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Abstract

Using plasma mirror injection we demonstrate, both analytically and numerically, that a
circularly polarized helical laser pulse can accelerate highly collimated dense bunches of electrons
to several hundred MeV using currently available laser systems. The circular-polarized helical
(Laguerre-Gaussian) beam has a unique field structure where the transverse fields have helix-
like wave-fronts which tend to zero on-axis where, at focus, there are large on-axis longitudinal
magnetic and electric fields. The acceleration of electrons by this type of laser pulse is analysed
as a function of radial mode number and it is shown that the radial mode number has a profound
effect on electron acceleration close to the laser axis. Using three-dimensional particle-in-cell
simulations a circular-polarized helical laser beam with power of 0.6 PW is shown to produce
several dense attosecond bunches. The bunch nearest the peak of the laser envelope has an
energy of 0.47 GeV with spread as narrow as 10%, a charge of 26 pC with duration of ∼ 400 as,
and a very low divergence of 20 mrad. The confinement by longitudinal magnetic fields in the
near-axis region allows the longitudinal electric fields to accelerate the electrons over a long
period after the initial reflection. Both the longitudinal E and B fields are shown to be essential
for electron acceleration in this scheme. This opens up new paths towards attosecond electron
beams, or attosecond radiation, at many laser facilities around the world.

1 Introduction

Laser-driven electron accelerators have become a very active area of research due to technological
developments and improvements of high-power laser beams [1]. There are usually two common
approaches. One approach is laser wakefield acceleration [2] that utilizes plasma electric fields
whose strength is related to the plasma density. Another approach is direct laser acceleration [3]
that relies on the fields of the laser for the energy transfer inside a plasma (e.g. see [4]) or in
vacuum [5]. In the vacuum regime, transverse electron expulsion typically terminates the energy
gain and leads to strong electron divergence. This is the reason why direct laser acceleration in
vacuum has been deemed ineffective and most of the research has been focused on the plasma regime
where collective fields prevent the expulsion [6, 7, 8]. In an attempt to mitigate the expulsion in the
vacuum regime, some studies examined alternative approaches utilizing longitudinal electric fields
of a radially polarized beam [9] and higher-order Gaussian beams [10] for electron acceleration.

Currently there are several multi-PW laser systems operational in the world, with several more
due to come online in the next few years [1]. The biggest of the new systems recently proposed,
at the Shanghai Superintense-Ultrafast Laser Facility [11], is pushing the 100 PW limit and will
be in development over the next decade. At the same time, new optical techniques using helical
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wave-fronts [12, 13] are being developed. One of the key advantages of the helical, or Laguerre-
Gaussian, laser mode is that it can be produced, at high efficiency, from a standard Gaussian laser
pulse in reflection from a fan-like structure [13, 14]. Very significant differences can be seen when
comparing the laser-plasma interactions of conventional laser beams to those of helical beams, some
of which have been examined in simulations [15, 16, 17, 18, 14, 19, 20, 21, 22, 23], and some have
begun to be explored in recent experiments [12, 24, 25, 26, 27]. An electron acceleration scheme
has recently been proposed where a high-power high-intensity circular-polarized Laguerre-Gaussian
beam is reflected from a plasma mirror [28]. The unique field structure of this beam both confines
and accelerates tightly packed electron bunches to GeV energies with a narrow energy spread.

In this article, we show using 3D particle-in-cell (PIC) simulations that the same electron ac-
celeration scheme can be successfully applied 1) using significantly lower laser power than that
used in [28] and 2) using oblique incidence. Specifically, we show that a 600 TW laser beam gen-
erates several dense attosecond bunches at intervals similar to the laser wavelength. The bunch
nearest the peak of the laser envelope gains an energy of 0.47 GeV (10% FWHM energy spread),
while maintaining a bunch charge as high as 26 pC. The tightly confined bunch has a duration of
∼ 400 as and a remarkably low divergence of just 1.15◦ (20 mrad). In addition to this, the scheme
is demonstrated to be tenable with an angle of incidence as high as 25◦. Our results show that the
electron acceleration by helical beams is not limited to high-power high-intensity lasers and can be
successfully explored at a wide range of laser facilities.

The rest of this paper is organized as follows. Section 2 examines the field structure of lin-
early and circularly polarized laser beams with twisted wavefronts. The near-axis structure of the
longitudinal electric field for different radial modes is explicitly derived. Section 3 is dedicated to
estimating the acceleration that the longitudinal fields can provide and the effect of the radial mode
structure of the laser on this acceleration. In Section 4, we present results of a 3D PIC simulation
for a 600 TW laser beam with twisted wavefronts whose near-axis field structure is dominated by
longitudinal electric and magnetic fields. Section 5 is concerned with exploring the role of the lon-
gitudinal magnetic field where the effect of this field on the bunch density and particle trajectories
is shown, including the possible reliability of this model with an oblique angle of incidence. In
Section 6, we summarise the main results of this work.

2 Field topology of a laser beam with twisted wavefronts

In this section, we examine the field topology of linearly and circularly polarized laser beams with
twisted wavefronts. We show that, for a properly chosen twist index, the field structure in the
region close to the axis of the beam can primarily consist of longitudinal electric and magnetic
fields. The differences between radial modes are explicitly emphasized.

2.1 Linearly polarized beam

We start by considering a linearly polarized laser beam with wavelength λ0 propagating in vacuum
along the x-axis. We assume that the diffraction angle, defined as θd = w0/xR, is small, where
w0 is the beam waist, and xR = πw2

0/λ0 is the Rayleigh range. Without any loss of generality,
we assume that the laser electric field is polarized along the y-axis. In this case, it is convenient
to describe the field structure using a vector potential A that satisfies the Lorenz gauge condition
and has only one non-zero component, Ay. The paraxial wave equation for Ay has the form[

∂2

∂ỹ2
+

∂2

∂z̃2
+ 4i

∂

∂x̃

]
Ay = 0, (1)
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where, for compactness, the longitudinal coordinate x is normalized to xR and the transverse
coordinates y and z are normalized to w0:

x̃ = x/xR, (2)

ỹ = y/w0, (3)

z̃ = z/w0. (4)

Equation (1) implies the following form of the solution with ω = 2πc/λ0:

Ay = Ψy(x̃, ỹ, z̃)g(ξ) exp(iξ), (5)

where g is the envelope function with max(g) = 1 and

ξ ≡ 2x̃/θ2d − ωt (6)

is the phase variable.
The transverse electric field in the paraxial approximation, i.e. at θd � 1, is given by

Ey ≈ −
1

c

∂Ay
∂t

=
iω

c
Ay. (7)

We are interested in solutions of the form

Ey = E0g(ξ) exp(iξ)ψl,p(x̃, r̃, φ) (8)

where

ψl,p(x̃, r̃, φ) = Cp,lf(x̃)|l|+1+2p(1 + x̃2)pL|l|p

(
2r̃2

1 + x̃2

)(√
2r̃
)|l|

exp
[
−r̃2f(x̃)

]
exp (ilφ) (9)

is a mode with a twist index l and radial index p. Here we introduced

r̃ =
√
ỹ2 + z̃2, φ = arctan(z̃/ỹ), f(x̃) =

1− ix̃
1 + x̃2

. (10)

The L
|l|
p function is the generalized Laguerre polynomial and Cp,l is a normalization constant.

The modes ψl,p(x̃, r̃, φ) are orthonormal at a given x̃ [29], with

Cp,l =

√
2p!

π(p+ |l|)!
, (11)

such that ∫ 2π

0
dφ

∫ ∞
0

ψl,p(x̃, r̃, φ)ψ∗l,p(x̃, r̃, φ)r̃dr̃ = 1. (12)

It is worth pointing out that E0 in Eq. (8) is not the peak amplitude of Ey. It is therefore convenient
to introduce

E∗0 ≡
√

2

π
E0, (13)

which is the peak amplitude of the transverse electric field in the beam with l = 0.
The transverse magnetic field has a z-component only, since B = ∇ × A. In the paraxial

approximation, we have

Bz =
1

xR

∂Ay
∂x̃
≈ 2i

θdw0
Ay. (14)
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After taking into account that θd = λ0/πw0, we find that Bz = Ey. The longitudinal component of
the Poynting vector S is then given by Sx = (c/4π) (ReEy)

2 and the peak period-averaged power
for the linearly polarized beam is

Plin =

〈∫ 2π

0
dφ

∫ ∞
0

Sxrdr

〉
=
cw2

0

4π

∫ 2π

0
dφ

∫ ∞
0

〈
(ReEy)

2
〉
r̃dr̃, (15)

where the angle brackets indicate the time-averaging. It is convenient to compute the power in the
focal plane, i.e. at x̃ = 0. We use the expression given by Eq. (8) to find that

Plin =
cw2

0

8π
E2

0 =
π

2

a20w
2
0m

2
ec

5

λ20e
2

, (16)

where
a0 = |e|E0/mecω (17)

is a dimensionless parameter, and e and me are the electron charge and mass. We have explicitly
taken into account the normalization condition given by Eq. (12). The advantage of the chosen
normalization is that the power P is the same for different modes with the same E0 or a0.

The longitudinal laser electric and magnetic fields can be calculated from the (∇ ·E) = 0 and
(∇ ·B) = 0 conditions, respectively. In the paraxial approximation, we have

Ex ≈
iθd
2

∂Ey
∂ỹ

, Bx ≈
iθd
2

∂Ey
∂z̃

. (18)

It follows from Eqs. (8) - (10) that

E±x =


iθd
2

[
|l|
r̃ e
∓iφ − 2f r̃ cosφ− 2

1+x̃2
L
|l|+1
p−1

L
|l|
p

cosφ

]
Ey; for p ≥ 1,

iθd
2

[
|l|
r̃ e
∓iφ − 2f r̃ cosφ

]
Ey; for p = 0,

(19)

B±x =


θd
2

[
∓ |l|r̃ e

∓iφ − 2if r̃ sinφ− 2i
1+x̃2

L
|l|+1
p−1

L
|l|
p

sinφ

]
Ey; for p ≥ 1,

θd
2

[
∓ |l|r̃ e

∓iφ − 2if r̃ sinφ
]
Ey; for p = 0,

(20)

where the superscript on the left-hand side represents the sign of l.
The twist of the field represented by l qualitatively changes the topology of the transverse and

longitudinal fields. We are particularly interested in the field structure close to the central axis, i.e.
at r̃ → 0. It is important to distinguish three cases based on the value of the twist index: l = 0,
|l| = 1, and |l| > 1. In the near-axis region, we have Ey ∝ r̃|l| exp(ilφ). In the case of l = 0 or a
beam without a twist, the longitudinal fields vanish on the central axis, while the transverse fields
reach their maximum value. In the case of |l| > 1, all laser fields vanish on the central axis. The
most unusual is the case of |l| = 1, because in this case the longitudinal rather than transverse
fields peak on axis. As a result, the near-axis field structure is dominated by longitudinal fields.
Note that according to Eqs. (19) and (20) these fields are not axis-symmetric.

2.2 Circularly polarized beam

The results of the previous subsection can be readily generalized to the case of a circularly polarized
laser pulse. In addition to Ey, the laser beam also has an Ez-component. We set Ez = iσEy, where
σ = 1 corresponds to the right-circularly polarized wave and σ = −1 corresponds to the left-
circularly polarized wave. The longitudinal electric and magnetic fields can again be calculated

4
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Figure 1: Transverse and longitudinal electric field structure in the focal plane, x̃ = 0, of right-
circularly polarized beams (σ = 1) with l = 0,±1, 2 and p =0, 1. All beams have the same E0 and
the same diffraction angle, θd = 8.5 × 10−2. The fields are normalized to E∗0 , which is the peak
amplitude of the transverse electric field in the beam with l = 0.

using the (∇ ·E) = 0 and (∇ ·B) = 0 equations, respectively. In the paraxial approximation, we
have

Ex ≈
iθd
2

(
∂Ey
∂ỹ

+
∂Ez
∂z̃

)
, (21)

Bx ≈
iθd
2

(
∂Ey
∂z̃
− ∂Ez

∂ỹ

)
. (22)

After substituting Ez = iσEy into these equations, we find that

E±x =

iθdEy
[
|l|
r̃

1∓σ
2 e∓iφ − r̃feiσφ − 1

1+x̃2
L
|l|+1
p−1

L
|l|
p

eiσφ
]

; p ≥ 1,

iθdEy

[
|l|
r̃

1∓σ
2 e∓iφ − r̃feiσφ

]
; p = 0,

(23)

B±x =

θdEy
[
|l|
r̃
σ∓1
2 e∓iφ − r̃fσeiσφ − σ

1+x̃2
L
|l|+1
p−1

L
|l|
p

eiσφ
]

; p ≥ 1,

θdEy

[
|l|
r̃
σ∓1
2 e∓iφ − r̃fσeiσφ

]
; p = 0,

(24)

where the superscripts on the left-hand side again represent the sign of l.
Only for |l| = 1 the longitudinal rather than transverse fields peak on axis. However, the two

circular polarizations (right and left) are not equivalent. In the case of σ = −l, the longitudinal
fields reach their highest amplitude at r̃ → 0. On the other hand, in the case of σ = l, the
longitudinal fields vanishes on axis. The transverse fields vanish on axis in both cases. It is worth
pointing out that, in contrast to the linearly polarized beam, the longitudinal fields of the circularly
polarized beam with σ = −l are axis-symmetric.

Figure 1 shows the field structure for right-circularly polarized beams (σ = 1) with different
values of the twist index l and radial index p. In agreement with our analysis, the transverse field
in Fig. 1(a) only peaks on axis for the beams without a twist (l = 0). In all other cases, the
transverse field vanishes at r̃ → 0. The longitudinal field, shown in Fig. 1(b), only peaks on axis
for the beam with l = −1. As predicted, the longitudinal field vanishes at r̃ → 0 for l = 1.

It must be pointed out that the circularly polarized beams with |l| = 1 have two, rather than
one, rotations to consider: the rotation of the electric field maxima about the central axis due to
the wavefronts twist and the rotation of the electric field vector due to the choice of polarization.
In the case with |l| = 1 and σ = −l, the rotation of the transverse electric field vector due to the
polarization and the twist of the transverse field wavefronts have opposing chiralities. Figure 2
(bottom row) provides schematic diagrams showing the two rotations. For comparison, the upper
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Figure 2: Schematic representation of the transverse electric field topology for a linearly polarized
beam (top row) with l = −1 and p = 0 and a circularly polarized beam (bottom row) with l = −1,
p = 0, and σ = −l. The diagrams show one wavelength near the focal plane of each beam. The
color-coded surfaces are the surfaces of the constant amplitude |E⊥| = E∗: blue is positive Ey, red
is negative Ey, green is positive Ez, and purple is negative Ez. The large arrows show the direction
of E⊥ at a given location. The small black arrows placed on the large circles represent the motion
of |E⊥| peaks over time. The small black arrows placed on the small circles in the bottom row
represent the direction of rotation of the electric field over time. The red structure at the centre of
each image represents the the central axis of each beam. The images from left to right are at times
incremented by a quarter period T/4, where T = 2π/ω.

row in Fig. 2) shows the field topology for a linearly polarized beam, with E⊥ = Ey. Recall that
the circularly polarized beam is a superposition of two linearly polarized beams.

In the sections that follow, we focus on electron acceleration in the near-axis region by Ex of a
circularly polarized laser beam with l = −1 and σ = 1. In order to obtain a compact expression
for Ex, we set r̃ = 0 in Eq. (23) and substitute the expression for Ey given by Eq. (8), which yields

Ex(r̃ = 0) = iEmax
‖ f2(1+p)(1 + x̃2)pg(ξ)eiξ =

ig(ξ)Emax
‖

1 + x̃2
exp

[
iξ − i2(1 + p) tan−1 x̃

]
, (25)

where

Emax
‖ = 2

√
p+ 1

π
θdE0 =

2

π

√
p+ 1

π

λ0
w0
E0 (26)

is the peak value of the longitudinal electric field. A feature that is important for electron accelera-
tion is the explicit dependence of the phase on p. This will be discussed in more detail in Section 3.
The peak period-averaged power P for the circularly-polarized beam is twice the power Plin for a
single linearly polarized beam with the same amplitude E0. Taking this into account and using
the expression for Plin given by Eq. (16), we obtain the following expression for P in terms of the
amplitude of the longitudinal field:

P =
π4

4(p+ 1)

w4
0

λ40

m2
ec

5

e2
a2‖, (27)

where a‖ ≡ |e|Emax
‖ /mecω. Equation (27) can be recast as an expression for normalized amplitudes
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of longitudinal electric and magnetic fields for a given power P in the laser beam:

a‖ ≡
|e|Emax

‖

mecω
=
|e|Bmax

‖

mecω
≈ 71

√
p+ 1

(
λ0
w0

)2

P 1/2[PW]. (28)

We conclude this section by pointing out that the longitudinal fields can be strong even for
θd � 1. Let us take a P = 0.6 PW circularly-polarized beam with l = −1, σ = 1, and p = 0. The
focal spot size is w0 = 3.0 µm and the wavelength is λ0 = 0.8 µm. In this case, θd ≈ 8.5× 10−2, so
our analysis that was performed in the paraxial approximation is applicable to this beam. It follows
from Eq. (26) that Emax

‖ ≈ 0.1E0. Taking into account that Emax
y = E0C0,l|l||l|/2 exp (−|l|/2) for

p = 0, we find that Emax
‖ /Emax

y = Bmax
‖ /Bmax

y ≈ 0.2. We also find from Eq. (28) that a‖ ≈ 3.8.

The corresponding dimensional field amplitudes are Emax
‖ ≈ 1.5× 1013 V/m and Bmax

‖ ≈ 51 kT.

3 Preliminary estimates for electron acceleration

In this section, we perform preliminary estimates for electrons accelerated in the near-axis region
by a helical laser beam whose field structure in this region predominantly consists of longitudinal
electric and magnetic fields. We assume that the electrons are injected into the laser beam near the
focal plane located at x̃ = 0. The injection is implied to occur when an incident beam is reflected off
a mirror at normal incidence. This process is examined self-consistently in Section 4 and Section 5
using kinetic simulations.

The phase velocity, vph, of E‖ wavefronts plays a key role in electron acceleration along the
central axis. For simplicity, we limit our analysis to the part of the pulse that is near the peak of
the envelope, which means that we can set g(ξ) ≈ 1 in Eq. (25). In order to determine vph, it is
convenient to re-write the expression for the longitudinal electric field given by Eq. (25) as

E‖ = −
Emax
‖ sin (Φ + Φ0)

1 + x2/x2R
, (29)

where the phase Φ is given by

Φ = 2
[
θ−2d (x/xR)− (p+ 1) tan−1(x/xR)

]
− ωt. (30)

The constant Φ0 can be interpreted as the injection phase for an electron that starts its acceleration
at x ≈ 0 at t ≈ 0. We define the phase velocity as vph = dx/dt for Φ = const. We differentiate
Eq. (30), where Φ = const, to obtain

0 =
vph
c
−
vph
c

(p+ 1)θ2d
1 + x2/x2R

− 1, (31)

where it was taken into account that θ2d = λ0/πxR. In the paraxial approximation (θd � 1 ), the
second term on the right-hand side is small. We neglect this term to find that vph/c ≈ 1. In order
to find the correction associated with θd, we set vph/c = 1 in the second term on the right-hand
side of Eq. (31) and obtain the following expression for the relative degree of superluminosity along
the central axis:

vph − c
c

≈
(p+ 1)θ2d
1 + x2/x2R

. (32)

The key feature here is the explicit dependence on the radial index p, with the superluminosity
being higher for higher-order radial modes.

The electron unavoidably slips with respect to the wavefronts as it moves forward, which limits
its energy gain. The slipping is determined by the difference vph − vx, where vph ≥ c and vx < c.

7



As the electron becomes ultra-relativistic due to the acceleration by E‖, it enters a regime where
c− vx � vph− c. In this regime, the slipping, or dephasing, is primarily determined by the relative
degree of superluminosity given by Eq. (32). The lowest estimate for the phase slip experienced by
an electron that has travelled from x0 to x is obtained by setting x = x0 + c(t − t0) in Eq. (30),
which yields

∆Φ = 2(p+ 1)
[
tan−1(x0/xR)− tan−1(x/xR)

]
(33)

For x0 � xR, this expression reduces to ∆Φ = −2(p + 1) tan−1(x/xR). The phase velocity is
superluminal near x = 0, but it decreases to c at x� xR. As a result, the total phase slip is finite
and it approaches ∆Φ = −(p+ 1)π at x� xR. There is a significant difference between the p = 0
mode and higher order radial modes. At p = 0, the phase slip is ∆Φ = −π, which means that some
electrons (this depends on the initial phase) can remain in the accelerating phase of E‖ until the
laser defocuses (x � xR) and E‖ becomes very weak. In contrast to that, all electrons experience
deceleration by E‖ at p ≥ 1, because they slip into the decelerating phase prior to strong defocusing
at x� xR.

In order to estimate the electron energy gain from E‖, we assume that the electron is ultra-
relativistic with c − vx � vph − c. In this case, the phase Φ in Eq. (29) can be replaced by
Φ ≈ Φ0 + ∆Φ, where ∆Φ is given by the already derived Eq. (33). The change in electron
momentum during the acceleration is obtained by integrating the momentum balance equation
dp‖/dt = −|e|E‖, which yields

∆p‖ = |e|Emax
‖

∫ t

t0

sin(∆Φ + Φ0 + π)dt′

1 + (x′)2/x2R
, (34)

where x′ is the electron location at time t′. We note that dx′/dt′ ≈ c in the considered regime, so we
can switch from integration over time to integration over the longitudinal coordinate by replacing
dt′ with dx′/c. After substituting the expression for Eq. (33), we obtain

∆p‖ =
|e|Emax

‖

c

∫ x

x0

sin(∆Φ + Φ0)dx
′

1 + (x′)2/x2R

= −
|e|Emax

‖ xR

2(p+ 1)c

(
cos Φ0 − cos

[
Φ0 + 2(p+ 1) tan−1(x0/xR)− 2(p+ 1) tan−1(x/xR)

])
.(35)

This result can be further simplified by assuming that x0 � xR, so that tan−1(x0/xR) ≈ 0 and

∆p‖ = −
|e|Emax

‖ xR

2(p+ 1)c

(
cos Φ0 − cos

[
Φ0 − 2(p+ 1) tan−1(x/xR)

])
. (36)

Equation (36) represents an important qualitative result, as it shows that the electrons can
retain a significant portion of the energy they gain from E‖. We find the terminal momentum gain
by taking the limit of x/xR → ∞ in Eq. (36). There is a profound difference between odd and
even radial radial modes, i.e. odd and even radial indices p. In the case of even modes with (e.g.
p = 0, 2, 4), we have

∆pterm‖ =
|e|Emax

‖ xR

(p+ 1)c
cos(Φ0 − π). (37)

The energy gain occurs for 0.5π < Φ0 < 1.5π regardless of the radial mode structure. Our as-
sumption that the electron is moving forward with an ultra-relativistic velocity breaks down for
1.5π/ < Φ0 < 2.5π, which invalidates Eq. (37) for these injection phases. In contrast to the even
radial modes, there is no terminal momentum gain, ∆pterm‖ = 0, for the odd radial modes regardless
of the injection phase. It is worth pointing out that this estimate was obtained under the assump-
tion that the electron is ultra-relativistic, so the analysis has to be revised along the parts of the
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Figure 3: The momentum gain predicted by Eq. (36) for electrons injected at phase Φ0 into a
right-circularly polarized beam (σ = 1, l = −1). The solid curves are for a beam with the radial
index p = 0, whereas the green and black dashed curves correspond to beams with p = 1 and p = 2,
respectively.

trajectory where c−vx ≥ vph− c. However, the value of ∆pterm‖ is unlikely to increase dramatically
as a result.

Figure 3 illustrates the results of our analysis for three different radial modes, p = 0, 1, and
2. The solid curves show electron acceleration by a beam with p = 0, as predicted by Eq. (36).
Both electrons are injected at a phase that leads to a net momentum gain. However, the delayed
injection of the electron shown with the solid blue curve (Φ0 = 0.6π) means that it slips into the
decelerating phase before the amplitude of E‖ becomes negligibly small due to the beam diffraction.
As a result, the net momentum gain is two times lower than for the case of Φ0 = 0.9π. Higher-
order modes speed up the electron slip into the decelerating phase, because the relative degree of
superluminosity given by Eq. (32) increases with p. This trend is clearly shown by the dashed
curves, representing modes with p = 1 and p = 2, respectively. In both cases, the injection phase is
Φ0 = 0.9π, which is the same phase as that for the solid red curve (p = 0). The green dashed curve,
corresponding to p = 1, rolls over, after a peak in momentum gain, at x̃ ≈ 1, whereas the black
dashed curve, corresponding to p = 2, rolls over even sooner when the electron reaches x̃ ≈ 0.5.
In the case of p = 1, the electron remains in the decelerating phase until the beam experiences
significant diffraction. As a result, there is no net momentum gain. In the case of p = 2, the
dephasing is faster, so the electron enters another accelerating region of the beam when it reaches
x̃ ≈ 1.5. The acceleration continues until the diffraction eliminates E‖. In this case there is a net
momentum gain, but it is smaller than in the case of p = 0 because the acceleration time is shorter
and the accelerating field (due to the diffraction) is weaker.

It is useful to recast our results for the momentum gain in terms of electron energy. The
energy of an ultra-relativistic electrons with momentum p is ε ≈ c|p| and, in our case, |p| ≈ p‖.
If the electron experiences a significant momentum gain, then the terminal longitudinal electron
momentum is pterm‖ ≈ ∆pterm‖ . Putting all these estimates together, we find that the terminal

electron energy is given by εterm ≈ c∆pterm‖ . For modes with an even p index, the momentum gain

is given by Eq. (37). We also take into account the relation between a‖ and P given by Eq. (28).
As a result we arrive to the following expression for the electron energy gain:

εterm[GeV] ≈ 0.72

p+ 1
cos(Φ0 − π)P 1/2[PW], (38)

The result is independent of the spot size w0 and wavelength λ0. At the end of Section 3, we
examined the field structure of a circularly-polarized 0.6 PW laser beam with l = −1, σ = 1, and
p = 0. According to Eq. (38), we expect this beam to generate electrons with hundreds of MeV in
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Figure 4: Field structure of an incident circularly-polarized Laguerre-Gaussian laser beam from
a 3D PIC simulation. The snapshots are taken at t = −9 fs. The laser beam and simulation
parameters are given in Table 1.

energy, since εterm ≈ 0.56 cos(Φ0 − π) GeV.

4 Simulation results for a normally incident 600 TW laser

In Section 3, we provided preliminary estimates showing that a properly chosen beam with twisted
wavefronts can generate forward-directed ultra-relativistic electrons. In this section, we present a
self-consistent analysis, performed using a 3D PIC simulation, of electron injection and subsequent
acceleration by a laser beam with dominant E‖ and B‖ in the near-axis region.

In our simulation, a 600 TW circularly-polarized Laguerre-Gaussian beam with l = −1, σ = 1,
and p = 0 is normally incident on a mirror that is initialized as a fully ionized plasma with a sharp
density gradient. The incident pulse propagates in the negative direction along the x-axis. The
laser envelope function g(ξ) has a temporal profile such that g(t) = sin2(0.5π ∗ t/τg) with a total
duration of τg = 20 fs. The beam width is w0 = 3 µm, the laser wavelength is λ0 = 0.8 µm, and
the focal plane is located at x = 0 µm. The mirror is a carbon plasma with an electron density
profile ne = 500nc exp[−20(x + 0.3 µm)/λ0] at x ≥ −0.3 µm, where nc = 1.8 × 1027 m−3 is the
critical density for λ0 = 0.8 µm. While ion mobility does not appear to affect the simulation
results, the ions are left mobile so as to ensure a more realistic scenario. The initial kinetic energy
of all particles (electrons and ions) is set to zero. In order to follow the electrons bunches over a
long period of time a moving window is employed. The window size is set to encompass the entire
simulation box and moves at a velocity c, beginning at a time t =11 fs . Additional simulation
details are provided in Table 1.

The field structure of the incident laser beam in the (x, z)-plane is shown in Fig. 4. The time
snapshots are taken at t = −9 fs. We define t = 0 as the time when, in the absence of the mirror,
the peak of the laser envelope reaches at x = 0. As can be seen in Fig. 4, the longitudinal fields
Ex and Bx are strongest on-axis where the transverse field Ez tends to zero. The field structure
in these snapshots agrees with the paraxial analysis presented in Section 2 for beams with twisted
wavefronts.

The laser-plasma interaction that occurs after the laser reaches the mirror can be sorted into
two stages: the injection stage and the acceleration stage. The injection stage occurs during laser
reflection off the plasma mirror. At this stage, plasma electrons are drawn out of the mirror by
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Laser parameters

Peak power (period averaged) 0.6 PW
Twist and radial index l = −1, p = 0
Right-circular polarization σ = 1
Wavelength λ0 = 0.8 µm
Pulse duration (sin2 electric field) τg = 20 fs
Focal spot size (1/e electric field) w0 = 3 µm
Location of the focal plane x = 0 µm
Direction of the incident laser −x
Other parameters

Position of the bulk target −1.0 µm ≤ x ≤ −0.3 µm
Position of the pre-plasma −0.3 µm < x ≤ 0.0 µm

Electron and C+6 density
ne = 500 nc and nCarbon =
83.3 nc

Gradient length L = λ0/20
Simulation box (x× y × z) 10 µm× 30 µm× 30 µm
Moving window start time 11 fs
Moving window velocity c

Cell number (x× y × z) 400 cells × 800 cells × 800
cells

Macroparticles per cell for electrons
300 at r < 2.5 µm, 36 at r >
2.5µm

Macroparticles per cell for C+6 24

Table 1: 3D PIC simulation parameters.

96 98 100 102 104
0

0.2

0.4

0.6

0

1

2

3

98 98.2 98.4
0

0.2

0.4

0 0.2 0.4 0.6
0

2

4

0 100 200 300
0

0.2

0.4

0.6

0

2

4

0 20 40
0.3

0.4

0.5

0

1

2

Figure 5: (a) Accelerated electron bunches at t = 261 fs. The color shows the distribution of
electrons with r < 1.5 µm in the (εe, x)-space. The inset shows the structure of the third bunch.
(b) The energy spectrum dN/dεe in the third bunch at t = 261 fs for electrons with r < 1.5 µm for
cases with (blue line) or without (black line, multiplied by 10 to aid the comparison) the force from
Bx in the electron equation of motion. (c) The time evolution of the energy spectrum of the third
bunch. The black dashed curve is the prediction of Eq. (36) with Φ0 = 0.8π. (d) The energy-angle
distribution in the third bunch at t = 261 fs.
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laser fields and injected into the near-axis region of the laser beam in front of the mirror. The
electron injections stops after the laser beam is fully reflected off the mirror. Results from tracking
the particles in the third bunch back to the target surface show a complex relationship between
the transverse and longitudinal field structures. This process requires significant further research
that is beyond the scope of this article. During the acceleration stage, the injected electrons travel
with the reflected laser beam away from the surface of the mirror. Their longitudinal motion is
caused by E‖ of the reflected laser beam. Only those electrons that are injected into a region with
E‖ < 0 can accelerate while moving away from the mirror. On the other hand, no acceleration
is possible when E‖ > 0 in the vicinity of the mirror surface. As a result, oscillations of E‖ > 0
near the mirror surface generate electron bunches rather than a continuous electron beam. The
maximum areal density of a bunch, ρe, (integral of ne along the bunch) can be estimated by taking
into account that the injection process during one laser period stops once the space-charge of the
extracted electrons shields E‖ of the laser. This yields ρe ≈ a‖ncc/ω or

ρe[m
−2] ≈ 1.3× 1022P 1/2 [PW] λ0 [µm] w−2 [µm]. (39)

The implication is that a beam with a strong longitudinal electric field is expected to produce high
density bunches.

Figure 5(a) shows that the accelerated electrons indeed travel in bunches. The snapshot is
taken at t = 261 fs after the injected electrons have travelled roughly 100λ0 along the x axis with
the laser beam. The plot shows the distribution of the electrons located in the region near the
axis with r < 1.5 µm in the (εe, x)-space. The compactness of the bunches, both in transverse
[see Fig. 6(c)] and longitudinal directions [see Fig. 5(a)], ensures that the electrons in each bunch
essentially experience the same accelerating field. This explains the narrow energy spread within
each bunch in Fig. 5(a).

The evolution of the energy spectrum within a single bunch is plotted in Fig. 5(c). The selected
bunch is marked as bunch #3 in Fig. 5(a). The bunch retains a relatively narrow energy spread
during the acceleration process. The dashed curve shows the prediction given by Eq. (36) for an
injection phase of Φ0 = 0.8π. The good agreement indicates that the accelerated electrons are
likely injected into the same phase of the reflected beam. There is also a strong correlation between
electrons which have a high energy and those with a low divergence angle. This is best seen in
Fig. 5(d) which shows the distribution of energy versus divergence angle θ = arctan

(
p⊥/p‖

)
of the

third bunch.
The presented simulation demonstrates that a normally incident 600 TW beam can generate

several dense bunches of ultra-relativistic electrons. Specifically, the terminal energy of the electrons
in the third bunch is 0.47 GeV with a FWHM of ∼ 10% [see Fig. 5(b) for a snapshot at t = 261 fs].
The bunch has a duration of roughly 400 as and a total electron charge of 26 pC, while the
normalized transverse emittance is 9.5 µm.

5 The impact of the longitudinal magnetic field on electron dy-
namics

The most distinctive feature of the considered laser beam with twisted wavefronts is the strong
longitudinal magnetic field B‖ in the near-axis region. In what follows, we examine the profound
impact of this field on electron dynamics.

In addition to E‖, the electrons in the near-axis region experience B‖ that can provide transverse
confinement at an early stage of the acceleration before the electron momentum becomes predom-
inantly forward-directed. The importance of B‖ can be assessed by estimating the Larmor radius,
rL, for an electron injected with transverse relativistic momentum p⊥ into the field near the focal
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Figure 6: A comparison between 3D PIC simulations with (upper row) and without Bx (bottom
row) in the electron equations of motion. Both simulations use the same 600 TW laser beam with
parameters given in Table 1. All snapshots are taken at t = 9 fs. (a) and (b): Electron density
on a log-scale, with the color representing log(ne/nc). The blue, red, and green contours denote
ne = 0.1nc, 0.5nc, and nc. The dashed rectangle shows the radial and longitudinal extent of what
is referred to as the third bunch in the remaining panels. (c) and (d): Areal density of the electrons
in the third bunch. (e) and (f): Cell-averaged electron divergence angle 〈θ〉 in the third bunch.
The angle θ ≡ arctan(p⊥/px) of an individual electron is averaged over the electrons located within
the cells with the same y and z coordinates.

plane, whose strength is given by Eq. (28). We find that

rL/w0 ≈
2.2× 10−3√

1 + p

(
p⊥
mec

)(
w0

λ0

)
P−1/2 [PW]. (40)

In the case of the 600 TW laser beam considered in Section 4, we have rL/w0 ≈ 10−2p⊥/mec.
Even for those electrons that are injected with p⊥/mec ≈ |e|Emax

⊥ /mecω ≈ 19, the Larmor radius,
rL ≈ 0.2w0, is significantly smaller than the beam waist. By keeping the injected electrons close
to the axis, B‖ ensures that the electrons are unable to sample strong E⊥ and gain additional
transverse momentum. As a result, they are predominantly accelerated by E‖, which leads to a
strongly collimated beam. It is important to point out that B‖ is shifted by π/2 with respect to
E‖, which means that the direction of the electron rotation induced by the magnetic field changes
during the acceleration process.

At the injection stage, plasma electrons experience a complicated interplay of transverse and
longitudinal fields that is not captured by the presented estimate. The impact of Bx during this
process can be elucidated by removing its effects from the electron dynamics even though this
does lead to a somewhat non-physical scenario. To remove the effect of Bx in the PIC simulation,
we multiply the Bx variable by zero in the relevant section of the particle pusher. Figure 6(b)
shows the electron density obtained using this approach for the laser-mirror interaction examined
in Section 4. For comparison, Fig. 6(a) also shows the electron density from the original simulation
where the effect of Bx is included. The bunches in Fig. 6(b) form in a ring-like structure away
from the central axis. The structure of the bunches appears superficially similar to that observed
for radially polarized beams at lower intensities [9]. In contrast to that, the electron bunches in
Fig. 6(a) are formed close to the axis in the region where the longitudinal field dominates. The
bunches become more compact as they move away from the mirror, with the electron density
exceeding nc.

Figures 6(c) - (f) compare the areal density and divergence angle between the two simulations.
The comparison is performed for the electrons within the third bunch in Figs. 6(a) and (b). The
radial and longitudinal extend of the third bunch is shown with the the black dashed rectangles in
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Figure 7: (a) Time evolution of the electron distribution over the divergence angle θ in the third
bunch (r < 1.5 µm). (b) Trajectories of electrons randomly chosen from the third bunch at
t = 261 fs. The trajectories correspond to 6 fs ≤ t ≤ 261 fs, with the circles marking the electron
positions at t = 261 fs. The transverse coordinates are normalized to the local width of the laser

beam w(x) = w0

√
1 + x2/x2R.

Figs. 6(a) and (b). The difference in collimation is striking even at this injection stage (t = 9 fs).
The higher areal density point-like structure seen in Fig. 6(c) is complimented by a corresponding
small cell-averaged electron divergence angle 〈θ〉 seen in Fig. 6(e). The averaging, indicated by the
angular brackets, is performed by taking all the electrons located within the cells with the same y
and z coordinates, i.e. the cells with the same projection onto the transverse plane. The averaging
accounts for the difference in the numerical weight wα of individual macro-particles caused by
the initial density gradient: 〈θ〉 =

∑
αwαθα/

∑
αwα. In the case where the influence of Bx is

removed [with the corresponding plots of areal density in Fig. 6(d), and cell-averaged divergence in
Fig. 6(f)], we see a ring-like ‘bunch’ with divergent profile indicating that it will continue to diverge
long after the injection stage is over. The contrasting pictures between the two simulations show
the important role of the Bx.

Figure 5(b) shows the energy spectrum of the third bunch in the simulation without the Bx
forces at a much later time (t = 261 fs). The same figure shows the spectrum for the third bunch in
the original simulation at the same time instant. Both spectra are calculated for the electrons in the
near-axis region with r < 1.5 µm. Not surprisingly, the electrons moving close to the central axis
achieve similar energies in both simulations. However, the number of such energetic electrons in the
simulation without the Bx forces is an order of magnitude lower. During the injection process and
at the very early acceleration stage the longitudinal magnetic field provides a significant amount of
transverse electron confinement. This keeps electrons in the region with a strong Ex but weak E⊥,
which ensures good collimation of the electron bunches.

To further examine the transverse electron motion during the acceleration process, we have
tracked several electrons. The electrons are randomly selected from the third bunch (r < 1.5 µm) at
t = 261 fs. The projection of the electron trajectories onto the transverse plane for 6 fs ≤ t ≤ 261 fs
is shown in Fig. 7(b), where the circles indicate the electron positions at t = 261 fs. The transverse

coordinates are intentionally normalized to the local width of the laser beam w(x) = w0

√
1 + x2/x2R

to correlate the electron location with the strength of the transverse electric field E⊥ that increases
away from the central axis. As expected, there is a pronounced rotation induced by B‖ that prevents
electrons from expanding and reaching a region with a strong E⊥. This rotation is also observed
to reverse, effectively twisting the trajectory of the electrons. This feature is caused by the π/2
shift between E‖ and B‖. The sign of B‖ changes during the acceleration process, which causes the
electrons to rotate in the opposite direction and manifests itself as the twist seen in Fig. 7(b) for
each individual trajectory.

Another important metric of the electron dynamics is the divergence angle θ. Figure 7(a) shows
how the electron distribution over θ = arctan

(
p⊥/p‖

)
changes with time in the third bunch. We
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Figure 8: 3D PIC simulation results for a 25◦ incidence angle. The snapshots are take at t = 39 fs
and plotted in an (x′, y′, z) system of coordinates whose x′-axis points in the specular direction.
(a) Areal electron density in a third bunch moving in the specular direction. (b) Cell-averaged

electron divergence angle 〈θ′〉 in the third bunch. The angle θ′ ≡ arctan
(√

p2y′ + p2z

/
px′
)

is

averaged on every mesh cell of the (y′, z) plane.

find that the bunch becomes less divergent over time, which is a clear indicator of the dominant
role played by E‖. Indeed, θ decreases because p‖ increases at a much faster rate than p⊥. The
increase in p‖ is caused by E‖, as already discussed in Section 3. The changes in p⊥ are caused by
E⊥. The longitudinal magnetic field has no direct impact on the divergence angle since it rotates
p⊥ without changing its amplitude. However, by keeping the electrons close to the central axis, the
magnetic field prevents them from experiencing a strong E⊥ that peaks off axis and, as a result, it
prevents p⊥ from increasing.

We conclude this section by presenting results for a case of oblique incidence. Experimental
facilities often require that laser pulses are not shot at normal incidence onto a reflecting surface
so as to avoid damage to optical systems. This was our primary motivation to examine the oblique
incidence case. In our simulation, the laser beam is still incident in the negative direction along the
x-axis, but the target is now titled by 25◦. In order to make the simulation manageable, we perform
it in a window moving along the x-axis. The simulation time is limited compared to the case of
normal incidence, because the electron bunches, that now travel at an angle to the x-axis, leave
the simulation window prematurely. This setup does not allow enough time for the acceleration
process to reach a plateau as in the normal incidence case and so the final distribution function
is left for future research. Despite this limitation this simulation will allow testing the early time
conditions that set up the acceleration process and bunch formation.

We find that the laser reflection again generates a series of dense collimated bunches, which
indicates the robustness of the considered approach to electron acceleration. The areal density ρe
and the cell-averaged divergence angle 〈θ′〉 in the third bunch are shown in Fig. 8(a, b). These
snapshots are taken at t = 52 fs. We use an orthogonal (x′, y′, z) system of coordinates whose

x′-axis points in the specular direction. The divergence angle θ′ ≡ arctan
(√

p2y′ + p2z

/
px′
)

is the

angle between the momentum vector p and the x′-axis. Even though the axial symmetry is broken,
there is still strong evidence of a dense non-divergent bunch close to the laser axis. The high degree
of collimation following the injection suggests that the reflected laser pulse would generate highly
energetic bunches with similar characteristics to the case presented at normal incidence.
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6 Summary and discussion

In summary, this manuscript presents a detailed analysis of the topology of linearly and circularly
polarized Laguerre-Gaussian laser beams. It is shown that the beams with a twist index |l| = 1
have a distinct field structure in the near-axis region with dominant E‖ and B‖. In the case of
circularly polarized beams, the rotation of E⊥ should be in the opposite direction to the rotation
of the wavefronts, i.e. σ = −l, to achieve such a structure. The manuscript also presents kinetic 3D
PIC simulations for a 600 TW circularly polarized beam (p = 0, l = −1, and σ = 1) reflected off a
plasma mirror. The dominant E‖ and B‖ combine to inject dense electron bunches upon reflection.
The bunches are effectively accelerated by E‖ while being confined by B‖. The magnetic field
prevents the bunch electrons from travelling too far radially outwards, so they sample a relatively
weak transverse electric field and remain well-collimated. The bunch with the largest energy has
a distinctly narrow energy spread with a FWHM of just 10%. The terminal energy gain for an
individual bunch is well predicted by the analytical model developed in the manuscript. The charge
of a single bunch in the simulation is as high as 26 pC. The bunches have a duration of ∼ 400 as
and a remarkably low divergence of just 1.15◦ (20 mrad).

The nearest analogue to the discussed mechanism is the acceleration by a radially polarized
laser beam. Such a beam also has a strong longitudinal electric field that dominates the field
structure in the region close to the central axis. However, in contrast to the beams considered in
this manuscript, the radially polarized beam lacks a strong longitudinal magnetic field in the region
close to the axis. As shown in Appendix A, the absence of B‖ has a profound impact on the electron
acceleration even though the amplitude of E‖ is the same as in the case of the radially polarized
beam considered in Section 4. In the absence of B‖, there is no mechanism confining electrons in
the region with r/w(x) � 1. The lack of confinement also manifests itself in the case of oblique
incidence. We have shown some results that indicate the robustness of the electron injection by
a beam with a strong B‖. In contrast to that, the injection by radially polarized beams is not as
robust [30], which makes experimental implementation extremely challenging.

The transverse fields do have a role where they are, in-part, responsible for detaching electrons
from the pre-plasma. The exact dynamical process relating to the transverse fields is likely of less
importance than that of the longitudinal fields. Previous studies have discussed the ponderomotive
force as a mechanism for keeping electrons [31] (and ions [32]) within the central region of the
beam. However, as can be seen in the comparison made in Fig. 6, this does not appear to be the
dominant mechanism confining the electrons close to the axis in our case, at least at early times.

While this study is limited to a relatively short laser pulse with 3 peaks at high amplitude,
a TiSaphire laser with a FWHM of around 30 fs will have a train of roughly 15 peaks. The
energy of each bunch is strongly tied to the amplitude at the position in the envelope. After being
injected, electrons are accelerated directly by laser field in vacuum, implying that they are not likely
subjected to instabilities that occur in bulk plasmas. The density of the bunches is also related to
the longitudinal field, with higher densities recorded with higher amplitudes[28]

Using the scheme detailed in the manuscript, it may be possible to construct a source of highly
collimated dense attosecond bunches of ultra-relativistic electrons suitable for potential applica-
tions. This can be achieved using a combination of high-power laser systems, similar to those
already in use today. In addition to this, optical techniques that have already been put to exper-
imental use can be used to create twisted wave-fronts necessary for this mechanism. Given the
research presented here, with some further studies, a working design for a small-scale high-energy
electron accelerator may be within grasping distance.
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Figure 9: Electric field components of a radially polarized laser beam before it encounters the mirror
. Panels (a) and (d) show Ez; panels (b) and (e) show Ey; panels (c) and (f) show Ex. The left
column [(a), (b), and (c)] shows the field structure in the (x, z)-plane at y = 0. The right column
[(d), (e), and (f)] shows the field structure in the (y, z)-plane at the x-position indicated with the
dashed line. All the snapshots are taken a time t ≈ −9 fs.
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A 3D PIC simulation results for electron acceleration by a radially
polarized laser beam

The acceleration scheme presented in this manuscript is superficially similar to that associated
with radially polarized beams [9, 30]. Near the axis, radially polarized beams also have a strong
longitudinal electric field, so a comparison of the two schemes is worth discussing.

The difference in the field topology can be illustrated by constructing a radially polarized beam
using two circularly-polarized Laguerre-Gaussian beams from Section 2: the first with l = 1, σ = −1
and the second, a mirror image of the first, with l = −1, σ = 1. We set E0 = E∗/2 for each of the
beams in Eq. (8) that describes the structure of Ey. The resulting beam structure will be compared
to a circularly polarized beam with E0 = E∗ and l = −1, σ = 1, and p = 0. The superposition of
the two beams has

Ey =
1

2
E∗

(
eiφ + e−iφ

)
D = E∗ cosφD, (41)

where D(x̃, r̃, ξ) = g(ξ) exp(iξ)ψ±1,p(x̃, r̃, φ) exp(∓iφ) is a function that, for compactness, incorpo-
rates all the remaining dependencies besides the dependence on φ. We next take into account that
Ez = iσEy in each of the circularly-polarized beams and find that the superposition of the two
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beams has

Ez =
1

2
E∗

(
−ieiφ + ie−iφ

)
D = E∗ sinφD. (42)

These Ez and Ey represent a radially polarized laser beam:

E⊥ = erE∗D. (43)

In the context of the electron acceleration mechanism, the biggest difference between the radially
polarized beam and the circularly polarized beam with twisted wavefronts is the absence of B‖ near
the axis. In order to find the structure of the longitudinal fields, we use Eqs. (19) and (20). Close
to the axis, the longitudinal electric fields of the two beams are the same, so the longitudinal field
of the radially polarized beam is given by

Ex =
iθd
2

1

r̃
e−iφ

[
E∗
2
eiφ
]

+
iθd
2

1

r̃
eiφ
[
E∗
2
e−iφ

]
=
iθd
2

1

r̃
E∗. (44)

It follows directly from Eq. (19) that it is equal to Ex of the circularly polarized beam with
E0 = E∗ and l = −1, σ = 1, and p = 0 that we are using for our comparison. On the other hand,
the longitudinal magnetic fields of the two circularly-polarized beams cancel each other out, so that
there is no strong Bx close to the axis of the resulting radially polarized beam:

Bx = −θd
2

1

r̃
e−iφ

[
E∗
2
eiφ
]

+
θd
2

1

r̃
eiφ
[
E∗
2
e−iφ

]
= 0. (45)

In contrast to this, Bx of the circularly polarized beam with l = −1 and σ = 1 that we use for our
comparison has the same amplitude as Ex.

Even though Ex has the same amplitude in the two beams that are being compared, the power in
the radially polarized beam is two times lower. In order calculate the power of the radially polarized
beam, we note that Bz = Ey and By = −Ez. The longitudinal component of the Poynting vector
is then given by

Sx =
c

4π

[
(ReEy)

2 + (ReEz)
2
]

=
c

4π
E2
∗ (ReD)2 . (46)

The peak period-averaged power is

Prad =

〈∫ 2π

0
dφ

∫ ∞
0

Sxrdr

〉
=
cw2

0

4π

∫ 2π

0
dφ

∫ ∞
0

〈
(ReD)2

〉
r̃dr̃ (47)

with g(ξ) = 1. After time-averaging, the expression on the right-hand side is identical to the
expression on the right-hand side of Eq. (15). Thus the peak period-averaged power of the radially
polarized beam is

Prad =
cw2

0

8π
E2

0 . (48)

Not that it is equal to Plin, the power of a linearly polarized beam with E0 = E∗, given by Eq. (16).
On the other hand, the peak period-averaged power of a circularly polarized beam, PCP , with
E0 = E∗, l = −1, σ = 1, and p = 0 is 2Plin, where Plin is given by Eq. (16). We thus have

PCP =
cw2

0

4π
E2

0 = 2Prad. (49)

If both types of beams can be generated at the same power, then a potential advantage of using
the radially polarized beam would be its ability to generate higher E‖. However, very different
optical techniques are employed to generate the two types of beams. The radially polarized beams
are produced using transmissive optical elements, which limits the incident power. In contrast to
that, the beams with twisted wavefronts can be produced by adding an etched mirror [25, 13] at
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Figure 10: Sensitivity of the electron acceleration by a 300 TW radially polarized beam to simulation
parameters. The top row [subplots (a) and (b)] shows results for the parameters from Table 1. The
bottom row [subplots (c) and (d)] shows results from a simulation with a reduced cell size of 20
nm and a higher-order field solver. The black dashed curve is prediction of Eq. (36) for Φ0 = 0.8π.
The left column is the energy distribution as a function of time for the third bunch of electrons.
The right column is energy-angle distribution at t = 261 fs.

some point into a traditional laser-system. This method relies of laser reflection, so it does not
have the same power limitation. This means that it can potentially be used to generate the desired
beams at very high power and reach very strong E‖.

To compare the acceleration by the two beams with the same strength of E‖, we performed
an additional simulation for a 300 TW radially polarized beam. With the exception of the laser
power, all other simulation parameters are the same as those listed in Table 1 and used to obtain
the results presented in Section 4. The electric field structure in the (x, z)-plane at t = −9 fs is
shown in Fig. 9. The longitudinal electric field structure in the region close to the axis is nearly
identical to that shown in Fig. 4 for the circularly-polarized Laguerre-Gaussian beam. There is no
strong B‖ near the axis, which agrees with the analytical analysis given by Eq. (44) and Eq. (45).

To obtain a comparable picture of the phenomena in the new simulation, we again focus on the
third bunch formed during the reflection process (see Fig 6 for the location of this in the circularly-
polarized Laguerre-Gaussian case). The evolution of the energy spectrum of this bunch is shown for
the radial polarized case in Fig. 10(a) whereas the energy-angle distribution is shown in Fig. 10(b).
These plots can be compared to similar plots in Fig. 5. In the radially polarized case, we see a
slightly lower peak kinetic energy at later times. In addition to this, the bunch has a wider energy
spectrum. When looking at the energy-angle distribution, the bunch appears to be spread over a
slightly wider divergence angle. The spectra in the radially-polarized case do not show the highly
narrow energy spread features present in the circularly-polarized case.

Previous studies [30] have shown that the acceleration by radially polarized beams can be af-
fected by the high-harmonic radiation emitted during the reflection. To test for this sensitivity, we
performed two more simulations, one for each beam scenario. In these simulations, the cell size is
reduced from 25 nm to 20 nm and the default second order Yee scheme is changed to the fourth or-
der version. The results for the circularly-polarized Laguerre-Gaussian beam are unchanged, which
is unsurprising given the extensive resolution tests previously run [28, 33]. The new results for the
radially-polarized case are visibly different compared to those from the original simulation: there
are differences in the maximum energy, energy spread, and the energy-angle distribution. There is
also some evidence, which is not plotted here, of a second harmonic forming on reflection of the
beam in the radially polarized case. No such high-harmonic generation is evident in the circularly-
polarized Laguerre-Gaussian case. The studies focused on radially polarized beams typically use the
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field solvers specifically designed for accurate propagation of high-harmonic generation [9, 30, 34].
While the results of Fig. 10 primarily show the sensitivity of the radially polarized mechanism to
resolving the high-harmonic generation, there is experimental evidence [30] that high-harmonics do
have a significant impact when reflecting this type of beam at an angle away from normal off a
plasma mirror.
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