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a b s t r a c t

We develop a GMM approach for estimation of log-normal stochastic volatility models
driven by a fractional Brownian motion with unrestricted Hurst exponent. We show
that a parameter estimator based on the integrated variance is consistent and, under
stronger conditions, asymptotically normally distributed. We inspect the behavior of
our procedure when integrated variance is replaced with a noisy measure of volatility
calculated from discrete high-frequency data. The realized estimator contains sampling
error, which skews the fractal coefficient toward ‘‘illusive roughness.’’ We construct an
analytical approach to control the impact of measurement error without introducing
nuisance parameters. In a simulation study, we demonstrate convincing small sample
properties of our approach based both on integrated and realized variance over the entire
memory spectrum. We show the bias correction attenuates any systematic deviance in
the parameter estimates. Our procedure is applied to empirical high-frequency data from
numerous leading equity indexes. With our robust approach the Hurst index is estimated
around 0.05, confirming roughness in stochastic volatility.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Stochastic volatility (SV) models are pervasive in finance. Over the years, a variety of different models–each with
ts own dynamics–were developed, such as the log-normal model (e.g. Taylor, 1986), the square-root diffusion (e.g.
eston, 1993), or more complicated processes where volatility is driven by a non-Gaussian pure-jump component,
.g. Barndorff-Nielsen and Shephard (2001), Todorov and Tauchen (2011).
In this paper, we investigate the log-normal SV model, which has been extensively studied in previous work,

.g. Alizadeh et al. (2002), Christoffersen et al. (2010), Hull and White (1987). This class is a promising starting point,
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because the unconditional distribution of realized variance is close to log-normal (see e.g. Andersen et al., 2001, 2003;
Christensen et al., 2019).

While there is a general acceptance that log-normal volatility offers a decent description of return variation in financial
sset prices, there is no consensus on the properties of the background driving Gaussian process. In the SV setting, it is
ften assumed to be a standard Brownian motion. The mean-reversion and volatility-of-volatility parameters then control
oth the local properties of volatility and also determine its long-run persistence. There are multiple papers dealing with
stimation of the parameters of the log-normal SV model, for example using method of moments- or likelihood-based
pproaches (e.g. Taylor, 1986; Melino and Turnbull, 1990; Duffie and Singleton, 1993; Harvey et al., 1994; Gallant et al.,
997; Fridman and Harris, 1998). In the context of generalized method of moments (GMM) estimation, Andersen and
ørensen (1996) offer further advice on how to select moment criteria and the weighting matrix in order to get good
esults in small samples.

When the driving process is a fractional Brownian motion, which neither is a semimartingale nor has independent
ncrements, less is known. In this setting, part of the memory in volatility is reallocated to the fractal index or Hurst
1951) exponent. Comte and Renault (1998) propose a log-normal SV model, where the Hurst exponent is larger than one-
alf; the value implied by a standard Brownian motion. This induces positive serial correlation–or long-memory–in the
ncrements of the process. Bennedsen et al. (2022), El Euch and Rosenbaum (2018), Fukasawa et al. (2022), Gatheral et al.
2018), among others, study ‘‘roughness’’ as captured by a fractal index smaller than one-half, rendering volatility highly
rratic–or anti-persistent–at short time scales. In the fractional setting, the Hurst index is typically pre-estimated based
n a semi-parametric procedure, before the other parameters are recovered. While this may yield consistent parameter
stimates, it is generally inefficient and may be severely biased in finite samples.
In this paper, we extend the classical GMM procedure to joint estimation of the parameters of the log-normal SV model

ith a general fractal index. An attractive feature of our paper is that moment expressions are derived in convenient
ntegral form facilitating the implementation without recourse to simulation-based approaches. As in many papers
receding this one, we appeal to the time series properties of integrated variance to construct our estimator, an idea
ioneered by Bollerslev and Zhou (2002).
In practice, the integrated variance is unobserved. Realized variance, which is computed from high-frequency data, is

consistent estimator of integrated variance and often replaces it in the calculations. In previous work, this is done by
howing convergence in probability or distribution of the parameter estimator in a double-asymptotic in-fill and long-span
etting, such that the volatility discretization error is small enough to be ignored. In the subsequent applications, however,
he volatility proxy enters directly in place of integrated variance.

Substituting the latent volatility with a proxy, however, entails a measurement error in finite samples, which obfuscates
he underlying integrated variance dynamics. This can be detrimental to the estimation procedure if unaccounted for (e.g.
eddahi, 2002; Hansen and Lunde, 2014), because the moment conditions imposed on integrated variance are generally
ot valid for the noisy proxy. Barndorff-Nielsen and Shephard (2002) employ a state–space system and the Kalman filter
o smooth out realized variance prior to maximum quasi-likelihood estimation of their SV model, see also Meddahi
2003). In this paper, we introduce a high-level assumption employing a realized measure to proxy for integrated variance
ollowing Patton (2011). We construct a bias correction that controls for the measurement error and show how to embed
t analytically into the GMM setting without introducing additional nuisance parameters, as opposed to Bollerslev and
hou (2002).
Our proposed estimator is consistent and asymptotically normal. The main asymptotic theory is long-span with time

oing to infinity but high-frequency data sampled at a fixed frequency. As an aside, we complement the analysis by
eriving the double-asymptotic result, where the estimation error correction is immaterial.
We investigate our estimator in a simulation study, where various configurations of a fractional log-normal SV model

ith Hurst parameter covering the rough, standard and long-memory setting are inspected. The parameter estimates
re centered closely around the true values–suggesting our procedure is approximately unbiased–and relatively accurate,
nce the bias correction is adopted. In an empirical application, we study an extensive selection of major equity indexes
nd confirm rough volatility, even after ironing out the effect of noise in the volatility proxy. In those data we consistently
ocate a roughness parameter around 0.05.

The rest of this paper is organized as follows. Section 2 presents the log-normal SV model and studies the properties
f integrated variance within this framework. The GMM approach is introduced in Section 3. Section 4 examines the
erformance of our estimator in a Monte Carlo study. In Section 5, we apply the procedure to real data and compare our
indings with the previous literature. We conclude in Section 6 and leave some theoretical derivations to the appendix.
n online-only supplemental appendix contains further Monte Carlo results and empirical analysis.

. The setting

We model the log-price of a financial asset, X = (Xt )t≥0, as an adapted continuous-time stochastic process defined
n a filtered probability space (Ω,F, (Ft )t≥0,P). We suppose a standard arbitrage-free market, in which asset prices are
f semimartingale form (e.g., Back, 1991; Delbaen and Schachermayer, 1994). We assume X can be described by an Itô
rocess:

Xt = X0 +

∫ t

µsds +

∫ t

σsdWs, t ≥ 0, (1)

0 0
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where X0 is F0-measurable, µ = (µt )t≥0 is a predictable drift process, σ = (σt )t≥0 is a càdlàg volatility process and
= (Wt )t≥0 is a standard Brownian motion.
The spot variance σ 2

= (σ 2
t )t≥0 is given by:

σ 2
t = ξ exp

(
Yt −

1
2
κ(0)

)
, t ≥ 0, (2)

here ξ ∈ Ξ ⊂ (0, ∞) represents the unconditional mean of the stochastic variance, while Y = (Yt )t≥0 is a mean zero
tationary Gaussian process with autocovariance function (acf) κ(u) = cov(Y0, Yu) = κφ(u), u ≥ 0, parameterized by
∈ Φ ⊂ Rp. We assume Ξ and Φ are compact, so that Θ = Ξ × Φ ⊂ Rp+1 is compact, and write θ = (ξ, φ) ∈ Θ .
Note that we do not restrict volatility to a Markovian or semimartingale setting.1 This is not a problem for absence of

rbitrage and existence of an equivalent risk-neutral probability measure (although it is not unique in our setup), since
olatility is not the price of a tradable asset.2 The main limitation of (2) is that it has continuous sample paths. Our model
herefore excludes jumps in volatility, which are empirically relevant (e.g., Bandi and Renò, 2016; Eraker et al., 2003;
odorov and Tauchen, 2011). We leave a theoretical development of our framework in presence of volatility jumps to
uture research.3

To maintain a streamlined exposition, we also exclude a jump component in X . The theory should at least be robust
o the addition of finite-activity jumps, but then one needs to pay attention to the practical implementation.4

The integrated variance on day t is defined as:

IVt =

∫ t

t−1
σ 2
s ds, t ∈ N, (3)

and holds information on the parameters of the model. Our estimation procedure exploits this by measuring integrated
variance on a daily basis. The subscript t indicates the end of a day. We later substitute integrated variance with a realized
measure of volatility computed from intraday high-frequency data of X .

We exploit the dynamics of integrated variance in this paper. This is in contrast to the application of spot variance in
previous work, e.g. Bennedsen et al. (2022), Fukasawa et al. (2022), Gatheral et al. (2018). While spot variance is more ideal,
it is associated with numerous pitfalls in practice. Firstly, spot variance estimation requires ultra high-frequency data,
which may not readily be available. Even if they are, sampling at the highest frequency may induce an accumulation of
microstructure noise that can distort the analysis (e.g., Hansen and Lunde, 2006). The calculation of microstructure noise-
robust estimators is complicated and they suffer from poor rates of convergence (e.g., Barndorff-Nielsen et al., 2008; Jacod
et al., 2009; Zhang et al., 2005). Secondly, intraday spot variance is driven by a pronounced deterministic diurnal pattern,
which needs to be controlled for if the properties of the underlying stochastic process are to be uncovered (Andersen and
Bollerslev, 1997, 1998b). Working at the daily frequency sidesteps this problem. Thirdly, spot variance estimators converge
at a slow rate–relative to estimators of integrated variance–and, in the context of our model, often lack associated CLTs.
The smoothing entailed by integrating spot variance overcomes this issue to some extent.

2.1. Moment structure of integrated variance

In this section, we derive the moment structure of integrated variance in (3) within the framework of the general
log-normal SV process (1)–(2). This serves as the foundation of our GMM procedure to estimate the parameters of the
model.

The starting point is the moment conditions:

E
[
g(IVt; θ0)

]
= 0, (4)

for a measurable function g , where θ0 ∈ Θ is the true parameter vector.

1 The log-normal distribution is invariant to (non-zero) power transformations. This implies that ‘‘volatility’’, which in financial economics is more
often associated with the standard deviation–or the square-root of the variance–is also log-normal if the variance is (and vice versa). Hence, volatility
is applied loosely here to mean either variance or standard deviation. In the text, the concrete meaning is apparent from the context and should
not be the cause of any confusion.
2 In 2004, CBOE launched derivatives on the VIX index, which is a weighted average of implied volatility from a basket of S&P 500 options,

rendering volatility at least partially tradable (see, e.g., the white paper available at https://www.cboe.com/micro/vix/vixwhite.pdf).
3 In the supplemental appendix, we simulate log-volatility as a jump–diffusion process driven by a standard Brownian motion with Hurst exponent

H = 1/2. We implement the GMM procedure developed for the continuous sample path version of the model on it and observe that jumps in
olatility do not cause any discernible spurious roughness. An explanation of this effect is offered there.
4 The realized variance introduced in (20) is not a consistent estimator for integrated variance in the presence of price jumps. In such instances,

he truncated realized variance of Mancini (2009) or the bipower variation of Barndorff-Nielsen and Shephard (2004) can be exploited. Below, we
erive a bias correction for realized variance and bipower variation to account for measurement error. The correction developed for realized variance
lso applies to the truncated version, at least so long as the jumps are finite-activity, (see, e.g., Li et al., 2017, Proposition 1, which does not require
emimartingale volatility and therefore is applicable in our setting).
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The expectation in (4) can be hard to calculate for most choices of g . While spot variance is log-normal, the integrated
variance is a sum of correlated log-normal random variables, and figuring out its distribution is a highly nontrivial
statistical problem.5 This also renders maximum likelihood estimation of the model complicated.

As the next theorem illuminates, the computation in (4) is manageable for raw moments, where the order of the
expectation operator and volatility integral can be reversed.

Theorem 2.1. Suppose that (1)–(2) hold. Then, the integrated variance process (IVt )t∈N is stationary with the following first
nd second-order moment structure:

E[IVt ] = ξ,

E[IVt IVt+ℓ] = ξ 2
∫ 1

0
(1 − y)

[
exp

(
κ(ℓ + y)

)
+ exp

(
κ(|ℓ − y|)

)]
dy,

(5)

or ℓ ∈ N ∪ {0}.
The third and fourth moment of integrated variance are:

E[IV 3
t ] = 6ξ 3

∫ 1

0

∫ x

0
(1 − x)f (x, y)dydx, (6)

E[IV 4
t ] = 24ξ 4

∫ 1

0

∫ x

0

∫ y

0
(1 − x)g(x, y, z)dzdydx, (7)

where

f (x, y) = exp
(
κ(|x − y|) + κ(|x|) + κ(|y|)

)
,

g(x, y, z) = exp
(
κ(|x − y|) + κ(|x − z|) + κ(|y − z|) + κ(|x|) + κ(|y|) + κ(|z|)

)
.

(8)

n addition, suppose the following conditions hold:

(a) limℓ→∞ κ(ℓ) = 0,
(b) there exists an integrable function φ : [−1, 1] → R such that κ(ℓ+y)

κ(ℓ) → φ(y) as ℓ → ∞ for any y ∈ [−1, 1],

(c) lim supℓ→∞ supy∈[−1,1]

⏐⏐⏐⏐ κ(ℓ+y)
κ(ℓ)

⏐⏐⏐⏐ < ∞.

hen, as ℓ → ∞:

E
[
(IVt − ξ )(IVt+ℓ − ξ )] ∼ ξ 2κ(ℓ)

∫ 1

−1
(1 − |y|)φ(y)dy, (9)

here f (ℓ) ∼ g(ℓ) denotes asymptotic equivalence, i.e. f (ℓ)/g(ℓ) → 1 as ℓ → ∞.

The proof of Theorem 2.1 exploits a convenient change of variables technique, which we introduce in Lemma A.1 in
he appendix. This allows to express the rth moment of integrated variance as an (r − 1)-dimensional integral.

Without proof, we conjecture a general formula for E[IV r
t ] by induction:

E[IV r
t ] = r! ξ r

∫ 1

0

∫ x1

0
· · ·

∫ xr−2

0
(1 − x1)g(x1, . . . , xr−1)dxr−1 . . . dx1, (10)

here r ≥ 2 is a positive integer, and

g(x1, . . . , xr−1) = exp
( ∑

1≤i<j≤r−1

κ(|xi − xj|) +

r−1∑
i=1

κ(|xi|)
)

. (11)

n many realistic models, the above integrals do not possess analytic solutions and need to be approximated or solved
umerically. In the fractional SV model entertained below, the acf of spot variance has a sharp incline near the origin,
hich gets steeper for smaller H . In that model, even the third moment can be prohibitively time-consuming to calculate,
t least within the grasp of our computing powers. This makes higher-order moments unwieldy to work with in practice.
urthermore, because the distribution of integrated variance is generally heavy-tailed and highly right-skewed, such
oments are also hard to estimate. As if that was not bad enough, in the noisy proxy setting the moment conditions

ncorporate estimation error. The updated expectations involve a convolution of the integrated variance and measurement
rror. This is tough to deal with even for raw moments. As a practical compromise, our estimation procedure therefore
elies on low-order moments.

5 The distribution of a sum of correlated log-normals can be approximated by the Fenton–Wilkinson method, where one replaces it with a single
log-normal random variable. However, the approximation is often inaccurate.
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In the last part of Theorem 2.1, condition (a) is a minimal condition that is necessary and sufficient for a stationary
aussian process to be ergodic. This follows from the classical result of Maruyama (1949). It is evidently true for the
odels in this paper. Condition (b) and (c) are more technical and restrict the oscillation of κ(ℓ) as ℓ → ∞.
As an illustration, suppose there exists ℓ0 > 0 such that

κ(ℓ) = ℓ−βe−ρℓL(ℓ), ℓ ≥ ℓ0, (12)

here β ≥ 0 and ρ ≥ 0 with min(β, ρ) > 0, and for some slowly varying function L : (0, ∞) → (0, ∞), i.e. a function
or which limx→∞

L(cx)
L(x) = 1 for all c > 0. For example, if L(x) converges to a strictly positive limit as x → ∞, then it

is evidently slowly varying. Appealing to the uniform convergence theorem for slowly varying functions (Bingham et al.,
1989, Theorem 1.5.2), condition (a)–(c) can be verified with φ(y) = e−ρy.

2.2. The fractional SV model

While the theoretical results developed in this paper apply more broadly to general log-normal SV models, in our
illustrations–both the simulation study and empirical application–we zoom in on the fractional SV (fSV) model, in which
the volatility is assumed to be the exponential of a fractional Ornstein–Uhlenbeck (fOU) process:

Yt = ν

∫ t

0
e−λ(t−s)dBH

s , t ≥ 0, (13)

here ν, λ > 0, and BH
= (BH

t )t≥0 is a fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1).6 This is a standard
og-normal SV model for H = 1/2. The fractional version was introduced by Comte and Renault (1998) in a long-memory
etting (H > 1/2) and recently in a rough setting (H < 1/2) by Gatheral et al. (2018). Our main interest in this model is
that we aim to assess the empirical level of the Hurst exponent, when all parameters are estimated jointly. Hence, in our
Monte Carlo analysis we pay particular attention to the accuracy of the estimation error in H .7

The acf of the fOU model was derived in the following convenient form by Garnier and Sølna (2018), which–when
dapted to the present parameterization of the model and assuming Y0 is drawn from its stationary distribution–can be
xpressed as:

κ(ℓ) =
ν2

2λ2H

(
1
2

∫
∞

−∞

e−|y|
|λℓ + y|2Hdy − |λℓ|2H

)
, ℓ ≥ 0. (14)

or H = 1/2 this expression reduces to:

κ(ℓ) =
ν2

2λ
e−λℓ, (15)

hich is the standard formula for the log-normal SV model.
As apparent from (15), the acf decays exponentially for H = 1/2. However, (14) has a hyperbolic rate of decay for other

values of H , since κ(ℓ) = O
(
ℓ2(H−1)

)
as ℓ → ∞. This follows from Cheridito et al. (2003). These properties are transferred

to the integrated variance process by the last result in Theorem 2.1. Moreover, the acf is integrable for H ≤ 1/2 but not
integrable for H > 1/2.

The variance of Yt is:

κ(0) =
ν2

2λ2H Γ (1 + 2H). (16)

he fSV model conforms to (12) with β = 2(1 − H) and ρ = 0 for H ∈ (0, 1/2) ∪ (1/2, 1), by Theorem 2.3 of Cheridito
et al. (2003), and with β = 0 and ρ = λ for H = 1/2. We stress that L need not be given in closed form, as the proof of
(12) amounts to checking that L(ℓ) ≡

κ(ℓ)
ℓ−β e−ρℓ is slowly varying, based on the asymptotic behavior of κ(ℓ) as ℓ → ∞.

. GMM estimation

In this section, for technical convenience we define all processes also for negative time indices.

6 A fBm started at the origin (BH
0 = 0) with Hurst exponent H ∈ (0, 1) is a centered Gaussian process with covariance function E

[
BH
t B

H
s

]
=

1
2

(
|t|2H +|s|2H −|t − s|2H

)
. It can be constructed as a weighted infinite moving average of past increments to a standard Brownian motion following

he Mandelbrot and Van Ness (1968, Definition 2.1) representation: BH
t =

1
Γ (H+1/2)

{∫ 0
−∞

[
(t − s)H−1/2

− (−s)H−1/2
]
dBs +

∫ t
0 (t − s)H−1/2dBs

}
, where

(·) is the Gamma function. The process is self-similar of index H and has stationary but not independent increments (except for H = 1/2). Its
ample paths are locally Hölder continuous up to order H . As readily seen, the fBm reduces to a standard Brownian motion for H = 1/2.
7 In Appendix C, we provide the associated analysis for GMM estimation of an alternative log-normal SV model, namely the Brownian

emistationary process.
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3.1. Assumptions and examples

As described above, the spot variance σ 2
= (σ 2

t )t∈R depends on the parameter vector θ = (ξ, φ) ∈ Θ . We write Pθ

for the probability measure induced by θ and Eθ is the corresponding expectation operator (we sometimes omit θ when
here is no risk of confusion). We denote by Fσ the σ -algebra generated by σ 2 or, equivalently, Y .

We now introduce our main assumption about Y .

ssumption 1. The Gaussian process Y and its covariance function κ satisfy the following conditions:

(i) Y has continuous sample paths for any φ ∈ Φ ,
(ii) (u, φ) ↦→ κφ(u) is a continuous function.

Condition (i) is natural for stationary Gaussian processes, since if Y was discontinuous, its sample paths would in fact
e unbounded almost surely (Belyaev, 1961). Condition (ii) ensures that the moments of the model are continuous with
espect to θ . It is worth pointing out that neither these conditions nor the stationarity of Y say much about the long-term
ehavior of volatility. We return to this in Assumption 2. In the fOU process, condition (i) has been shown in Proposition
.4 of Kaarakka and Salminen (2011), while condition (ii) can be verified by applying the dominated convergence theorem
o (14).

As the main object of interest, integrated variance, is not observable in practice, it needs to be estimated. We strive for
general framework applicable to realized measures at large, while still remaining analytically tractable. We postulate

that we observe a noisy proxy of IVt given by

ÎV t = IVt + εt , (17)

here εt is a random variable capturing the measurement error, which needs to adhere to a set of stylized technical
onditions given in Assumption 2. Such a high-level approach to describing measurement error between a realized
easure and the corresponding integrated variance is reminiscent to what Patton (2011) uses for the analysis of noisy
olatility proxies in the context of forecast evaluation.
To formalize our assumptions about the process (εt )t∈Z, we require a filtration Fσ ,ε

t = Fσ
t ∨ Fε

t , where Fε
t =(

{εt , εt−1, . . .}
)
, t ∈ Z, is the σ -algebra generated by the errors up to time t . We also introduce a key assumption

bout the joint long-term behavior of (IVt )t∈Z and (εt )t∈Z.

ssumption 2. The processes (IVt )t∈Z and (εt )t∈Z satisfy the following conditions:

(i) (IVt , εt )t∈Z is a stationary and ergodic process under Pθ for any θ ∈ Θ ,
(ii) θ ↦→ c(θ ) ≡ Eθ [ε

2
1] is a finite-valued, continuous function on Θ ,

(iii) Eθ [εt | Fσ ,ε
t−1] = 0 for any t ∈ Z and any θ ∈ Θ .

The σ 2 and (IVt )t∈Z processes readily inherit the stationarity and ergodicity of Y . The joint ergodicity of (IVt , εt )t∈Z is
ore delicate, since even if (IVt )t∈Z and (εt )t∈Z are ergodic on their own and mutually independent, it does not follow that

IVt , εt )t∈Z is ergodic (see Lindgren, 2006, Exercise 5.13). But if additionally (IVt )t∈N or (εt )t∈Z is weakly mixing, then their
oint ergodicity holds (see Lindgren, 2006, Exercise 5.14). That said, in practical applications the mutual independence of
IVt )t∈Z and (εt )t∈Z is too strong an assumption, since the level of measurement error typically depends on the underlying
evel of volatility. Condition (iii) is a martingale-difference property for (εt )t∈Z, which implies Eθ [εt ] = 0, i.e. the proxy ÎV t
s unbiased. This is obviously a somewhat stylized assumption, which is not exactly satisfied by many realized measures.
owever, we can expect it to hold approximately and, in any case, it is crucial for the analytical tractability of the setup.8
We now demonstrate that a particular structural form of the error term, εt , conveniently accommodates concrete

ealized measures as proxies in an approximate sense while satisfying Assumption 2. More specifically, let

εt = h
(
Zt , (σ 2

s+t−1)s∈[0,1]
)
, t ∈ Z, (18)

here Zt , t ∈ Z, are i.i.d. d-dimensional random vectors, for some d ∈ N, that are independent of Fσ and h :

Rd
× C([0, 1]) → R is a continuous functional such that

Eθ [h(Z1, f )] = 0, (19)

for any θ ∈ Θ and f ∈ C([0, 1]). Then condition (i) in Assumption 2 can be proved using standard ergodic theory
arguments, see, e.g., Lindgren (2006, Section 5.4), while condition (iii) is readily implied by (19). We can check condition
(ii) on a case-by-case basis below by computing c(θ ) = Eθ [ε

2
1] explicitly and invoking condition (ii) of Assumption 1 to

establish its continuity in θ .
In the following examples, we construct εt and Zt only for t ∈ N, but we can extend them to negative indices by

stationarity.

8 Meddahi (2002) studies realized variance under a class of log-normal volatility models including drift. He finds the mean of the measurement
error to be negligible at a 5-minute sampling frequency.
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Example 3.1 (Realized Variance, CLT Approximation). Suppose that we estimate the integrated variance IVt with the realized
variance (see, e.g., Andersen and Bollerslev, 1998a; Barndorff-Nielsen and Shephard, 2002):

RV n
t =

n∑
i=1

(
Xt−1+ i

n
− Xt−1+ i−1

n

)2
, (20)

or any t ∈ N. Under standard technical conditions, the central limit theorem (CLT)

√
n(RV n

t − IVt )
dst

−−−→
n→∞

√
2
∫ t

t−1
σ 2
s dB

⊥

s , (21)

holds jointly for all t ∈ N, where
dst

−→ denotes stable convergence in distribution and (B⊥
s )s≥0 is a Brownian motion

ndependent of X and σ . Note that the limiting random variables
√
2
∫ t
t−1 σ 2

s dB
⊥
s , t ∈ N, are conditionally independent

iven Fσ with

√
2
∫ t

t−1
σ 2
s dB

⊥

s

⏐⏐⏐⏐Fσ
∼ N(0, 2IQt ), t ∈ N, (22)

here

IQt =

∫ t

t−1
σ 4
s ds (23)

s the integrated quarticity. Thus,

Zt =

∫ t
t−1 σ 2

s dB
⊥
s

IQ 1/2
t

∼ N(0, 1), t ∈ N, (24)

are both mutually independent and independent of Fσ .
Informally, the CLT (21) says that, for any t ∈ N,

RV n
t

d
≈ IVt +

(
2
n
IQt

)1/2

Zt (25)

or large n, where ‘‘
d
≈’’ denotes approximate equality in distribution, as used, e.g., in Zhang et al. (2005, Section 1.2). Thus,

or any t ∈ N, the proxy ÎV t = IVt + εt with εt =
( 2
n IQt

)1/2
Zt approximates RV n

t for large n. Such a proxy is analogous
to what Fukasawa et al. (2022) employ in their estimation framework. We can represent the error term as εt in the form
(18) using the continuous functional

h(z, f ) =

(
2
n

∫ 1

0
f (s)2ds

)1/2

z, z ∈ R, f ∈ C([0, 1]). (26)

hen (19) holds given that Z1 ∼ N(0, 1). We can compute c(θ ) explicitly using Tonelli’s theorem. The expression is reported
n Table 1 and θ ↦→ c(θ ) is evidently continuous under Assumption 1.

xample 3.2 (Realized Variance, No Drift or Leverage Effect). In general, the measurement error RV n
t − IVt is analytically

hard to analyze unless we resort to asymptotic approximation with n → ∞ as in Example 3.1 (see also the comments
below). However, in a simple specific case, we can actually work with the exact error εt = RV n

t − IVt , that is ÎV t = RV n
t ,

without losing analytical tractability.
Namely, suppose that the log-price X = (Xt )t≥0 of the asset follows a drift-free Itô process

Xt = X0 +

∫ t

0
σsdWs, t ≥ 0, (27)

where W = (Wt )t≥0 is a standard Brownian motion independent of Fσ , i.e. ruling out any dependence between W and
the spot variance process σ 2, stemming from the leverage effect for instance (e.g., Christie, 1982). Then, for any t ∈ N,

RV n
t − IVt =

n∑
i=1

((∫ i
n +t−1

i−1
n +t−1

σsdWs

)2

−

∫ i
n +t−1

i−1
n +t−1

σ 2
s ds

)

=

n∑
(Z2

t,i − 1)
∫ i

n

i−1
σ 2
s+t−1ds,

(28)
i=1 n
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Table 1
Formulae for c(θ ) = Eθ [ε

2
1].

Proxy Setting Example c(θ ) = c(ξ, φ)

Realized variance CLT 3.1 2ξ2
n exp

(
κφ (0)

)
No drift or leverage 3.2 4ξ2

n

∫ 1
0 (1 − y) exp

(
κφ ( y

n )
)
dy

Bipower variation CLT 3.3
(

π2
4 +π−3

)
ξ2

n exp
(
κφ (0)

)
Note. In the case of Example 3.2, Theorem 2.1 to derive the expression.

where

Zt,i =

∫ i
n +t−1
i−1
n +t−1

σsdWs(∫ i
n +t−1
i−1
n +t−1

σ 2
s ds

)1/2 , t ∈ N, i = 1, . . . , n. (29)

ince W is independent of Fσ , conditional on Fσ the random variables Zt,i, t ∈ N, i = 1, . . . , n, are mutually
independent and follow a standard normal distribution. Consequently, they are i.i.d. standard normal also unconditionally
and independent of Fσ .

Thanks to (28), we can represent the measurement error εt = RV n
t − IVt in the form (18) via the functional

h
(
(z1, . . . , zn), f

)
=

n∑
i=1

(z2i − 1)
∫ i

n

i−1
n

f (s)ds, (z1, . . . , zn) ∈ Rn, f ∈ C([0, 1]), (30)

nd i.i.d. random vectors

Zt = (Zt,1, . . . , Zt,n), t ∈ N, (31)

ith components given by (29), so that d = n. The property (19) then holds, while an integral functional representation
f c(θ ) is given in Table 1 and its continuity in θ follows from the dominated convergence theorem under Assumption 1.

In the presence of a leverage effect, the moments of the measurement error εt = RV n
t − IVt can be analyzed using

alliavin calculus and chaos expansions, see, e.g., Peccati and Taqqu (2011). However, the resulting formulae are not in
ny form convenient for numerical implementation, which is why we do not pursue this approach further here.

xample 3.3 (Bipower Variation, CLT Approximation). In the context of Example 3.1, the realized variance can be substituted
ith the bipower variation estimator of Barndorff-Nielsen and Shephard (2004), which is defined as:

BV n
t =

π

2

n∑
i=2

⏐⏐Xt−1+ i
n

− Xt−1+ i−1
n

⏐⏐⏐⏐Xt−1+ i−1
n

− Xt−1+ i−2
n

⏐⏐, n ∈ N, (32)

for any t ∈ N. Under standard technical conditions

√
n(BV n

t − IVt )
dst

−−−→
n→∞

√
π2

4
+ π − 3

∫ t

t−1
σ 2
s dB

⊥

s , (33)

ointly for all t ∈ N, where the structure of the limit is identical to the one in (21). BV n
t is then approximated for large n

y the proxy ÎV t = IVt + εt with error term εt =

( π2
4 +π−3

n IQt

)1/2
Zt , where Zt , t ∈ N, are as in Example 3.1. Retracing the

arguments in Example 3.1, we can then show that εt can be cast in the form (29), so Assumption 2 holds.

The appealing feature of bipower variation is that it remains consistent for integrated variance in the presence of
price jumps. However, in the latter setting the CLT in (33) ceases to hold and the limiting distribution of BV n

t is not
mixed Gaussian (Vetter, 2010). Even without price jumps the asymptotic theory of bipower variation generally needs to
impose smoothness conditions on volatility, typically in the form of an Itô semimartingale structure or, possibly, a long-
memory process. To our knowledge, roughness is ruled out or at least remains undetermined. Hence, the approximate
bias correction from Example 3.3 should be applied with caution. Nevertheless, it can serve as a heuristic double check.9

Table 1 summarizes the derivations for the measurement error. We reiterate that Examples 3.1 and 3.3 are based on
n → ∞, while any implementation is always done with a finite n. In contrast, Example 3.2 is valid for all n in absence
f drift and leverage. In the simulations, we compare both expressions for realized variance to gauge their impact on the
stimation.

9 In the supplemental appendix, we repeat the simulation analysis and empirical application with bipower variation. The results do not change
much compared to those for realized variance reported below.
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3.2. Consistency

In this section, we turn to the consistency of our GMM estimator. We take θ ∈ Θ , t ∈ Z and ℓ ∈ Z and introduce the
oment structure of the IVt process, which is defined by:

g (1)
0 (θ ) = Eθ [IVt ], g (2)

0 (θ ) = Eθ [IV 2
t ], gℓ(θ ) = Eθ [IVt IVt−ℓ], (34)

or ℓ = 1, . . . , k, which we collect in the column vector

G(θ ) =
(
g (1)
0 (θ ), g (2)

0 (θ ), g1(θ ), . . . , gk(θ )
)⊺

. (35)

Here, ⊺ is the transpose operator. We also define

IVt =
(
IVt , IV 2

t , IVt IVt−1, . . . , IVt IVt−k
)⊺

,

ÎVt =
(
ÎV t , ÎV

2
t , ÎV t ÎV t−1, . . . , ÎV t ÎV t−k

)⊺
,

(36)

which by condition (i) of Assumption 2 are stationary and ergodic processes.
By condition (ii)–(iii) of Assumption 2:

Eθ

[
ÎV t
]

= g (1)
0 (θ ),

Eθ

[
ÎV t ÎV t−ℓ

]
=

{
g (2)
0 (θ ) + c(θ ), ℓ = 0,

gℓ(θ ), ℓ ̸= 0.

(37)

The noisy proxy changes the second moment in (37) compared to integrated variance in (5). The term c(θ ) is induced
by the noise. This observation was also made by Bollerslev and Zhou (2002). They account for the error-in-variables by
including an additive nuisance parameter to the second-order moment condition, which is estimated independently of
the structural parameters. In contrast, we incorporate the error variation directly into the model as a function of θ , which
avoids the need of an extra parameter.

The first- and other second-order moments are unbiased, due to the linearity of the expectation operator and because
the errors are mean zero and serially uncorrelated. In principle, we can thus avoid the negative impact of measurement
errors by excluding g (2)

0 (θ ) from the moment selection. More generally, however, it is often preferable to add the variance
or absolute value to the moment conditions, because low-order moments are highly informative about the parameters of
SV models (Andersen and Sørensen, 1996). To avoid any systematic deviance in the estimated values of the parameters, it
is then necessary to correct the appropriate entries in the moment vector as detailed above (dealing with the measurement
error is of course much more complicated for the absolute value than for the square).

We propose to compare the sample moments of ÎV t to a corrected moment function

Gc(θ ) = G(θ ) +
(
0, c(θ ), 0, . . . , 0

)⊺
. (38)

We define a random function:

m̂T (θ ) =
1
T

T∑
t=1

ÎVt − Gc(θ ), (39)

hich, in view of (37), has

Eθ0

[
m̂T (θ )

]
= Gc(θ0) − Gc(θ ) ≡ m(θ ), (40)

so that

m(θ0) = 0. (41)

Our GMM estimator is then given by

θ̂T = argmin
θ

m̂T (θ )⊺WT m̂T (θ ), (42)

where WT is a random (k + 2) × (k + 2) weight matrix.
We need additional conditions for the consistency of θ̂T . Firstly, we introduce a standard assumption about the limiting

behavior of WT .

Assumption 3. WT = A⊺
TAT for a random (k + 2) × (k + 2) matrix AT , which under Pθ0 converges almost surely to a

non-random matrix A as T → ∞.

Secondly, we assume that the parameters are identifiable.

Assumption 4. Am(θ ) = 0 if and only if θ = θ .
0
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Assumption 4 is a standard identification condition in GMM that ensures uniqueness of the solution. It is hard to check
hen moments are not given in algebraic form, see e.g. Barboza and Viens (2017), Newey and McFadden (1994) in the
MM setting or Corradi and Distaso (2006), Todorov (2009) in the context of estimation of SV models.
An alternative route to inspect identification is to perform a rank test on the Jacobian matrix. This amounts to verifying

hat ∇θAm(θ0) has full column rank. The latter is equivalent to Assumption 4 if the moment conditions are linear in
the parameters. In our setting, this is not the case (except for the mean). Hence, the rank condition can only help to
identify parameters locally in a neighborhood of a solution candidate. Nevertheless, developing a formal rank test for
local identification in the fSV model presents a challenge. This requires that we derive the asymptotic distribution of
T−1/2

∇θAT m̂T (θ ), e.g. Wright (2003). We do not pursue the idea here but leave it to future research. Instead, in Appendix B
we offer some alternative insights about identification in the fSV model based on the notion of equality of an sequence
of moment conditions. As noted there, ξ and H are identified, whereas ν and λ are identified only through their ratio.

heorem 3.4. Suppose Assumptions 1–4 hold. As T → ∞

θ̂T
a.s.

−→ θ0. (43)

In the above, our analysis assumed that the number of observations per day, n, is fixed and then relies on the noisy
roxy idea. Now, following Bollerslev and Zhou (2002), Corradi and Distaso (2006), Todorov (2009), we also cover the
heory of the GMM estimator in a double-asymptotic setting with T → ∞ and n → ∞.

To this end, we denote with V n
t some consistent realized measure of integrated variance (e.g., realized variance, bipower

ariation, or truncated realized variance). For fixed k ∈ N, we set

Vn
t =

(
V n
t , (V n

t )
2, V n

t V
n
t−1, . . . , V

n
t V

n
t−k

)⊺
, (44)

ith associated sample moments

m̃n,T (θ ) =
1
T

T∑
t=1

Vn
t − G(θ ), (45)

here we employ the moments of G(θ ) instead of the corrected version Gc(θ ), which is of no consequence for the following
result since n → ∞.

Then,

θ̃n,T = argminθ∈Θm̃n,T (θ )⊺Wn,T m̃n,T (θ ), (46)

is our GMM estimator.
In this setting, we replace Assumption 2 with the following requirement.

Assumption 5. The processes (IVt )t∈Z and (V n
t )t∈Z,n∈N admit the following:

(i) (IVt )t∈Z is a stationary and ergodic process under Pθ for any θ ∈ Θ ,
(ii) supt∈Z Eθ0 [(V

n
t − IVt )2] → 0 as n → ∞.

Theorem 3.5. Suppose Assumptions 1, 3–5 hold. As T → ∞ and n → ∞

θ̃n,T
P

−→ θ0. (47)

This result is equivalent to Theorem 1 (and Corollary 1) in Todorov (2009) and Theorem 1 in Corradi and Distaso (2006).
In Appendix A.5, we show that under a boundedness condition on the drift and volatility:

sup
t∈Z

E[(RV n
t − IVt )2] ≤ Cn−1, (48)

for some C > 0. Hence, in this setting Assumption 5 holds for RV n
t .

3.3. Asymptotic normality

To establish asymptotic normality of our GMM estimator, for technical reasons we assume that under Pθ0 the Gaussian
process Y admits a causal moving average representation

Yt =

∫ t

−∞

K (t − u)dBu, t ∈ R, (49)

for a two-sided standard Brownian motion B = (Bt )t∈R and measurable kernel K : (0, ∞) → R such that
∫

∞

0 K (u)2du < ∞.
We can extend K to the entire real line by setting K (u) = 0 for u ≤ 0 when necessary. (49) is not restrictive, since
a stationary Gaussian process admits such a representation under weak conditions. In particular, the moving average
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structure exists if and only if Y satisfies a mild, albeit technical, condition known as pure non-determinism, see Karhunen
1950, Satz 5) and Dym and McKean (1976, Section 4.5). The fSV model incorporated in this paper adheres to form (49),
ince the fOU process has such a representation (e.g., Barndorff-Nielsen and Basse-O’Connor, 2011).
The asymptotic behavior of K (u) as u → ∞ governs the long-term memory of Y . To derive the asymptotic normality

f our GMM estimator, we need to constrain that memory.

ssumption 6. K (u) = O(u−γ ) as u → ∞ for some γ > 1.

Garnier and Sølna (2018) showed that the kernel in the moving average representation of the fOU process is
asymptotically, as u → ∞, proportional to uH−3/2 for H(0, 1/2) ∪ (1/2, 1). Moreover, the definition in (13) with H = 1/2
implies K (u) = νe−λu

= o(u−γ ), for all γ > 1, as u → ∞. Thereby, the fSV model requires H ≤ 1/2 to be covered by
Assumption 6, allowing for rough volatility but ruling out the long-memory version.

We believe the constraint in Assumption 6 is nearly optimal in the sense that if K (u) is asymptotically proportional to
u−γ for γ ∈ (0, 1), e.g. with the fSV model for H > 1/2, then asymptotic normality with a standard rate of convergence
ceases to hold. In this case, we can show that the expression for the asymptotic covariance matrix in our central limit
theorem of Proposition 3.6 does not converge. It is possible that a non-central limit theorem with a non-standard rate
of convergence holds, as commonly encountered in the realm of long-memory processes, see, e.g., Taqqu (1975). Proving
such an extension is rather non-trivial, however, and therefore beyond the scope of the present exposition.10

Additionally, we introduce stronger assumptions about the error process (εt )t∈Z. In what follows, we write ∥X∥L2(Pθ ) =

Eθ

[
X2
]1/2 for any square integrable random variable X and work with the filtrations F ÎV

t = σ
{
ÎVt , ÎVt−1, . . .

}
and

FB,ε
t = σ {εt , εt−1, . . .} ∨ σ {Bu : u ≤ t}, t ∈ Z.

Assumption 7. The processes B and (εt )t∈Z satisfy the following conditions:

(i) E[ε4
1] < ∞,

(ii)
Eθ0

[
ε2
r | F ÎV

0

]
− Eθ0 [ε

2
1]


L2(Pθ0 )

= O(r−γ+1/2) as r → ∞,

(iii) B has independent increments with respect to (FB,ε
t )t∈Z (i.e., for any t ∈ Z the process (Bu − Bt )u≥t is independent

of FB,ε
t ).

Condition (ii) constrains the memory in the squared measurement error. In the high-frequency setting, the measure-
ment error usually depends on volatility (as demonstrated in Examples 3.1–3.3). So here Assumption 6 implies condition
(ii), see Proposition A.6 in Appendix A.6. Condition (iii) ensures that the measurement error does not anticipate future
increments of the driving Brownian motion B, which is not very restrictive.

The next result presents the CLT for the sample mean of our statistic.

Proposition 3.6. Suppose that Assumptions 1, 2, 6 and 7 hold. Then, as T → ∞, under Pθ0 ,
√
Tm̂T

(
θ0
) d

−→ N
(
0, ΣÎV

)
, (50)

here

ΣÎV =

∞∑
ℓ=−∞

ΓÎV(ℓ), (51)

nd

ΓÎV(ℓ) = Eθ0

[(
ÎV1 − Gc(θ0)

)(
ÎV1+ℓ − Gc(θ0)

)⊺]
. (52)

The proof of Proposition 3.6 builds on Theorem 4.10 from Merlevède et al. (2019, Section 4.2), where a martingale
approximation CLT is derived for an L2-mixingale of size −1/2. Theorem 24.5 in Davidson (1994) states a related CLT
for an L1-mixingale of size −1. In other words, we impose a slightly stronger moment restriction to attain a better size
condition. The rate improvement is important in our context, as a mixingale of size −1 does not cover the fOU with

∈ (0, 1/2). Moreover, L1 integrability does not add anything here, because the process is always square integrable. That
s, in our setting Merlevède et al. (2019) deliver the right foundation. Conversely, with a CLT that only requires a mixingale
f size −1, we need to additionally assume that γ > 3/2 in Assumption 6. As the decay exponent of the fOU is H − 3/2,

such a theory does not here apply for any H > 0.
A final assumption for the CLT of our GMM estimator is presented next. Here, we introduce the function g : Rk+2

×Θ →

R via g(x, θ ) = x − Gc(θ ).

10 It may be possible to extend the permissible range of H values by first-differencing the realized measure series. However, since the present
estimator is consistent for any H ∈ (0, 1) and the empirical results presented below do not contain estimates near the region H > 1/2, we do not
ursue this extension here.
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Assumption 8. It holds that

(i) θ0 is an interior point of Θ .
(ii) J⊺WJ is non-singular, where J = Eθ0

[
∇θg(ÎV1, θ0)

]
and W = A⊺A.

(iii) The function θ ↦→ g(x, θ ) is continuously differentiable. In addition, Eθ0

[
∥g(ÎV1, θ0)∥2

]
< ∞ and

Eθ0

[
supθ∈Θ ∥∇θg(ÎV1, θ )∥

]
< ∞.

ow, we are ready to present the asymptotic distribution of θ̂T .

heorem 3.7. Suppose Assumptions 1–4 and 6–8 hold. As T → ∞,
√
T
(̂
θT − θ0

) d
−→ N

(
0, (J⊺WJ)−1J⊺WΣÎVWJ(J⊺WJ)−1). (53)

As usual, to minimize the asymptotic variance in (53) and derive the efficient GMM estimator–for given moment
conditions–we choose an optimal weight matrix as (the inverse of) a consistent estimator of ΣÎV. We propose a Newey
and West (1987) HAC-type estimator:

Σ̂T = Γ̂ (0) +

T−1∑
ℓ=1

w(ℓ/L)
[
Γ̂ (ℓ) + Γ̂ (ℓ)⊺

]
, (54)

here w is a weight function, L = o(T 1/2) is the lag length, and

Γ̂ (ℓ) =
1
T

T−l∑
t=1

(
ÎVt − Gc (̂θT )

)(
ÎVt+ℓ − Gc (̂θT )

)
. (55)

ollowing Davidson (2020), we impose a weak regularity condition on w that is fulfilled by a large class of common
choices in practice, such as the Bartlett or Parzen kernel.

Assumption 9. It holds that

(i) w(0) = 1 and supx≥0 |w(x)| < ∞,
(ii) w is continuous at 0,
(iii)

∫
∞

0 w̄(x)dx < ∞, where w̄(x) = supy≥x |w(y)|.

Theorem 3.8. Suppose Assumptions 1–4 and 6–9 hold. As T → ∞,

Σ̂T
P

−→ ΣÎV. (56)

Setting WT = Σ̂−1
T , it follows that

√
T
(̂
θT − θ0

) d
−→ N

(
0,
(
J⊺Σ−1

ÎV J
)−1
)
. (57)

To make inference on the parameters we plug-in Σ̂−1
T in (57).

By standard results for quadratic forms of multivariate normal variables, the minimized objective function value times
the sample size has an asymptotic chi-square distribution:

JHS = Tm̂T (̂θT )⊺Σ̂−1
T m̂T (̂θT )

d
−→ χ2(k − p + 1). (58)

where k− p+ 1 is the number of overidentifying restrictions. This facilitates a Sargan–Hansen omnibus specification test
of the model.

To finish this section, we study the CLT of our GMM estimator in the double-asymptotic setting, where T → ∞ and
n → ∞, such that the discretization error is negligible.

Assumption 10. The processes (IVt )t∈Z and (V n
t )t∈Z,n∈N satisfy the following conditions:

(i) (IVt )t∈Z is a stationary and ergodic process under Pθ for any θ ∈ Θ ,
(ii) supt∈Z Eθ0

[(√
T (V n

t − IVt )
)2]

→ 0 as T → ∞ and n → ∞.

In this setting, we again introduce a HAC-type estimator Σ̂n,T , which merely substitutes ÎVt −Gc with Vn
t −G in (55), and

hen we take W = Σ̂−1.
n,T n,T
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Theorem 3.9. Suppose Assumptions 1, 3–4, 6, 8–10 hold. As T → ∞ and n → ∞,
√
T
(̃
θn,T − θ0

) d
−→ N

(
0, (̃J⊺Σ−1

IV J̃)−1), (59)

where

ΣIV =

∞∑
ℓ=−∞

ΓIV(ℓ), (60)

and

ΓIV(ℓ) = Eθ0

[
(IV1 − G(θ0))(IV1+ℓ − G(θ0))⊺

]
(61)

with J̃ = Eθ0

[
∇θg(IV1, θ0)

]
.

In closing, we remark that Theorems 3.5 and 3.9 also hold for the bias-corrected estimator θ̂T provided it fulfills the
additional conditions imposed by Assumption 5(ii) for consistency or Assumption 10(ii) for asymptotic normality, as
T → ∞ and n → ∞. If that is so, the bias correction vanishes under the double-asymptotic framework. In practice,
even if n is large and the bias term is small, we recommend to add the correction as a precaution, as nothing is lost by
doing so.

Remark. In comparison to Fukasawa et al. (2022) (FTW), our article differs in several aspects. Firstly, FTW employ quasi-
likelihood based on a Whittle approximation, while we propose GMM estimation. Secondly, FTW show consistency,
but we further prove asymptotic normality of our estimator. Thirdly, many of our theoretical results apply more
broadly to general log-normal SV models, whereas FTW concentrate on the fSV model. Fourthly, our approach is fully
parametric, whereas FTW is a semi-parametric procedure, where the dynamic of the drift is left unspecified. Moreover,
their implementation relies on the first-difference of log-realized variance to enforce mean zero. Hence, FTW estimate
two parameters (volatility-of-volatility and the Hurst index), whereas we recover a four-dimensional parameter vector
(including the mean and mean reversion coefficient). Fifthly, FTW also control for measurement error in the volatility
proxy, but they employ a double-asymptotic CLT for log-realized variance with the length of the time interval approaching
zero. In the implementation, however, they still rely on daily realized variance with 5-minute sampling frequency, thereby
mixing properties of spot and integrated variance.

4. Simulation study

In the above, we developed a full-blown large sample GMM framework for estimation of the log-normal fSV model with
a general Hurst index. We now review the finite sample properties of our approach. The aim is to assess the accuracy of the
procedure in a realistic setup. We inspect both the infeasible setting where estimation is based on integrated variance and
a feasible implementation relying on realized variance. For the latter, we gauge the performance both with and without
the quarticity correction in (38).

We assume the log-price, Xt , evolves as a driftless Itô process:

dXt = σtdWt , t ≥ 0, (62)

with initial condition X0 ≡ 0. Here, σt is the spot volatility and Wt is a standard Brownian motion. We discretize X via
an Euler scheme.

The log-variance, Yt = ln(σ 2
t ), is a fOU process:

dYt = −λ(Yt − η)dt + νdBH
t , (63)

where BH
t is a fbM. We assume W ⊥⊥ BH , so there is no leverage effect.

The SDE in (63) is solved to get a more convenient expression for Y :11

Yt = η + (Yt−∆ − η)e−λ∆
+ ν

∫ t

t−∆

e−λ(t−s)dBH
s . (64)

The stochastic integral is approximated as
∫ t
t−∆

e−λ(t−s)dBH
s ≃ e−λ∆/2(BH

t − BH
t−∆) meaning that increments to a discretely

sampled fBm are required. These can be produced in many ways to get an exact discretization, e.g. Cholesky factorization
or circulant embedding (see Asmussen and Glynn, 2007). While the former has complexity O(x3), the latter entails a
markedly lower budget of O(x log(x)) and is our preferred algorithm.

We draw 10,000 independent replications of this model with a path length of T = 4,000 days as a default. In each
simulation, the log-variance process is started at random from its stationary distribution, Y0 ∼ N

(
η, var(Yt )

)
, where var(Yt )

11 The ploy is as always to use Itô’s Lemma with the integrating factor eλtYt . The math is a bit more involved here though, since we are dealing
with a fBm, where a stochastic calculus may not exist. Nevertheless, it goes through in this particular instance, see, e.g., Cheridito et al. (2003).
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Fig. 1. Sample path of spot and integrated variance.
Note. In Panel A, we simulate a sample path of the log-spot variance for a single day as a function of H . In Panel B, we show the associated integrated
ariance dynamics over 250 trading days.

s given by (16). To get an almost continuous-time realization of the processes and minimize discretization bias, we
artition [t − 1, t], for t = 1, . . . , T , into N = 23,400 discrete points of length ∆ = 1/N . In the US equity market,
his roughly amounts to a 16-year sample of the stock price recorded every second in a 6.5-hour trading day.

Our procedure is inspected on several distinct sets of parameters to gauge its robustness. Throughout, we set η =

n(ξ ) − 0.5var(Yt ), where ξ = E(σ 2
t ) = 0.0225. This ensures the unconditional mean of the variance process is identical

cross settings and implies an annualized standard deviation σt of about 15% on average, close to the aggregate level of
olatility in the empirical data analyzed in Section 5. As we are particularly attentive to estimation of the Hurst index,
e choose H = [0.05, 0.10, 0.30, 0.50, 0.70] as in Fukasawa et al. (2022), thus covering both the rough, standard and

ong-memory case. We calibrate λ and ν to minimize the distance from the model-implied autocovariance of integrated
ariance at lag 0, 20 and 50 to the associated sample autocovariances of realized variance of the .SPX (that is, the S&P 500)
quity index, after controlling for sampling error in the noisy proxy, which are subsequently rounded off to the nearest
onvenient values.
The parameters are presented in Table 2. A realization of the spot and integrated variance processes from each model

re plotted in Fig. 1. While the pathwise properties of volatility are notably different at a microscopic scale, they are much
arder to discriminate after we integrate them up to the daily horizon.
In addition to integrated variance we also collect realized variance with n = 78, i.e. with 5-minute data. The advantage

f this choice is that there is no concern about microstructure noise at this sampling frequency in practice. The input to
he optimizer is therefore either (IVt )Tt=1 or (RV n

t )
T
t=1. We restrict the description of the implementation details below to

the feasible setting with realized variance.
The parameter vector is θ0 = (ξ, λ, ν,H), which we estimate via the gradient-based non-linear least squares Matlab

function lsqnonlin. We employ the default search algorithm ‘‘trust-region-reflective’’ with a tolerance level of 10−6.
We launch the engine at initial values determined as follows: ξ is started at the average realized variance, i.e. RV =

T−1∑T
t=1 RV

n
t . To set H and ν we exploit the auxiliary two-stage procedure proposed in Gatheral et al. (2018), which

relies on the scaling law:

γh ≡ E
[
|Yt+h − Yt |

q]
→ Kqν

q
|h|qH , (65)

s h → 0, where Kq = 2q/2 Γ ( q+1
2 )

√
π

is the q’th moment of the absolute value of a standard normal random variable. This
entails a log-linear relationship between γh and |h|: ln (γh) = ln

(
Kqν

q
)
+ qH ln (|h|). We employ RV n

t as a proxy for the
instantaneous variance and substitute the left-hand side of (65) by the sample mean:

γ̂h =
1

T − m

T−m∑
t=1

|ln(RV n
t+h) − ln(RV n

t )|
q, (66)

or h = 1, . . . ,m. H and ν are then estimated by OLS with q = 2 and m = 6. The results are rather robust against this
configuration. At last, λ is pre-estimated such that the theoretical variance of Y equals the sample variance of ln(RV n).
t t
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Table 2
Parameter estimation of the log-normal fSV model in simulated data.
Parameter Value Integrated variance Realized variance

Uncorrected Corrected estimate

Initial value Estimate Initial value estimate Exact Approximate

Panel A:
ξ 0.0225 0.0225 (0.0014) 0.0214 (0.0014) 0.0225 (0.0014) 0.0207 (0.0015) 0.0213 (0.0014) 0.0213 (0.0014)
λ 0.0050 0.0326 (0.0068) 0.0072 (0.0057) 0.0260 (0.0063) 0.0075 (0.0062) 0.0072 (0.0056) 0.0081 (0.0061)
ν 1.2500 0.4580 (0.0058) 1.3806 (0.3543) 0.5233 (0.0066) 2.6245 (0.7784) 1.3834 (0.3942) 1.0704 (0.1129)
H 0.0500 0.2661 (0.0101) 0.0460 (0.0202) 0.2208 (0.0098) 0.0168 (0.0121) 0.0466 (0.0212) 0.0646 (0.0171)
Panel B:
ξ 0.0225 0.0225 (0.0009) 0.0216 (0.0010) 0.0225 (0.0009) 0.0211 (0.0011) 0.0216 (0.0009) 0.0216 (0.0010)
λ 0.0100 0.0381 (0.0065) 0.0117 (0.0059) 0.0286 (0.0059) 0.0084 (0.0049) 0.0117 (0.0055) 0.0124 (0.0056)
ν 0.7500 0.3683 (0.0046) 0.7767 (0.0871) 0.4390 (0.0055) 1.7914 (0.5549) 0.7750 (0.1066) 0.7275 (0.0700)
H 0.1000 0.2998 (0.0104) 0.0939 (0.0212) 0.2363 (0.0099) 0.0258 (0.0143) 0.0950 (0.0242) 0.1036 (0.0215)
Panel C:
ξ 0.0225 0.0226 (0.0031) 0.0190 (0.0025) 0.0226 (0.0031) 0.0182 (0.0025) 0.0189 (0.0025) 0.0189 (0.0025)
λ 0.0150 0.0318 (0.0054) 0.0187 (0.0150) 0.0225 (0.0046) 0.0098 (0.0087) 0.0187 (0.0149) 0.0188 (0.0149)
ν 0.5000 0.3624 (0.0045) 0.5019 (0.0454) 0.4282 (0.0052) 0.7131 (0.1794) 0.4998 (0.0621) 0.4982 (0.0594)
H 0.3000 0.4380 (0.0108) 0.2781 (0.0490) 0.3620 (0.0108) 0.1759 (0.0530) 0.2793 (0.0589) 0.2802 (0.0583)
Panel D:
ξ 0.0225 0.0226 (0.0037) 0.0191 (0.0031) 0.0226 (0.0037) 0.0168 (0.0028) 0.0190 (0.0031) 0.0190 (0.0031)
λ 0.0350 0.0424 (0.0053) 0.0437 (0.0264) 0.0240 (0.0040) 0.0161 (0.0163) 0.0473 (0.0357) 0.0473 (0.0357)
ν 0.3000 0.2484 (0.0032) 0.2990 (0.0236) 0.3320 (0.0039) 0.4712 (0.1947) 0.2982 (0.0332) 0.2981 (0.0331)
H 0.5000 0.5715 (0.0106) 0.4839 (0.0638) 0.4256 (0.0114) 0.2725 (0.0948) 0.4912 (0.0933) 0.4913 (0.0932)
Panel E:
ξ 0.0225 0.0226 (0.0057) 0.0195 (0.0049) 0.0226 (0.0057) 0.0159 (0.0040) 0.0193 (0.0049) 0.0193 (0.0049)
λ 0.0700 0.0521 (0.0056) 0.0828 (0.0315) 0.0207 (0.0037) 0.0188 (0.0258) 0.0794 (0.0373) 0.0794 (0.0373)
ν 0.2000 0.1691 (0.0023) 0.2004 (0.0147) 0.2749 (0.0032) 0.3571 (0.2121) 0.2055 (0.0208) 0.2054 (0.0208)
H 0.7000 0.6777 (0.0098) 0.6803 (0.0670) 0.4254 (0.0120) 0.3079 (0.1318) 0.6580 (0.1000) 0.6580 (0.1000)

Note. We simulate 10,000 replications of a fractional Ornstein–Uhlenbeck process dYt = −λ(Yt − η)dt + νdBH
t on [0, T ] with T = 4,000 and a

iscretization step of ∆ = 1/23,400. The true model parameters θ0 = (ξ, λ, ν,H) appear in Panel A – E, where ξ = eη+0.5var(Yt ) . We estimate θ0 with
he GMM procedure developed in the main text, where the theoretical mean and autovariance (at lag 0, 1, 2, 3, 5, 20, and 50) of integrated variance
s matched with the sample. The optimizer is launched with initial values from the two-stage procedure in Gatheral, Jaisson, and Rosenbaum (2018).
e report the average of the initial values and the associated parameter estimates based on integrated variance (left) and realized variance (right).
he latter is computed both excluding (‘‘uncorrected’’) and including (‘‘corrected’’) the bias correction in (38). The form of c(θ ) is available in Table 1
nd is either based on the no drift and leverage assumption (‘‘exact’’) or the CLT-based approximation (‘‘approximate’’). Standard deviation across
imulations appear in parenthesis.

As shown in Table 2, the initial values display very low variation between replications, but they are often highly biased.
or instance, using IVt the starting point of H increases with the true value, but as expected it is too high on average,
hereas for RV n

t it is largely unaffected by the actual roughness of the model.
As such, there is a lot of work left to the GMM procedure. We match the sample average of RV n

t with the mean of
Vt and the ℓ’th sample autocovariance of RV n

t with the autocovariance structure of IVt–available based on numerical
ntegration of (5) together with (14)–with ℓ = [0, 1, 2, 3, 5, 20, 50]. To motivate this choice, note that the short-term
ehavior of integrated variance and the impact of measurement error are described by rapid changes of autocovariances
t a short time scale. Hence, we select 0, 1, 2, 3 and 5 into the set of lags. Additionally, to capture the medium- to
ong-term persistence of volatility, we include autocovariances at large lags. Their variation is slower, however, and it
uffices to select a sparser subset, so we add lags 20 and 50.12 In total, this yields eight moment conditions with four
veridentifying restrictions.
While the above may seem arbitrary, it follows the previous literature both in terms of number of moment conditions

er parameter and with its emphasis on first- and second-order moments (see, e.g., Bollerslev and Zhou, 2002; Corradi
nd Distaso, 2006; Todorov, 2009). The selected autocovariances–taken from an infinite set of possibilities–are also meant
o maximize the efficiency of our GMM estimator, while minimizing partially redundant information in the moment
onditions (e.g., Breusch et al., 1999; Hall et al., 2007). On the one hand, we perceive short-run autocovariances to be very
nformative about the parameters of the model. On the other hand, we expect nearby autocovariances to exhibit higher
orrelation. By picking a variety of mostly short lags and employing a few lags farther out as a variance reduction device,
e attempt to exploit the structure of the problem as much as possible without resorting to formal econometric analysis.
n alternative approach to address this problem is Carrasco and Florens (2000), who extend GMM to a continuum of
oment conditions. However, the latter entails additional technical details and complicates the implementation further,
nd we therefore postpone it to future research.

12 In a robustness check, and to better capture the persistence of log-variance with H = 0.7, we also attempted to include lag 100 and 200.
However, the results did not change much. This is consistent with Andersen and Sørensen (1996), who note that estimation of SV models does not
always improve by adding more information.
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Fig. 2. Kernel density estimate of standardized H .
Note. We construct kernel smoothed densities of the statistic (Ĥ −H)/ŝe(Ĥ), where ŝe(Ĥ) is the estimated standard error of Ĥ . In Panel A, we show
the analysis for integrated variance, whereas Panel B is for realized variance with the CLT-based bias correction. The density function of a standard
normal random variable is superimposed as a reference point.

We employ iterated GMM with a maximum of three iterations. In the first step, a preliminary estimate of θ0 is acquired
y setting WT equal to the identity matrix. In subsequent stages, in accordance with Theorem 3.8, the weight matrix
s recalculated as in (54) with a Parzen kernel to ensure positive semi-definiteness and automatic lag selection based
n Andrews (1991) using an approximating ARMA(1, 1) structure for realized variance. The benefit of iterated GMM is its
nvariance to the initial weighting matrix. Typically, only a single iteration is required to converge, but when volatility is
eally rough, an extra computation is sometimes helpful due to poor starting values.

The results are presented in Table 2. We report the mean estimate (standard error in parenthesis) both for the initial
nd final parameter value, where all calculations are done across replica. The left-hand side shows the outcome based
n integrated variance, whereas the right-hand side is for realized variance with and without the correction in (38). As a
obustness check, we gauge both the exact solution and CLT-based approximation available in Table 1. The former applies,
ince there is no drift nor leverage in the model.
We begin by commenting on the estimation based on integrated variance. Several interesting findings emerge. In the

nfeasible setting, the GMM procedure returns parameter estimates that are close to their population counterparts, thus
erifying the robustness and accuracy of our approach. Across the board, the typical estimate of H tracks the true value
ith minor deviations. We do notice a minuscule underestimation of ξ and overestimation of λ. The drift parameters pull
he acf of integrated variance in opposite directions, causing an offsetting impact on the moment matching. Nevertheless,
oth estimates remain within about a Monte Carlo standard error of the true value. ν is typically recovered with little
ias, but for H = 0.05 the estimates are shifted upward and exhibit high variation. The intuition is that it is tougher to
ecover the volatility-of-volatility parameter with severe roughness.

Turning attention to the feasible results for realized variance, we record a significant deterioration in the estimation of
without the quarticity adjustment. As explained, realized variance is a noisy proxy for integrated variance, which induces

‘illusive roughness’’ and yields H estimates that are vastly below target, when the measurement error is unaccounted for.
lso, ν increases while λ decreases to compensate for this effect. Including the bias correction rectifies this problem
nd leads to a huge improvement in all parameter estimates. It is assuring to see how the analysis for the exact
orrection aligns that integrated variance. Moreover, the distinction between the exact and approximate correction is
ften immaterial, but for H ≤ 0.10 notable differences start to creep in. In particular, the latter produces smaller ν and

larger H estimates. This indicates that the CLT-based correction may be somewhat inaccurate in finite samples when
volatility is very erratic, which is not entirely unexpected. However, it is important to note that this amounts to less
roughness. Overall, our simulations suggest the CLT-based approach is accurate enough even with 5-minute sampling.

To gauge the accuracy of our asymptotic theory, Fig. 2 portrays kernel smoothed densities of the statistic (Ĥ −

H)/ŝe(Ĥ)
d

−→ N(0, 1), where ŝe(Ĥ) is standard error estimate extracted from (54) and the Jacobi matrix provided by
the optimizer. The left-hand side depicts the outcome for integrated variance, whereas the right-hand side contains
the normalized realized variance estimates with the CLT-based bias correction. The exact correction is omitted, as its
graphs are virtually identical to those reported for integrated variance.13 As readily seen, the standard normal is a good

13 H = 0.7 is excluded from the figure as well, because the distribution theory does not cover the long-memory model. Indeed, the approximation
is markedly worse in that setting.
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Fig. 3. Distribution of the J-test of overidentifying restrictions.
Note. We construct P-P plots to describe the variation in the J-test of overidentifying restrictions. The test statistic, JHS , is asymptotically χ2(4)-
istributed under the null. In Panel A, we show the analysis for integrated variance, whereas Panel B is for realized variance with the CLT-based
ias correction. The 45-degree line is superimposed as a reference point.

escription of the variation in the parameter estimates of H , apart from a modest off-centering with realized variance for
H = 0.05.

In Fig. 3, we inspect the finite sample behavior of the Sargan–Hansen J-test of overidentifying restrictions. We contrast
the empirical distribution function of the test statistic, JHS, against its asymptotic distribution under the null hypothesis,
hich is χ2(4). Again, we show the integrated variance in Panel A and realized variance with the CLT-based bias correction

n Panel B. The impression is that the test statistic lines up fairly well with the predicted values. However, the curves are
ocated to the right of the reference line in the lower half of diagram and vice versa in the upper half. This implies an
verconcentration of mass in the center of the empirical distribution, meaning the test statistic is slightly underdispersed.
his leads to a conservative test with rejection rates that are below the nominal level. At the 5% significance level, for
xample, the test statistic exceeds the critical value of 9.4877 about 3.6% of the times for H = 0.05, which drops to 0.28%
or H = 0.50. Interestingly, the approximation is better for smaller values of H .

. Empirical application

The log-normal fSV model is estimated from empirical high-frequency data covering a comprehensive selection of asset
eturn series. We downloaded version 0.3 of the Oxford-Man Institute’s ‘‘realized library’’ via: https://realized.oxford-
an.ox.ac.uk/. The website tracks thirty-one leading stock indexes covering major financial markets. At the end of
ach trading day, the library is refreshed with information from Thomson Reuters DataScope Tick History and several
onparametric volatility estimators are calculated and appended to the database. We here employ the daily realized
ariance defined in (20). In line with our comments above, we decide on a 5-minute sampling frequency to suppress
icrostructure noise. As the trading hours of each stock exchange varies, this corresponds to n falling between 78 and
02 for most indexes, equivalent to an opening period of 6.5–8.5 h.
As it is, the database contains several data entries we suspect are erroneous. For instance, realized variance is

ccasionally identically equal to zero. While not impossible due to price discreteness, it is implausible for liquid securities.
e therefore remove these from the sample. In addition, on February 7 2010 a realized variance corresponding to an

nnualized volatility of 250% is reported for the .OMXHPI equity index. We searched both Factiva and Google for relevant
ews articles. There is nothing immediate to suggest anything out of the extraordinary occurred in the Finnish stock
arket that day. However, without access to the underlying high-frequency data, it is difficult to reconcile what is causing
uch an abnormal deviation in realized variance. The volatility in the subsequent days are back to normal levels, so it is
robably an isolated outlier. Removal of this single observation is enough to raise the first-order sample autocorrelation
f the .OMXHPI realized variance series from 0.209 to 0.592.
To account for such irregularities, we further discard realized variance estimates differing more than 30 mean absolute

eviations from the average realized variance calculated from 50 observations on a rolling window centered around, but
xcluding, the data point under investigation. This is a light filter that removes none but the most egregious data. The
edian number of data deleted for each index with this algorithm is two. In the US equity market (.DJI, .IXIC, .RUT and
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Table 3
Parameter estimation of the log-normal fSV model in stock index data.

Code Index Location Start date Sample size n RV ρ1 GMM estimate JHS

ξ λ × 100 ν H

.AEX AEX Netherlands 2000–01 4,990 102 0.028 0.743 0.024 0.026 1.800 0.032 0.726

.AORD All Ordinaries Australia 2000–01 4,941 72 0.011 0.575 0.008 4.873 2.345 0.035 0.128

.BFX BEL 20 Belgium 2000–01 4,987 102 0.022 0.644 0.018 0.012 1.938 0.021 0.603

.BSESN BSE Sensex India 2000–01 4,852 75 0.035 0.625 0.030 0.012 2.029 0.021 0.621

.BVLG PSI All-Share Portugal 2012–10 1,731 96 0.011 0.630 0.010 0.027 1.893 0.015 0.764

.BVSP Bovespa Brazil 2000–01 4,819 84 0.038 0.718 0.032 0.103 1.852 0.025 0.847

.DJI DJIA USA 2000–01 4,907 78 0.027 0.677 0.021 0.010 2.008 0.021 0.773

.FCHI CAC 40 France 2000–01 4,989 102 0.033 0.668 0.029 0.108 1.837 0.035 0.789

.FTMIB FTSE MIB Italy 2009–06 2,581 90 0.029 0.658 0.023 0.018 1.877 0.016 0.303

.FTSE FTSE 100 United Kingdom 2000–01 4,933 102 0.028 0.541 0.022 0.020 2.211 0.019 0.645

.GDAXI DAX Germany 2000–01 4,965 102 0.041 0.702 0.037 0.021 2.009 0.027 0.922

.GSPTSE TSX Composite Canada 2002–05 4,314 78 0.020 0.599 0.012 0.001 2.254 0.017 0.464

.HSI Hang Seng Hong Kong 2000–01 4,791 78 0.024 0.677 0.017 0.001 2.102 0.008 0.322

.IBEX IBEX 35 Spain 2000–01 4,957 102 0.035 0.657 0.033 0.172 1.894 0.030 0.878

.IXIC Nasdaq 100 USA 2000–01 4,906 78 0.030 0.696 0.020 0.002 1.445 0.029 0.361

.KS11 KOSPI South Korea 2000–01 4,814 72 0.030 0.763 0.024 0.003 1.643 0.027 0.661

.MXX IPC Mexico Mexico 2000–01 4,907 78 0.020 0.487 0.016 0.007 2.442 0.010 0.478

.N225 Nikkei 225 Japan 2000–02 4,762 72 0.025 0.683 0.023 0.183 1.847 0.029 0.564

.NSEI Nifty 50 India 2000–01 4,849 75 0.030 0.598 0.029 0.092 2.146 0.032 0.955

.OMXC20 OMXC20 Denmark 2005–10 3,431 96 0.030 0.641 0.021 0.306 2.247 0.026 0.671

.OMXHPI OMX Helsinki Finland 2005–10 3,467 102 0.028 0.592 0.018 0.001 1.475 0.028 0.360

.OMXSPI OMX Stockholm Sweden 2005–10 3,468 102 0.024 0.562 0.015 0.001 2.432 0.012 0.487

.OSEAX Oslo Exchange Norway 2001–09 4,462 101 0.031 0.634 0.023 0.001 2.317 0.012 0.379

.RUT Russel 2000 USA 2000–01 4,907 78 0.018 0.663 0.013 0.051 2.180 0.019 0.674

.SMSI Madrid General Spain 2005–07 3,587 101 0.031 0.648 0.029 0.218 2.008 0.030 0.591

.SPX S&P 500 USA 2000–01 4,911 78 0.026 0.699 0.019 0.100 1.610 0.043 0.641

.SSEC Shanghai Composite China 2000–01 4,724 66 0.042 0.674 0.036 0.015 1.865 0.025 0.692

.SSMI Swiss Market Index Switzerland 2000–01 4,904 102 0.020 0.732 0.017 0.022 1.613 0.037 0.747

.STOXX50E EURO STOXX 50 Europe 2000–01 4,989 102 0.039 0.585 0.033 0.092 2.013 0.030 0.783

Average 0.028 0.640 0.022 0.214 1.980 0.024 0.607

Note. ‘‘code’’ is based on the Oxford-Man Institute’s naming convention. ‘‘sample size’ is the number of observations for the stock index. n is the
umber of intraday returns at the 5-minute sampling frequency. RV is the sample average realized variance. ρ1 is the first-order autocorrelation

of realized variance. ξ is the average level of the spot variance process, λ is the speed of mean reversion (multiplied by 100), ν is the volatility-
of-volatility, while H is the Hurst exponent. The cross-sectional average of each descriptive statistic is shown in the bottom row. JHS reports the
P-value of the Sargan–Hansen test of overidentifying restrictions, which is asymptotically χ2(4)-distributed.

.SPX) nothing from the financial crisis is flagged as outlying. Only June 24 2015 and August 24 2016 are deleted. Both
these days correspond to infamous flash crashes that ravage volatility estimates (e.g. Christensen et al., 2022).

An overview of the remaining data is presented in Table 3. It reports the starting date of each index and the sample
size. We include information up to 31 July 2019 and exclude .KSE og .STI from our investigation, as there are sizeable
gaps in their data series.

The GMM estimation follows the setup from the simulation section. Since we are dealing with equity data, we can
expect both drift and leverage to be present, so the approximate correction from Table 1 is employed. The right-hand side
of Table 3 shows the outcome for individual stock indexes, where the bottom row presents the cross-sectional average of
each parameter. Looking at the table, the results are remarkably stable across assets. The ξ̄ = 0.022 estimate corresponds
to about 14.91% annualized volatility in the aggregate stock market. We do observe a slight underestimation of the mean
volatility level compared to the sample average realized variance, which is consistent with the Monte Carlo analysis.

The reported Hurst exponents suggest a very rough volatility process with an average level of H̄ = 0.024. This is
n par with Bayer et al. (2016) and Fukasawa et al. (2022) but slightly smaller compared to Bennedsen et al. (2022)
nd Gatheral et al. (2018). A possible reason for this discrepancy is that the latter employ realized variance as a proxy
or spot variance. However, the former is a consistent estimator of the integrated variance, which is much smoother than
nstantaneous variance (see Fig. 1). This ought to bias their H estimates upwards. Our procedure does not suffer from
that problem, as we directly compare realized variance to the dynamics of integrated variance in the fSV model, so the
averaging ‘‘cancels out’’.

In Panel A of Fig. 4, we report the empirical estimates of H together with 90% confidence intervals (CIs). The latter are
constructed by exponentiating the CIs associated with the log-based distribution theory, where we apply the delta rule to
conclude that

√
T (ln(Ĥ)−ln(H))

ŝe(Ĥ)/Ĥ
d

−→ N(0, 1) as T → ∞.14 Here, ŝe(Ĥ) is the standard error of Ĥ extracted from the estimate
f the asymptotic variance–covariance matrix in (57). Looking at the graph, we discover that H is typically estimated

14 This approach has the advantage of enforcing non-negativity on the CI for H .
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Fig. 4. Properties of the roughness estimate.
Note. In Panel A, we report 90% CIs for H . The CIs are based on the log-based distribution theory to enforce non-negativity. This also makes the CIs
asymmetric. In Panel B, we show a scatter plot of Ĥ versus ρ1 together with the fitted regression line Ĥ = â + b̂ρ1 .

Fig. 5. Properties of .SPX realized variance.
Note. In Panel A, we plot the realized variance of .SPX converted to standard deviation per annum. In Panel B, we show the sample acf of realized
ariance with a 95% white noise confidence band. We compare this to the theoretical acf of the log-normal fSV model implied by the estimated
arameter vector θ̂GMM , where the latter is reported without and with the bias correction from (38).

ery accurately, meaning realized variance is informative about the true level of roughness in the data. The exception is
he Finnish stock market, where the range of plausible values is rather extensive. Irrespective of this, the upper bound
f the CIs are far away from the level implied by a standard Brownian motion. In Panel B, we add a scatter plot of Ĥ
ersus the persistence of realized variance, as measured by its first-order autocorrelation coefficient, ρ1. This reveals a
ronounced positive association between the series. A linear regression Ĥ = a + bρ1 + ϵ shows an R2

= 0.2120 and a
slope estimate b̂ = 0.0591 that is statistically significant with a P-value of 0.0091 (the estimated intercept â = −0.0137
is highly insignificant).

To gauge the statistical fit of the model, we calculate the J-test for overidentifying restrictions. To reiterate, the test
statistic JHS has an asymptotic χ2(4)-distribution under H0. The results appear in the last column of Table 3. Overall, the
P-values are relatively high, so the fSV process does a good job in describing the data.

As an illustration of our findings we zoom in at .SPX, which represents the S&P 500 index and is therefore related to
developments in the US stock market. In Panel A of Fig. 5, we show the realized variance of .SPX (the raw estimator has
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been converted to standard deviation per annum for convenience). It displays the customary volatility clustering present
in most financial asset return series. In Panel B, we plot the first 400 lags of the associated acf of RV n

t together with a
artlett one-sided 95% white noise confidence band. It is suggestive of significant memory in integrated variance. The acf
etains the impression of a hyperbolic decay, which is consistent with H ̸= 0.5. The initial steep decline is indicative of
roughness driving the serial correlation, in contrast to the much slower decay symptomatic of long-memory, where the
latter entails a Hurst exponent above 0.5. As a comparison, we superimpose the model-implied acf recovered from the
GMM parameter estimation, where the latter is shown both with and without the approximate bias correction in (38).
The acf of the uncorrected estimator tracks the sample counterpart based on realized variance closely both at the short
and long end. Meanwhile, the effect of the bias correction is to lift the acf higher, indicating a larger amount of memory
in integrated variance. Note that this was to be expected, since the impact of measurement error in a time series is to
attenuate the acf (e.g., Hansen and Lunde, 2014).15

As a robustness check, we fetched from the NYSE Trade and Quote (TAQ) database a 5-minute transaction price series
for the ticker symbol SPY; an exchange-traded fund tracking the S&P 500 and equivalent to the .SPX index. The purpose is
to verify the findings via our in-house data sources and to gauge their sensitivity with respect to price jumps. We pair SPY
with the .SPX sample and construct realized variance, bipower variation and truncated realized variance. The latter are
jump-robust estimators of integrated variance. In that ordering, the GMM procedure delivers the following H estimates:
0.033, 0.038, 0.035. As expected, bipower variation and truncated realized variance return slightly larger measures of H ,
but the various estimates are practically speaking identical and consistent with the .SPX estimate from Table 3. The other
parameter estimates are also close. Hence, the presence and degree of roughness is not dictated by the choice of noisy
proxy, nor is it caused by application of the non-robust realized variance.

In sum, our empirical results point toward a very erratic volatility process in line with–or even exceeding–previous
research. As these findings are not induced by microstructure noise nor discretization error, we are bound to conclude
there is roughness in variance.

6. Conclusion

We propose a GMM framework for estimation of the log-normal SV model governed by a fractional Brownian motion.
Our procedure is built from the dynamic properties of integrated variance, but it employs a realized measure of volatility
computed from high-frequency as a noisy proxy. We explicitly account for the inherent measurement error in the selected
estimator by adjusting an appropriate moment condition. We prove consistency and asymptotic normality our estimator
in a classical long-span setting. A Monte Carlo study shows our routine is capable of recovering the parameters of the
model across the entire memory spectrum. We implement the approach on high-frequency data from leading equity
market indexes and confirm the presence of substantial roughness in the stochastic variance process, as consistent with
recent findings in the literature.

Appendix A. Proofs

A.1. Auxiliary result

To prove Theorem 2.1, we need the following auxiliary result that enables to express certain two-dimensional integrals
in a one-dimensional form.

Lemma A.1. Assume f : [0, ∞) → R is a continuous function and let k ∈ N. Then,∫ k

k−1

∫ 1

0
f (|s − t|)dsdt =

∫ 1

0
(1 − y)

(
f (|k − 1 − y|) + f (k − 1 + y)

)
dy.

Proof. Write∫ k

k−1

∫ 1

0
f (|s − t|)dsdt =

∫∫
[k−1,k]×[0,1]

f (|s − t|)dsdt

and introduce the linear (bijective) change of variables:[
s
t

]
=

1
2

[
(u + v)
(−u + v)

]
=

1
2

[
1 1

−1 1

]
  

≡A

[
u
v

]
≡

[
ϕ1(u, v)
ϕ2(u, v)

]
≡ ϕ(u, v).

15 We also estimated the fSV model with a driving standard Brownian motion, i.e. pre-imposing H = 0.5. The remaining parameter estimates
ere (ξ̂ , λ̂, ν̂) = (0.016, 0.101, 0.552), which broadly aligns with previous studies. Intuitively, to fit the sample acf of realized variance the GMM
rocedure has to select a larger mean-reversion parameter λ to compensate for the extra memory induced by forcing H to one-half.
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Applying this to the inequalities k − 1 ≤ s ≤ k and 0 ≤ t ≤ 1, we find they are equivalent to

v ≤ 2k − u, v ≥ 2(k − 1) − u, v ≥ u, and v ≤ u + 2.

Therefore, the set

B = {(u, v) ∈ R2
: v ≤ 2k − u, v ≥ 2(k − 1) − u, v ≥ u, and v ≤ u + 2}

s mapped by ϕ to [k − 1, k] × [0, 1]. Note also that B = B1 ∪ B2, where

B1 ≡ {(u, v) ∈ R2
: k − 2 ≤ u < k − 1 and 2(k − 1) − u ≤ v ≤ u + 2}

B2 ≡ {(u, v) ∈ R2
: k − 1 ≤ u ≤ k and u ≤ v ≤ 2k − u}

re disjoint. Now, the Jacobian (Dϕ)(u, v) of ϕ equals A for any (u, v) ∈ R2, whereby

| det(Dϕ)(u, v)| = | det(A)| =
1
2
,

nd since s − t = ϕ1(u, v) − ϕ2(u, v) =
1
2 (u + v) −

1
2 (−u + v) = u, we get by multivariate integration by substitution:∫∫

[k−1,k]×[0,1]
f (|s − t|)dsdt =

∫∫
ϕ(B)

f (|s − t|)dsdt

=

∫∫
B
f (|ϕ1(u, v) − ϕ2(u, v)|)| det(Dϕ)(u, v)|dudv

=
1
2

(∫∫
B1

f (|u|)dudv +

∫∫
B2

f (|u|)dudv
)

.

irstly,∫∫
B1

f (|u|)dudv =

∫ k−1

k−2

(∫ u+2

2(k−1)−u
f (|u|)dv

)
du = 2

∫ k−1

k−2

(
u − (k − 2)

)
f (|u|)du

= 2
∫ 1

0
(1 − y)f (|k − 1 − y|)dy,

ia the substitution y = k − 1 − u. Secondly,∫∫
B2

f (|u|)dudv =

∫ k

k−1

(∫ 2k−u

u
f (|u|)dv

)
du = 2

∫ k

k−1
(k − u)f (u)du

= 2
∫ 1

0
(1 − y)f (k − 1 + y)dy,

y substituting y = u − (k − 1) and noting u ≥ k − 1 ≥ 0. Thus, the asserted formula follows. ■

.2. Proof of Theorem 2.1

To prove the first part of the theorem, we note that since the variance process (σ 2
t )t≥0 is stationary, Fubini’s theorem

ields that

E[IVt ] =

∫ t

t−1
E
[
σ 2
s

]
ds = E

[
σ 2
0

]
= ξ .

e proceed with the second-order moments of IVt by noting that

E[σ 2
t σ 2

s ] = ξ 2E
[
exp

(
Yt + Ys − κ(0)

)
]

= ξ 2 exp
(
κ(|t − s|)

)
,

here the last equation follows from Yt + Ys ∼ N(0, 2κ(|t − s|) + 2κ(0)). We deduce that

E[IV1IV1+ℓ] =

∫ ℓ+1

ℓ

∫ 1

0
E
[
σ 2
s σ 2

t

]
dsdt

= ξ 2
∫ ℓ+1

ℓ

∫ 1

0
exp(κ(|t − s|))dsdt

= ξ 2
∫ 1

0
(1 − y)

[
exp(κ(|ℓ − y|)) + exp(κ(ℓ + y))

]
dy,
s a consequence of Lemma A.1.
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Next, we deal with the third moment of integrated variance:

E[σ 2
t σ 2

s σ 2
u ] = ξ 3 exp

(
Yt + Ys + Yu −

3
2
κ(0)

)
,

where Yt + Ys + Yu is Gaussian with mean zero and

var(Yt + Ys + Yu) = 3κ(0) + 2
(
κ(|t − s|) + κ(|t − u|) + κ(|s − u|)

)
.

hen, it follows that

E[σ 2
t σ 2

s σ 2
u ] = ξ 3 exp (κ(|t − s|) + κ(|t − u|) + κ(|s − u|)) ,

rom which we deduce

E[IV 3
t ] = ξ 3

∫ 1

0

∫ 1

0

∫ 1

0
E[σ 2

t σ 2
s σ 2

u ]dudsdt

= ξ 3
∫ 1

0

∫ 1

0

∫ 1

0
exp

(
κ(|t − s|) + κ(|t − u|) + κ(|s − u|)

)
dudsdt.

As above, we exploit the symmetric structure of the problem. We start by reducing the three-dimensional integral applying
the following two-dimensional change of variables:

x = u − t, y = s − t,

such that

E[IV 3
t ] = ξ 3

∫ 1

0

∫ 1−t

−t

∫ 1−t

−t
f (x, y)dxdydt = ξ 3

∫ 1

0

∫ 1

−1

∫ 1

−1
1{−t≤x,y≤1−t}f (x, y)dxdydt

= ξ 3
∫ 1

−1

∫ 1

−1
c(x, y)f (x, y)dxdy,

where f (x, y) = exp
(
κ(|x − y|) + κ(|x|) + κ(|y|)

)
and c(x, y) =

∫ 1
0 1{−t≤x,y≤1−t}dt . Note that c(x, y) = c(−x, −y), which is

seen from substituting s = 1 − t . Now, when (x, y) ∈ [0, 1] × [0, 1]:

c(x, y) = 1 − max(x, y).

Moreover, if (x, y) ∈ [0, 1] × [−1, 0], we conclude that c(x, y) = max(1 − x + y, 0). Inserting these terms and noting that
f (x, y) = f (−x, −y) = f (y, x):

E[IV 3
t ] = 2ξ 3

∫ 1

0

∫ 1

0
(1 − max(x, y))f (x, y)dydx + 2ξ 3

∫ 1

0

∫ 0

−1
max(1 − x + y, 0)f (x, y)dydx

= 4ξ 3
∫ 1

0

∫ x

0
(1 − x)f (x, y)dydx + 2ξ 3

∫ 1

0

∫ 0

x−1
(1 − x + y)f (x, y)dydx

= 6ξ 3
∫ 1

0

∫ x

0
(1 − x)f (x, y)dydx.

The last equality holds, since both double integrals in the above expression agree in value. To show this, we substitute
z = x − y and reexpress f (x, z) = f (x, x − z), which yields∫ 0

x−1
(1 − x + y)f (x, y)dy =

∫ 1

x
(1 − z)f (x, z)dz.

Finally, by exploiting f (x, y) = f (y, x) again, we further conclude∫ 1

0

∫ x

0
(1 − x)f (x, y)dydx =

∫ 1

0

∫ 1

x
(1 − z)f (x, z)dzdx.

To calculate the fourth moment of IVt , we proceed as above:

E[σ 2
t σ 2

s σ 2
u σ 2

v ] = ξ 4 exp
(
κ(|t − s|) + κ(|t − u|) + κ(|s − u|) + κ(|t − v|) + κ(|s − v|) + κ(|u − v|)

)
.

Subsequently, to compute the four-dimensional integral we apply the change of variables:
x = u − t, y = s − t, z = v − t,
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which, by recalling the definition of g , implies

E[IV 4
t ] = ξ 4

∫ 1

0

∫ 1−t

−t

∫ 1−t

−t

∫ 1−t

−t
g(x, y, z)dxdydzdt

= ξ 4
∫ 1

−1

∫ 1

−1

∫ 1

−1
d(x, y, z)g(x, y, z)dxdydz,

where g(x, y, z) = exp
(
κ(|x − y|) + κ(|x − z|) + κ(|y − z|) + κ(|x|) + κ(|y|) + κ(|z|)

)
and d(x, y, z) =

∫ 1
0 1{−t≤x,y,z≤1−t}dt .

To compute this term, we split the cube [−1, 1] × [−1, 1] × [−1, 1] into eight quadrants determined by the signs
f the variables. And since g(x, y, z) = g(−x, −y, −z) and d(x, y, z) = d(−x, −y, −z), we concentrate our efforts to four
uadrants, which are handled case-by-case analogously to the derivation of the third moment.
1. (x, y, z) ∈ [0, 1] × [0, 1] × [0, 1]:
Here d(x, y, z) = 1 − max(x, y, z). Since g and d are invariant under permutation of its three variables, it suffices to

ompute the integral for z ≤ y ≤ x. As a result,∫ 1

0

∫ 1

0

∫ 1

0
d(x, y, z)g(x, y, z)dzdydx = 6

∫ 1

0

∫ x

0

∫ y

0
(1 − x)g(x, y, z)dzdydx.

2. (x, y, z) ∈ [0, 1] × [0, 1] × [−1, 0]:
Assume y ≤ x. Then, d(x, y, z) = max(1 − x + z, 0) and∫ 1

0

∫ 1

0

∫ 0

−1
d(x, y, z)g(x, y, z)dzdydx = 2

∫ 1

0

∫ x

0

∫ 0

−1
max(1 − x + z, 0)g(x, y, z)dzdydx

= 2
∫ 1

0

∫ x

0

∫ 0

x−1
(1 − x + z)g(x, y, z)dzdydx.

3. (x, y, z) ∈ [0, 1] × [−1, 0] × [0, 1]:
Assume z ≤ x. Then, d(x, y, z) = max(1 − x + y, 0) and∫ 1

0

∫ 1

0

∫ 0

−1
d(x, y, z)g(x, y, z)dydzdx = 2

∫ 1

0

∫ x

0

∫ 0

−1
max(1 − x + y, 0)g(x, y, z)dydzdx,

which reduces to the integral over the second region, because g(x, y, z) = g(x, z, y).
4. (x, y, z) ∈ [−1, 0] × [0, 1] × [0, 1]:
Assume z ≤ y. Then, d(x, y, z) = max(1 − y + x, 0) and∫ 1

0

∫ 1

0

∫ 0

−1
d(x, y, z)g(x, y, z)dxdzdy = 2

∫ 1

0

∫ y

0

∫ 0

−1
max(1 − y + x, 0)g(x, y, z)dxdzdy,

which is identical to the integral over the third region due to g(x, y, z) = g(y, x, z).
Next, we show that the second integral (and by implication the third and fourth) is equal to the first one. To this

end, in the inner two integrals over the second region, we substitute u = x − y, v = x − z and employ the identity
g(x, y, z) = g(x, x − z, x − y). This leads to∫ x

0

∫ 0

x−1
(1 − x + z)g(x, y, z)dzdy =

∫ x

0

∫ 1

x
(1 − v)g(x, u, v)dvdu,

and hence∫ 1

0

∫ x

0

∫ 1

x
(1 − v)g(x, u, v)dvdudx =

∫ 1

0

∫ v

0

∫ x

0
(1 − v)g(v, x, u)dudxdv,

which concludes the proof of the claimed equality of integrals. Summing up the terms, we get a factor 24 = 2 × 12 in
front of the integral.

As for the second part of Theorem 2.1, note that from condition (a) there exists ℓ0 > 0 such that |κ(u)| ≤ 1 for any
u ≥ ℓ0 − 1. Denoting γℓ+1,1 = E[IVt IVt+ℓ] − ξ 2, we thus find that

γℓ+1,1 = ξ 2
∫ 1

0
(1 − y)

(
exp

(
κ(|ℓ − y|)

)
− 1 + exp

(
κ(ℓ + y)

)
− 1

)
dy.

Introducing r(x) ≡ exp(x) − 1 − x, x ∈ R allows to further write

γℓ+1,1

ξ 2κ(ℓ)
=

∫ 1

0
(1 − y)

(
κ(ℓ − y)

κ(ℓ)
+

κ(ℓ + y)
κ(ℓ)

)
dy  

≡I1

+

∫ 1

0
(1 − y)

(
r(κ(ℓ − y))

κ(ℓ)
+

r(κ(ℓ + y))
κ(ℓ)

)
dy  

≡I2

,

for any ℓ ≥ ℓ .
0
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As |r(x)| ≤ 3x2, x ∈ [0, 1], it follows that

|I2| ≤ 3 sup
y∈[−1,1]

⏐⏐⏐⏐κ(ℓ + y)
κ(ℓ)

⏐⏐⏐⏐ ∫ 1

0
(1 − y)(|κ(|ℓ − y|)| + |κ(ℓ + y)|)  

≡vℓ(y)

dy,

where for any y ∈ [0, 1] : 0 ≤ vℓ(y) ≤ 1, while vℓ(y) → 0, as ℓ → ∞ by (a). Applying the dominated convergence
heorem and condition (c) implies that:

lim sup
ℓ→∞

|I2| ≤ 3 lim sup
ℓ→∞

sup
ȳ∈[−1,1]

⏐⏐⏐⏐κ(ℓ + ȳ)
κ(ℓ)

⏐⏐⏐⏐ limℓ→∞

∫ 1

0
vℓ(y)dy = 0.

Finally, for y ∈ [0, 1] the integrand uℓ(y) ≡ (1− y)
(

κ(ℓ−y)
κ(ℓ) +

κ(ℓ+y)
κ(ℓ)

)
in I1 is bounded uniformly in ℓ by some constant from

ondition (c), while

lim
ℓ→∞

uℓ(y) = (1 − y)(φ(−y) + φ(y)), y ∈ [0, 1],

y condition (b). Thus, by dominated convergence

lim
ℓ→∞

I1 =

∫ 1

0
(1 − y)(φ(−y) + φ(y))dy =

∫ 1

−1
(1 − |y|)φ(y)dy,

hich concludes the proof. ■

.3. Proof of Theorem 3.4

We apply Theorem 2.1 of Hansen (1982), the sufficient conditions of which are implied by our Assumptions 1–4. It
emains to verify Gc(θ ) is continuous in θ , which also renders the random function m̂T (θ ) continuous in θ . Next, note
hat the moduli of continuity of m̂T (θ ) and Gc(θ ) coincide, so Gc(θ ) being continuous readily implies the so-called first
oment continuity of m̂T (θ ), see Definition 2.1 in Hansen (1982).
To establish continuity of Gc(θ ) in θ = (ξ, φ), note that c(θ ) is continuous by Assumption 2, whereby it suffices

o prove the continuity of G(θ ). The first component of G(θ ) is g (1)
0 (θ ) = ξ , which is evidently continuous, while the

emaining components are given in integral form in Theorem 2.1. Their continuity is then a consequence of the dominated
onvergence theorem, given condition (ii) of Assumption 1. ■

.4. Proof of Theorem 3.5

We introduce the notation:

Q̃n,T (θ ) = m̃n,T (θ )⊺WT m̃n,T (θ ),
Q (θ ) = m(θ )⊺Wm(θ ).

here m(θ ) = G(θ0) − G(θ ) and W = A⊺A. The claim then follows under the conditions of Theorem 2.1 of Newey and
cFadden (1994):

(i) Q (θ ) is uniquely minimized at θ0,
(ii) Θ is compact,
(iii) θ → Q (θ ) is continuous, and
(iv) supθ∈Θ |Q̃n,T (θ ) − Q (θ )|

P
−→ 0.

e note condition (i) is implied by Assumption 4, since for θ ̸= θ0:

Q (θ ) = (Am(θ ))′Am(θ ) > 0 = Q (θ0).

ondition (ii) is immediate. We already showed condition (iii) in the proof of Theorem 3.4. Now, we pass to the last
ondition (iv). In view of the Cauchy–Schwarz inequality,⏐⏐Q̃n,T (θ ) − Q (θ )

⏐⏐ ≤
⏐⏐(m̃n,T (θ ) − m(θ ))⊺WT (m̃n,T (θ ) − m(θ ))

⏐⏐+ ⏐⏐m(θ )⊺(WT + W⊺
T )(m̃n,T (θ ) − m(θ ))

⏐⏐
+
⏐⏐m(θ )⊺(WT − W)m(θ )

⏐⏐
≤ ∥m̃n,T (θ ) − m(θ )∥2

∥WT∥ + 2 ∥m(θ )∥ ∥WT∥ ∥m̃n,T (θ ) − m(θ )∥

+ ∥m(θ )∥2
∥WT − W∥.

Then, in view of Assumption 3, it suffices to prove that

sup ∥m̃n,T − m(θ )∥
P

−→ 0, as T → ∞ and n → ∞.

θ∈Θ
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Let mT (θ ) = T−1∑T
t=1

[
IVt − G(θ )

]
. Since the convergence supθ∈Θ ∥mT (θ ) − m(θ )∥

P
−→ 0 was already covered by the

proof of Theorem 3.4 (setting εt = c(θ ) = 0), it remains to show

sup
θ∈Θ

∥m̃n,T (θ ) − mT (θ )∥
P

−→ 0, as T → ∞ and n → ∞.

To this end, we observe that

∥m̃n,T (θ ) − mT (θ )∥ ≤
1
T

T∑
t=1

∥Vn
t − IVt∥

≤
1
T

T∑
t=1

[
|V n

t − IVt | +

k∑
j=0

|V n
t V

n
t−j − IVt IVt−j|

]

≤
1
T

T∑
t=1

|V n
t − IVt |(1 + |V n

t | + IVt )

+
1
T

T∑
t=1

k∑
j=1

|V n
t − IVt ||V n

t−j| + IVt |V n
t−j − IVt−j|.

From Assumption 5 and the Cauchy–Schwarz inequality, we deduce that:

E
[
sup
θ∈Θ

∥m̃n,T (θ ) − mT (θ )∥
]

→ 0, as T → ∞ and n → ∞,

which was to be shown. ■

A.5. Verifying Assumption 5 for realized variance

Suppose that sups∈R E[µ4
s ] + sups∈R E[σ 4

s ] < ∞. Then, there exists a constant C such that

sup
t∈Z

E
[
(RV n

t − IVt )2
]

≤
C
n

.

o see this, we apply Itô’s Lemma to get(
Xt−1+ i

n
− Xt−1+ i−1

n

)2
= 2

∫ t−1+ i
n

t−1+ i−1
n

(Xs − Xt−1+ i−1
n
)dXs +

∫ t−1+ i
n

t−1+ i−1
n

σ 2
s ds.

Consequently,

RV n
t − IVt = 2

∑
i=1

∫ t−1+ i
n

t−1+ i−1
n

(Xs − Xt−1+ i−1
n
)dXs

= 2
n∑

i=1

∫ t−1+ i
n

t−1+ i−1
n

(Xs − Xt−1+ i−1
n
)µsds + 2

n∑
i=1

∫ t−1+ i
n

t−1+ i−1
n

(Xs − Xt−1+ i−1
n
)σsdWs.

n turn, this combined with Cauchy–Schwarz and Jensen’s inequality leads to

E
[
(RVt − IVt )2] ≤ 4

n∑
i=1

∫ i
n

i−1
n

E[(Xs − X i−1
n
)2µ2

s ]ds + 4
n∑

i=1

∫ i
n

i−1
n

E[(Xs − X i−1
n
)2σ 2

s ]ds

≤
C
n

,

where in the last inequality we exploited sups≥0 E[µ4
s ] + sups≥0 E[σ 4

s ] < ∞ along with Burkholder’s inequality:
up

s∈
[
i−1
n , i

n

] E[(Xs − X i−1
n
)4
]

≤
C
n2
. ■

A.6. Proof of Proposition 3.6

The proof relies on a martingale approximation central limit theorem for stationary and ergodic processes (Merlevède
t al., 2019, Section 4.2), and it requires some preparation. First, we state and prove a couple of generic, elementary
emmas.
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Lemma A.2. Suppose X is a random variable such that E[X2
] < ∞ and let F and G be σ -algebras such that F ⊂ G. Then,

∥E[X | F]∥L2(P) ≤ ∥E[X | G]∥L2(P).

Proof. Since F ⊂ G, we get by the tower property of conditional expectations,

∥E[X | F]∥
2
L2(P) = E

[
E[X | F]

2]
= E

[
E[E[X | G] | F]

2].
Applying Jensen’s inequality for conditional expectations,

E
[
E[X | G] | F

]2
≤ E

[
E[X | G]

2
| F
]
.

Hence,

E
[
E[E[X | G]|F]

2]
≤ E

[
E[E[X | G]

2
|F]
]

= E
[
E[X | G]

2]
= ∥E[X | G]∥

2
L2(P). □

Lemma A.3. Suppose that X ∼ N(µ, λ2) for some µ ∈ R and λ > 0. Then,

E
[
(eX − 1)2

]
≤
(
eµ+λ2

+ 1
)2(8|µ| + 6λ2).

Proof. Note that

E
[
(eX − 1)2

]
= e2(µ+λ2)

− 2eµ+
1
2 λ2

+ 1 ≤ e2(µ+λ2)
+ 2eµ+λ2

+ 1 = (eµ+λ2
+ 1)2,

while

e2(µ+λ2)
− 2eµ+

1
2 λ2

+ 1 = e2(µ+λ2)
− 1 + 2(1 − eµ+

1
2 λ2 ) ≤ 8|µ| + 6λ2

≤ (eµ+λ2
+ 1)2  

≥1

(8|µ| + 6λ2),

or |µ|+λ2 < 1
2 due to the elementary inequality |ex − 1| ≤ 2|x|, for |x| ≤ 1. However, if |µ|+λ2

≥
1
2 , then 8|µ|+6λ2

≥ 1,
so the inequality holds also unconditionally. ■

Secondly, for convenience we formulate here a multivariate version of the martingale approximation central limit
theorem, as a corollary of the results from Section 4.2 in Merlevède et al. (2019). However, we state the result using the
concept of a mixingale.

Definition 1. A square-integrable (possibly multivariate) stochastic process (ζt )t∈Z, which is adapted to a filtration (Gt )t∈Z,
s called an L2-mixingale of size −ϕ0 ≤ 0 with respect to (Gt )t∈Z if there exists ϕ > ϕ0 such that for any t ∈ Z,

∥E[ζt+r | Gt ] − E[ζt ]∥L2(P) = O(r−ϕ), as r → ∞. (67)

otably, if (ζt )t∈Z is stationary and (Gt )t∈Z is the natural filtration, i.e. Gt = Fζ
t ≡ σ {ζt , ζt−1, . . .} for any t ∈ Z, then

ondition (67) reduces to

∥E[ζr | G0] − E[ζ0]∥L2(P) = O(r−ϕ), as r → ∞. (68)

he next lemma states the relevant mixingale CLT.

emma A.4. Suppose (ζt )t∈Z is a multivariate, stationary and ergodic process, which is additionally an L2-mixingale of size
1
2 in reference to (Fζ

t )t∈Z. Then, as T → ∞,

1
√
T

T∑
t=1

(
ζt − E[ζ0]

) d
−→ N(0, Σζ ), (69)

here Σζ ≡
∑

∞

ℓ=−∞
E
[
(ζ1 − E[ζ0])(ζ1+ℓ − E[ζ0])⊺

]
.

Proof. By the Cramér–Wold device, we can reduce the multivariate convergence (69) to a univariate one by linear
projection. To this end, assume that (ζt )t∈Z is d-dimensional for some d ∈ N and let a ∈ Rd be arbitrary. Defining
ξt ≡ a⊺(ζt − E[ζ0]), t ∈ Z, we deduce that Fξ

t = σ {ξt , ξt−1, . . .} ⊂ Fζ
t for any t ∈ Z, whereby it follows thatE[ξr | Fξ

0 ]

L2(P) ≤ ∥a∥Rd

E[ζr | Fζ

0 ] − E[ζ0]

L2(P) = O(r−ϕ),

as r → ∞ for some ϕ > 1/2. Thus,
∞∑

r−1/2
E[ξr | Fξ

0 ]

L2(P) < ∞,
r=1
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so that, by Theorem 4.10 and Remark 4.13 of Merlevède et al. (2019),

a⊺
1

√
T

T∑
t=1

(ζt − E[ζ0]) =
1

√
T

T∑
t=1

ξt
d

−→ N
(
0,

∞∑
ℓ=−∞

E[ξ1ξ1+ℓ]

)
s T → ∞. It remains to note that

∞∑
ℓ=−∞

E[ξ1ξ1+ℓ] =

∞∑
ℓ=−∞

E[a⊺(ζ1 − E[ζ0])(ζ1+ℓ − E[ζ0])⊺a] = a⊺Σζ a,

nd the claim follows. ■

To prove Proposition 3.6, building on Lemma A.4, we still need the following technical lemma that estimates the
emory of integrated variance.

emma A.5. Suppose that Assumptions 1 and 6 hold. Moreover, suppose that (Ft )t∈R is a filtration such that B is adapted
nd has independent increments with respect to it (cf. condition (iii) in Assumption 7). Then, for any p > 0, 0 ≤ s ≤ t and
≤ s′ ≤ t ′,

(i)
Eθ0

[∫ t+r
s+r σ

p
u du | F0

]
− Eθ0

[∫ t
s σ

p
u du

]
L2(Pθ0 )

= O(r−γ+1/2),

(ii)
Eθ0

[∫ t+r
s+r σ

p
u du

∫ t ′+r
s′+r σ

p
u′du′

| F0

]
− Eθ0

[∫ t
s σ

p
u du

∫ t ′

s′ σ
p
u′du′

]
L2(Pθ0 )

= O(r−γ+1/2),

s r → ∞.

roof. We only prove (ii) as the proof of (i) is analogous. In explicit terms, Assumption 6 says that there exist constants
0 ≥ 0 and c > 0 such that

|K (u)| ≤ cu−γ , u ≥ u0. (70)

ithout loss of generality, assume r ≥ u0 from now on. By Tonelli’s theorem,

Eθ0

[∫ t+r

s+r
σ p
u du

∫ t ′+r

s′+r
σ

p
u′du′

| F0

]
− Eθ0

[∫ t

s
σ p
u du

∫ t ′

s′
σ

p
u′du′

]
=

∫ t

s

∫ t ′

s′

(
Eθ0 [σ

p
u+rσ

p
u′+r | F0] − Eθ0 [σ

p
u σ

p
u′ ]
)
dudu′,

(71)

here

σ p
v σ

p
v′ = ξ pe−

p
2 κ(0) exp

(∫
∞

−∞

K+(v, v′, τ )dBτ

)
with K+(v, v′, τ ) =

p
2

[
K (v − τ ) + K (v′

− τ )
]
for any v, v′

≥ 0 (recall we set K (v) = 0 for any v ≤ 0). Subsequently,

Eθ0 [σ
p
u σ

p
u′ ] = ξ pe−

p
2 κ(0) exp

(
1
2

∫
∞

−∞

K+(u, u′, τ )2dτ
)

,

while, by the assumed properties of the Brownian motion B,

Eθ0 [σ
p
u+rσ

p
u′+r | F0]

= ξ pe−
p
2 κ(0) exp

(∫ 0

−∞

K+(u + r, u′
+ r, τ )dBτ

)
E
[
exp

(∫
∞

0
K+(u + r, u′

+ r, τ )dBτ

)]
= ξ pe−

p
2 κ(0) exp

(∫ 0

−∞

K+(u, u′, τ − r)dBτ +
1
2

∫
∞

0
K+(u, u′, τ − r)2dτ

)
,

sing the property K+(u + r, u′
+ r, τ ) = K+(u, u′, τ − r).

Therefore,

Eθ0 [σ
p
u+rσ

p
u′+r | F0] − Eθ0 [σ

p
u σ

p
u′ ] = ξ 2e−

p
2 κ(0) exp

(
1
2

∫
∞

−∞

K+(u, u′, τ )2dτ
)(

exp(Y u,u′

r ) − 1
)
, (72)

ith

Y u,u′

r =

∫ 0

K+(u, u′, τ − r)dBτ −
1
K

u,u′

(r) ∼ N
(

−
1
K

u,u′

(r), K
u,u′

(r)
)

(73)

−∞ 2 2
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and K
u,u′

(r) =
∫

−r
−∞

K+(u, u′, τ )2dτ =
∫ 0

−∞
K+(u, u′, τ − r)2dτ . Applying Tonelli’s theorem and Jensen’s inequality to (71),

e conclude that:

Eθ0

[(
Eθ0

[∫ t+r

s+r
σ p
u du

∫ t ′+r

s′+r
σ

p
u′du′

| F0

]
− Eθ0

[∫ t

s
σ p
u du

∫ t ′

s′
σ

p
u′du′

])2]
≤ (t − s)(t ′ − s′)

∫ t

s

∫ t ′

s′
Eθ0

[
(Eθ0 [σ

p
u+rσ

p
u′+r | F0] − Eθ0 [σ

p
u σ

p
u′ ])2

]
dudu′,

where, by (72)–(73) and Lemma A.3,

Eθ0

[
(Eθ0 [σ

p
u+rσ

p
u′+r | F0] − Eθ0 [σ

p
u σ

p
u′ ])2

]
= ξ 2pe−pκ(0) exp

(∫
∞

−∞

K+(u, u′, τ )2dτ
)
Eθ0

[
(exp(Y u,u′

r ) − 1)2
]

≤ 14ξ 2pe−pκ(0) exp
(∫

∞

−∞

K+(u, u′, τ )2dτ
)(

e
3
2 K

u,u′ (r)
+ 1

)2
K

u,u′

(r)

≤ 14ξ 2pe
(

p2
2 −p

)
κ(0)
(
e

3p2
4 κ(0)

+ 1
)2

K
u,u′

(r),

fter observing that

K
u,u′

(r) ≤

∫
∞

−∞

K+(u, u′, τ )2dτ ≤
p2

2

∫
∞

0
K (τ )2dτ =

p2

2
κ(0).

oreover, if τ ≤ −r then −τ ≥ r ≥ u0, whereby u − τ ≥ u0 and u′
− τ ≥ u0 since u ≥ s ≥ 0 and u′

≥ s′ ≥ 0. Thus, by
70),

K
u,u′

(r) =
p2

4

∫
−r

−∞

(
K (u − τ ) + K (u′

− τ )
)2dτ

≤
c2p2

2

∫
−r

−∞

(
(u − τ )−2γ

+ (u′
− τ )−2γ

)
dτ

≤ c2p2
∫

∞

r
τ−2γ dτ =

c2p2

1 − 2γ
r−2γ+1.

Consequently,Eθ0

[∫ t+r

s+r
σ p
u du

∫ t ′+r

s′+r
σ

p
u′du′

| F0

]
− Eθ0

[∫ t

s
σ p
u du

∫ t ′

s′
σ

p
u′du′

]
L2(Pθ0 )

≤ (t − s)(t ′ − s′)
(

14
1 − 2γ

)1/2

ξ pe
(

p2
4 −

p
2

)
κ(0)(e 3p2

4 κ(0)
+ 1

)
cpr−γ+1/2

= O(r−γ+1/2),

as r → ∞, which concludes the proof of (ii). ■

Proof of Proposition 3.6. Thanks to Lemma A.4, it suffices to show that the stationary process (ÎVt )t∈Z is an L2-mixingale
f size −

1
2 with respect to (F ÎV

t )t∈Z.
Let r ≥ 1. First, we consider:

Eθ0

[
ÎV r | F ÎV

0

]
− g (1)

0 (θ0) = Eθ0

[
IVr | F ÎV

0

]
− Eθ0 [IV1] + Eθ0

[
εr | F ÎV

0

]
,

here

Eθ0

[
εr | F ÎV

0

]
= Eθ0

[
Eθ0 [εr | Fσ ,ε

r−1] | F ÎV
0

]
= 0

by Assumption 2 and the tower property of conditional expectations, which is applicable since F ÎV
0 ⊂ Fσ ,ε

r−1. Therefore,Eθ0

[
ÎV r
⏐⏐F ÎV

0

]
− g (1)

0 (θ0)

L2(Pθ0 )

= ∥Eθ0

[
IVr | F ÎV

0

]
− Eθ0 [IV1]∥L2(Pθ0 )

≤ ∥Eθ0

[
IVr | FW ,ε

0

]
− Eθ0 [IV1]∥L2(Pθ0 )

= O(r−γ+1/2), r → ∞,

(74)

which follows by Lemma A.2, again since F ÎV
⊂ FW ,ε , and Lemma A.5(i).
0 0
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Secondly,

Eθ0

[
ÎV

2
r | F ÎV

0

]
− g (2)

0 (θ0) − c(θ0)

= Eθ0

[
IV 2

r | F ÎV
0

]
− Eθ0 [IV

2
1 ] + 2Eθ0

[
εr IVr | F ÎV

0

]
+ Eθ0

[
ε2
r | F ÎV

0

]
− Eθ0 [ε

2
1],

here

Eθ0

[
εr IVr | F ÎV

0

]
= Eθ0

[
Eθ0

[
εr | Fσ ,ε

r−1

]
IVr | F ÎV

0

]
= 0,

y the tower property, since F ÎV
0 ⊂ Fσ ,ε

r−1, and Assumption 2. By virtue of condition 7 in Assumption 7 and Minkowski’s
nequality:Eθ0

[
ÎV

2
r | F ÎV

0

]
− g (2)

0 (θ0) − c(θ0)

L2(Pθ0 )

= ∥Eθ0

[
IV 2

1 | F ÎV
0

]
− Eθ0 [IV

2
1 ]∥L2(Pθ0 )

+ O(r−γ+1/2)

≤ ∥Eθ0

[
IV 2

r | FW ,ε
0

]
− Eθ0 [IV

2
1 ]∥L2(Pθ0 )

+ O(r−γ+1/2)

= O(r−γ+1/2),

(75)

s r → ∞, by Lemmas A.2 and A.5(ii).
Lastly, for ℓ = 1, . . . , k (assuming r > k without loss of generality):

Eθ0

[
ÎV r ÎV r−ℓ | F ÎV

0

]
− gℓ(θ0) = Eθ0

[
IVr IVr−ℓ | F ÎV

0

]
− Eθ0 [IV1IV1−ℓ]

+ Eθ0

[
εr IVr−ℓ | F ÎV

0

]
+ Eθ0

[
IVrεr−ℓ | F ÎV

0

]
+ Eθ0

[
εrεr−ℓ | F ÎV

0

]
,

here

Eθ0

[
εr IVr−ℓ | F ÎV

0

]
= Eθ0

[
Eθ0

[
εr | Fσ ,ε

r−1

]
IVr−ℓ | F ÎV

0

]
= 0,

Eθ0

[
IVrεr−ℓ | F ÎV

0

]
= Eθ0

[
IVrEθ0

[
εr−ℓ | Fσ ,ε

r−ℓ−1

]
| F ÎV

0

]
= 0,

Eθ0

[
εrεr−ℓ | F ÎV

0

]
= Eθ0

[
Eθ0

[
εr | Fσ ,ε

r−1

]
εr−ℓ | F ÎV

0

]
= 0,

rom tower property, because F ÎV
0 ⊂ Fσ ,ε

r−ℓ−1 ⊂ Fσ ,ε
r , and Assumption 2. Thus, applying yet again Lemma A.2, we getEθ0

[
ÎV r ÎV r−ℓ | F ÎV

0

]
− gℓ(θ0)


L2(Pθ0 )

= ∥Eθ0

[
IVr IVr−ℓ | F ÎV

0

]
− Eθ0 [IV1IV1−ℓ]∥L2(Pθ0 )

≤ ∥Eθ0

[
IVr IVr−ℓ | FW ,ε

0

]
− Eθ0 [IV1IV1−ℓ]∥L2(Pθ0 )

= O(r−γ+1/2),

(76)

s r → ∞, due to Lemma A.5(ii).
Combining (74)–(76), we deduce thatEθ0

[
ÎVr | F ÎV

0

]
− Eθ0

[
ÎVr

]
L2(Pθ0 )

=
Eθ0

[
ÎVr | F ÎV

0

]
− Gc(θ0)


L2(Pθ0 )

= O(r−γ+1/2),

as r → ∞. Since γ > 1, this implies that (ÎVt )t∈Z is an L2-mixingale of size −
1
2 . ■

roposition A.6. Suppose that Assumptions 1 and 6 hold. Then condition (ii) of Assumption 7 applies in Examples 3.1–3.3.

roof. The error terms in Examples 3.1 and 3.3 differ only by scaling factor, so it suffices to look at the former. Then,

εt =

(
2
n

∫ t

t−1
σ 4
u du

)1/2

Zt , t ∈ Z,

so that, using the filtration FB,Z
t = σ {Zt , Zt−1, . . .} ∨ σ {Bu : u ≤ t}, t ∈ Z:

Eθ0

[
ε2
r | FB,Z

0

]
− Eθ0 [ε

2
1] =

2
n

(
Eθ0

[∫ r

r−1
σ 4
u du | FB,Z

0

]
− Eθ0

[∫ 1

0
σ 4
u du

])
, r ≥ 1,

since
∫ r
r−1 σ 4

u du and Zr are conditionally independent on FB,Z
0 . We can then apply Lemma A.5(i) and A.2 to show the

conjecture of this part.
In Example 3.2,

εt =

n∑
(Z2

t,i − 1)
∫ t−1+ i

n

i−1
σ 2
u du, t ∈ Z,
i=1 t−1+ n
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whereby for any r ≥ 1,

Eθ0

[
ε2
r | FB,Z

0

]
− Eθ0 [ε

2
1] = 2

n∑
i=1

(
Eθ0

[(∫ r−1− i
n

r−1+ i−1
n

σ 2
u du

)2

| FB,Z
0

]
− Eθ0

[(∫ i
n

i−1
n

σ 2
u du

)2])
.

pplying Minkowski’s inequality and Lemmas A.5(i) and A.2 concludes the proof. ■

.7. Proof of Theorem 3.7

We set QT = m̂T (θ )⊺WT m̂T (θ ) and note that QT attains its minimum value at θ̂T . Combining this with the mean value
heorem yields that

0 = ∇θQT (̂θT ) = ∇θQT (θ0) + ∇
2
θθQT (θ̄T )(̂θT − θ0),

here θ̄T lies between θ̂T and θ0. Now,

∇θQT (θ ) = 2∇θ m̂T (θ )⊺WT m̂T (θ ),

∇
2
θθQT (θ ) = 2∇θθ m̂T (θ )⊺WT m̂T (θ ) + 2∇θθ m̂T (θ )⊺WT∇θ m̂T (θ )

This leads to:
√
T (̂θT − θ0) =

(
∇

2
θθQT (θ̄T )

)−12∇θ m̂T (θ0)⊺WT
√
Tm̂T (θ0). (77)

nvoking the assumptions of the theorem, it follows that θ̄T
P

−→ θ0 as T → ∞. In addition, and recalling Proposition 3.6,
we deduce that as T → ∞:

√
Tm̂T (θ0)

d
−→ N

(
0, ΣÎV

)
,

∇θ m̂T (θ0)
P

−→ J,

∇
2
θθQT (θ̄T )

P
−→ J⊺WJ,

where the last part uses that m̂T (θ0)
P

−→ 0. Then, Slutsky’s theorem finishes the proof. ■

A.8. Proof of Theorem 3.8

By the Cramér–Wold device, we can reduce the proof to a univariate setting. Then, denoting ΣT = Γ (0)+2
∑T−1

ℓ=1 (1−

/T )Γ (ℓ), it is enough to show that Σ̂T − ΣT
P

−→ 0. This assertion follows from Theorem 2.1 of Davidson (2020). To
ketch the main ideas, we write

Σ̂T/ΣT − 1 = A1 + A2,

where

A1 =
1

ΣT

[
Γ̂ (0) − Γ (0) + 2

1
T

T−1∑
ℓ=1

w(ℓ/L)
T−ℓ∑
t=1

[(
ÎVt − Gc

)(
ÎVt+ℓ − Gc

)
− Γ (ℓ)

]]
,

A2 =
1

ΣT
2

T−1∑
ℓ=1

(
w(ℓ/L) − 1

)
(1 − ℓ/T )Γ (ℓ).

Note that the term A2 is deterministic. Moreover, it follows from the assumptions imposed on w that A2 = o(1).
To deal with the term A1, we first note that based on Lemma A.5 and the proof of Proposition 3.6, for each ℓ ≥ 0, the

sequence {
(
ÎVt −Gc

)(
ÎVt+ℓ −Gc

)
−Γ (ℓ)}, is an L2-mixingale of size −

1
2 . Then, Corollary 16.10 in Davidson (1994) implies

hat

E

⎡⎣(T−ℓ∑
t=1

((
ÎVt − Gc

)(
ÎVt+ℓ − Gc

)
− Γ (ℓ)

))2
⎤⎦ ≤ CT .

long with the convergence

1
L

T−1∑
ℓ=0

|w(ℓ/L)| −→

∫
∞

0
|w(x)|dx,

we deduce that E[|A |] = O(LT−1/2) = o(1) based on the assumption on L. ■
1

774



A.E. Bolko, K. Christensen, M.S. Pakkanen, and B. Veliyev Journal of Econometrics 235 (2023) 745–778

a

T

O

w

A.9. Proof of Theorem 3.9

First, we provide a result for a general weight matrix as in (the proof of) Theorem 3.7. Proceeding as in the proof there,
nd denoting Q̃n,T = m̃n,T (θ )⊺Wn,T m̃n,T (θ ), we find that

√
T (̃θn,T − θ0) =

(
∇

2
θθ Q̃n,T (θ̌n,T )

)−12∇θ m̃n,T (θ0)⊺Wn,T
√
Tm̃n,T (θ0).

hen, as T → ∞ and n → ∞,
√
Tm̃n,T (θ0)

d
−→ N(0, ΣIV),

∇θ m̃n,T (θ0)
P

−→ J̃,

∇
2
θθ Q̃n,T (θ̌n,T )

P
−→ J̃⊺W̃J,

To wrap this up, we again exploit Slutsky’s theorem.
To reach the final conclusion involving the estimator Σ̂n,T , it is enough to further show the convergence Σ̂n,T

P
−→ ΣIV

as T → ∞ and n → ∞. As in the proof of Theorem 3.8, this follows by noting that the error V n
t − IVt is negligible in front

of Assumption 10. ■

Appendix B. Identification

Assumption 4 is difficult to check, as it involves solving a system of nonlinear equations, which cannot be expressed in
closed-form. In lieu of this, it is worthwhile to look briefly at a related question: Does equality of all first and second-order
moments, i.e.

g (1)
0 (θ1) = g (1)

0 (θ2) and gℓ(θ1) = gℓ(θ2), for all ℓ ∈ N ∪ {0}, (78)

for θ1, θ2 ∈ Θ hold if and only if θ1 = θ2; the ‘‘if’’ direction being trivial. While an affirmative answer falls short of
settling the original question, it does provide circumstantial evidence to suggest that there is no immediate issue with
identification, so long as sufficiently many moments are included in the GMM estimation.

Note that since g (1)
0 (θ ) = ξ , the parameter ξ is always identifiable.

In the fSV model, where the parameter vector is θ = (ξ, λ, ν,H), we only get a partial identification result. We first
observe that, on the one hand, (78) implies

lim
ℓ→∞

Eθ1

[
(IVt − ξ1)(IVt+l − ξ1)

]
Eθ2

[
(IVt − ξ2)(IVt+l − ξ2)]

= lim
ℓ→∞

gℓ(θ1) − g (2)
0 (θ1)2

gℓ(θ2) − g (2)
0 (θ2)2

= 1.

n the other hand, when H1 ̸= 0.5 ̸= H2, Theorem 2.1 and Eq. (8) in Garnier and Sølna (2018) imply that

lim
ℓ→∞

Eθ1

[
(IVt − ξ1)(IVt+l − ξ1)

]
Eθ2

[
(IVt − ξ2)(IVt+l − ξ2)

] = lim
ℓ→∞

ξ 2
1H1(2H1 + 1)ν2

1

λ2
1

ℓ2H1−2

ξ 2
2H2(2H2 + 1)ν2

2

λ2
2

ℓ2H2−2
= lim

ℓ→∞

ξ 2
1H1(2H1 + 1)ν2

1

λ2
1

ξ 2
2H2(2H2 + 1)ν2

2

λ2
2  

>0

ℓ2(H1−H2),

here the limiting value is strictly positive and finite only if H1 = H2.16 In that case, the limit is further equal to one only
if

ν1

λ1
=

ν2

λ2
,

since ξ1 = ξ2 by (78).
We conjecture that a closer analysis of g (2)

0 (θ ) and gℓ(θ ), ℓ ∈ N, may help to uniquely identify also λ and ν, but as it
does not appear completely trivial, we do not pursue this avenue further.

Appendix C. The gamma-BSS process

In this section, we assume that Y is a Brownian semistationary (BSS) SV process, i.e. a Gaussian process constructed
with a serial correlation that is locally equivalent to a fBm, whereas the long-range dependence structure can differ a
lot. We derive the expressions required to estimate the parameters of a restricted version of this model via our GMM
approach.

16 If either H = 0.5 or H = 0.5 then either the numerator or denominator decays exponentially, so the limit of the ratio cannot equal one.
1 2
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The BSS process is defined as:

Yt = ν

∫ t

−∞

h(t − s)dBs, t ≥ 0, (79)

where ν > 0 and h : (0, ∞) → R is a kernel (subject to some regularity conditions).
A convenient choice is the gamma kernel h(x) = xαe−λx with α > −1/2 and λ > 0 resulting in the Gamma-BSS .

This model has local properties that are equivalent to the fSV model, and while not formally long-memory it does allow
for substantial persistence in the time series. Its covariance structure was derived in Bennedsen et al. (2022), which we
include in (80) for self-containedness. The autocovariance function of integrated variance in (81) is new.

Lemma C.1. If Y follows the Gamma-BSS process, κ(ℓ) has the form:

κ(0) =
ν2

(2λ)2α+1 Γ (2α + 1),

κ(ℓ) =
ν2Γ (α + 1)

√
π

(
ℓ

2λ

)α+
1
2

Kα+1/2(λℓ), ℓ > 0,

(80)

here Ka(x) is the Bessel function of the second kind. In addition, as ℓ → ∞, it follows that

E
[
(IVt − ξ )(IVt+ℓ − ξ )

]
∼

ν2ξ 2Γ (α + 1)(exp(λ) − 1)2

2α+1λα+2 ℓα exp(−λ(ℓ + 1)). (81)

roof. Recall that κ(ℓ) = cov(Yt , Yt+ℓ), where for the Gamma-BSS process:

κ(ℓ) = ν2
∫

∞

0
h(x)h(x + ℓ)dx.

nserting the Gamma kernel, h(x) = xαe−λx, we deduce the identity:

κ(0) = ν2
∫

∞

0
x2α exp(−2λx)dx

= ν2(2λ)−2α−1
∫

∞

0
z2α exp(−2z)dz

= ν2(2λ)−2α−1Γ (2α + 1).

Now, for each ℓ > 0,

κ(ℓ) = ν2 exp(−λℓ)
∫

∞

0
xα(x + ℓ)α exp(−2λx)dx

=
ν2Γ (α + 1)

√
π

(
ℓ

2λ

)α+
1
2

Kα+1/2(λℓ),

where the last equality follows from Gradshteyn and Ryzhik (2007), formula 3.383 (8).
As κ(ℓ) adheres to (12) with β = α and ρ = λ by Remark 4.4 in Bennedsen et al. (2022), Theorem 2.1 applies with∫ 1

−1
(1 − |y|)φ(y)dy =

∫ 1

−1
(1 − |y|) exp(−λy)dy =

exp(−λ)(exp(λ) − 1)2

λ2 ,

o it follows that

γℓ+1,1 ∼ F (ℓ; α, λ, v, ξ ), ℓ → ∞,

here

F (ℓ; α, λ, v, ξ ) ≡
v2ξ 2Γ (α + 1)(exp(λ) − 1)2

2α+1λα+2  
>0

ℓα exp(−λ(ℓ + 1))

or ℓ > 0, α > −
1
2 , λ > 0, v > 0 and ξ > 0. ■

The Gamma-BSS process achieves Assumption 6 in its entire parameter space. Condition (i) has been established for
general BSS processes in Bennedsen et al. (2017, Proposition 2.2). Condition (ii) follows by noting that the modified Bessel
function of the second kind, Kα , that appears in its covariance function is continuous. Moreover, the process is already
expressed in the form of (49).

There is a more complete result about identification for the Gamma-BSS process.
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Proposition C.2. In the Gamma-BSS process, the moment equality (78) holds if and only if θ1 = (ξ1, ν1, λ1, α1) equals
2 = (ξ2, ν2, λ2, α2).

roof. Assume (78), then by Lemma C.1:

lim
ℓ→∞

Eθ1

[
(IVt − ξ1)(IVt+l − ξ1)

]
Eθ2

[
(IVt − ξ2)(IVt+l − ξ2)

] = lim
ℓ→∞

ν2
1ξ

2
1 Γ (α1 + 1)(exp(λ1) − 1)2

2α1+1λ
α1+2
1

ℓα1 exp(−λ1(ℓ + 1))

ν2
2ξ

2
2 Γ (α2 + 1)(exp(λ2) − 1)2

2α2+1λ
α2+2
2

ℓα2 exp(−λ2(ℓ + 1))

= lim
ℓ→∞

ν2
1ξ

2
1 Γ (α1 + 1)(exp(λ1) − 1)2

2α1+1

ν2
2ξ

2
2 Γ (α2 + 1)(exp(λ2) − 1)2

2α2+1  
>0

ℓα1−α2 exp(−(λ1 − λ2)ℓ).

(82)

n order for this limit to be strictly positive and finite, it is necessary that λ1 = λ2. In this vein, we also deduce that
α1 = α2 is necessary. Finally, since we already know that ξ1 = ξ2 from the equality of the first moment, it remains to
note that the limit in (82) can only be equal to one if ν1 = ν2.

Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2022.06.009.
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pp. 45–106.

eddahi, N., 2002. A theoretical comparison between integrated and realized volatility. J. Appl. Econometrics 17 (5), 479–508.
eddahi, N., 2003. ARMA representation of integrated and realized variances. Econom. J. 6 (2), 335–356.
elino, A., Turnbull, S.M., 1990. Pricing foreign currency options with stochastic volatility. J. Econometrics 45 (1–2), 239–265.
erlevède, F., Peligrad, M., Utev, S., 2019. Functional Gaussian Approximation for Dependent Structures, first ed. Oxford University Press, Oxford.
ewey, W.K., McFadden, D., 1994. Large sample estimation and hypothesis. In: Engle, R.F., McFadden, D. (Eds.), Handbook of Econometrics: Vol. IV.

North-Holland, Amsterdam, pp. 2112–2245.
ewey, W.K., West, K.D., 1987. A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix. Econometrica

55 (3), 703–708.
atton, A.J., 2011. Volatility forecast comparison using imperfect volatility proxies. J. Econometrics 160 (1), 246–256.
eccati, G., Taqqu, M.S., 2011. Wiener Chaos: Moments, Cumulants and Diagrams, first ed. Springer, Berlin.
aqqu, M.S., 1975. Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrscheinlichkeitstheor. Verwandte Geb. 31

(4), 287–302.
aylor, S.J., 1986. Modelling Financial Time Series, first ed. John Wiley and Sons, Chichester.
odorov, V., 2009. Estimation of continuous-time stochastic volatility models with jumps using high-frequency data. J. Econometrics 148 (2), 131–148.
odorov, V., Tauchen, G., 2011. Volatility jumps. J. Bus. Econom. Statist. 29 (3), 356–371.
etter, M., 2010. Limit theorems for bipower variation of semimartingales. Stochastic Process. Appl. 120 (1), 22–38.
right, J.H., 2003. Detecting lack of identification in GMM. Econom. Theory 19 (2), 322–330.
hang, L., Mykland, P.A., Aït-Sahalia, Y., 2005. A tale of two time scales: determining integrated volatility with noisy high-frequency data. J. Amer.

Statist. Assoc. 100 (472), 1394–1411.
778

http://refhub.elsevier.com/S0304-4076(22)00147-6/sb34
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb35
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb36
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb37
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb38
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb39
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb40
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb41
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb41
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb41
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb42
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb43
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb44
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb45
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb46
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb46
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb46
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb47
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb48
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb49
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb49
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb49
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb50
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb51
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb51
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb51
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb52
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb53
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb54
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb54
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb54
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb55
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb56
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb57
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb57
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb57
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb58
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb59
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb60
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb61
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb61
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb61
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb62
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb63
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb64
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb65
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb66
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb66
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb66
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb67
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb67
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb67
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb68
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb69
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb70
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb70
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb70
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb71
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb72
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb73
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb74
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb75
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb76
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb76
http://refhub.elsevier.com/S0304-4076(22)00147-6/sb76

	A GMM approach to estimate the roughness of stochastic volatility
	Introduction
	The setting
	Moment structure of integrated variance
	The fractional SV model

	GMM Estimation
	Assumptions and examples
	Consistency
	Asymptotic normality

	Simulation study
	Empirical application
	Conclusion
	Appendix A. Proofs
	Auxiliary Result
	Proof of Theorem 2.1
	Proof of Theorem 3.4 
	Proof of Theorem 3.5
	Verifying Assumption 5 for realized variance
	Proof of Proposition 3.6
	Proof of Theorem 3.7
	Proof of Theorem 3.8
	Proof of Theorem 3.9

	Appendix B. Identification
	Appendix C. The Gamma-BSS process
	Appendix D. Supplementary data
	References


