineer. The project was launched on

February 25, 2015, with a deadline of March 28, 2015, and a goal of $80,000. The cumulative

amount pledged to the project over time is displayed in Figure 1(b). We can see that the first half

of the pledging trajectory resembles that of “Cuberox.” However, the number picked up again in

the middle of the campaign and eventually reached its target. A closer look at the project timeline

shows that project creators announced two raffles for a few free limited-edition items on March 13

and March 17, 2015, which contributed to a significant increase in the pledging number. Whereas

the high funding goal certainly contributed to the failure of the “Cuberox” project, updates of
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“Looking Up, Way Up!” that stimulated pledges in the middle of the campaign is arguably one of

the main reasons why the project eventually reached its funding target.

Motivated by the preceding examples, we study contingent stimulus policies commonly used by

creators during their project campaigns to improve their chances of raising the required funds.

Specifically, we consider a situation where backers with a heterogeneous, privately known willing-

ness to pledge (or valuation) arrive sequentially at a crowdfunding project. Upon arriving, a backer

makes her pledging decision according to her valuation which depends on project characteristics,

as well as according to the expected success of the project which depends on the time of arrival

and the amount pledged at that time. We first study, as a benchmark, the random pledging process

without any creators’ contingent stimulus. Specifically, we characterize the dynamics of a project’s

pledging process and the structural properties of the project’s success rate, using the concept of

rational expectations equilibrium. In particular, due to the all-or-nothing nature of crowdfunding

projects, we show that there exists a cascade effect on backers’ pledging. That is, a backer’s pledge

not only reduces the required number of pledgers by one, but also boosts the confidence of backers

who arrive later, leading to a greater likelihood of pledging by future arrivals. Overall, a backer’s

pledge results in a relatively much higher success rate compared to without the pledge. The boost

in the success rate due to a pledge (in the form of a ratio of success rates with and without the

pledge) is more salient when the pledge is made closer to the deadline (hence there is less time

in the horizon to attract pledges) or when the number of additional pledgers needed in order to

reach the target is larger for a given time. In other words, the relative benefit of adding one more

pledger improves as the chance of success grows dimmer.

Next, we consider three different types of contingent stimulus policies that are costly to imple-

ment and the optimal timing of using them. For simplicity, we focus on the decision on whether

and when to use those costly stimulus policies for once.3

First, we consider a seeding policy, where the project creator has the option to acquire backers

at a cost. Owing to the cascade effect, the addition of pledges increases the pledging likelihood

of future arrivals and thus leads to a higher success rate. Second, inspired by a common practice,

3 We extend the model to consider multiple rounds of stimulus offerings for the two reactive stimulus policies: seeding
and feature upgrade, in the appendix. With multiple rounds of stimuli, the problem becomes much more complicated
because, for a given remaining time, the expected profit of activating the stimulus policy is difficult to pinpoint, due
to the fact that the creator is able to apply multiple stimuli at the same time. Nonetheless, through careful analysis,
we prove analytically that the optimal strategy is a threshold policy, and the threshold increases in the number of
additional pledgers required. For limited-time offers, when there are multiple LTOs in effect, the decision to end one of
them would depend on the total funds collected at the time, which makes the problem significantly more complicated.
While we hypothesize that the optimal strategy is a threshold policy, the proof is beyond the scope of this paper,
which we leave for future research.
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we consider a feature upgrade policy, where project creators are able to upgrade project features

once over the course of the crowdfunding campaign. These two policies are similar in the sense

that they are both reactive; i.e., both of them seek to increase the likelihood of future pledging if

there are fewer early pledgers than expected. As a result, the optimal policies for these two policies

follow a similar structure. That is, for any number of additional pledgers required to reach the

target, there exists a cutoff time such that the creator should implement the stimulus if and only

if the remaining time is less than or equal to the cutoff. As a direct consequence of this cutoff

structure, both seeding and feature upgrade policies can be implemented easily, where the cutoff

time only needs to be updated when the number of pledgers changes. The main driving force

behind this cutoff structure is the cascade effect on backers’ pledging due to the all-or-nothing

nature of crowdfunding projects. When it comes to implementing stimulus policies, there is an

essential tradeoff between the cost of stimulus policies and the potential benefit measured by the

improvement in the success likelihood. Because the cascade effect becomes stronger as it comes

closer to the end of a crowdfunding campaign, the stimulus policy offers a greater boost in the

success rate, and thus the expected gain always outweighs the cost of the stimulus policies when

remaining time is shorter than a certain value. We also show that the cutoff time increases in the

number of additional pledgers required, which indicates that the further the total amount pledged

is from the goal, the earlier the stimulus policies should be applied.

The third policy is a limited-time offer, where project creators are able to offer extra bonuses

to early adopters. Compared with the other two policies, a limited-time offer is more proactive

in the sense that it encourages backers to pledge early with the hope of attracting more backers

later on owing to the cascade effect. Because of this difference, the optimal use of the limited-time

offer contrasts with that of the other two policies. There is still a cutoff time for any number of

additional pledgers required to reach the target; however, the creator should end limited-time offers

if and only if the remaining time is greater than or equal to this cutoff.

Though all three policies indirectly benefit all backers through the boost in the success rate,

seeding and limited-time offer only directly benefit a few of those who get the promotions, whereas

feature upgrade directly benefits all, once the project becomes successful.

The cutoff-time structure in the optimal policies suggests that the project creators should wait

and apply (or end) the stimulus only when the early pledging trajectory is unsatisfactory (or

satisfactory). In addition, what all three policies share in common is that their benefit in absolute

terms vanishes when the remaining time is either too long or too short. On the one hand, when

there is ample time left, a project is likely to be successful without any stimulus. On the other
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hand, when time is very limited, the chance of reaching the funding goal can still be low even with

stimulus policies. Hence, it tends to be more effective to apply stimulus policies in the middle of the

pledging process. This is validated by our empirical analysis of a dataset collected from Kickstarter.

We show that, although making updates during the funding campaign always improves a project’s

chance of success, updates are most effective in the middle of a campaign, especially when the

pledging is lagging. On average, updating under this scenario improves success rates by 14.6%.

We summarize the contributions of our paper as follows. First, we characterize the cascade effect

on backers’ pledging which is driven by the all-or-nothing nature of crowdfunding projects. Second,

as a result of the cascade effect, we show that the optimal timing to apply stimulus policies has a

cut-off structure that is contingent upon the progress of the pledging. A project where the amount

pledged grows at a healthy pace does not need interference, whereas one whose pledging progress

turns out unsatisfactory would benefit from applying stimuli. Last, we corroborate this finding

with the data we collected from Kickstarter. Project updates are shown to offer the greatest boost

to success rates when the middle of the campaign is reached and the total amount pledged falls

behind.

2. Literature Review

This paper contributes to the growing literature on the crowdfunding scheme (see Chen et al. 2020,

Section 4.5 and Allon and Babich 2020 for surveys on crowdfunding in the operations management

literature). The origin of crowdfunding can be traced back to the provision point mechanism that

is traditionally used in the provision of public goods from private contributions (see, e.g., Bagnoli

and Lipman 1989 and Varian 1994). Crowdfunding differs from this stream of literature in that a

backer cannot benefit from a crowdfunding project without actually pledging, and thus the free-

riding problem that commonly arises in the provision of public goods is not a salient concern in

the context of crowdfunding.

The recent emergence of online crowdfunding platforms, such as Kickstarter and Indiegogo, has

attracted a wide range of researchers who have studied the phenomenon both empirically and ana-

lytically. On the empirical side, researchers have studied many different aspects of the crowdfunding

mechanism, including geographic dispersion of investors (Agrawal et al. 2011), backer dynamics

over the project funding cycle (Kuppuswamy and Bayus 2013), positive network externalities (Li

and Duan 2016), factors that lead to successful projects (Mollick 2014), the long-term benefit

from launching crowdfunding campaigns (Mollick and Kuppuswamy 2014), and backers’ prosocial

behavior due to the existence of funding goals (Dai and Zhang 2019).
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On the analytical side, Belleflamme et al. (2014) discuss the optimal choices between reward-

based and equity-based crowdfunding under various conditions. Hu et al. (2015) study pricing

and product design decisions and demonstrate unique benefits of menu pricing in the context of

crowdfunding. Chakraborty and Swinney (2021) study how the creators may signal the quality

of their projects through funding targets and how the creators’ behavior can be different under

the objective of profit-maximization versus success-maximization. Roma et al. (2018) study an

entrepreneur who essentially needs venture capital but could use a crowdfunding campaign to learn

what the market is. The authors study whether the entrepreneur should launch a crowdfunding

campaign and, if so, how to choose the campaign instruments. Chakraborty and Swinney (2018)

suggest a multi-reward strategy with limited quantities for the more attractive options to mitigate

the strategic behavior of backers (who delay pledging until the campaign is more likely to succeed).

Zhang et al. (2018) model the pledging dynamics with a diffusion process that aligns with the U-

shape and L-shape patterns commonly observed in practice. With this model, they investigate the

optimal design of crowdfunding projects in terms of the pledge levels and campaign duration. Alaei

et al. (2016) seek to unravel the commonly observed phenomenon that crowdfunding projects either

succeed or fail by large margins, by modeling the detailed pledging process (see more discussion

below). The authors then study the creator’s ex ante decisions of reward pricing and funding target.

Unlike the analytical works that mainly address the upfront design of crowdfunding projects in

terms of price, target, and mechanism, our work focuses on the contingent policies that creators

can apply to the dynamic pledging progress after the project design has been determined. We

demonstrate the importance of contingent policies, analyze three implementable policies, and show

their benefits analytically and empirically.

The closest theoretical work to ours is Alaei et al. (2016), because both papers model the dynamic

pledging process in which backers anticipate the pledging behavior of later arrivals and take the

project’s success rate into account when making pledging decisions. They model the stochastic

process as an anticipating random walk. As a base, we model the pledging process with backers’

anticipation, using a different approach, namely, the differential and difference equations, which are

a tool commonly used in revenue management. Moreover, our model works under a more general

set of assumptions, namely, that the distribution of backers’ valuations takes a general form and

their arrivals follow a non-homogeneous Poisson process, as opposed to a two-point distribution of

backer valuations and the assumption of one backer per time period in Alaei et al. (2016). Lastly, as

mentioned above, the primary difference is that they consider upfront pricing and target decisions,

taking into account the resulting pledging process, whereas we study contingent policies as the
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pledging process evolves. Moreover, another closely related paper is Burtch et al. (2021). This work

is a combination of analytical and empirical studies with a dynamic program model on how the

creators should dynamically send out referral links. Their model has no microfoundation on how

individual potential backers decide on their pledging decisions, and neither is the random success

rate taken into account. A feature of their model is that the referral links can be sent out at different

times. But due to this complexity, the obtained theoretical structural results are somewhat limited.

The authors further estimate their models using proprietary data from a crowdfunding platform.

In contrast, by focusing on a set of one-time stimulus policies, we are able to fully characterize the

structure of the optimal stimulus policies under endogenized backing decisions that depend on the

randomly evolving state of the pledging process.

The closest empirical work to the theme of our paper is by Li and Duan (2016). They study

the pledging process empirically and demonstrate that the portion of funds already raised has a

positive effect on investors’ pledging decisions (i.e., positive network externality), and that the time

elapsed has a negative effect (i.e., negative time effect). Those empirical findings are consistent

with the structural properties of the pledging process (without stimulus) derived analytically from

our model. The authors also briefly study the dynamic promotions based on simulations. For a

promotion policy that informs a larger number of investors (similar to our seeding policy), they

suggest a heuristic, which is to carry out the promotion when the simulated success rate falls under

a predetermined threshold. We show analytically that the optimal timing of one-shot promotions

has a cutoff-time structure, which is simpler to implement than a policy depending on the simulated

likelihood of success. Moreover, we demonstrate theoretically the effectiveness of contingent policies,

whereas their support for dynamic promotions is based on simulated counterfactual analysis.

Crowdfunding shares some similarities with group buying, which also uses the all-or-nothing

mechanism with a threshold. Anand and Aron (2003) compare the group-buying mechanism against

the listed price mechanism, and illustrate its superiority when the market size is uncertain. Chen

et al. (2010) study the optimal design of group-buying mechanisms under quantity discounts. Jing

and Xie (2011) explore the role of group buying in facilitating consumer social interactions. Hu

et al. (2013) show analytically the impact of sign-up information disclosure on the success rates of

group-buying deals. Using data from Groupon, Wu et al. (2014) find two types of threshold-induced

effects. Marinesi et al. (2018) study the benefit of group buying as a means of moderating demand

between peaks and troughs. Ming and Tunca (2016) characterize the dynamic sign-up process in

group buying by capturing consumer purchase equilibrium with rational expectations of future.
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Then based on the model, they perform structural estimation and find that consumers do not

exhibit large-scale systematic waiting behavior.

On the methodological side, the contingent policies we study in this paper are similar to the

dynamic/contingent policies in revenue management (for comprehensive surveys, see, e.g., McGill

and van Ryzin 1999, Bitran and Caldentey 2003, Elmaghraby and Keskinocak 2003). In traditional

revenue management, firms seek to maximize the revenue from selling limited inventory over a fixed

time horizon by changing prices dynamically depending on the progress of sales. In our work, we

adopt the rational expectations equilibrium (REE) framework that has been used in the revenue

management literature to analyze forward-looking behavior of customers (see, e.g., Su 2007, Liu

and van Ryzin 2008, Zhang and Cooper 2008, Levin et al. 2009 and Liu and Zhang 2013). Our

work differs from studies of traditional revenue management in that, because of the all-or-nothing

nature of crowdfunding projects, backers’ pledging decisions are temporally linked in a direct way

as captured in the cascade effect, whereas in revenue management they are typically moderated by

prices alone (though earlier prices may be indirectly linked with later ones through the inventory

depleting process).

In the revenue management settings, Levin et al. (2008) consider a risk-averse objective that

takes into account the probability of meeting a revenue target through a chance constraint. Besbes

and Maglaras (2012) study financial milestone constraints on the revenues and sales that are

imposed at different time points along the sales horizon. Those constraints are soft in the sense

that the constraints can be violated with a penalty. In contrast, in all-or-nothing crowdfunding, a

successfully funded project requires the predetermined funding goal to be achieved within a given

time, as a hard constraint. This situation is similar to the setting of Besbes et al. (2018) in which

the firm under debt would earn nothing if the generated revenues are not more than the debt at

the end of the sales horizon. The slight difference is that there the firm would only collect the

residual revenues after paying the debt, whereas crowdfunding creators collect all revenues if the

project is successful. Du et al. (2020) study a setting similar to Besbes et al. (2018) in the sense

that the firm can continuously update its decisions (prices in Besbes et al. 2018 and sales rates

in Du et al. 2020) under an all-or-nothing constraint. In contrast, our focus is on whether and

when to apply a one-shot stimulus policy in a setting where the pledges exhibit a cascade effect

that is absent in Besbes et al. (2018) and Du et al. (2020). Moreover, in our crowdfunding setting,

the cost of a stimulus is paid out only if the hard constraint is met; however, the cost associated

with an action in those two papers is sunk regardless of whether the hard constraint is satisfied.

Lastly, Swinney et al. (2011) consider a start-up which maximizes the survival probability in an
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investment timing game. In our setting, the creators need to not only consider the project’s success

probability, but also take into account the cost of stimuli. Given a healthy growth of the pledging

process, the creators may not want to offer the stimulus even though doing so can increase the

success probability.

3. The Model

We consider a crowdfunding platform where creators (such as entrepreneurs or artists) are able

to raise funds from potential backers to start their ventures. Initially, the creator posts its crowd-

funding project, which is characterized by a targeted goal G, a fixed time horizon T , and prices

for rewards. A project is deemed to be successful only when the total pledged amount reaches or

exceeds the target G by the end of the time horizon.

Although creators are allowed or even advised to choose a price menu for rewards on most

crowdfunding platforms (Hu et al. 2015), we make a simplification assumption that there is only

one price tier p in our model. Each backer who contributes the amount of p will be rewarded with

a copy of the final product at the end of the crowdfunding campaign. This assumption allows us to

characterize precisely the pledging dynamics. Indeed, most analytical works in the crowdfunding

literature adopt this single-tier-pricing assumption (see, e.g., Alaei et al. 2016 and Zhang et al.

2018), and our key insights on contingent stimuli are not expected to change even with the presence

of a price menu. As we focus on the contingent policies during the campaign, the upfront design of

the project, including the target G, the duration T , and the price p are assumed to be exogenously

given.

3.1. Individuals’ Pledging Decisions

We start by analyzing individual backers’ optimal pledging decisions. To facilitate our discussion,

we denote by t the time remaining until the end of the crowdfunding project, i.e., the time-to-go.

Potential backers patronize the project’s webpage sequentially according to a non-homogeneous

Poisson process with a time-varying rate λt. Upon arrival, they are able to observe the cumulative

amount pledged. This information assumption is consistent with the common practice by most

crowdfunding platforms such as Kickstarter and Indiegogo. In making her pledging decision, a

potential backer takes into account her valuation of the project, which is dependent on the project’s

characteristics, and her expectation of the success of the crowdfunding project, which is dependent

on the elapsed time and the cumulative amount pledged when she arrives. We assume that potential

backers form a rational expectations equilibrium. That is, potential backers act on their rational

expectations of the project’s success when making pledging decisions and the final outcome is
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consistent with their expectations. A potential backer decides to contribute to the project if and

only if she expects her utility from contributing to the project higher than that of not contributing.

We do not allow potential backers to wait strategically. That is, upon arrival, potential backers

either make a pledge or leave the system. In a similar context of online group buying, which also

adopts an all-or-nothing mechanism, Ming and Tunca (2016) empirically show that customers’

strategic waiting behavior is not significant.

The willingness to pledge of backers is private information. In the eye of creators, the pledging

behavior can be characterized through pledging likelihood functions defined as follows.

Definition 1. (Individual’s Pledging Likelihood) H(q) denotes the probability that a

backer pledges to the project upon arrival, given her expectation of the success rate of the crowd-

funding project being q.

By using this notation, we emphasize the dependence of a backer’s pledging likelihood on the

success probability of the project. But we keep in mind that a backer’s pledging likelihood depends

on the project’s characteristics as well. We will discuss policies that involve contingent control

of those characteristics later in the paper. We further assume that H(q) satisfies the following

properties throughout the rest of the paper.

Assumption 1. (Properties of Individual’s Pledging Likelihood)

(i) H(q) increases in q.4

(ii) For any q > 0, H(q)> 0.

(iii) H(αq)

H(q)
increases in q for any 0<α< 1.

Assumption 1(i) is consistent with the intuition that a backer is more likely to pledge when

the project is more likely to succeed eventually. Assumption 1(ii) says that, as long as the success

rate of the crowdfunding project is not zero, there will be some backers who are willing to pledge.

Assumption 1(iii) implies that the influence of the project’s success rate on backer’s pledging

decisions becomes less salient when the likelihood of success is higher. In other words, a backer’s

pledging decision becomes less sensitive to success-rate perturbations when the success likelihood is

higher. The first two conditions are innocuous. The last condition is more involved but still seems

not unreasonable. We use the following example to illustrate the generality of Assumption 1.

Example 1. To gain granularity on how exactly backers’ pledging decisions may depend on the

success likelihood, we consider an example where the creator chooses the quality of the project as

θ. For a given quality level θ, a type-v backer has a willingness-to-pledge v ·θ for the project, where

4 In this paper, the monotonicity is in its weaker sense unless otherwise stated.
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v is assumed to be the realization of a continuous random variable, drawn from an unbounded

distribution with cumulative distribution function F (·) and probability density function f(·). If

the backer chooses to pledge but the project fails eventually, an “inconvenience penalty” c will be

incurred, where 0 ≤ c < p.5 Therefore, the expected surplus from pledging for the crowdfunding

project includes two components: if the project turns out to be successful, at the end of the

campaign the backer enjoys a payoff of vθ−p; otherwise, a cost of c is incurred. Any backer whose

belief in the project’s success likelihood is q will pledge if and only if

(vθ− p) · q− c · (1− q)> 0 ⇒ H(q) = F̄

(
1

θ

[
p+ c ·

(
1

q
− 1

)])
. (1)

Lemma 1. H(q) in (1) satisfies Assumption 1 if the distribution of backers’ types has an increas-

ing generalized failure rate (IGFR), i.e., v · f(v)

F̄ (v)
is an increasing function in v.

Lemma 1 gives a sufficient condition for Assumption 1 for the specific form of H(q) in (1). The

IGFR is a very general assumption as it captures many commonly used distributions, such as

normal and uniform distributions. �

Example 1 specifies an individual discrete choice model where the pledger has full information

about the project’s success rate. The general form of the pledging likelihood function can also

accommodate observational learning behavior in which a pledger may not have complete informa-

tion about the project but can rationally anticipate the future arrivals’ pledging behaviors.

3.2. Pledging Dynamics

The previous discussion of individuals’ pledging decisions sets the stage for our characterization

of the dynamics of the pledging process. Since backers’ pledging decisions are determined by the

expected success through the individual’s pledging likelihood function, the pledging dynamics can

be captured by the evolution of the project’s likelihood of success over time. Recall that the

crowdfunding project needs to gather G dollars before the end of a fixed time horizon. Given the

price p charged to each backer, the project requires at least

N ≡ dG
p
e

pledgers before time expires. From now on, we may refer to N as the target of the crowdfunding

campaign. We denote by n, where 0≤ n≤N , the additional number of pledgers required to reach

the project’s target, i.e., the pledges needed. The funding progress of the project towards reaching

the goal is uniquely captured by the state space {(t, n) : 0≤ t≤ T,0≤ n≤N}.

5 The cost may consist of psychological frustration in backers who failed to get the product or service they desired. It
may also stem from economic losses. When a crowdfunding project fails to reach its goal, backers will not be charged.
However, since they will not know that and be able to use the money for other purposes until the time expires, they
will have experienced a loss because of the time value of money.
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3.2.1. Success Rate. For a backer who arrives at the state of time-to-go t and pledges needed

n, her expected project’s success rate, conditional on her pledging, is denoted by Qt(n−1). Under

the rational expectations equilibrium, her expectation will be fulfilled by backers who arrive later

and act on their rational expectations. Then the dynamics of the project’s success likelihood in

equilibrium can be summarized as follows.

Proposition 1. (Rational Expectations Equilibrium (REE)) There exists a unique

REE, such that the probability Qt(n) of the project being successfully funded at state (t, n), is given

by
∂Qt(n)

∂t
= λt ·H(Qt(n− 1)) · (Qt(n− 1)−Qt(n)), (2)

with boundary conditions Qt(0) = 1 for all t and Q0(n) = 0 for all n> 0.

The success likelihood at any state (t, n) can be solved by backward induction. However, in

general, obtaining the closed form of Qt(n) is extremely difficult, if not impossible, even for special

forms of H(·). Nevertheless, we are able to show a set of structural properties of Qt(n).

Theorem 1. (Structural Properties of Equilibrium Success Likelihood)

(i) Qt(n) strictly increases in t for any n≥ 1 and strictly decreases in n for any t > 0.

(ii) Qt(n−1)−Qt(n)

Qt(n)
≥ 1

eλ̄t−1
, where λ̄≡ sup{λt : 0≤ t≤ T}.

(iii) For any n≥ 1 and t > 0, both Qt(n−1)

Qt(n)
and H(Qt(n−1))

H(Qt(n))
decrease in t and increase in n. Moreover,

lim
t→0

Qt(n−1)

Qt(n)
=∞.

(iv) For any h> 0,
Qt+h(n)

Qt(n)
strictly increases in n and decreases in t.

Theorem 1(i) shows that the chance of the project being successful increases with more time

remaining and fewer pledgers required. Theorem 1(ii) gives a lower bound on the relative change

in the success likelihood by adding one more pledger. The guaranteed relative improvement in the

likelihood of success with one more pledger is larger if the arrival rates are smaller.

The most interesting property of Qt(n) is shown in Theorem 1(iii). The effect of backers’ pledging

decisions on a project’s success likelihood is twofold: (1) On one hand, a backer’s pledging reduces

the required number of pledgers by one and thus leads to a higher likelihood of success; (2) On the

other hand, the backer’s pledging also boosts the confidence of backers who arrive later, leading to

a higher likelihood that future arrivals will pledge. These two factors add up to what we referred

to as the cascade effect of an individual’s pledging on future backers’ pledging decisions. Theorem

1(iii) shows that this compounding cascade effect is more salient when the time is closer to the

deadline and/or the number of additional pledgers required is larger. It would also be interesting to
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contrast this property with results from a typical revenue management setting, where the firm has

to sell a limited amount of inventory within a fixed period of time. There a customer’s valuation

of the product is not directly affected by the purchase decisions of other customers. However, in

our crowdfunding situation, any individual backer’s pledging decision would directly and positively

affect subsequent backers’ decisions. Because of this cascade effect, all optimal stimulus policies

that we will discuss in the next section follow a cutoff-time structure.

Theorem 1(iv) shows the impact of time-to-go on the project’s success likelihood for a fixed

pledges needed. A longer remaining time results in a higher likelihood of success for the project as

shown in Theorem 1(i). Theorem 1(iv) further shows that this effect is more significant when the

number of additional pledgers required is larger, or when the remaining time is shorter.

3.2.2. Upfront Design. Given the cascade effect on backers’ pledging decisions, it is impor-

tant to carefully consider the project’s characteristics before launching the crowdfunding campaign.

Consider two designs of a project, namely, design a and design b, which can differ in various project

characteristics, such as price and quality. Suppose that design b is more attractive in the sense that

Ha(q)<Hb(q) for any q > 0. We have the following structural results from the comparisons of the

project’s success likelihood and backers’ pledging likelihood between the two projects.

Proposition 2. (Upfront Design of Crowdfunding Projects) Consider two pledging

likelihood functions Ha(q) and Hb(q). If Ha(q) <Hb(q) for any q > 0, and Ha(q)

Hb(q)
increases in q,

then both the ratios of success likelihoods, Qat (n)

Qbt(n)
, and pledging likelihoods, Ha(Qat (n))

Hb(Qbt(n))
, increase in t

and decrease in n.

Proposition 2 underscores the importance of the design of project characteristics. A small dif-

ference in backers’ pledging likelihoods may lead to a huge gap in the project’s success likelihoods

because of the cascade effect. Proposition 2 states that, given two different project designs, the

relative difference in the project’s success likelihoods is more significant when the time is closer

to the deadline and/or the number of additional pledgers required is larger. The same applies to

backers’ pledging likelihood as well.

Recall that design a is less attractive. The assumption that Ha(q)

Hb(q)
(< 1) is an increasing function

of q requires that the relative difference in the pledging likelihoods under two designs increases

when the project’s likelihood of success decreases. That is, the inferior design hurts backers’ pledg-

ing likelihood more significantly when the success likelihood of the project is lower. We revisit

the typical case introduced in Example 1 and investigate when this assumption is satisfied. Two

sufficient conditions are summarized below. It turns out that the assumption can be easily satisfied

when the project can be configured with different prices or qualities.
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Lemma 2. (Properties of Pledging Likelihood) Consider the pledging likelihood function

derived in Example 1.

(i) For two quality levels θa < θb, the ratio of pledging likelihoods, Hθa (q)

Hθb (q)
, is an increasing function

of q.

(ii) If the distribution of backers’ valuations in Assumption 1 has an increasing failure rate (IFR),

then for two prices pa > pb, the ratio of pledging likelihoods, Hpa (q)

Hpb (q)
, is an increasing function

of q.

3.2.3. Expected Profit. All of the above structural properties are about the success rates

and pledging likelihood. Next we derive those for the expected profit of a crowdfunding project.

Conditional on reaching the funding target G, the creator would have collected enough capital to

potentially launch the new product in a mass market. As a result, in addition to the immediate

profit gained during the rest of the campaign, the creator is able to continue selling the products

beyond the campaign deadline. For analytical tractability, we do not differentiate between the

profit gained during the campaign after the funding goal is reached and the potential profit from

selling products after the campaign, and denote the two of them combined by a long-term profit

B ≥ 0. B can be interpreted as the total life-time discounted profit after reaching the funding goal,

e.g., B =
∫∞

0
Λpδtdt, where Λ is the sales rate and 0< δ < 1 is the discount factor.6

Without loss of generality, we normalize the marginal cost of production to 0. The total expected

profit at state (t, n) is therefore given by J bt (n) = (G+B) ·Qt(n). It is obvious that J bt (n) increases

in t and decreases in n. The impact of an additional pledger on the expected profit is summarized

in the proposition below, which is derived from Theorem 1(iii).

Proposition 3. (Marginal Value of a Pledger) The marginal increase in the expected

profit with one more pledger at state (t, n), Jbt (n−1)−Jbt (n)

Jbt (n)
, decreases in t and increases in n.

Like Theorem 1(iii), Proposition 3 shows that an additional pledger is more valuable when the

time is closer to the deadline and/or the number of additional pledgers required is larger. In the

traditional revenue management literature, monotonicity properties are derived for the absolute

difference between the expected profits. However, because of the cascade effect demonstrated in

6 The main source of uncertainty considered in this paper is w.r.t. whether the funding target can be successfully
reached by the end of the crowdfunding campaign, which will affect the profit gained during the campaign after
the funding goal is reached and the potential profit from selling products after the campaign in the same way. As
a result, we do not differentiate between the two sources of profit. But in practice, there can be other sources of
uncertainties, especially regarding whether the product can be successfully developed, as well as the quality of the
product. A higher funding ratio, i.e., the total pledged amount during the campaign to the funding target, helps
reduce these uncertainties, and thus it becomes necessary to differentiate between the two sources of profit when they
are accounted for.
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Theorem 1 in the context of crowdfunding, analogous properties exist but they are for the relative

difference.

4. Contingent Stimulus Policies

We have illustrated the importance of the upfront design of projects’ characteristics in Proposition

2. Given the stochastic nature of arriving backers and their willingness to pledge to the project, the

pledging process may still fail to meet the creator’s expectations even if the project’s characteristics

are optimized ex ante. In such cases, the creator can be better off taking ex post actions to influence

backers during the campaign. In this section, we consider three types of contingent stimulus policies

from the perspective of project creators, namely, seeding, feature upgrade, and limited-time offer.

They are different in their effect on the cost structure and pledging, but they share the common

feature that the associated costs to the creators do not materialize unless the project is successful.

We discuss the optimal ways of applying these three policies, and quantify their potential benefit.

4.1. Seeding Policy

We first study the seeding policy where the creator has the option to acquire n0 number of pledges

(1≤ n0 <N) at a cost of R exactly once during the campaign. Seeding strategies have been widely

used in marketing campaigns where firms recruit customers to speed up the diffusion of the new

products. The difference in crowdfunding is that the acquiring cost R will be incurred only if

the project reaches its funding target. In practice, a broad class of strategies may be classified

under the umbrella of the seeding policy, with which the creator is able to obtain a number of

pledges under some contingent cost. For instance, the creator of “Looking Up, Way Up!” offered

free samples to backers, which is a straightforward approach but may pose fairness concerns for

early backers. Some less intrusive alternatives include the commonly adopted referral incentives

where the creators offer bonuses to existing backers if they are able to bring in additional backers.

It is also common for the creators to seek backing from friends and family. Those pledges are not

without cost, as the creators may ask for favors.

The adoption of the stimulus effectively decreases the target level from N to N − n0. The

superiority of this seeding policy over the manipulation of the target level is obvious. The creator

would choose to seed only along certain sample paths in which the early pledging progress is not

satisfactory. When the pledging process materializes in a way that favors the creator, the incentives

could be saved, allowing the creator to obtain a higher profit. We limit our discussion to the case

where the incentives are offered once at most. We focus on the change in the number of pledgers

required because it is assumed there is only one price tier p in this paper. In practice, when there
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are more than one price tier, the amount of fund required to reach the funding target may be more

relevant for estimation of the likelihood of project success. In terms of the funding amount, the

adoption of the stimulus decreases the funding level from G to G−n0p.

We assume that the n0 pledges will be added immediately and that backers do not expect future

seeding when they make their pledging decisions. If they do, under our assumption of no strategic

waiting, the incentive for backers to pledge now will be even higher, thus leading to a higher value

of contingent seeding. This is because backers will be more confident in the project’s success since

they expect an intervention by the creator when the pledging progress stalls.

Theorem 2. (Optimal Cutoff for Seeding) For each n ≥ 1, there exists a cutoff time

τ s(n), such that the creator will activate the seeding stimulus if and only if t≤ τ s(n).

Theorem 2 sheds light on the conditions under which the creator is better off activating the

seeding stimulus. For any current pledges needed n, there exists a cutoff τ s(n) such that the creator

should implement seeding if and only if the time-to-go is no more than this cutoff. Although

details of the proof are more involved and can be found in the appendix, we describe the intuition

as follows. The creator makes the optimal stopping decision by comparing the optimal expected

profits with and without using the seeding stimulus. In particular, from Theorem 1, we show that

the relative improvement in the success likelihood by seeding decreases in t. Thus, when there is

ample time left, the cost of seeding outweighs the improvement in the likelihood of success, and

the project creator will choose to hold out as a result. On the other hand, when the time-to-go is

short enough, it is optimal to use the seeding option immediately to boost the chances of success.

We present the monotonicity properties of the cutoffs as follows.

Corollary 1. (i) τ s(n) increases in n, i.e.,

τ s(N)≥ τ s(N − 1)≥ · · · ≥ τ s(n0) = · · ·= τ s(1) = 0.

(ii) τ s(n) increases in B and decreases in R.

In Corollary 1(i), we show that the cutoff τ s(n) is increasing in the pledges needed n. This

implies that the seeding policy is more likely to be used at a time when the pledging number is

further away from the target. Again, the monotonicity of τ s(n) with respect to (w.r.t.) n can be

derived from Theorem 1, where we show that the cascade effect is stronger when the number of

additional pledgers required is larger. Corollary 1(ii) implies that the seeding policy is more likely

to be used earlier when the long-term profit B is larger and/or the cost of stimulus R is lower.
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While the latter is intuitive, the former is sensible because the potential loss from failing to reach

the funding target becomes greater with a higher long-term profit B.

In general, it is very hard to derive the closed form solution of τ s(n). To see how τ s(n) may look

like, we consider two special cases: Case (i) H(q)≡H, i.e., a backer’s pledging decision is based

solely on the project’s characteristics, rather than the likelihood of success. From the threshold

characterization (see the proof in the appendix), for this case, we have τ s(n) = 0 for all n ≥ 1.

That is, the creator will never activate the seeding strategy before time expires. This is sensible

considering that the benefit of the seeding policy is driven by the cascade effect of backers’ pledging

decisions. The seeding policy has no influence when backers are not affected by the decisions of

others. Case (ii) H(q) =

{
1 if q > q̄

0 if q≤ q̄
, as a result of that backers have homogeneous willingness to

pledge. Then the creator will seed if and only if backers’ perceived project success likelihood drops

to q̄ for the first time; Otherwise, backers are expected to pledge upon arrival, rendering seeding

unnecessary.

Denote by JsT,N the optimal expected profit with the option of seeding when the deadline is T

and the goal is N . We compare JsT,N with the expected profit under no stimulus J bT,N , and obtain

the following structural properties:

Theorem 3. (i) For any N ≥ 1,
JsT,N

Jb
T,N

decreases in T .

(ii) For any N >n0, lim
T→∞

JsT,N −J bT,N = lim
T→0

JsT,N −J bT,N = 0.

The seeding policy always benefits the project because it gives extra flexibility to the project

creator, allowing him to keep the pledging process at a healthy pace by using the stimulus if

necessary. From Theorem 3, we can see that the relative benefit of seeding becomes more significant

as the time remaining gets shorter. However, its absolute benefit vanishes as T approaches either

infinity or zero. When the time is long enough, having few pledgers at the beginning of the process

will not have a huge negative impact because future arrivals may still reverse the trend, resulting

in a low value of seeding. On the other end of the spectrum, when the time is very short, few

backers are expected to come to the project, leading to the ineffectiveness of the cascade effect, as

well as the seeding policy. Consequently, the benefit of seeding is significant when time is limited

but not impossibly short. We further confirm this finding numerically in Section 4.4.

4.2. Feature Upgrade

In the second policy, we allow the creator to upgrade project features for once during the campaign.

This policy is motivated by the common practice of popular crowdfunding platforms, such as

Kickstarter and Indiegogo, on which project creators can update project features over the course of
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the pledging process. The new feature could be, for example, a new color for a fashion product or a

bonus soundtrack for an album. In the context of the “Looking Up, Way Up!” project, the creator

could have offered to release behind-the-scenes shots to complement the original film as an upgraded

feature. Another alternative for upgrade is to release the film of a higher video quality, such as in

4K resolution. With the upgrades the project creator hopes that backers will be more willing to

pledge. However, upgrading project features could be costly. Consequently, the key question here

is whether and when the project creators should offer an upgraded version of their project.

To answer this question, we enrich the base model as follows. Assume that the cost of an upgrade

is K. In the context of Example 1, we can interpret the feature upgrade as that the quality

level of the project increases from θ to θ̃. As a result of the upgraded project, backers’ pledging

likelihood increases to H̃(q), where H̃(q) ≥H(q) for any q. We assume that H̃(q)

H(q)
increases in q.

This assumption is consistent with Assumption 1(iii), and can be satisfied when the distribution of

backers’ types has the IGFR property in the context of Example 1. The corresponding likelihood

of success is denoted by Q̃t(n).

Theorem 4. (Optimal Cutoff for Feature Upgrade) For each n, there exists a cutoff

time τu(n), such that the creator will upgrade if and only if t≤ τu(n).

The policy of feature upgrade differs from the seeding policy in that it does not directly interfere

with the pledging number. However, both of them rely on the cascade effect of backers’ pledging

decisions to be effective. As a result, the optimal policy of feature upgrade is similar to that of the

seeding policy. That is, for any pledges needed n, there exists a cutoff in time τu(n) such that the

creator should upgrade the project features if and only if the remaining time towards the end of

the campaign is less than or equal to this cutoff.

Corollary 2. (i) τu(n) increases in n, i.e., τu(N)≥ τu(N − 1)≥ · · · ≥ τu(1).

(ii) τu(n) increases in B and decreases in K.

Corollary 2(i) implies that the feature upgrade policy is more likely to be used at a time when

the pledging number is further away from the target. Similar to Corollary 1(ii), Corollary 2(ii)

shows that the feature upgrade stimulus tends to be implemented earlier if the long-term benefit

B is higher and/or the cost of upgrading features K is lower.

Lastly, denote by JuT,N the optimal expected profit with the option of feature upgrade when the

duration is T and the goal is N . Following a similar proof as that of Theorem 3, we show that the

relative difference in expected profits with and without feature upgrade decreases in the campaign

duration T , but the absolute benefit vanishes as T approaches infinity or zero.
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Theorem 5. (i) For any N ≥ 1,
JuT,N

Jb
T,N

decreases in T .

(ii) For any N ≥ 1, lim
T→∞

JuT,N −J bT,N = lim
T→0

JuT,N −J bT,N = 0.

When the duration is sufficiently long, the chance that the project will be successfully funded

is high, and that eliminates any incentive for the project creator to upgrade the project features.

When the duration is very short, a project upgrade will affect decisions by only a negligible fraction

of backers. Consequently, the stimulus will bring only a limited benefit. The implication of Theorem

5(ii) is that the benefit of a feature upgrade is greatest when the project duration is moderate. We

further confirm this finding numerically in Section 4.4 and empirically in Section 5.

4.3. Limited-Time Offer (LTO)

Because of the cascade effect on backers’ pledging decisions, it is important to encourage backers

to pledge early in the process. One way to achieve this is to introduce a limited-time offer (LTO) to

those who pledge early. For instance, the creator of the project “Looking up, Way Up!” could have

offered physical copies of the film signed by Burt Rutan as a bonus to early adopters. Conceptually,

in the context of Example 1, it means that the creator may offer products of higher quality θ̂

for the same price p to early arrivals. The creator may choose to end the LTO and switch back

to normal quality θ whenever the momentum is established. The use of limited-time offers is

prevalent in a wide range of industries, especially when new products are being introduced to the

market. LTO is also related to nudging (Thaler and Sunstain 2009), which is commonly used by

governments and firms to influence the decision-making of individuals. However, the difference is

also obvious as, in our context, customers are assumed to be rational utility-maximizers whereas

nudging takes advantage individuals’ bounded rationality so that by altering the environment, it

makes an individual more likely to make a particular choice. In this subsection, we seek to quantify

the value of LTOs in the context of crowdfunding, and discuss related issues.

LTO differs from the preceding two policies, namely seeding and feature upgrade, in one impor-

tant aspect: LTO is a proactive policy in which the creator induces early pledging by making the

project more attractive at the beginning, whereas seeding and feature upgrade policies are reactive

in the sense that the creator responds to the progress of the pledging, and chooses to apply the

policies only if the number of early pledgers is low. As a result, the optimal use of an LTO differs

inherently from that of those two policies.

For the creator, there is an increase in the marginal cost for each unit purchased by backers

during an LTO, which we denote by k. Compared with feature upgrade, the promotional product

being offered during an LTO is typically a standard version of the product plus some extras. Thus,
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the creator can conveniently stop the LTO and switch back to the standard product. In contrast,

feature upgrade typically involves a permanent upgrade of certain characteristics of the product,

e.g., making a proposed smart watch waterproof. Thus a fixed cost is incurred for producing the

superior product. During an LTO, backers’ pledging likelihood increases to Ĥ(q), whereas that

corresponding to the normal quality level is H(q)(≤ Ĥ(q)) for any likelihood of success q.

Theorem 6. (Optimal Cutoff for LTO) For any n, there exists a cutoff time τ l(n), such

that the creator will end the limited-time offer if and only if t≥ τ l(n).

Theorem 6 shows that, for any pledges needed n, there exists a cutoff in time τ l(n) such that the

creator should end the LTO if and only if the time remaining before the end of the project is greater

than or equal to this cutoff. In other words, if the project has already attracted a large number

of pledgers while the remaining time is long, the creator can end the LTO immediately to enjoy a

lower unit cost without jeopardizing the project’s success. However, if the remaining time is short,

in particular if it is less than the cutoff time τ l(n), the creator is better off continuing the LTO.

The profit margin from each backer is lower in such circumstances; however, it is compensated for

by a greater chance of reaching the target.

Corollary 3. τ l(n) increases in B and decreases in k.

Corollary 3 implies that the creator is more likely to run LTO for a longer period of time when

the long-term profit B is higher and/or the per unit cost of LTO k is lower. This result is consistent

with Corollaries 1(ii) and 2(ii). However, unlike the seeding and feature upgrade policies, the cutoff

τ l(n) is not monotonic in the pledge-to-go n in general. This is because the overall cost of LTO

is a function of pledge-to-go n, rather than a fixed cost as in the preceding two stimulus policies.

If the creator chooses to run LTO longer, the campaign is indeed more likely to succeed, however

the profit is also lower should it succeed due to the higher per-unit cost associated with running

LTO. As a result, the expected profit with the option of LTO is not necessarily monotonic w.r.t.

n, leading to possible non-monotonicity of τ l(n) in n.

It is not surprising that the benefit of LTOs also vanishes as T approaches either infinity or zero,

as does the benefit of the other two policies. The result is summarized as follows, where J lT,N is

the optimal expected profit with the option of an LTO when the duration is T and the goal is N .

Theorem 7. (i) For any N ≥ 1,
JlT,N

Jb
T,N

decreases in T .

(ii) For any n≥ 1, lim
T→∞

J lT,N −J bT,N = lim
T→0

J lT,N −J bT,N = 0.
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4.4. Numerical Examples

We now demonstrate the effectiveness of stimulus policies with numerical experiments. We consider

the setup as described in Example 1, where the creator can make the project more attractive by

improving the quality of the project. The parameters in the numerical experiments are specified

as follows. A backer’s valuation v is drawn from an exponential distribution with mean of $100.

The contribution p required from each backer is $120, the quality level θ of the project is 1, and

the penalty cost c for each consumer if the project fails to reach its target is $30. The goal G

of the project is set to be $1,800, which is equivalent to requiring at least N = 15 pledgers. The

duration of the campaign is 30 days, and the arrival rate λt at which potential backers land on the

project’s webpage is assumed to be time-invariant and equals to 2 per day. The long-term benefit

B is assumed to be $500.

Using Proposition 1 and backward induction, we can compute the success likelihood Qt(n)

without any contingent stimulus policy. The result is displayed in Figure 2(a). The expected success

rate right after the project launch is 34.3%. Of course, whether this project indeed succeeds by

the end of the campaign depends on the realized sample path, especially the number of pledgers

appearing in the early stage of the crowdfunding campaign, due to the cascade effect. For instance,

if 5 backers pledge during the first five days, then the project’s likelihood of success increases to

over 87%. On the other hand, that drops to nearly zero if nobody pledges during the first five days.

The latter case is when the project creator may be able to save the project with stimulus policies.

Figure 2 A Numerical Result illustrating Benefits of Stimulus Policies
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Next, we evaluate the optimal expected profit under each of the three policies referred to in the

preceding subsections. The results are shown in Figure 2(b). Here, we assume that the creator has

the option to acquire 1 pledge at a cost of $120 for the seeding strategy. For feature upgrade, she

can also improve the project’s quality level to θ̃ = 1.5 with a cost of K = $600 under the feature

upgrade policy. Alternatively, the creator is able to offer products at the higher quality level θ̃= 1.5

to early arrivals with an LTO at an additional cost of k= $30 per unit.

From Figure 2(b), we first observe that benefits of stimulus policies are not monotonic in the

duration of projects, given the same target N = 15. When the project duration is short (i.e.,

T < 15), the benefit of stimulus policies is marginal because projects are likely to fail no matter

what policies the project creator uses to attract backers. On the other end of the spectrum, when

there is ample time (i.e., T > 35), project are highly likely to succeed even without stimulus. The

benefit of stimulus policies is most salient with a moderate project duration (i.e., 15 ≤ T ≤ 35

for this particular example). In other words, for those projects that have potential but are not

overwhelmingly popular, offering stimulus at the right time could help tremendously. For instance,

let us compare the results with and without stimulus when T = 30, which is the duration of the

crowdfunding campaign in our baseline setup. The expected profit without any stimulus policy

is $790. With the optimal seeding policy, the expected profit increases to $1,313, i.e., a 66.2%

increase benchmarked with the expected profit without stimulus. Similarly, the expected profits

increase by 128.8% and 149.2% with the optimal feature upgrade and LTOs, respectively.

Next we compare the efficacy of three policies under different parameters. We use the expected

profit of the feature upgrade as a benchmark, and compare it against the expected profits of seeding

and LTO under various costs. The results are summarized in Figure 3. Figure 3(a) shows the

expected profit of the seeding policy with the same fixed cost R= $120 but a different number of

seeds n0. As n0 increases, the creator is also able to recruit customers more cost-effectively, leading

to a higher profit. In our numerical analysis, the seeding strategy would yield a higher profit than

feature upgrade as long as n0 is larger than 2. Similarly, the expected profit of LTO with different

cost k is shown in Figure 3(b). The expected profit of LTO decreases in k, and is lower than that

of feature upgrade as long as k is greater than $50. The numerical results show that no strategy

strictly dominates, and a creator needs to carefully evaluate the costs of implementing different

stimuli when it comes to the choice of the optimal stimulus policies.

5. Empirical Evidence

We built a data crawler on the Google App Engine platform to collect data from Kickstarter

between January 30 and June 27, 2015. Whenever a new project was posted, the data crawler
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Figure 3 Comparison of Stimulus Policies
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Note: V ∼ exp( 1
100

), p= $120, θ= 1, c= $30, G= $1,800 (i.e., N = 15), B = $500, T = 30 and λt = 2.

Seeding: R= $120; Feature Upgrade: θ̃= 1.5 and K = $150; LTO: θ̂= 1.5.

extracted static project information, such as the project name, goal, and campaign duration. It also

kept track of the pledging in terms of the intertemporal number of pledgers, cumulative pledged

amount, project creators’ updates and backers’ comments whenever there was any change to the

project. This real-time dataset allows us to uncover the pledging patterns, as well as the impact of

the creators’ updates.

Table 1 Summary Statistics of Kickstarter Data

Project Attributes Mean St. Dev. Min Max

Goal ($) 67,009 1,401,462 1 100,000,000
Funding ratio 1.90 99.93 0 12,984
Duration (days) 33.63 11.66 1 60
# of updates per week 0.69 1.40 0 27.30

In total, our data includes 21,657 Kickstarter projects. Table 1 shows the summary statistics

for all of those projects. The average project target in the sample was $67,009.7 The average

crowdfunding campaign duration was 33.63 days. We compute the funding ratio as the total pledged

amount to the target. As shown in Figure 4, although 1,110 projects managed to collect over

200% of the goals, the majority of successful projects collected no more than 120% of their goals.

7 Project targets may be in different currencies depending on where the project creators were located. We ignore the
differences and assume that they were all measured in dollars.
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Figure 4 Funding Ratio Distribution
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Project creators are allowed to make changes to their project over the course of their crowdfunding

campaign. On average, project creators updated their project 0.69 times per week. We also observe

significant variations in project update frequencies in our sample, ranging from 0 to 27.30 times

per week. This variation allows us to study the effect of project updates on the project’s likelihood

of success.

Figure 5 Average Project Success Rate as a Function of Time-to-Go and Pledges Needed
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(b) Success Rate by Time-to-Go and Pledges

Needed

We first display the project’s success rate as a function of time-to-go and pledges needed by

investigating the trajectories of all projects in the sample. Specifically, we break down time-to-go

and pledges needed of each project into 10 stages, i.e., 0− 10%, 10%− 20%, . . ., 90%− 100%, and

compute the average success rate for those projects that fall into the same time stage and pledge
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stage. The results are summarized in Figure 5. The first observation is that, on average, a project

is less likely to succeed with either a shorter remaining time given the same pledges needed, or a

higher amount required to reach the target given the same time-to-go. This is consistent with our

theoretical results on the pledging likelihood function Qt(n), as shown in Theorem 1. The empirical

evidence also shows the importance of maintaining the momentum of the pledging, especially at

the beginning of a campaign. For instance, Figure 5(b) shows that over 94% of projects will fail

if they do not secure at least 10% of their goal after one-fifth of the time has passed. Secondly,

we see from Figure 5(a) that the probability that a newly launched project will eventually reach

its goal is around 33%, which is about the same as the expected success of the project shown in

the numerical example in Section 4.4. In other words, in terms of the success rate, our numerical

example is a “typical” project, and the effectiveness demonstrated in the numerical experiments

further lends some credibility to the importance of stimulus policies in practical settings.

Table 2 Number of Updates in Successful and Failed Projects Per Week

Project Count Mean Std. Error

Successful projects 6089 1.136 0.0179
Failed projects 15568 0.186 0.0039

Next, we study the effect of the creator’s updates on the project’s likelihood of success. The

effectiveness of creators’ updates is supported by our data as well. We find that, on average,

successful projects made 1.136 updates per week, while failed ones made only 0.186 weekly updates

and the difference is statistically significant (see Table 2).

It is complicated to quantify the exact benefit of updates because of data and identification

issues. On the data side, the nature of updates, whether it is seeding, feature upgrade or LTO, may

be hard to classify accurately using natural language algorithms. The identification could also be

challenging because the difference in the number of updates may be a reflection of the creators’

intrinsic motivation, which also affects campaign outcomes. A rigorous full-scale econometric model

is beyond the scope of this paper. However, we provide some model-free evidence which demon-

strates the importance of update timings. We divide campaigns along the time dimension into three

stages of equal length: early, middle, and late. Similarly, using the ratio of the pledged amount to

the project’s target, we divide campaigns along the pledging-ratio dimension into three different

stages, namely, initial, middle, and final. We calculate the average pledged amount (as % of the

project goal) in each of nine categories. As seen from Figure 6(a), at the start of crowdfunding cam-

paigns (i.e., early stage), the pledged amount of most projects increases at a steady pace. However,
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Figure 6 Success Rate and Pledge Rate under Different Stages
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the same cannot be said for the middle and late stages of the campaigns. For those projects where

the cumulative pledged amount is greater than 33% of the funding target (i.e., middle and final

stages), pledging rates remain relatively stable and healthy at around 8-9% on average. However,

if a project is not progressing well (i.e., in the initial stage where the cumulative pledged amount

is less than 33% of the funding target), the pledging comes to a nearly complete stop with the

pledging rate stays at 1% during the middle or late stage of the campaigns. This is consistent with

the examples in Figure 1 and underscores the importance of using stimulus strategies to keep the

momentum.

We then investigate the effect of updates by comparing the outcomes of the projects for which

creators made updates and the projects without updates in each of the nine categories. The results

are summarized in Figure 6(b). In general, projects with updates have, on average, a higher success

likelihood across all nine categories. The difference is greatest in the middle of a crowdfunding

campaign and in the initial stage when the pledging amount is falling behind. In this scenario,

the average success rate increases from 11.9% to 26.5% with updates. This scenario is consistent

with our theoretical results in Theorems 2 and 4, where we show that when applying stimuli, it

is optimal to do so only if the pledging slows down but not when the pledging is going smoothly.

Moreover, the benefit in this particular scenario as the greatest is consistent with our results in

Theorems 3(ii) and 5(ii), where we show that the benefit of stimuli is the most significant when

the time-to-go is in an intermediate range.
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6. Conclusion

Archimedes once said “give me a fulcrum, and I shall move the world.” In this paper, we study

the optimal timing of contingently placing a “fulcrum” in the context of crowdfunding, with the

potential of tilting the random pledging process from failure to success. In particular, we evaluate

three different policies in detail, namely, seeding, feature upgrade, and limited-time offer. The three

policies seek to encourage backers’ pledging in different ways. Seeding directly interacts with the

pledging process by reducing the number of pledgers needed to reach the target and making the

project more promising for future arrivals. With feature upgrade, project creators offer a superior

version of the product with the hope of attracting more backers. This upgraded product is offered

to future arrivals, as well as those who have already pledged. On the other hand, limited-time

offer seeks to exploit the cascade effect in the pledging process by using promotional products to

encourage potential backers to pledge early. However, unlike feature upgrade, promotional products

are offered only during the LTO period.

Our analysis provides useful guidance on whether, when, and how project creators should apply

these policies. We show that the potential benefits of the three policies vanish when the remaining

time approaches either infinity or zero. It implies that these policies would be most effective in the

middle of the pledging process. This is also consistent with the contingent nature of these policies.

That is, project creators may want to “wait and see” and implement them only when the pledging

trajectory is unsatisfactory in the early stage of the campaign.

On a related note, in practice, project creators may benefit from using a combination of the

three policies. LTO is a proactive policy which induces customers to pledge early on. As shown

in our analysis, the creator should end LTO if the project has already attracted a large number

of pledgers while the remaining time is long. However, this does not guarantee that the project

will succeed 100%. There is still a chance that the pledging process slows down after the end of

LTO, and this is where the two reactive policies, i.e., seeding and feature upgrade, come in handy.

Using a combination of proactive and reactive stimulus policies may lead to a higher profit that is

unachievable with any policy alone.

Our study serves as the first step towards an understanding of the dynamics of crowdfunding

projects. Future research may consider other types of information uncertainty beyond the project’s

likelihood of success and may investigate their influence on the pledging dynamics. For instance,

one salient concern from backers is whether and when project creators will successfully deliver the

products (Mollick and Kuppuswamy 2014). This type of information asymmetry and uncertainty

may affect backers’ pledging decisions even after the target is reached when the success uncertainty



29

is resolved. To assure backers, it might be beneficial for the creators to deposit part of the funding

beforehand to a trustworthy third-party, as a way to signal the quality of their products. On the

empirical side, whether and to what extent backers take into account the probability of the final

product’s delivery needs to be verified with real data. In fact, the significance of various effects

may well depend on project characteristics, and thus empirical analysis can offer useful guidance

on the choice of policies for project creators.
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Online Appendix to

“Contingent Stimulus in Crowdfunding”

OA.1. Proofs

Proof of Lemma 1. (i) Taking derivative of H(q) w.r.t. q, we have

dH(q)

dq
=

c

θq2
f

(
1

θ

(
p+ c ·

(
1

q
− 1

)))
> 0.

(ii) Assumption 1(ii) is guaranteed by the fact that the support of the distribution F (·) is

unbounded.

(iii) We prove Assumption 1(iii) by contradiction. Taking derivative of H(αq)/H(q) w.r.t. q, we

have

d

dq

(
H(αq)

H(q)

)
=
H(αq)
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θq2
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θ
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q
− 1)))

]
.

Suppose there exists a q′ such that d
dq

(
H(αq′)
H(q′)

)
≤ 0, which implies that

f( 1
θ (p+c( 1

αq′−1)))

F̄ ( 1
θ (p+c( 1

αq′−1)))
≤

α ·
f( 1
θ (p+c( 1

q′−1)))

F̄ ( 1
θ (p+c( 1

q′−1)))
. Coupling with the IGFR property that 1

θ

[
p+ c( 1

αq′ − 1)
]
f( 1
θ (p+c( 1

αq′−1)))

F̄ ( 1
θ (p+c( 1

αq′−1)))
≥

1
θ

[
p+ c( 1

q′ − 1)
]
f( 1
θ (p+c( 1

q′−1)))

F̄ ( 1
θ (p+c( 1

q′−1)))
, we have p+ c( 1

αq′ − 1)≥ 1
α

[
p+ c( 1

q′ − 1)
]
. A direct consequence of

the preceding inequality is that (p− c)≥ p−c
α

, which contradicts with 0< α < 1 and p > c. Thus,

we obtain the desired result. �

Proof of Proposition 1. Suppose that a backer arrives with time-to-go t > 0 and pledges needed

n ≥ 1. This focal backer would decide whether or not to pledge based on her expected project’s

success rate conditional on her pledging, i.e., Qt(n− 1). Consider what happens in a small time

interval δ, and we have

Qt(n) = (1− δλtH(Qt(n− 1))) ·Qt−δ(n) + δλtH(Qt(n− 1)) ·Qt−δ(n− 1) + o(δ).

Rearranging and taking the limit as δ→ 0, we obtain Equation (2). With the boundary conditions,

the solution to Equation (2), which is an ordinary differential equation solved by induction, is

unique. �

Proof of Theorem 1. (i) We prove this by induction. First when n= 1, because Qt(0) = 1, it is

easy to verify that Qt(1) = 1− exp
(
−
∫ t

0
λsH(1)ds

)
is the unique solution of Equation (2). Hence

Qt(1) increases in t, and Qt(1)<Qt(0).

Now assume the statement is true for n− 1 (n≥ 2), then for n:

∂

∂t

[
Qt(n−1)−Qt(n)

]
= λt

[
H(Qt(n−2)) (Qt(n− 2)−Qt(n− 1))−H(Qt(n−1)) (Qt(n− 1)−Qt(n))

]
.
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Since Qt(n− 2)−Qt(n− 1) > 0, ∂
∂t

[
Qt(n− 1)−Qt(n)]

]
> λtH(Qt(n− 1))

[
Qt(n− 1)−Qt(n)

]
.

Based on Grönwall’s Inequality and the fact that Qt(n− 1)−Qt(n)
∣∣∣
t=0

= 0, we have Qt(n− 1)−

Qt(n)> 0 for any t > 0. This also implies that ∂Qt(n)

∂t
> 0. Therefore the statement is also true for

n.

(ii) The inequality is equivalent to Qt(n)

Qt(n−1)
≤ 1− e−λ̄t. Consider the function eλ̄tQt(n). Taking

the derivative w.r.t. t, we have

∂(eλ̄tQt(n))

∂t
= λ̄eλ̄tQt(n) + eλ̄t

∂Qt(n)

∂t
≤ λ̄eλ̄tQt(n) + λ̄eλ̄t[Qt(n− 1)−Qt(n)] = λ̄eλ̄tQt(n− 1),

where the inequality is due to ∂Qt(n)

∂t
> 0 and ∂Qt(n)

∂t
≤ λ̄[Qt(n−1)−Qt(n)], as implied by Equation

(2). Integrating from 0 to t on both sides, we have

Qt(n) ≤
∫ t

0

λ̄e−λ̄(t−s)Qs(n− 1)ds≤ λ̄Qt(n− 1)

∫ t

0

e−λ̄(t−s)ds= (1− e−λ̄t)Qt(n− 1).

where the second inequality is due to the increasing monotonicity of Qt(n− 1) in t as shown in

Theorem 1(i). Therefore, we conclude that Qt(n)

Qt(n−1)
≤ 1− e−λ̄t.

(iii) We will prove that Qt(n)

Qt(n−1)
strictly increases in t and H(Qt(n))

H(Qt(n−1))
increases in t by induction.

Consider first when n= 1. Because Qt(1)

Qt(0)
=Qt(1) and H(Qt(1))

H(Qt(0))
= H(Qt(1))

H(1)
, the monotonicity is guar-

anteed by part (i) and Assumption 1(i). Now assume that the monotonicity in t holds for n− 1.

We next show that rt(n)≡ Qt(n)

Qt(n−1)
strictly increases in t and ϕt(n)≡ H(Qt(n))

H(Qt(n−1))
increases in t. First

from part (i), we observe that 0 < rt(n) < 1 for t > 0. Taking the derivative of rt(n) w.r.t. t, we

have
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− 1

)
−
(

1

rt(n− 1)
− 1

)]
.

Suppose that there exists some t1 such that ∂rt(n)

∂t

∣∣∣
t=t1

≤ 0. Then, there must exist some t2 ∈

(0, t1) such that ∂rt(n)

∂t

∣∣∣
t=t2

> 0. Otherwise, if ∂rt(n)

∂t
≤ 0 for all t < t1, then lim

t→0
rt(n) = 0 ≥ rt1(n),

which contradicts with the fact that Qt(n)> 0. Due to the continuity of ∂rt(n)

∂t
, there exists some

t3 ∈ [t2, t1), such that ∂rt(n)

∂t

∣∣∣
t=t3

= 0. That is,

ϕt3(n− 1)

(
1

rt3(n)
− 1

)
−
(

1

rt3(n− 1)
− 1

)
= 0.
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Because ϕt(n− 1) strictly increases in t and rt(n− 1) increases in t, and rt(n) decreases in t

between [t3, t1], we have

ϕt1(n− 1)

(
1

rt1(n)
− 1

)
−
(

1

rt1(n− 1)
− 1

)
>ϕt3(n− 1)

(
1

rt3(n)
− 1

)
−
(

1

rt3(n− 1)
− 1

)
= 0,

which implies that ∂rt(n)

∂t
|t=t1 > 0. However, this contradicts with the preceding statement that

∂rt(n)

∂t
|t=t1 ≤ 0. Therefore, we conclude that ∂rt(n)

∂t
> 0 for any t > 0.

Next we show that H(Qt(n))

H(Qt(n−1))
increases in t. For any t′ > t, we have

H(Qt′(n)) =H
( Qt′(n)

Qt′(n− 1)
Qt′(n− 1)

)
≥H

( Qt(n)

Qt(n− 1)
Qt′(n− 1)

)
,

where the inequality is due to the increasing monotonicity of Qt(n)

Qt(n−1)
in t and Assumption 1(i).

Due to Assumption 1(iii) and Theorem 1(i), we have

H(Qt′(n))

H(Qt′(n− 1))
≥
H
(

Qt(n)

Qt(n−1)
Qt′(n− 1)

)
H(Qt′(n− 1))

≥
H
(

Qt(n)

Qt(n−1)
Qt(n− 1)

)
H(Qt(n− 1))

=
H(Qt(n))

H(Qt(n− 1))
.

We hence prove the increasing monotonicity of H(Qt(n))

H(Qt(n−1))
in t.

For the monotonicity in n, because we have shown that ∂rt(n)

∂t
> 0 for any t > 0, ϕt(n−1)

(
1

rt(n)
−

1
)
−
(

1
rt(n−1)

−1
)
> 0 . Since ϕt(n−1)≤ 1, we have rt(n)< rt(n−1), i.e., Qt(n)

Qt(n−1)
< Qt(n−1)

Qt(n−2)
. A direct

consequence is that H(Qt(n))

H(Qt(n−1))
=

H

(
Qt(n)
Qt(n−1)

Qt(n−1)

)
H(Qt(n−1))

<
H

(
Qt(n−1)
Qt(n−2)

Qt(n−1)

)
H(Qt(n−1))

. Due to Assumption 1(iii)

and part (i), we have

H
(
Qt(n−1)

Qt(n−2)
Qt(n− 1)

)
H(Qt(n− 1))

≤
H
(
Qt(n−1)

Qt(n−2)
Qt(n− 2)

)
H(Qt(n− 2))

=
H(Qt(n− 1))

H(Qt(n− 2))
.

Therefore, we conclude that H(Qt(n))

H(Qt(n−1))
≤ H(Qt(n−1))

H(Qt(n−2))
for any t > 0.

(iv) For any n≥ 1, we have

Qt+h(n)

Qt(n)
=

Qt+h(n)

Qt+h(n− 1)
· Qt+h(n− 1)

Qt(n− 1)
· Qt(n− 1)

Qt(n)
>
Qt+h(n− 1)

Qt(n− 1)
,

where the inequality is due to
Qt+h(n)

Qt+h(n−1)
> Qt(n)

Qt(n−1)
as shown in Theorem 1(iii).

Last, we prove the monotonicty in t by induction. When n= 0 the statement is obvious. Suppose

that the statement is true for n− 1, where n≥ 1. Then for any t2 > t1 ≥ 0,

H(Qt2(n− 1))

H(Qt2+h(n− 1))
=
H
(

Qt2 (n−1)

Qt2+h(n−1)
Qt2+h(n− 1)

)
H(Qt2+h(n− 1))

≥
H
(

Qt1 (n−1)

Qt1+h(n−1)
Qt2+h(n− 1)

)
H(Qt2+h(n− 1))

.

Based on Assumption 1(iii), we have

H(Qt2(n− 1))

H(Qt2+h(n− 1))
≥
H
(

Qt1 (n−1)

Qt1+h(n−1)
Qt1+h(n− 1)

)
H(Qt1+h(n− 1))

=
H(Qt1(n− 1))

H(Qt1+h(n− 1))
,
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due to Qt2+h(n− 1)≥Qt1+h(n− 1) and
Qt1 (n−1)

Qt1+h(n−1)
≤ 1. Thus H(Qt(n−1))

H(Qt+h(n−1))
increases in t. Next we

take derivative of
Qt+h(n)

Qt(n)
w.r.t. t:

∂

∂t

Qt+h(n)

Qt(n)
=
Ht+h(n) [Qt+h(n− 1)−Qt+h(n)]

Qt(n)
− Qt+h(n)

Qt(n)

Ht(n) [Qt(n− 1)−Qt(n)]

Qt(n)

= Ht+h(n)
Qt(n− 1)

Qt(n)

[
Qt+h(n− 1)

Qt(n− 1)
− Qt+h(n)

Qt(n)

(
Qt(n)

Qt(n− 1)
+

Ht(n)

Ht+h(n)

(
1− Qt(n)

Qt(n− 1)

))]
= Ht+h(n)

Qt(n− 1)

Qt(n)

[
Qt+h(n− 1)

Qt(n− 1)
− Qt+h(n)

Qt(n)

[
1−

(
1− H(Qt(n− 1))

H(Qt+h(n− 1))

)(
1− Qt(n)

Qt(n− 1)

)]]
.

Note that
Qt+h(n)

Qt(n)
→ 1 when t→∞, and

Qt+h(n)

Qt(n)
> 1 for any finite t. Thus

Qt+h(n)

Qt(n)
decreases

in t when t is sufficiently large. Suppose that
Qt+h(n)

Qt(n)
is not monotonically decreasing in t. Then

there must exist a t3 > t2 > t1 such that ∂
∂t

Qt+h(n)

Qt(n)

∣∣∣
t=t1

= 0 and ∂
∂t

Qt+h(n)

Qt(n)
> 0 for any t ∈ (t2, t3).

However,
Qt+h(n−1)

Qt(n−1)
decreases in t by the induction assumption. We also know that H(Qt(n−1))

H(Qt+h(n−1))

increases in t, which would imply that 1−
(

1− H(Qt(n−1))

H(Qt+h(n−1))

)(
1− Qt(n)

Qt(n−1)

)
increases in t over (t2, t3).

Consequently ∂
∂t

Qt+h(n)

Qt(n)
≤ ∂

∂t

Qt+h(n)

Qt(n)

∣∣∣
t=t2

= 0 for t∈ (t2, t3), which contradicts with ∂
∂t

Qt+h(n)

Qt(n)
> 0 for

any t∈ (t2, t3). We thus obtain the announced results. �

Proof of Lemma 2. (i) Taking derivative of Hθa (q)

Hθb (q)
w.r.t. q, we have

∂

∂q

(
Hθa(q)

Hθb(q)

)
=
Hθa(q)

Hθb(q)

c

q2

[ 1

θa

f
(

1
θa

(p+ c( 1
q
− 1))

)
F̄
(

1
θa

(p+ c( 1
q
− 1))

) − 1

θb

f
(

1
θb

(p+ c( 1
q
− 1))

)
F̄
(

1
θb

(p+ c( 1
q
− 1))

)].
Because θa < θb and Assumption 1, we conclude that ∂

∂q

(
Hθa (q)

Hθb (q)

)
> 0. Thus, we obtain the

announced results.

(ii) Taking derivative of Hpa (q)

Hpb (q)
w.r.t. q, we have

∂

∂q

(
Hpa(q)

Hpb(q)

)
=

1

[Hpb(q)]2

[
c

θq2
f

(
1

θ

[
pa + c ·

(
1

q
− 1

)])
F̄

(
1

θ

[
pb + c ·

(
1

q
− 1

)])

− c

θq2
f

(
1

θ

[
pb + c ·

(
1

q
− 1

)])
F̄

(
1

θ

[
pa + c ·

(
1

q
− 1

)])]

=
Hpa(q)

Hpb(q)

c

θq2

 f
(

1
θ

[
pa + c ·

(
1
q
− 1
)])

F̄
(

1
θ

[
pa + c ·

(
1
q
− 1
)]) − f

(
1
θ

[
pb + c ·

(
1
q
− 1
)])

F̄
(

1
θ

[
pb + c ·

(
1
q
− 1
)])

 .
Due to pa > pb and that f(v)

F̄ (v)
increases in v, we conclude that ∂

∂q

(
Hpa (q)

Hpb (q)

)
> 0. �

Proof of Proposition 2. Denote xt(n) = Qat (n)

Qbt(n)
and γt(n) = Ha(Qat (n))

Hb(Qbt(n))
. We first prove that xt(n)

and γt(n) increase in t by induction. When n = 0, xt(0) = 1 and γt(0) = Ha(1)

Hb(1)
, and thus the

monotonicity holds trivially. Now suppose that the statement is true for n−1. Taking the derivative

of xt(n) w.r.t. t, we have

dxt(n)

dt
=
λtH

a(Qa
t (n− 1)) [Qa

t (n− 1)−Qa
t (n)]

Qb
t(n)

− Q
a
t (n)λtH

b(Qb
t(n− 1)) [Qb

t(n− 1)−Qb
t(n)]

[Qb
t(n)]2



5

= λt
Qa
t (n)

Qb
t(n)

[
Ha(Qa

t (n− 1))

(
Qa
t (n− 1)

Qa
t (n)

− 1

)
−Hb(Qb

t(n− 1))

(
Qb
t(n− 1)

Qb
t(n)

− 1

)]
= λt

[
Ha(Qa

t (n− 1))

(
Qa
t (n− 1)

Qb
t(n− 1)

Qb
t(n− 1)

Qb
t(n)

− Q
a
t (n)

Qb
t(n)

)
−Hb(Qb

t(n− 1))
Qa
t (n)

Qb
t(n)

(
Qb
t(n− 1)

Qb
t(n)

− 1

)]
= λtH

a(Qa
t (n− 1))

Qb
t(n− 1)

Qb
t(n)

·[
Qa
t (n− 1)

Qb
t(n− 1)

− Qb
t(n)

Qb
t(n− 1)

Qa
t (n)

Qb
t(n)

− Hb(Qb
t(n− 1))

Ha(Qa
t (n− 1))

Qa
t (n)

Qb
t(n)

(
1− Qb

t(n)

Qb
t(n− 1)

)]
= λtH

a(Qa
t (n− 1))

Qb
t(n− 1)

Qb
t(n)

[
xt(n− 1)− Qb

t(n)

Qb
t(n− 1)

xt(n)− xt(n)

γt(n− 1)

(
1− Qb

t(n)

Qb
t(n− 1)

)]
= λtH

a(Qa
t (n− 1))

Qb
t(n− 1)

Qb
t(n)

[
xt(n− 1)−xt(n)−

(
1

γt(n− 1)
− 1

)(
1− Qb

t(n)

Qb
t(n− 1)

)
xt(n)

]
.

Denote L(t) = xt(n−1)−
[
1 +

(
1

γt(n−1)
− 1
)(

1− Qbt(n)

Qbt(n−1)

)]
xt(n). Next we show that if there exists

some t1 such that L(t1) < 0, there must exist some t2 ∈ (0, t1) such that L(t2) ≥ 0. Consider the

following two cases.

(1) lim
t→0

γt(n− 1) = 0. Using L’ Hopital’s rule, we have

lim
t→0

xt(n) = lim
t→0

∂Qat (n)

∂t

∂Qbt(n)

∂t

= lim
t→0

λtH
a(Qa

t (n− 1)) (Qa
t (n− 1)−Qa

t (n))

λtHb(Qb
t(n− 1)) (Qb

t(n− 1)−Qb
t(n))

= lim
t→0

γt(n− 1) ·
Qa
t (n− 1)

[
1− Qat (n)

Qat (n−1)

]
Qb
t(n− 1)

[
1− Qbt(n)

Qbt(n−1)

] = 0.

Suppose there exists some t1 > 0 such that ∂xt(n)

∂t
|t=t1 < 0. Then, there must exist some t2 ∈

(0, t1) such that ∂xt(n)

∂t
|t=t2 ≥ 0; otherwise xt(n) decreases within (0, t1], which implies that xt1 ≤

lim
t→0

xt(n) = 0. This contradicts with the fact that xt(n)> 0 for t > 0.

(2) lim
t→0

γt(n− 1)> 0. Because of lim
t→0

Qbt(n)

Qbt(n−1)
= 0 as shown in Theorem 1(ii), lim

t→0
L(t) = lim

t→0
xt(n−

1)− xt(n)

γt(n−1)
. Again using L’ Hopital’s rule, we have

lim
t→0

L(t) = lim
t→0

xt(n− 1)− lim
t→0

1

γt(n− 1)

Ha(Qa
t (n− 1)) ·Qa

t (n− 1)
[
1− Qat (n)

Qat (n−1)

]
Hb(Qb

t(n− 1)) ·Qb
t(n− 1)

[
1− Qbt(n)

Qbt(n−1)

] = 0.

Suppose there exists some t1 > 0 such that ∂xt(n)

∂t

∣∣∣
t=t1

< 0, i.e., L(t1)< 0. Then, there must exist

some t2 ∈ (0, t1) such that ∂xt(n)

∂t
|t=t2 ≥ 0; otherwise, xt(n) decreases within (0, t1]. Combined with

the results that xt(n− 1), γt(n− 1) and Qbt(n)

Qbt(n−1)
all increase in t, we have that L(t) increases in

(0, t1], which suggests that L(t1)≥ lim
t→0

L(t) = 0. This contradicts with the preceding argument that

L(t1)< 0.

Therefore, if there exists some t1 such that L(t1) < 0, there must exist a t2 ∈ (0, t1) such that

L(t2) ≥ 0. Coupling with the continuity of L(t), there exists a t3 ∈ [t2, t1) such that L(t3) = 0.
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This implies that xt(n) strictly decreases within (t3, t1]. Combined with the results that xt(n− 1),

γt(n− 1) and Qbt(n)

Qbt(n−1)
all increase in t, we have that L(t) increases in (t3, t1], which suggests that

L(t1) ≥ L(t3) = 0. This contradicts with the preceding argument that L(t1) < 0. Therefore, we

conclude that ∂xt(n)

∂t
≥ 0 for all t > 0.

Given that xt(n) increases in t, for any δ > 0, we have

Hb(Qa
t+δ(n))

Hb(Qb
t+δ(n))

=
Hb
(
xt+δ(n)Qb

t+δ(n)
)

Hb(Qb
t+δ(n))

≥
Hb
(
xt(n)Qb

t+δ(n)
)

Hb(Qb
t+δ(n))

≥ Hb (xt(n)Qb
t(n))

Hb(Qb
t(n))

=
Hb(Qa

t (n))

Hb(Qb
t(n))

,

where the second inequality is a result of Assumption 1(iii). Hence Hb(Qat (n))

Hb(Qbt(n))
increases in t. Com-

bining with the assumption that Ha(q)

Hb(q)
increases in q, we conclude that Ha(Qat (n))

Hb(Qbt(n))
increases in t.

Next we prove that xt(n) and γt(n) decrease in n. Because xt(n) increases in t, we have L(t) =

xt(n− 1)− xt(n)−
(

1
γt(n−1)

− 1
)(

1− Qbt(n)

Qbt(n−1)

)
xt(n) > 0 for any t > 0. Coupling with the results

that γt(n− 1)≤ 1, xt(n)≥ 0 and Theorem 1(i), we thus have that xt(n− 1)>xt(n).

Given that Qat (n)

Qbt(n)
decreases in n, we have

Ha(Qa
t (n))

Ha(Qb
t(n))

=
Ha
(
Qat (n)

Qbt(n)
Qb
t(n)

)
Ha(Qb

t(n))
≤
Ha
(
Qat (n−1)

Qbt(n−1)
Qb
t(n)

)
Ha(Qb

t(n))
≤
Ha
(
Qat (n−1)

Qbt(n−1)
Qb
t(n− 1)

)
Ha(Qb

t(n− 1))
=
Ha(Qa

t (n− 1))

Ha(Qb
t(n− 1))

,

where the second inequality is a result of Assumption 1(iii). Moreover, Ha(Qbt(n))

Hb(Qbt(n))
≤ Ha(Qbt(n−1))

Hb(Qbt(n−1))

because of the assumption that Ha(q)

Hb(q)
increases in q. Therefore, we have

Ha(Qa
t (n))

Hb(Qb
t(n))

=
Ha(Qa

t (n))

Ha(Qb
t(n))

Ha(Qb
t(n))

Hb(Qb
t(n))

≤ Ha(Qa
t (n− 1))

Ha(Qb
t(n− 1))

Ha(Qb
t(n− 1))

Hb(Qb
t(n− 1))

=
Ha(Qa

t (n− 1))

Hb(Qb
t(n− 1))

.

We thus complete the proof. �

For notational convenience, We denote Ht(n)≡H(Qt(n− 1)) in the following proofs.

Proof of Theorem 2. Denote Jst (n) as the optimal expected profit at state (t, n) assuming that

the seeding stimulus has not been activated. We prove that τ s(n) is given by

τ s(n) = sup
{
t :Ht((n−n0)+) ·Qt((n−n0− 1)+)−

[
Ht((n−n0)+)−Ht(n)

]
·Qt((n−n0)+)

≥Ht(n)
Jst (n− 1)

G+B−R

}
.

(OA.1)

Expected profit Jst (n) at state (t, n) is given by

• when n≥ 1 and t≤ τ s(n), Jst (n) = (G+B−R) ·Qt((n−n0)+);

• when t > τ s(n), Jst (n) is given by

∂Jst (n)

∂t
= λtHt(n) [Jst (n− 1)−Jst (n)] , (OA.2)

with boundary conditions Jsτs(n)(n) = (G+B−R) ·Qτs(n)((n−n0)+) and Jst (0) =G+B.
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Denote lt(n) ≡ Jst (n)

Qt((n−n0)+)
. We add to the statement that lt(n) increases in t, and prove by

induction. When n≤ n0, the optimal expected profit is given by Jst (n) = (G+B) ·Qt(n)+(G+B−

R) · (1−Qt(n)). That is, the creator’s optimal policy is to hold off until right before the deadline,

and to activate “seeding” if no backer pledges by then. It is not hard to verify that it is the unique

solution to the differential equation characterized by Equation (OA.2). We thus conclude that

lt(n) = Jst (n) increases in t for n≤ n0.

Assume that the statement is true for n− 1, where n ≥ n0 + 1. Next, we seek to derive Jst (n)

by showing that the creator’s optimal policy is to “seed” immediately when t≤ τ st (n) and to hold

off when t > τ st (n). We can rewrite the inequality within the curly brackets in Equation (OA.1) as

follows.

1 +

[
Ht(n−n0)

Ht(n)
− 1

][
1− Qt(n−n0)

Qt(n−n0− 1)

]
≥ Jst (n− 1)

(G+B−R) ·Qt(n−n0− 1)
.

RHS of the inequality increases in t because lt(n− 1) increases in t, while LHS decreases in t

due to Theorem 1(iii). Therefore, for any t ≤ τ s(n), the inequality within the curly brackets in

Equation (OA.1) holds; whereas the direction of the inequality is flipped for any t > τ s(n).

Suppose there exists some t1 > τ s(n) such that the creator’s optimal policy is to activate the

seeding stimulus immediately, i.e., Jst1(n) = (G+B−R) ·Qt1(n−n0). Comparing the case without

activating the stimulus at time t1, we have

Jst1(n) ≥ λt1Ht1(n)δ ·Jst1−δ(n− 1) + (1−λt1Ht1(n)δ) ·Jst1−δ(n) + o(δ)

≥ λt1Ht1(n)δ ·Jst1−δ(n− 1) + (1−λt1Ht1(n)δ) · (G+B−R) ·Qt1−δ(n−n0) + o(δ).

Plugging Qt1(n− n0) = (1− λt1Ht1(n− n0)δ) ·Qt1−δ(n− n0) + λt1Ht1(n− n0)δ ·Qt1−δ(n− n0 −

1) + o(δ) into Jst1(n) in the inequality above, rearranging and taking the limit as δ→ 0, we have

(G+B−R)
[
Ht1(n−n0)Qt1(n−n0− 1)− (Ht1(n−n0)−Ht1(n))Qt1(n−n0)

]
≥Ht1(n)Jst1(n− 1).

This contradicts with the fact that t1 > τ
s(n). Therefore, the creator’s optimal policy is to hold

off when t > τ s(n), i.e., Jst (n)> (G+B−R) ·Qt(n− n0). Consider what happens in a small time

interval δ, we have

Jst (n) = (1− δλtHt(n)) ·Jst−δ(n) + δλtHt(n) ·Jst−δ(n− 1) + o(δ).

Rearranging and taking the limit as δ→ 0, we obtain Equation (OA.2).

We next show that the creator’s optimal policy is to “seed” immediately when t < τ s(n). Suppose

that there exists some t2 < τ s(n), such that Jst (n) = (G+B −R) ·Qt(n− n0) for any t≤ t2, and
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Jst (n)> (G+B −R) ·Qt(n− n0) when t ∈ (t2, t2 + h]. (Because Js0 (n) = 0 for any n > n0, we can

always find some t2 such that Jst (n) = (G + B − R) · Qt(n − n0) for any t ≤ t2.) Then, for any

t∈ (t2, t2 +h]

Jst+δ(n) = (1−λt+δHt2+δ(n)δ) ·Jst (n) +λt+δHt+δ(n)δ ·Jst (n− 1) + o(δ).

Let δ→ 0, we obtain ∂Jst (n)

∂t
= λtHt(n) [Jst (n− 1)−Jst (n)] over interval (t2, t2 + h]. According to

Equation (OA.1), Jst (n−1)≤ G+B−R
Ht(n)

[Ht(n−n0)Qt(n−n0− 1)− (Ht(n−n0)−Ht(n))Qt(n−n0)].

Also because Jst (n)> (G+B−R) ·Qt(n−n0) when t∈ (t2, t2 +h], we have

∂Jst (n)

∂t

< λt(G+B−R) [Ht(n−n0)Qt(n−n0− 1)− (Ht(n−n0)−Ht(n))Qt(n−n0)−Ht(n)Qt(n−n0)]

= λt(G+B−R) ·Ht(n−n0) [Qt(n−n0− 1)−Qt(n−n0)] .

However, we know from Equation (2) that ∂
∂t

[(G+B−R) ·Qt(n−n0)] = λt(G+B−R) ·Ht(n−

n0) [Qt(n−n0− 1)−Qt(n−n0)]. Therefore, ∂
∂t

[Jst (n)− (G+B−R) ·Qt(n−n0)] < 0 for any t ∈

(t2, t2 +h]. Since [Jst (n)− (G+B−R) ·Qt(n−n0)]
∣∣∣
t=t2

= 0, we obtain that Jst (n)< (G+B−R) ·

Qt(n−n0) when t∈ (t2, t2 +h]. This contradicts with the assumption we made earlier. Hence, the

creator’s optimal policy is to “seed” immediately for any t < τ st (n), i.e., Jst (n) = (G + B − R) ·

Qt(n−n0) for any t < τ s(n).

Lastly, we show that lt(n) is an increasing function of t. This is obvious when t ≤ τ s(n), as

Jst (n)

Qt(n−n0)
=G+B−R. When t > τ s(n), taking the derivative of lt(n) w.r.t. t, we have

∂lt(n)

∂t
=
λtHt(n) [Jst (n− 1)−Jst (n)]

Qt(n−n0)
− λtHt(n−n0)Jst (n) [Qt(n−n0− 1)−Qt(n−n0)]

[Qt(n−n0)]2

= λt

{
Ht(n)

[
Jst (n− 1)

Qt(n−n0− 1)

Qt(n−n0− 1)

Qt(n−n0)
− Jst (n)

Qt(n−n0)

]
−Ht(n−n0)

Jst (n)

Qt(n−n0)

[
Qt(n−n0− 1)

Qt(n−n0)
− 1

]}
= λtHt(n)

Qt(n−n0− 1)

Qt(n−n0)

{
lt(n− 1)− lt(n)

Qt(n−n0)

Qt(n−n0− 1)
− lt(n)

Ht(n−n0)

Ht(n)

[
1− Qt(n−n0)

Qt(n−n0− 1)

]}
= λtHt(n)

Qt(n−n0− 1)

Qt(n−n0)

[
lt(n− 1)− lt(n)−

(
Ht(n−n0)

Ht(n)
− 1

)(
1− Qt(n−n0)

Qt(n−n0− 1)

)
lt(n)

]
.

Notice that Jst (n)> (G+B−R) ·Qt(n−n0) when t > τ s(n), and thus lt(n)>G+B−R when

t > τ s(n). Suppose that there exists some t3 > τ
s(n) such that ∂lt(n)

∂t

∣∣∣
t=t3

< 0. Then, there must be

some t4 ∈ (τ s(n), t3), such that ∂lt(n)

∂t
|t=t4 ≥ 0; otherwise, ∂lt(n)

∂t
< 0 for any τs(n) < t ≤ t3, leading

to lt3 < lτs(n)(n) = G+B −R, which contradicts with the result that lt(n) > (G+B −R) when

t > τ s(n).
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Due to the continuity of ∂lt(n)

∂t
, there exists some t5 ∈ [t4, t3) such that ∂lt(n)

∂t

∣∣
t=t5

= 0, and ∂lt(n)

∂t
< 0

on (t5, t3]. That is,

lt5(n− 1)− lt5(n)−
(
Ht5(n−n0)

Ht5(n)
− 1

)(
1− Qt5(n−n0)

Qt5(n−n0− 1)

)
lt5(n) = 0.

According to Theorem 1(iii), Ht(n−1)

Ht(n)
decreases in t and Qt(n−n0)

Qt(n−n0−1)
increases in t. Coupling with

the result that lt(n) strictly decreases within (t5, t3], we have

lt3(n− 1)− lt3(n)−
(Ht3(n−n0)

Ht3(n)
− 1
)(

1− Qt3(n−n0)

Qt3(n−n0− 1)

)
lt3(n)

> lt5(n− 1)− lt5(n)−
(Ht5(n− 1)

Ht5(n)
− 1
)(

1− Qt5(n−n0)

Qt5(n−n0− 1)

)
lt5(n) = 0.

This implies that ∂lt(n)

∂t

∣∣
t=t3

> 0 and contradicts with our assumption that ∂lt(n)

∂t

∣∣
t=t3

< 0. We thus

complete the proof. �

Proof of Corollary 1. (i) We prove by induction. When n = n0 + 1, it is straightforward that

τ s(n0 + 1)≥ τ s(n0) = · · ·= τ s(1) = 0. Now assume the statement is true for n−1, i.e., τ s(1)≤ · · · ≤

τ s(n− 1) for some n > n0. We prove τ s(n− 1)≤ τ s(n) by showing that for any t < τ s(n− 1), the

creator’s optimal action is not to activate the seeding stimulus at state (t, n). Suppose this is not

true, then t > τ s(n). From Equation (OA.1), we have

Ht(n−n0)Qt(n−n0− 1)− (Ht(n−n0)−Ht(n))Qt(n−n0)<Ht(n)
Jst (n− 1)

G+B−R
.

Because t < τ s(n−1), Jst (n−1) = (G+B−R) ·Qt(n−n0−1). Plugging Jst (n−1) into the inequality

above, we have

Ht(n−n0)Qt(n−n0− 1)− (Ht(n−n0)−Ht(n))Qt(n−n0)<Ht(n)Qt(n−n0− 1)

⇒ (Ht(n−n0)−Ht(n)) (Qt(n−n0− 1)−Qt(n−n0))< 0.

However, it contradicts with Theorem 1(i) and Assumption 1(i). We thus obtain the announced

results.

(ii) Denote Yt(n;B,R) = Jst (n;B,R)

G+B−R . Here, we use the notation Jst (n;B,R)≡ Jst (n) to emphasize

the dependence of Jst (n) on B and R. Similarly, we denote τ s(n;B,R)≡ τ s(n). We add to the state-

ment that Yt(n;B,R) decreases in B and increases in R, and prove by induction. For any n≤ n0, the

statement is obviously true since τ s(n;B,R) = 0 and Yt(n;B,R) = (G+B)·Qt(n)+(G+B−R)·(1−Qt(n))

G+B−R =

1 + R·Qt(n)

G+B−R decreases in B and increases in R. Now suppose τ s(n;B1,R) ≥ τ s(n;B2,R) and

Yt(n;B1,R) ≤ Yt(n;B2,R), for any n ≤ n0 and B1 > B2 ≥ 0. From Equation (OA.1), for any t >

τ s(n+ 1;B1,R),

1 +

[
Ht(n+ 1−n0)

Ht(n+ 1)
− 1

][
1− Qt(n+ 1−n0)

Qt(n+ 1−n0− 1)

]
<

Yt(n;B1,R)

Qt(n+ 1−n0)
≤ Yt(n;B2,R)

Qt(n+ 1−n0)
.
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Therefore, τ s(n+ 1;B,R) increases in B. Similarly we can show that τ s(n+ 1;B,R) decreases

in R.

Now we show the monotonicity of Yt(n+ 1;B,R) w.r.t B and R. For any t≤ τ s(n+ 1;B2,R),

Yt(n+ 1;B1,R) = Yt(n+ 1;B2,R) =Qt(n+ 1−n0).

When t∈ (τ s(n+ 1;B2,R), τ s(n+ 1;B1,R)], Yt(n+ 1;B1,R) =Qt(n+ 1−n0) whereas the Yt(n+

1;B2,R)≥Qt(n+ 1−n0) because of the definition of Jst (n).

When t > τ s(n+ 1;B1,R), Yt(n+ 1;Bi,R) is the solution of

∂y

∂t
= λtHt(n+ 1)[Yt(n;Bi,R)− y],

with the boundary condition yτs(n+1;B1,R) = Yτs(n+1;B1,R)(n+1;Bi,R) where i= 1,2. Note that RHS

of the equation decreases in B based on the induction hypothesis of n. Coupling with the fact

that Yτs(n+1;B1,R)(n + 1;B1,R) ≤ Yτs(n+1;B1,R)(n + 1;B2,R), Yt(n + 1;B,R) decreases in B when

t > τ s(n+ 1;B1,R). In a similar fashion, we can show that Yt(n+ 1;B,R) increases in R. We thus

obtain the announced results. �

Proof of Theorem 3. (i) Since J bT,N = (G+B) ·QT (N) and JsT,N = JsT (N), it is sufficient to show

that Qt(n)

Jst (n)
increases in t.

When n= 0, the statement is obvious as Qt(0) = 1 and Jst (0) =G+B. Now assume that Qt(n−1)

Jst (n−1)

weakly increases in t. In that case:

When t < τ s(n), Jst (n) = (G+B−R) ·Qt((n−n0)+). Therefore Qt(n)

Jst (n)
= Qt(n)

(G+B−R)·Qt((n−n0)+)
. Accord-

ing to Theorem 1, it increases in t.

When t≥ τ s(n),

∂

∂t

Qt(n)

Jst (n)
=
λtHt(n) [Qt(n− 1)−Qt(n)]

Jst (n)
− Qt(n)

Jst (n)

λtHt(n) [Jst (n− 1)−Jst (n)]

Jst (n)

= λtHt(n)
Qt(n)

Jst (n)

[
Qt(n− 1)

Qt(n)
− J

s
t (n− 1)

Jst (n)

]
= λtHt(n)

Jst (n− 1)

Jst (n)

[
Qt(n− 1)

Jst (n− 1)
− Qt(n)

Jst (n)

]
.

When t= τ s(n), because Jst (n) = (G+B−R) ·Qt(n− 1),

Qt(n− 1)

Jst (n− 1)
− Qt(n)

Jst (n)
=
Qt(n− 1)

Jst (n− 1)
− Qt(n)

(G+B−R) ·Qt(n− 1)
.

Also, according to Equation (OA.1), at t= τ s(n),

Jst (n− 1) = (G+B−R) ·
[
Ht(n− 1)

Ht(n)
Qt(n− 2)−

(
Ht(n− 1)

Ht(n)
− 1

)
Qt(n− 1)

]
.

Hence,

Qt(n− 1)

Jst (n− 1)
− Qt(n)

Jst (n)
=

1

G+B−R
Qt(n− 1)

Ht(n−1)

Ht(n)
Qt(n− 2)−

(
Ht(n−1)

Ht(n)
− 1
)
Qt(n− 1)

− Qt(n)

(G+B−R) ·Qt(n− 1)
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=
1

G+B−R
Qt(n)

Ht(n−1)

Ht(n)
Qt(n− 2)−

(
Ht(n−1)

Ht(n)
− 1
)
Qt(n− 1)

·

G+B−R
Qt(n)

−
Ht(n−1)

Ht(n)
Qt(n− 2)−

(
Ht(n−1)

Ht(n)
− 1
)
Qt(n− 1)

Qt(n− 1)


=

1

G+B−R
Qt(n)

Ht(n−1)

Ht(n)
Qt(n− 2)−

(
Ht(n−1)

Ht(n)
− 1
)
Qt(n− 1)

[(
Qt(n− 1)

Qt(n)
− 1

)
− Ht(n− 1)

Ht(n)

(
Qt(n− 2)

Qt(n− 1)
− 1

)]
.

Recall that in the proof of Theorem 1, we have shown that for any t > 0, Ht(n)

Ht(n−1)

(
Qt(n−1)

Qt(n)
− 1
)
−(

Qt(n−2)

Qt(n−1)
− 1
)
> 0. Therefore Qt(n−1)

Jst (n−1)
− Qt(n)

Jst (n)

∣∣∣
t=τs(n)

> 0.

Suppose that there exists a t′ > τ s(n) such that Qt(n−1)

Jst (n−1)
− Qt(n)

Jst (n)
< 0, then because of continuity,

there must exists a τ s(n)< t1 < t
′ such that Qt(n−1)

Jst (n−1)
− Qt(n)

Jst (n)

∣∣∣
t=t1

= 0 and Qt(n−1)

Jst (n−1)
− Qt(n)

Jst (n)
< 0 when t∈

(t1, t
′). This also means that Qt(n)

Jst (n)
decreases in t over the interval. However, since Qt(n−1)

Jst (n−1)
increases

in t, Qt(n−1)

Jst (n−1)
− Qt(n)

Jst (n)
must be increasing in t within (t1, t

′). This indicates Qt(n−1)

Jst (n−1)
− Qt(n)

Jst (n)

∣∣∣
t=t′
≥ 0,

which leads to contradiction. Therefore Qt(n)

Jst (n)
increases in t for any t > 0.

(ii) Note that J bT,N ≤ JsT,N ≤ (G+B) ·QT ((N −n0)+). Consequently, we have

0≤ JsT,N −J bT,N ≤ (G+B) ·
[
QT ((N −n0)+)−QT (N)

]
.

Letting T →∞ or T → 0, we thus obtain the announced results. �

Proof of Theorem 4. We show that τu(n) is given by

τu(n) = sup

{
t : H̃t(n)Q̃t(n− 1)− (H̃t(n)−Ht(n))Q̃t(n)≥Ht(n)

Jut (n− 1)

G+B−K

}
, (OA.3)

where Jut (n) is the expected profit at state (t, n). It is given by

• when t≤ τu(n), Jut (n) = (G+B−K)Q̃t(n);

• when t > τu(n),
∂Jut (n)

∂t
= λtHt(n) [Jut (n− 1)−Jut (n)] , (OA.4)

with boundary conditions Juτu(n)(n) = (G+B−K)Q̃t(n), and Jut (0) =G+B.

First we show that if Jut (n−1)

Q̃t(n−1)
increases in t, then the creator would activate the stimulus if and

only if t≤ τu(n). To see that, we can rewrite the inequality in the bracket in Equation (OA.3) as

follows.

1 +

(
H̃t(n)

Ht(n)
− 1

)(
1− Q̃t(n)

Q̃t(n− 1)

)
≥ Jut (n− 1)

(G+B−K)Q̃t(n− 1)
.

According to Theorem 1(iii), LHS of the above inequality strictly decreases in t; while RHS

increases in t due to our induction hypothesis. Therefore, for any t < τu(n), the inequality holds;

whereas the direction of the inequality is flipped for any t > τu(n).
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Suppose that there exists some t1 > τu(n), such that the creator’s optimal policy is to upgrade

immediately, i.e., Jut1(n) = (G+B−K)Q̃t1(n). Then, we have

(G+B−K)Q̃t1(n) > (1− δλt1Ht1(n))Jut1−δ(n) + δλt1Ht1(n)Jut1−δ(n− 1) + o(δ)

≥ (1− δλt1Ht1(n))(G+B−K)Q̃t1−δ(n) + δλt1Ht1(n)Jut1−δ(n− 1) + o(δ).

Plugging Q̃t1(n) = (1− δλt1H̃t1(n))Q̃t1−δ(n) + δλt1H̃t1(n)Q̃t1−δ(n− 1) + o(δ) into the inequality

above, rearranging and taking the limit as δ→ 0, we have

H̃t1(n)Q̃t1(n− 1)−
(
H̃t1(n)−Ht1(n)

)
Q̃t1(n)≥

Ht1(n)Jut1(n− 1)

G+B−K
.

This contradicts with our assumption that t1 > τ
u(n). Therefore, the creator would not upgrade

when t > τu(n), i.e., Jut (n) > (G+B −K)Q̃t(n) for any t > τu(n). Consider what happens in a

small time interval δ, we have

Jut (n) = (1− δλtHt(n))Jut−δ(n) + δλtHt(n)Jut−δ(n− 1) + o(δ).

Rearranging and taking the limit as δ→ 0, we thus obtain Equation (OA.4).

We next show that the creator’s optimal policy is to upgrade immediately when t < τu(n).

Suppose that there exists some t2 < τ
u(n), such that Jut (n) = (G+B−K)Q̃t(n) for all t≤ t2, and

Jut (n)> (G+B−K)Q̃t(n) for t∈ (t2, t2 + δ]. Then, we have

(G+B−K)Q̃t2+δ(n) < Jut2+δ(n) = (1− δλt2+δHt2+δ(n))Jut2(n) + δλt2+δHt2+δ(n)Jut2(n− 1) + o(δ)

= (1− δλt2+δHt2+δ(n))(G+B−K)Q̃t2(n) + δλt1+δHt2+δ(n)Jut2(n− 1) + o(δ).

Plugging Q̃t2+δ(n) = (1−δλt2+δH̃t2+δ(n))Q̃t2(n)+δλt2+δH̃t2+δ(n)Q̃t2(n−1)+o(δ) into the inequal-

ity above, rearranging and taking the limit as δ→ 0, we have

(G+B−K)
[
H̃t2(n)Q̃t2(n− 1)−

(
H̃t2(n)−Ht2(n)

)
Q̃t2(n)

]
≤Ht2(n)Jut2(n− 1).

This contradicts with the assumption that t2 < τu(n). Therefore, the creator would upgrade

immediately when t < τu(n), i.e., Jut (n) = (G+B−K)Q̃t(n) for any t < τu(n).

Therefore, to prove Theorem 4, it is sufficient to show that Jut (n)

Q̃t(n)
increases in t. We do this by

induction. For n= 0, the statement is obvious since Jut (0)

Q̃t(0)
=G+B.

Now assume that the statement is true for n− 1, and consider the case n. It is trivial when

t ≤ τu(n) because Jut (n)

Q̃t(n)
= G+B −K. Consider next when t > τu(n). Suppose that there exists

some t3 > τu(n) such that ∂
∂t

Jut (n)

Q̃t(n)

∣∣∣
t=t3

< 0. Then, there must exist some t4 ∈ (τu(n), t3) such that
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∂
∂t

Jut (n)

Q̃t(n)

∣∣
t=t4
≥ 0; otherwise,

Jut3
(n)

Q̃t3 (n)
<

Juτu(n)(n)

Q̃τu(n)(n)
=G+B−K, which contradicts with the result that

Jut (n)> (G+B−K) · Q̃t(n) for any t > τu(n). Due to the continuity of ∂
∂t

Jut (n)

Q̃t(n)
, there exists some

t5 ∈ [t4, t3), such that ∂
∂t

Jut (n)

Q̃t(n)

∣∣∣
t=t5

= 0. That is,

∂

∂t

Jut (n)

Q̃t(n)

∣∣∣∣
t=t5

=
λt5Ht5(n)

[
Jut5(n− 1)−Jut5(n)

]
Q̃t5(n)

−
λt5H̃t5(n)Jut5(n)

[
Q̃t5(n− 1)− Q̃t5(n)

]
[Q̃t5(n)]2

= λt5Ht5(n)
Q̃t5(n− 1)

Q̃t5(n)

[
Jut5(n− 1)

Q̃t5(n− 1)
−
Jut5(n)

Q̃t5(n)
−

(
H̃t5(n)

Ht5(n)
− 1

)(
1− Q̃t5(n)

Q̃t5(n− 1)

)
Jut5(n)

Q̃t5(n)

]
= 0.

Because Q̃t(n)

Q̃t(n−1)
increases in t, H̃t(n)

Ht(n)
decreases in t as shown in Theorem 1(iii), and the induction

hypothesis that Jut (n−1)

Q̃t(n−1)
increases in t, we have ∂

∂t

Jut (n)

Q̃t(n)

∣∣∣
t=t3

≥ 0, which contradicts with the assump-

tion that ∂
∂t

Jut (n)

Q̃t(n)

∣∣∣
t=t3

< 0. Therefore, Jut (n)

Q̃t(n)
increases in t for any t > τu(n), and we thus complete

the proof. �

Proof of Corollary 2. (i) Suppose that there exists an n, such that τu(n)< τu(n− 1). For any

t∈ (τu(n), τu(n− 1)), Jut (n− 1) = (G+B−K)Q̃t(n− 1). Using the definition of τu(n), we have

(G+B−K)
[
H̃t(n)Q̃t(n− 1)− (H̃t(n)−Ht(n))Q̃t(n)

]
<Ht(n)Jut (n− 1)

⇒ (H̃t(n)−Ht(n))(Q̃t(n− 1)− Q̃t(n))< 0.

This contradicts with Theorem 1(i) and Assumption 1(i). We thus obtain the announced results.

(ii) Denote Zt(n;B,K) = Jut (n;B,R)

G+B−K . Here, we use the notation Jut (n;B,R)≡ Jut (n) to emphasize

the dependence of Jut (n) on B and K. Similarly, we denote τu(n;B,K)≡ τu(n). Note that Equation

(OA.3) can be rewritten as:

τu(n;B,K) = sup
{
t : H̃t(n)Q̃t(n− 1)− (H̃t(n)−Ht(n))Q̃t(n)≥Ht(n)Zt(n− 1;B,K)

}
.

Only the RHS of the above inequality depends on B and K. Thus, τu(n;B,K) increases in B

and decreases in K if and only if Zt(n− 1;B,K) decreases in B and increases in K. We prove the

monotonicity of Zt(n;B,K) w.r.t. B and K for any n≥ 0 by induction.

First when n = 0, Zt(0;B,K) = G+B
G+B−K . The statement is obvious. Now suppose it is true for

any m≤ n− 1. This implies that τu(m;B,K) increases in B and decreases in K for any m≤ n.

Thus, we have τu(n;B1,K)> τu(n;B2,K) for any B1 >B2 ≥ 0. Consider the following cases w.r.t.

t:

When t ≤ τu(n;B2,K), creators of both projects would upgrade project features immediately.

Hence Zt(n;B1,K) =Zt(n;B2,K) = Q̃t(n).
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When τu(n;B2,K)< t≤ τu(n;B1,K), only the project with a long-term profit of B1 would use

the stimulus. Therefore, Zt(n;B1,K) = Q̃t(n) whereas Zt(n;B2,K)≥ Q̃t(n) =Zt(n;B1,K).

When t > τu(n;B1,K), neither projects activates the stimulus policy. For i= 1,2, Zt(n;Bi,K)

is the solution of
dz

dt
= λtHt(n) (Zt(n− 1;Bi,K)− z) ,

with boundary condition z(τu(n;B1,K)) = Zτu(n;B1,K)(n,Bi,K). RHS of the above equation

decreases in B1. Coupling with the inequality Zτu(n;B1,K)(n,B1,K)≤Zτu(n;B1,K)(n,B2,K), we have

Zt(n;B1,K)≤Zt(n;B2,K).

In a similar fashion, we can show that Zt(n;B,K) increases in K. This completes the proof. �

Proof of Theorem 5. (i) Since J bt (n) = (G + B) · Qt(n). It is equivalent to show that Qt(n)

Jut (n)

increases in t.

When n= 0, the statement is obvious as Qt(n) = 1 and Jut (n) =G+B. Now assume that it’s

true for n− 1. Then for n:

When t < τu(n), Jut (n) = (G+B−K)Q̃t(n). Hence Qt(n)

Jut (n)
= 1

G+B−K
Qt(n)

Q̃t(n)
. According to Proposi-

tion 2, Qt(n)

Jut (n)
increases in t.

When t≥ τu(n),

∂

∂t

Qt(n)

Jut (n)
=
λtHt(n) [Qt(n− 1)−Qt(n)]

Jut (n)
− Qt(n)

Jut (n)

λtHt(n) [Jut (n− 1)−Jut (n)]

Jut (n)

= λtHt(n)
Qt(n)

Jut (n)

[
Qt(n− 1)

Qt(n)
− J

u
t (n− 1)

Jut (n)

]
= λtHt(n)

Jut (n− 1)

Jut (n)

[
Qt(n− 1)

Jut (n− 1)
− Qt(n)

Jut (n)

]
.

At t= τu(n), because Jut (n) = (G+B−K)Q̃t(n),

Qt(n− 1)

Jut (n− 1)
− Qt(n)

Jut (n)
=
Qt(n− 1)

Jut (n− 1)
− Qt(n)

(G+B−K)Q̃t(n)
.

Also according to Equation (OA.3), Jut (n−1) = G+B−K
Ht(n)

[H̃t(n)Q̃t(n−1)− (H̃t(n)−Ht(n))Q̃t(n)]

at t= τu(n). Hence,

Qt(n− 1)

Jut (n− 1)
− Qt(n)

Jut (n)
=

Ht(n) ·Qt(n− 1)

(G+B−K)
[
H̃t(n)Q̃t(n− 1)− (H̃t(n)−Ht(n))Q̃t(n)

] − Qt(n)

(G+B−K)Q̃t(n)

=
1

G+B−K

[
Ht(n)Qt(n− 1)

H̃t(n)Q̃t(n− 1)− (H̃t(n)−Ht(n))Q̃t(n)
− Qt(n)

Q̃t(n)

]
=

1

G+B−K
Qt(n)

H̃t(n)Q̃t(n− 1)− (H̃t(n)−Ht(n))Q̃t(n)

[
Ht(n)

(
Qt(n− 1)

Qt(n)
− 1

)
− H̃t(n)

(
Q̃t(n− 1)

Q̃t(n)
− 1

)]
.

In the proof of Proposition 2, we have shown that for any t > 0, Ht(n)
(
Qt(n−1)

Qt(n)
− 1
)
−

H̃t(n)
(
Q̃t(n−1)

Q̃t(n)
− 1
)
> 0. Therefore, ∂

∂t

Qt(n)

Jut (n)

∣∣∣
t=τu(n)

> 0. Suppose there exists some t′ > τu(n) such
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that Qt(n−1)

Jut (n−1)
− Qt(n)

Jut (n)
< 0, then according to the continuity of the functions, there must exist

some τu(n) < t0 < t′, such that ∂
∂t

Qt(n)

Jut (n)

∣∣∣
t=t0

= 0 and ∂
∂t

Qt(n)

Jut (n)
< 0 in the interval (t0, t

′]. However,

since Qt(n−1)

Jut (n−1)
increases in t, Qt(n−1)

Jut (n−1)
− Qt(n)

Jut (n)
must strictly increase in the interval (t0, t

′], implying

∂
∂t

Qt(n)

Jut (n)

∣∣∣
t=t′

> 0. This leads to contradiction. Therefore, ∂
∂t

Qt(n)

Jut (n)
≥ 0 for any t > 0.

(ii) Following a similar approach as the proof for Theorem 3(ii), we can show that lim
T→∞

JuT,N −

J bT,N = lim
T→0

JuT,N −J bT,N = 0 for any N ≥ 1. �

Proof of Theorem 6. Denote At(n) the optimal expected profit at state (t, n) assuming that the

creator has not ended LTO yet. The optimal expected profit over the course of the entire pledging

process is denoted by J lt(n). We show that τ l(n) is given by

τ l(n) = sup
{
t : At(n)≥ [G+B− (N −n)k] ·Qt(n)

}
, (OA.5)

where At(n) is the solution of

∂At(n)

∂t
= λtĤt(n)

[
J lt(n− 1)−At(n)

]
, (OA.6)

with boundary conditions A0(n) = 0 for any n≥ 1, and At(0) =G+B−Nk.

Expected profit J lt(n) at state (t, n) is given by

J lt(n) =

{
At(n), if t < τ l(n)

[G+B− (N −n)k] ·Qt(n), if t≥ τ l(n)
.

Denote dt(n) = At(n)

Qt(n)
. We add to the statement that dt(n) decreases in t and prove by induction.

It’s trivial when n= 0 because dt(0) = At(0)

Qt(0)
=G+B−Nk. Suppose that the statement is true for

n− 1. Taking the derivative of dt(n) w.r.t. t, we have

∂dt(n)

∂t
=
λtĤt(n) [J lt(n− 1)−At(n)]

Qt(n)
− λtHt(n)At(n) [Qt(n− 1)−Qt(n)]

[Qt(n)]2

= λt

(
Ĥt(n)

[
J lt(n− 1)

Qt(n− 1)

Qt(n− 1)

Qt(n)
− At(n)

Qt(n)

]
−Ht(n)

At(n)

Qt(n)

[
Qt(n− 1)

Qt(n)
− 1

])
= λtĤt(n)

Qt(n− 1)

Qt(n)

[
J lt(n− 1)

Qt(n− 1)
−

[
1−

(
1− Ht(n)

Ĥt(n)

)(
1− Qt(n)

Qt(n− 1)

)]
dt(n)

]
.

Taking the limit as t→ 0 and using L’Hopital’s rule, we have

lim
t→0

dt(n) = lim
t→0

λtĤt(n) [J lt(n− 1)−At(n)]

λtHt(n) [Qt(n− 1)−Qt(n)]
= lim

t→0

Ĥt(n)

Ht(n)

J lt(n− 1)

Qt(n− 1)
.

By the induction hypothesis, we know that Jlt(n−1)

Qt(n−1)
decreases in t since J lt(n−1) is equal to either

At(n− 1) or [G+B− (N −n)k] ·Qt(n− 1). From Theorem 1(iii), Ĥt(n)

Ht(n)
decreases in t. Therefore
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lim
t→0

dt(n) = lim
t→0

Ĥt(n)

Ht(n)

Jlt(n−1)

Qt(n−1)
exists. Next we show that, if there exists some t1 such that ∂dt(n)

∂t

∣∣∣
t=t1

>

0, there must be some t2 ∈ (0, t1) such that ∂dt(n)

∂t

∣∣∣
t=t2

< 0. Consider the following two cases.

(1) lim
t→0

dt(n) =∞. If there exists a t1 such that ∂dt(n)

∂t
|t=t1 > 0, then there must exist a t2 ∈ (0, t1)

such that ∂dt(n)

∂t

∣∣
t=t2
≤ 0; Otherwise dt1 ≥ lim

t→0
dt(n) =∞, which is impossible.

(2) lim
t→0

dt(n) <∞. This implies that lim
t→0

Jlt(n−1)

Qt(n−1)
<∞ and lim

t→0

Ht(n)

Ĥt(n)
> 0. Let S(t) = Jlt(n−1)

Qt(n−1)
−[

1−
(

1− Ht(n)

Ĥt(n)

)(
1− Qt(n)

Qt(n−1)

)]
dt(n). Because lim

t→0
1−

(
1− Ht(n)

Ĥt(n)

)(
1− Qt(n)

Qt(n−1)

)
= lim

t→0

Ht(n)

Ĥt(n)
> 0 and

lim
t→0

dt(n) = lim
t→0

Ĥt(n)

Ht(n)

Jlt(n−1)

Qt(n−1)
<∞, we have lim

t→0
S(t) = 0.

Recall that ∂dt(n)

∂t
= λtĤt(n)Qt(n−1)

Qt(n)
·S(t). Suppose there exists a t1 such that ∂dt(n)

∂t

∣∣∣
t=t1

> 0, then

there must exist a t2 ∈ (0, t1) such that ∂dt(n)

∂t

∣∣∣
t=t2

< 0; Otherwise, dt(n) increases within [0, t1].

Coupling with the results that Ht(n)

Ĥt(n)
and Qt(n)

Qt(n−1)
both increase in t, we conclude that S(t) decreases

in t. A direct consequence is that S(t1) ≤ S(0) = 0, which contradicts with the assumption that

∂dt(n)

∂t
> 0.

Consequently, if there exists a t1 such that ∂dt(n)

∂t

∣∣
t=t1

> 0, there must exist a t2 ∈ [0, t1) such that

∂dt(n)

∂t

∣∣
t=t2
≤ 0. Due to the continuity of ∂dt(n)

∂t
, there exists some t3 ∈ [t2, t1) such that S(t3) = 0,

and S(t)> 0 for any t∈ (t3, t1]. However, because dt(n), Ht(n)

Ĥt(n)
and Qt(n)

Qt(n−1)
increase in t, and Jlt(n−1)

Qt(n−1)

decreases in t for any t ∈ (t3, t1), S(t) should decrease in t, which contradicts with the preceding

result. Therefore, dt(n) must decrease in t for any t > 0. Moreover, because Qt(n)

Qt(n−1)
strictly increases

in t, S(t) 6= 0 for any t. Therefore, for any t > 0, S(t) < 0 and dt(n) strictly decreases in t. As a

result, At(n)> [G+B− (N −n)k] ·Qt(n) for any t < τ l(n), and the direction of the inequality is

flipped for any t > τ l(n).

Next we show that the creator’s optimal policy is to end the limited-time offer if and only if

t > τ l(n). Suppose that there exists some t4 < τ
l(n), such that the creator’s optimal decision is to

end the limited-time offer immediately, i.e., J lt4(n) = [G+B− (N −n)k] ·Qt4(n). Then, we have

[G+B− (N −n)k] ·Qt4(n)

> λt4Ĥt4(n)δJ lt4−δ(n− 1) + (1−λt4Ĥt4(n)δ)J lt4−δ(n) + o(δ)

≥ λt4Ĥt4(n)δJ lt4−δ(n− 1) +
(

1−λt4Ĥt4(n)δ
)
At4−δ(n) + o(δ) =At4(n) + o(δ),

which contradicts with t4 < τ l(n). Therefore, the creator would not end the limited-time offer for

any t≤ τ l(n). Consider what happens in a small time interval δ, we have

J lt(n) = (1− δλtĤt(n))J lt−δ(n) + δλtĤt(n)J lt−δ(n− 1) + o(δ).

Rearranging, taking the limit as δ→ 0, and replacing J lt(n) with At(n), we thus have

∂At(n)

∂t
= λtĤt(n)

[
J lt(n− 1)−At(n)

]
.
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Suppose that there exists some t5 ≥ τ l(n) such that J lt(n) = [G+B− (N −n)k] ·Qt(n) for any

t≤ t5 but J lt(n)> [G+B− (N −n)k] ·Qt(n) for any t ∈ (t5, t5 + δ]. (Because J l
τ l(n)

= Aτ l(n)(n) =

[G+B− (N −n)k] ·Qτ l(n)(n), we can always find such t5 ≥ τ l(n).) Thus, we have

[G+B− (N −n)k] ·Qt5+δ(n)

< λt5+δĤt5+δ(n)δJ lt5(n− 1) +
(

1−λt5+δĤt5+δ(n)δ
)
J lt5(n) + o(δ)

= λt5+δĤt5+δ(n)δJ lt5(n− 1) +
(

1−λt5+δĤt5+δ(n)δ
)

[G+B− (N −n)k] ·Qt5(n) + o(δ).

Plugging Qt5+δ(n) = λt5+δHt5+δ(n)δQt5(n − 1) + (1 − λt5+δHt5+δ(n)δ)Qt5(n) + o(δ) into the

inequality above, rearranging, and taking the limit as δ→ 0, we have

[G+B− (N −n)k] ·
(
Ht5(n)Qt5(n− 1) + (Ĥt5(n)−Ht5(n))Qt5(n)

)
≤ Ĥt5(n)J lt5(n− 1).

Because that S(t) = Jlt(n−1)

Qt(n−1)
−
[
1−

(
1− Ht(n)

Ĥt(n)

)(
1− Qt(n)

Qt(n−1)

)]
dt(n)< 0 for any t, we have

Ĥt5(n)J lt5(n− 1)<
[
Ht5(n)Qt5(n− 1) + (Ĥt5(n)−Ht5(n))Qt5(n)

]
dt5(n).

Combining the preceding two inequalities, we have that dt5(n) =
At5 (n)

Qt5 (n)
> G + B − (N − n)k,

which contradicts with t5 > τ
l(n). Therefore, the creator’s optimal policy is to end the limited-time

offer for any t > τ l(n), i.e., J lt(n) = [G+B− (N −n)k] ·Qt(n) for any t > τ l(n). We thus obtain the

announced results. �

Proof of Corollary 3. Denote Wt(n;B,k) = At(n)

G+B−(N−n)k
. We prove by induction that

Wt(n;B,k) increases in B and decreases in k. When n= 0, this statement is trivial as Wt(0;B,k) =

1. Now suppose it is true for n− 1 and consider the case n:

∂Wt(n;B,k)

∂t
= λtĤt(n)

[
J lt(n− 1)

G+B− (N −n+ 1)k

G+B− (N −n+ 1)k

G+B− (N −n)k
−Wt(n;B,k)

]
,

with boundary condition W0(n;B,k) = 0 for any n> 0. Since J lt(n− 1) = max{At(n− 1), [G+B−

(N − n+ 1)k]Qt(n− 1)}, Jlt(n−1)

G+B−(N−n+1)k
increases in B and decreases in k based on the induction

hypothesis for n − 1. It is also obvious that G+B−(N−n+1)k

G+B−(N−n)k
increases in B and decreases in k.

Therefore, the RHS of the equation above increases in B and decreases in k, which implies that

Wt(n;B,k) increases in B and decreases in k. We thus proved the statement for n.

Denote τ l(n;B,k) ≡ τ l(n) to emphasize the dependence of τ l(n) on B and k. From Equa-

tion (OA.5), we have τ l(n;B,k) = sup{t : Wt(n;B,k) ≥ Qt(n)}. Consider any B1 > B2. For any

t≤ τ l(n;B2, k), we have Wt(n;B1, k)≥Wt(n;B2, k)≥Qt(n). Therefore, τ l(n;B1, k)≥ τ l(n;B2, k).

Similarly we can show that τ l(n;B,k) decreases in k. We thus obtain the announced result. �
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Proof of Theorem 7. (i) follows directly from the proof of Theorem 6, where we show that Jlt(n)

Qt(n)

decreases in t.

Next we prove (ii). When T → 0, both J lT,N and J bT,N → 0. On the other hand, when T ≥ τ l(N),

the creator ends the LTO immediately, so we have J lT,N = J bT,N . Thus, lim
T→∞

J lT,N−J bT,N = lim
T→0

J lT,N−

J bT,N = 0, and thus we obtain the announced results. �

OA.2. Extension: Multiple Rounds of Stimulus

For analytical tractability, we restrict our attention to the circumstance where a creator can apply

the stimulus only once in the main text. However, as we can see from Table 2, creators typically

update their projects rather frequently in practice, especially for those successful projects. In this

section, we extend the model in Section 4 to consider multiple rounds of stimulus offerings for the

two reactive stimulus policies: seeding and feature upgrade. We show that the optimal strategies

still follow the threshold structure in the sense that the creator should adopt the stimuli if and

only the time-to-go is shorter than a cutoff, and that the cutoff increases in pledge-to-go n. For

limited-time offers, when there are multiple LTOs in effect, the decision to end one of them would

depend on the total funds collected at a given time, which makes the problem significantly more

complicated. While we hypothesize that the optimal strategy is a threshold policy, the proof is

beyond the scope of this paper, which we leave for future research.

OA.2.1. Seeding

Suppose that the creator is able to offer up to n0 ≥ 1 seeds, potentially in multiple rounds. Denote

0≤m≤ n0 as the number of seeds left at a given point during the crowdfunding campaign. At the

state of time-to-go t, pledges needed n and seeds left m, the expected profit is denoted as Jst (n,m).

The cost of the ith seed is assumed to be Ri ≥ 0 for any 1≤ i≤ n0.

Proposition OA.1. For any (n,m), there exists a 0≤ τ s(n,m)≤∞, such that:

• When t≤ τ s(n,m), the creator will activate seeding stimulus right away. That is, Jst (n,m) =

Jst (n− 1,m− 1) for any t≤ τ s(n,m);

• When t > τ s(n,m), the creator is better-off withholding seeding stimulus. The expected profit

Jst (n,m) in this case is given by:

∂Jst (n,m)

∂t
= λtHt(n) (Jst (n− 1,m)−Jst (n,m)) ,

with boundary condition Jsτs(n,m)(n,m) = Jsτs(n,m)(n−1,m−1), Jst (n,0) = (G+B−
∑n0

i=1Ri)Qt(n),

Js0 (0,m) =G+B−
∑n0

i=m+1Ri, and Js0 (n,m) = 0 for all n> 0.

Moreover, τ s(n,m) increases in n.
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Proof of Proposition OA.1. First for any (n,m) and t > 0,

Jst+δ(n,m)≥ (1−λtHt(n)δ)Jst (n,m) +λtHt(n)δJst (n− 1,m) + o(δ).

Let δ→ 0, we get the following inequality:

∂Jst (n,m)

∂t
≥ λtHt(n) [Jst (n− 1,m)−Jst (n,m)] . (OA.7)

We add the following statements to the proposition and prove by induction.

(1) For any 1≤ j ≤m, Jst (n,m)

Jst (n−j,m−j) increases in t.

(2) Jst (n,m)

Jst (n−1,m)
increases in t when t≥ τ s(n,m).

First when m= 1, we already prove the threshold structure and the monotonicity of the thresh-

olds in Theorem 2. We also show that statement (1) holds for m= 1 in the proof of Theorem 2.

In addition, in the proof of Theorem 3, we show that Jst (n,0)

Jst (n,1)
increases in t for any n. Therefore

Jst (n,1)

Jst (n−1,1)
= Jst (n,1)

Jst (n−1,0)

Jst (n−1,0)

Jst (n−1,1)
increases in t. Thus the statements are true for m= 1.

Now consider m> 1. Suppose the statements are true for any n and m− i where i≥ 1. When

n = 1, it is obvious that the optimal strategy is to wait to use the seeding stimulus right before

time expires, i.e., τ s(1,m) = 0. So the statements are true for n= 1.

Assume that the statements are true for some n−1, where n> 1. We prove the threshold structure

for n by contradiction. Suppose it is not true, then there exists an time interval (t, t+h) over which

the stimulus will not be used. Because of the continuity of Jst (n,m), Jst (n,m) = Jst (n− 1,m− 1)

and Jst+h(n,m) = Jst+h(n− 1,m− 1). For any t ∈ (t, t+ h), Jst (n,m) > Jst (n− 1,m− 1). Now for

every t∈ [t, t+h], we find j = min{i≥ 1 : τ s(n− i,m− i)≤ t}. We collect all those unique j’s, and

denote them as j0 > j1 > · · · > jκ, where j0 = min{i ≥ 1 : τ s(n− i,m− i) ≤ t} and jκ = min{i ≥

1 : τ s(n − i,m − i) ≤ t + h}. For any τ s(n − ji,m − ji) ≤ t ≤ τ s(n − ji+1,m − ji+1), Jst (n,m) =

Jst (n− 1,m− 1) = · · ·= Jst (n− ji,m− ji).

Since the optimal strategy is not to use the stimulus at t+ δ and Jst (n,m) = Jst (n− j0,m− j0),

Jst+δ(n,m) = (1−λtHt(n)δ)Jst (n,m) +λtHt(n)δJst (n− 1,m) + o(δ)

= (1−λtHt(n)δ)Jst (n− j0,m− j0) +λtHt(n)δJst (n− 1,m) + o(δ)

> (1−λtHt(n− j0)δ)Jst (n− j0,m− j0) +λtHt(n− j0)δJst (n− j0− 1,m− j0) + o(δ)

Let δ→ 0, we have

Ht(n− j0) [Jst (n− j0− 1,m− j0)−Jst (n− j0,m− j0)]<Ht(n) [Jst (n− 1,m)−Jst (n− j0,m− j0)] ,
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at t= t. Rearrange the terms:

1 +

[
Ht(n− j0)

Ht(n)
− 1

][
1− Jst (n− j0,m− j0)

Jst (n− j0− 1,m− j0)

]
<

Jst (n− 1,m)

Jst (n− j0− 1,m− j0)
,

at t= t. According to our induction assumptions, the LHS decreases in t for any t≥ τ s(n−j0,m−j0)

and RHS increases in t. Thus the inequality holds for any t > t. Also for any t≤ t < τ s(n−j1,m−j1),

Jst (n− j1,m− j1) = Jst (n− j0,m− j0). According to Inequality (OA.7), we have

∂Jst (n,m− j1)

∂t
=
∂Jst (n,m− j0)

∂t

= Ht(n− j0) [Jst (n− j0− 1,m− j0)−Jst (n− j0,m− j0)]

≥ Ht(n− j1) [Jst (n− j1− 1,m− j1)−Jst (n− j1,m− j1)]

Thus, the following inequality holds for any t≤ t≤ τ s(n− j1,m− j1).

Ht(n− j1) [Jst (n− j1− 1,m− j1)−Jst (n− j1,m− j1)]<Ht(n) [Jst (n− 1,m)−Jst (n− j0,m− j0)] .

Note that Jst (n− j0,m− j0) = Jst (n− j1,m− j1) at t= τ s(n− j1,m− j1). Thus,

Ht(n− j1) [Jst (n− j1− 1,m− j1)−Jst (n− j1,m− j1)]<Ht(n) [Jst (n− 1,m)−Jst (n− j1,m− j1)] ,

at t= τ s(n− j1,m− j1). In a similar manner, we can show that for any t > τ s(n− jκ,m− jκ),

Ht(n− jκ) [Jst (n− jκ− 1,m− jκ)−Jst (n− jκ,m− jκ)]<Ht(n) [Jst (n− 1,m)−Jst (n− jκ,m− jκ)] .

On the other hand, at t= t+ h, the optimal strategy is to activate the stimulus, which means

that

Jst+h(n,m) = Jst+h(n− jκ,m− jκ)

= (1−λt+hHt+h(n− jκ)δ)Jst+h−δ(n− jκ,m− jκ) +λt+hHt+h(n− jκ)δJst+h−δ(n− jκ− 1,m− jκ) + o(δ)

≥ (1−λt+hHt+h(n)δ)Jst+h−δ(n,m) +λt+hHt+h(n)δJst+h−δ(n− 1,m) + o(δ)

≥ (1−λt+hHt+h(n)δ)Jst+h−δ(n− jκ,m− jκ) +λt+hHt+h(n)δJst+h−δ(n− 1,m) + o(δ).

This would imply that

Ht(n− jκ) [Jst (n− jκ− 1,m− jκ)−Jst (n− jκ,m− jκ)]≥Ht(n) [Jst (n− 1,m)−Jst (n− jκ,m− jκ)] ,

and therefore leads to contradiction.
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Next we show that τ s(n,m)< τ s(n− 1,m). Suppose this is not true. Then for any τ s(n,m)≤

t≤ τ s(n− 1,m), Jst (n,m)>Jst (n− 1,m− 1) and Jst (n− 1,m) = Jst (n− 2,m− 1). Thus,

∂Jst (n,m)

∂t
= λtHt(n) [Jst (n− 1,m)−Jst (n,m)]≤ λtHt(n− 1) [Jst (n− 2,m− 1)−Jst (n,m)] .

On the other hand, ∂Jst (n−1,m−1)

∂t
≥ λtHt(n− 1)[Jst (n− 2,m− 1)− Jst (n− 1,m− 1)] according to

Inequality (OA.7). Since Jsτs(n,m)(n,m) = Jsτs(n,m)(n−1,m−1), Jst (n,m)≤ Jst (n−1,m−1) for any

t∈ (τ s(n,m), τ s(n− 1,m)), which leads to contradiction.

Finally we prove statements (1) and (2) for n and m. For (1), if t ≤ τ s(n,m), Jst (n,m)

Jst (n−j,m−j) =

Jst (n−1,m−1)

Jst (n−j,m−j) increases in t from the induction assumption. Thus all we need to show is that for a

given t > τ s(n,m), ∂
∂t

Jst (n,m)

Jst (n−j,m−j) ≥ 0 for any j ≤min{j ≥ 1 : τ s(n− j,m− j)< t}. This derivative is

given by

∂

∂t

Jst (n,m)

Jst (n− j,m− j)

=
λtHt(n)[Jst (n− 1,m)−Jst (n,m)]

Jst (n− j,m− j)
− λtHt(n− j)Jst (n,m) [Jst (n− j− 1,m− j)−Jst (n− j,m− j)]

[Jst (n− j,m− j)]2

=λt

{
Ht(n)

[
Jst (n− 1,m)

Jst (n− j− 1,m− j)
Jst (n− j− 1,m− j)
Jst (n− j,m− j)

− Jst (n,m)

Jst (n− j,m− j)

]
−

Ht(n− j)
Jst (n,m)

Jt(n− j,m− j)

[
Jst (n− j− 1,m− j)
Jst (n− j,m− j)

− 1

]}

=λtHt(n)
Jst (n− j− 1,m− j)
Jst (n− j,m− j)

{
Jst (n− 1,m)

Jst (n− j− 1,m− j)
− Jst (n,m)

Jst (n− j,m− j)
Jst (n− j,m− j)

Jst (n− j− 1,m− j)
−

Jst (n,m)

Jst (n− j,m− j)
Ht(n− j)
Ht(n)

[
1− Jst (n− j,m− j)

Jst (n− j− 1,m− j)

]}

=λtHt(n)
Jst (n− 2,m− 1)

Jst (n− 1,m− 1)

{
Jst (n− 1,m)

Jst (n− j− 1,m− j)
−

[
1 +

(
Ht(n− j)
Ht(n)

− 1

)(
1− Jst (n− j,m− j)

Jst (n− j− 1,m− j)

)]
Jst (n,m)

Jst (n− j,m− j)

}
.

Note that Jst (n,m)

Jst (n−j,m−j)

∣∣∣
t=τs(n,m)

= 1 and Jst (n,m)

Jst (n−j,m−j) > 1 for any t > τ s(n,m). Thus Jst (n,m)

Jst (n−j,m−j)

increases in t initially. Now suppose there exists a t1 such that ∂
∂t

Jst (n,m)

Jst (n−j,m−j)

∣∣∣
t=t1

< 0. We can then

find a t2 < t1 such that ∂
∂t

Jst (n,m)

Jst (n−j,m−j)

∣∣∣
t=t2

= 0 and ∂
∂t

Jst (n,m)

Jst (n−j,m−j) < 0 for any t ∈ (t2, t1]. However,

Jst (n−1,m)

Jst (n−j−1,m−j) increases in t for any t≥ τ s(n− 1,m), Jst (n−j,m−j)
Jst (n−j−1,m−j) increases in t for any t≥ τ s(n−

j,m− j), and Ht(n−j)
Ht(n)

decreases in t. This means that ∂
∂t

Js(n,m)

Js(n−j,m−j) > 0 over (t1, t2], which leads to

contradiction. Thus Jst (n,m)

Jst (n−j,m−j) increases in t when t≥ τ s(n,m).
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Finally we prove statement (ii). Since τ s(n,m)≥ τ s(n− 1,m), for any t≥ τ s(n,m), we have

∂

∂t

Jst (n,m)

Jst (n− 1,m)
=λtHt(n)

(
1− Jst (n,m)

Jst (n− 1,m)

)
−λtHt(n− 1)

Jst (n,m)

Jst (n− 1,m)

(
Jst (n− 2,m)

Jst (n− 1,m)
− 1

)
=λtHt(n)

Jst (n,m)

Jst (n− 1,m)

[
Jst (n− 1,m)

Jst (n,m)
− 1− Ht(n− 1)

Ht(n)

(
Jst (n− 2,m)

Jst (n− 1,m)
− 1

)]
.

Note that Jst (n,m)

Jst (n−1,m)
< 1 for any finite t and limt→∞

Jst (n,m)

Jst (n−1,m)
= 1. This means that Jst (n,m)

Jst (n−1,m)

approaches 1 from below. Thus, if it does not increase in t for any t≥ τ s(n+1,m), there must exist

t2 > t1 ≥ τ s(n,m) such that ∂
∂t

Jst (n,m)

Jst (n−1,m)

∣∣∣
t=t1

= 0 and ∂
∂t

Jst (n,m)

Jst (n−1,m)
≤ 0 for any t ∈ (t1, t2]. However

Ht(n−1)

Ht(n)

(
Jst (n−2,m)

Jst (n−1,m)
− 1
)

strictly decreases in t from our induction assumption about n − 1. This

means that ∂
∂t

Jst (n,m)

Jst (n−1,m)
> 0 over (t1, t2], which leads to contradiction. We thus prove the announced

results. �

OA.2.2. Feature Upgrade

Suppose the creator can make at most nu updates according to a predefined sequence (, which

is possibly determined by the potential benefit of each update). We use m(≤ nu) to denote the

number of feature upgrades that remains to be implemented. With m upgrades left, the corre-

sponding pledge likelihood is denoted as H̃(m)(q). More upgrades make the project more attractive

in the sense that H̃(0)(q) ≥ H̃(1)(q) ≥ · · · ≥ H̃(nu)(q) = H(q). Similarly, the corresponding success

probability Q̃m
t (n) satisfies the condition Q̃

(0)
t (n) > Q̃

(1)
t (n) > · · · > Q̃

(nu)
t (n) = Qt(n). As a direct

extension of Assumption 1(iii), we assume that H̃(m−1)(q)

H̃(m)(q)
decreases in q for any m.

Cost of ith update is assumed to be Ki, i= 1, . . . , nu. At the state of time-to-go t, pledges needed

n and upgrades remaining m, the expected profit is denoted as Jut (n,m).

Proposition OA.2. For any (n,m), there exists a 0≤ τu(n,m)≤∞, such that:

• When t ≤ τu(n,m), the optimal strategy is to upgrade project features right away. That is,

Jut (n,m) = Jut (n,m− 1) for any t≤ τu(n,m);

• When t > τu(n,m), the creator is better-off withholding feature upgrades. The expected profit

Jut (n,m) in this case is given by:

∂Jut (n,m)

∂t
= λtH̃t(n,m) (Jut (n− 1,m)−Jut (n,m)) ,

with boundary conditions Juτu(n,m)(n,m) = Juτu(n,m)(n,m−1), Jut (n,0) = (G+B−
∑nu

i=1Ki)Q̃
(0)
t (n),

Ju0 (0,m) =G+B−
∑nu

i=m+1Ki, and Ju0 (n,m) = 0 for all n> 0.

Moreover, τu(n,m) increases in n.
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Proof of Proposition OA.2. First, for any (n,m) and t > 0, we have

Jut+δ(n,m)≥
[
1−λtH̃t(n,m)δ

]
Jut (n,m) +λtH̃t(n,m)δJut (n− 1,m) + o(δ).

Let δ→ 0, we obtain the following inequality:

∂Jut (n,m)

∂t
≥ λtH̃t(n,m) [Jut (n− 1,m)−Jut (n,m)] . (OA.8)

For proof convenience, let Jut (−1,m) = Jut (0,m) and τut (−1,m) = 0. It’s easy to see that Jut (0,m)

is indeed the unique solution of the differential equation where n= 0.

We add the following statements to the Proposition and prove by induction

(i) For any 0≤ j ≤m, Jut (n,m)

Jut (n,m−j) increases in t.

(ii) Jut (n,m)

Jut (n−1,m)
increases in t for t≥ τu(n,m).

First when m= 0, the threshold structure and the monotonicity of the thresholds follow imme-

diately from our earlier denotation. Statement (i) is trivial as j can only be 0, and Statement (ii)

holds according to Proposition 2.

Now suppose that the statements are true for any n≥ 0 and m− 1 where m≥ 1. We next show

that they must also hold for n and m. First it is obvious that the statements hold for n= 0. Now

assume that they hold for n−1 where n≥ 1. We first show that the optimal stimulus strategy is a

threshold policy. If this is not true, then we can find a time interval (t, t+h), over which the optimal

strategy is not to upgrade the project features, i.e., Jut (n,m)>Jut (n,m−1) over (t, t+h). Because

of the continuity of Jut (n,m), we have Jut (n,m) = Jut (n,m− 1) and Jut+h(n,m) = Jut+h(n,m− 1).

For each t∈ [t, t+h], there exists a j = min{i≥ 1 : τu(n,m− i)≤ t}. We collect all those unique j’s

and denote them as j0 > j1 > · · ·> jκ, where j0 = min{i≥ 1 : τu(n,m− i)≤ t} and jκ = min{i≥ 1 :

τu(n,m− i)≤ t+h}. When t= t+ δ, the optimal strategy is not to upgrade project features, but

Jut (n,m) = Jut (n,m− j0). Thus,

Jut+δ(n,m) =
(

1−λtH̃t(n,m)δ
)
Jut (n,m) +λtH̃t(n,m)δJut (n− 1,m) + o(δ)

>
(

1−λtH̃t(n,m− j0)δ
)
Jut (n,m− j0) +λtH̃t(n,m− j0)δJut (n− 1,m− j0) + o(δ).

Let δ→ 0, we have

H̃t(n,m) [Jut (n− 1,m)−Jut (n,m− j0)]> H̃t(n,m− j0) [Jut (n− 1,m− j0)−Jut (n,m− j0)] ,

at t= t. Rearrange the terms, at t= t, we have(
H̃t(n,m− j0)

H̃t(n,m)
− 1

)[
1− Jut (n,m− j0)

Jut (n− 1,m− j0)

]
≤ Jut (n− 1,m)

Jut (n− 1,m− j0)
.
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According to our induction assumptions, LHS decreases in t for t≥ t≥ τu(n,m− j0) and RHS

increases in t. Thus the above inequality holds for any t > t. In addition, Jut (n,m− j1) = Jut (n,m−

j0) for any τu(n,m− j0)< t≤ τu(n,m− j1), which leads to

∂Jut (n,m− j1)

∂t
=
∂Jut (n,m− j0)

∂t
= H̃t(n,m− j0) [Jut (n− 1,m− j0)−Jut (n,m− j0)] .

According to Inequality (OA.8),

H̃t(n,m− j0) [Jut (n− 1,m− j0)−Jut (n,m− j0)]≥ H̃t(n,m− j1) [Jut (n− 1,m− j1)−Jut (n,m− j1)] .

Coupling with the fact that Jut (n,m−j0) = Jut (n,m−j1) for any t∈ [τu(n,m−j0), τu(n,m−j1)],

we thus have

H̃t(n,m) [Jut (n− 1,m)−Jut (n,m− j1)]> H̃t(n,m− j1) [Jut (n− 1,m− j1)−Jut (n,m− j1)] .

Similarly, we can show that for any t > τu(n,m− jκ),

H̃t(n,m) [Jut (n− 1,m)−Jut (n,m− jκ)]> H̃t(n,m− jκ) [Jut (n− 1,m− jκ)−Jut (n,m− jκ)] .

However for any t > t+h,

Jut (n,m) = Jut (n,m− jκ)

=
(

1−λt−δH̃t−δ(n,m− jκ)δ
)
Jut−δ(n,m− jκ) +λt−δH̃t−δ(n,m− jκ)δJut−δ(n− 1,m− jκ)

≥
(

1−λt−δH̃t−δ(n,m)δ
)
Jut−δ(n,m− jκ) +λt−δH̃t−δ(n,m)δJut−δ(n− 1,m) + o(δ).

Let δ→ 0,

H̃t(n,m) [Jut (n− 1,m)−Jut (n,m− jκ)]≤ H̃t(n,m− jκ) [Jut (n− 1,m− jκ)−Jut (n,m− jκ)] ,

which leads to contradiction. Thus a unique threshold τu(n,m) exists, such that the optimal policy

is to upgrade the features when t≤ τu(n,m), and not to upgrade when t > τu(n,m).

Next we show τu(n,m)≥ τu(n− 1,m) by contradiction. Suppose this is not true. Then for any

τu(n,m)< t≤ τu(n− 1,m), Ju(n,m)>Jut (n,m− 1) and Jut (n− 1,m) = Jut (n− 1,m− 1). Thus,

∂Jut (n,m)

∂t
= λtH̃t(n,m) [Jut (n− 1,m)−Jut (n,m)]

= λtH̃t(n,m) [Jut (n− 1,m− 1)−Jut (n,m)]

< λtH̃t(n,m− 1) [Jut (n− 1,m− 1)−Jut (n,m)] .
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On the other hand, ∂Jut (n,m−1)

∂t
≥ λtH̃t(n,m − 1)[Jut (n − 1,m − 1) − Jut (n,m − 1)] according

to Inequality (OA.8). Since Juτu(n,m)(n,m) = Juτu(n,m)(n,m − 1), Jut (n,m) < Jut (n,m − 1) for any

τu(n,m)< t≤ τu(n− 1,m), which leads to contradiction.

Now we show that statements (i) and (ii) are true for n. For any t ≤ τu(n,m), Jut (n,m)

Jut (n,m−j) =

Jut (n,m−1)

Jut (n,m−j) increases in t based on the induction assumptions. Thus in order to prove statement (i),

we only need to focus on t > τu(n,m). Without loss of generality, we assume that τu(n,m− j)<

τu(n,m) (Otherwise Jut (n,m− j) = Jut (n,m− j′), where j′ = min{i < j : τu(n,m− i)< τu(n,m)}

for any t > τu(n,m)).

∂

∂t

Jut (n,m)

Jut (n,m− j)
=
λtH̃t(n,m)[Jut (n− 1,m)−Jut (n,m)]

Jut (n,m− j)
−

λtH̃t(n,m− j)Jut (n,m) [Jut (n− 1,m− j)−Jut (n,m− j)]
[Jut (n,m− j)]2

=λt

{
H̃t(n,m)

[
Jut (n− 1,m)

Jut (n− 1,m− j)
Jut (n− 1,m− j)
Jut (n,m− j)

− Jut (n,m)

Jut (n,m− j)

]
−

H̃t(n,m− j)
Jut (n,m)

Jut (n,m− j)

[
Jut (n− 1,m− j)
Jut (n,m− j)

− 1

]}

=λtH̃t(n,m)
Jut (n− 1,m− j)
Jut (n,m− j)

{
Jut (n− 1,m)

Jut (n− 1,m− j)
− Jut (n,m)

Jut (n,m− j)
Jut (n,m− j)

Jut (n− 1,m− j)
−

Jut (n,m)

Jut (n,m− j)
H̃t(n,m− j)
H̃t(n,m)

[
1− Jut (n,m− j)

Jut (n− 1,m− j)

]}

=λtH̃t(n,m)
Jut (n− 1,m− j)
Jut (n,m− j)

{
Jut (n− 1,m)

Jut (n− 1,m− j)
−[

1 +

(
H̃t(n,m− j)
H̃t(n,m)

− 1

)(
1− Jut (n,m− j)

Jut (n− 1,m− j)

)]
Jut (n,m)

Jut (n,m− j)

}
.

When t = τu(n,m), Jut (n,m)

Jut (n,m−j) = 1, whereas Jut (n,m)

Jut (n,m−j) > 1 for any t > τu(n,m). Thus, Jut (n,m)

Jut (n,m−j)

increases in t at t = τu(n,m). Suppose there exists a t1 > τu(n,m) such that ∂
∂t

Jut (n,m)

Jut (n,m−j) < 0.

Because of the continuity of Jut (n,m)

Jut (n,m−j) , there must exist a t2 < t1 such that ∂
∂t

Jut (n,m)

Jut (n,m−j)

∣∣∣
t=t2

= 0

and ∂
∂t

Jut (n,m)

Jut (n,m−1)
< 0 for any t∈ (t2, t1]. However, Jut (n−1,m)

Jut (n−1,m−j) strictly increases in t according to our

induction assumption, and H̃t(n,m−j)
H̃t(n,m)

decreases in t according to our assumption. This means that

∂
∂t

Jut (n,m)

Jut (n,m−j) ≥ 0 over (t2, t1], which leads to contradiction.

Finally we prove statement (ii) by contradiction. Suppose it is not true. Then there must exist

t2 > t1 ≥ τu(n,m), such that ∂
∂t

Jut (n,m)

Jut (n−1,m)

∣∣
t=t1

= 0 and ∂
∂t

Jut (n,m)

Jut (n−1,m)
< 0 for any t ∈ (t1, t2]. Because

τu(n,m)≥ τu(n− 1,m), we have
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∂

∂t

Jut (n,m)

Jut (n− 1,m)
= λtH̃t(n,m)

(
1− Jut (n,m)

Jut (n− 1,m)

)
−λtH̃t(n− 1,m)

Jut (n,m)

Jut (n− 1,m)

(
Jut (n− 2,m)

Jut (n− 1,m)
− 1

)
= λtH̃t(n,m)

Jut (n,m)

Jut (n− 1,m)

[
Jut (n− 1,m)

Jut (n,m)
− 1− H̃t(n− 1,m)

H̃t(n,m)

(
Jut (n− 2,m)

Jut (n− 1,m)
− 1

)]
.

However, Jut (n−2,m)

Jut (n−1,m)
decreases in t as t ≥ τu(n,m) ≥ τu(n− 1,m), and H̃t(n−1,m)

H̃t(n,m)
decreases in t

according to Theorem 1(iii). Consequently, if Jst (n−1,m)

Jst (n,m)
decreases in t, then ∂

∂t

Jut (n,m)

Jut (n−1,m)
≥ 0 over

(t1, t2], which leads to contradiction. We thus obtained the announced results. �

OA.2.3. Numerical Experiments

In this section, we complement our analytical results with a numerical analysis illustrating the

benefit of multiple rounds of stimuli. Parameters of the numerical experiments are specified as

follows. For seeding, we consider the case where each seeding stimulus allows the creator to acquire

1 pledge at a cost of $120. For feature upgrade, we consider the case where each upgrade in project

features costs the creator K = $120, and improves the project quality by 0.1.

Figure OA.1 Benefits of Mutiple Rounds of Stimulus Policies
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(a) Improvement in Expected Profit: Seeding
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(b) Improvement in Expected Profit: Feature Upgrade

Note: V ∼ exp( 1
100

), p= $120, θ = 1, c= $30, G= $1,800 (i.e., N = 15), B = $500, T = 30 and λt = 2. The

benchmark is the base model with no stimulus.

Figure OA.1 illustrates the change in the expected profit w.r.t. the number of stimuli and the

deadline. While access to additional rounds of stimuli always improve the expected profit, the

absolute benefit is non-monotonic w.r.t. the deadline T . When the deadline T is small, having more

rounds of the stimuli helps little because the project has little chance to succeed even if multiple

stimuli are applied. At the other end of the spectrum, when the deadline T is sufficiently large,



27

again multiple rounds of stimuli render little benefit as the project is likely to reach the target

without help of any stimulus policies. Similar to our observation from the numerical analysis in

Section 4.4, we also observe that the stimulus policy with multiple rounds of updates is the most

effective when the remaining time is neither too long or too short.
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