# **BMJ Open** Impact of COPD and asthma on inhospital mortality and management of patients with heart failure in England and Wales: an observational analysis

Claudia Gulea <sup>1,2</sup> Rosita Zakeri,<sup>3</sup> Constantinos Kallis,<sup>1,2</sup> Jennifer K Quint <sup>1,2</sup>

#### **To cite:** Gulea C, Zakeri R, Kallis C, *et al.* Impact of COPD and asthma on in-hospital mortality and management of patients with heart failure in England and Wales: an observational analysis. *BMJ Open* 2022;**12**:e059122. doi:10.1136/ bmjopen-2021-059122

Prepublication history and additional supplemental material for this paper are available online. To view these files, please visit the journal online (http://dx.doi.org/10.1136/ bmjopen-2021-059122).

Received 10 November 2021 Accepted 15 June 2022

# Check for updates

© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

<sup>1</sup>National Heart and Lung Institute, Imperial College London, London, UK <sup>2</sup>NIHR Imperial Biomedical Research Centre, London, UK <sup>3</sup>British Heart Foundation Centre for Research Excellence, King's College London, London, UK

# Correspondence to

Claudia Gulea; c.gulea18@imperial.ac.uk

# ABSTRACT

**Objective** To evaluate the association between having concomitant chronic obstructive pulmonary disease (COPD) or asthma, and in-patient mortality and post-discharge management among patients hospitalised for acute heart failure (HF).

**Setting** Data were obtained from patients enrolled in the National Heart Failure Audit.

**Participants** 217 329 patients hospitalised for HF in England–Wales between March 2012 and 2018.

**Outcomes** In-hospital mortality, referrals to cardiology follow-up and prescriptions for HF medications were compared between patients with comorbid COPD (COPD-HF) or asthma (asthma-HF) versus HF-alone using mixedeffects logistic regression.

**Results** Patients with COPD-HF were more likely to die during hospitalisation, and those with asthma-HF had a reduced likelihood of death, compared with patients who had HF-alone ((adjusted)OR<sub>adj</sub>, 95% Cl: 1.10, 1.06 to 1.14 and OR<sub>adj</sub>, 95% Cl: 0.84, 0.79 to 0.88). In patients who survived to discharge, referral to HF follow-up services differed between groups: patients with COPD-HF had reduced odds of cardiology follow-up (OR<sub>adj</sub>, 95% Cl 0.79, 0.77 to 0.81), while cardiology referral odds for asthma-HF were similar to HF-alone. Overall, proportions of HF medication prescriptions at discharge were low for both COPD-HF and asthma-HF groups, particularly prescriptions for beta-blockers.

**Conclusions** In this nationwide analysis, we showed that COPD and asthma significantly impact the clinical course in patients hospitalised for HF. COPD is associated with higher in-patient mortality and lower cardiology referral odds, while COPD and asthma are both associated with lower use of prognostic HF therapies on discharge. These data highlight therapeutic gaps and a need for better integration of cardiopulmonary services to improve healthcare provision for patients with HF and coexisting respiratory disease.

# INTRODUCTION

Chronic obstructive pulmonary disease (COPD) and asthma frequently coexist with heart failure (HF) and are independently associated with mortality and increased healthcare use.<sup>1 2</sup> This has been explained by shared systemic inflammation, worsened

# STRENGTHS AND LIMITATIONS OF THIS STUDY

- ⇒ This study evaluates the association between respiratory disease and in-hospital mortality and management outcomes in patients hospitalised with heart failure (HF) in a representative population from England and Wales.
- ⇒ HF diagnosis was based either on diagnostic tests or clinical investigations which limited misclassification bias.
- ⇒ HF with preserved ejection fraction was an exclusion diagnosis (ie, defined as HF in patients who did not have reduced ejection fraction) due to lack of information regarding specific diagnostic tests to confirm preserved ejection fraction status.
- ⇒ There was a large proportion of missing data regarding bronchodilators and inhaled corticosteroid prescriptions which prevented evaluation of their impact on outcomes.

by the presence of pulmonary disease as well as suboptimal HF management.<sup>3</sup> Evidence suggests that patients with HF and comorbid COPD are less likely to receive guideline recommended treatment for their HF. For example, beta-blockers which are used in the management of HF with reduced ejection fraction (HFrEF) are often not prescribed to patients with COPD, due to fear of bronchoconstriction,<sup>4</sup> reduced effectiveness of emergency beta-agonist medication, or difficulty in discriminating between COPD and asthma.<sup>5</sup>

Less data exist on the relationship between asthma and HF. Some studies have shown that asthma is associated with an increased occurrence of cardiovascular disease while others suggest this is limited to women or smokers<sup>6</sup> and depends on age of asthma onset.<sup>7</sup> This is further complicated by a component of chronic irreversible airflow obstruction in some people with long-standing asthma, associated with a reduced response to asthma therapy.<sup>8</sup> This may, in turn, affect treatment choices in this group of patients and increase vulnerability to adverse events, versus either disease occurring alone. Meta-analyses and observational studies have suggested that the use of beta-agonists or inhaled corticosteroids in both COPD and asthma has been associated with HF-onset, HF-related hospitalisation and increase in cardiovascular events,<sup>9–11</sup> which depend on disease severity and study setting, but nevertheless worsen prognosis.<sup>17</sup>

Our main aim was to compare in-hospital mortality and post-discharge HF management (referrals to HF services, discharge medication) among patients admitted to hospital with decompensated HF, with and without COPD or asthma in a sample of patients from the National Heart Failure Audit (NHFA) from England and Wales. We also investigated whether ejection fraction (EF) status affects outcomes in these patient groups.

#### **METHODS**

We included patients older than 18 years of age admitted to hospital for HF between March 2012 and April 2018 whose data were submitted to the NHFA. We considered their first HF hospitalisation only (online supplemental methods, table 1).

#### **Exposures**

*COPD* was defined as having a history of COPD—chronic bronchitis and/or emphysema, confirmed by spirometry or beta agonist/steroid inhaler use.

Asthma was defined as having a history of childhood asthma and atopy or having an asthma diagnosis confirmed by a respiratory physician.

No diagnostic test results were provided for COPD or asthma (online supplemental table 2), and for the purposes of this work were based on being recorded as 'yes' (present) or 'no' (absent) in the audit data as defined previously.

*EF status* was defined as HFrEF and HF with preserved EF (HFpEF), determined through echocardiography, MRI, nuclear scan or angiogram. Those with an EF <40% were categorised as HFrEF. Due to a lack of information regarding specific diagnostic tests required to make a HFpEF diagnosis, we determined HFpEF as patients not categorised as HFrEF.<sup>12</sup>

*Covariates* were age, sex, New York Heart Association (NYHA) classification and place of care (cardiology ward vs other place of care (ie, general ward)) and comorbidities (atrial fibrillation (AF), ischaemic heart disease (IHD), diabetes, valve disease, hypertension (online supplemental table 2)).

#### **OUTCOMES**

Our primary outcome was in-hospital death during the index event (HF admission), defined as a dichotomised variable (died/alive at discharge), according to COPD or asthma status. Secondary analyses included postdischarge referral to HF services (cardiology, HF nurse, HF MDT (multidisciplinary team)) and prescriptions for HF medications at discharge in those with HFrEF.

#### Statistical analysis

Differences in baseline characteristics between patients with COPD-HF/asthma-HF and HF-alone are presented using percentages for categorial variables and medians and IQRs for continuous variables. We assessed differences between groups using  $\chi^2$  and Kruskal-Wallis tests. We assessed differences in outcomes between patients with COPD-HF compared with HF-alone and between asthma-HF compared with HF-alone using multilevel logistic regression with a random effect for hospital, to calculate ORs and 95% CIs (online supplemental methods). In the main analysis, we adjusted for confounders with less than 20% missing data: age, sex, comorbidities, place of care and NYHA status. The model building process is presented in online supplemental table 2. Analyses of referrals were conducted similarly and excluded patients who died in-hospital. Associations between COPD or asthma and HF medication prescriptions at discharge (beta-blockers, ACE inhibitors (ACEis), angiotensin receptor blockers (ARBs) and mineralocorticoid receptor antagonists (MRAs)) excluded those with HFpEF.

#### Sensitivity analyses

Due to potential confounding, smoking and body mass index (BMI) were multiply imputed using a multilevel approach (online supplemental methods). We also repeated the main analysis in a cohort of patients including only a 'confirmed HF diagnosis' (ICD-10 HF diagnosis confirmed by imaging/BNP testing or adjudicated by a clinician in the absence of echocardiography).<sup>13</sup>

Analyses were performed with R V.4.0.3.

### RESULTS

Baseline characteristics are presented in table 1. In total, 217329 patients were admitted to hospital in England-Wales due to decompensated HF between 2012 and 2018, with data on COPD/asthma status available (online supplemental figure 1). The median age was 81 years (IQR 72-87) and 53.7% were male. In-hospital death occurred in 12% of patients. COPD was diagnosed in 15% of patients and asthma in 6.6%. Most patients were characterised by either marked or severe breathlessness and half had a recorded HF management plan in place at discharge. Length of stay and deprivation ranking did not differ significantly between patients with COPD-HF, asthma-HF and HF-alone. Patients with COPD-HF were mostly male, were less often admitted to cardiology and were more frequently diagnosed with IHD compared with those with HF-alone; hypertension was slightly less common among patients with COPD-HF, whereas diabetes was more common. The proportion of patients with HFpEF was marginally higher in the COPD-HF group, compared with the HF-only group. Patients with asthma-HF were mostly female, with higher levels of diabetes

| Table 1                | Baseline characteristics according                | to COPD and asthm   | na status in patients h | ospitalised for HF in E | ngland-Wales       |
|------------------------|---------------------------------------------------|---------------------|-------------------------|-------------------------|--------------------|
|                        |                                                   | HF-alone (N=170297) | COPD +HF (N=32695)      | Asthma +HF (N=14400)    | Overall (N=217392) |
| Age, media             | an (IQR)                                          | 81 (72, 88)         | 79 (72, 85)             | 79 (69, 86)             | 81 (72, 87)        |
| Missing                |                                                   | 67 (0.1%)           | 22 (0.1%)               | 10 (0.1%)               | 199 (0.1%)         |
| Male                   |                                                   | 91837 (53.9%)       | 19072 (58.3%)           | 5936 (41.2%)            | 116845 (53.7%)     |
| Missing                |                                                   | 74 (0.1%)           | 44 (0.1%)               | 21 (0.1%)               | 239 (0.1%)         |
| Place of a             | dmission                                          |                     |                         |                         |                    |
| Cardiology             | /                                                 | 76428 (44.9%)       | 12361 (37.8%)           | 6147 (42.7%)            | 94936 (43.7%)      |
| Other                  |                                                   | 93358 (54.8%)       | 20246 (61.9%)           | 8218 (57.1%)            | 21822 (56.0%)      |
| Missing                |                                                   | 511 (0.3%)          | 88 (0.3%)               | 35 (0.2%)               | 634 (0.3%)         |
| Died in-ho             | spital                                            | 20316 (11.9%)       | 4181 (12.8%)            | 1337 (9.3%)             | 25834 (11.9%)      |
| Device the             | rapy                                              |                     |                         |                         |                    |
| None                   |                                                   | 147 485 (86.6%)     | 28962 (88.6%)           | 12818 (89.0%)           | 189265 (87.1%)     |
| CRT-D                  |                                                   | 3047 (1.8%)         | 496 (1.5%)              | 189 (1.3%)              | 3732 (1.7%)        |
| CRT-P                  |                                                   | 1681 (1%)           | 296 (0.9%)              | 142 (1%)                | 2119 (1.0%)        |
| ICD                    |                                                   | 3001 (1.8%)         | 511 (1.6%)              | 211 (1.5%)              | 3 723 (1.7%)       |
| Missing                |                                                   | 15083 (8.9%)        | 2430 (7.4%)             | 1040 (7.2%)             | 18553 (8.5%)       |
| Comorbidi              | ities                                             |                     |                         |                         |                    |
| Valve disea            | ase                                               | 38213 (22.4%)       | 7005 (21.4%)            | 2906 (20.2%)            | 48124 (22.1%)      |
| Missing                |                                                   | 3426 (2.0%)         | 822 (2.5%)              | 335 (2.3%)              | 4583 (2.1%)        |
| IHD                    |                                                   | 65 992 (38.8%)      | 14198 (43.4%)           | 5175 (35.9%)            | 85365 (39.3%)      |
| Missing                |                                                   | 3667 (2.2%)         | 811 (2.5%)              | 335 (2.3%)              | 4813 (2.2%)        |
| Hypertens              | ion                                               | 91 477 (53.7%)      | 16838 (51.5%)           | 8208 (57%)              | 116523 (53.6%)     |
| Missing                |                                                   | 1326 (0.8%)         | 381 (1.2%)              | 125 (0.9%)              | 1832 (0.8%)        |
| Diabetes               |                                                   | 50 194 (29.5%)      | 10348 (31.7%)           | 4772 (33.1%)            | 65314 (30%)        |
| Missing                |                                                   | 459 (0.3%)          | 142 (0.4%)              | 54 (0.4%)               | 655 (0.3%)         |
| AF                     |                                                   | 72235 (42.4%)       | 13728 (42%)             | 5508 (38.2%)            | 91 471 (42.1%)     |
| Breathless             | ness (NYHA)                                       |                     |                         |                         |                    |
| No limitatio           | on of physical activity                           | 12273 (7.2%)        | 1254 (3.8%)             | 768 (5.3%)              | 14295 (6.6%)       |
| Slight limit           | ation of ordinary physical activity               | 24541 (14.4%)       | 3951 (12.1%)            | 1993 (13.8%)            | 30 485 (14.%)      |
| Marked lim             | nitation of ordinary physical activity            | 68 179 (40%)        | 13671 (41.8%)           | 6011 (41.7%)            | 87861 (40.4%)      |
| Symptoms               | s at rest or minimal activity                     | 54652 (32.1%)       | 12191 (37.3%)           | 4809 (33.4%)            | 71 652 (33%)       |
| Missing                |                                                   | 10 652 (6.3%)       | 1628 (5.0%)             | 819 (5.7%)              | 13099 (6.0%)       |
| Echocardio             | ography performed                                 | 137955 (81%)        | 26165 (80%)             | 11342 (78.8%)           | 175462 (80.7%)     |
| Ejection fra           | action status                                     |                     |                         |                         |                    |
| HFrEF                  |                                                   | 92619 (54.4%)       | 16408 (50.2%)           | 7334 (50.9%)            | 116361 (53.5%)     |
| HFpEF                  |                                                   | 77 678 (45.6%)      | 16287 (49.8%)           | 7066 (49.1%)            | 101 031 (46.5%)    |
| HF manag               | ement plan                                        |                     |                         |                         |                    |
| Pre-discha             | arge management plan in place                     | 11760 (6.9%)        | 2152 (6.6%)             | 1002 (7.0%)             | 14914 (6.9%)       |
| Manageme               | ent plan has been discussed with the patient      | 10572 (6.2%)        | 1894 (5.8%)             | 954 (6.6%)              | 13420 (6.2%)       |
| Manageme<br>primary ca | ent plan has been communicated to the<br>ire team | 19880 (11.7%)       | 3963 (12.1%)            | 1780 (12.4%)            | 25623 (11.8%)      |
| All of the a           | bove                                              | 83 507 (49%)        | 15496 (47.4%)           | 7140 (49.6%)            | 106143 (48.8%)     |
| No plan                |                                                   | 18021 (10.6%)       | 3937 (12.0%)            | 1546 (10.7%)            | 23504 (10.8%)      |
| Missing                |                                                   | 26557 (15.6%)       | 5253 (16.1%)            | 1978 (13.7%)            | 33788 (15.5%)      |
| Referral to            | HF MDT                                            | 53 898 (31.6%)      | 9719 (29.7%)            | 4455 (30.9%)            | 68072 (31.3%)      |
| Missing                |                                                   | 29946 (17.6%)       | 5722 (17.5%)            | 2216 (15.4%)            | 37884 (17.4%)      |
| Referral to            | cardiology follow-up                              | 70925 (41.6%)       | 11875 (36.3%)           | 6241 (43.3%)            | 89041 (41%)        |
| Missing                |                                                   | 13827 (8.1%)        | 2882 (8.8%)             | 984 (6.8%)              | 17693 (8.1%)       |
| Referral to            | HF nurse follow-up                                | 76170 (44.7%)       | 13728 (42.0%)           | 6249 (43.4%)            | 96147 (44.2%)      |
| Missing                |                                                   | 13442 (7.9%)        | 2658 (8.1%)             | 952 (6.6%)              | 17052 (7.8%)       |
| 201                    |                                                   |                     |                         |                         |                    |

Continued

#### Continued Table 1

| 1 |   |
|---|---|
|   | 0 |
|   | - |
|   |   |

Overall (N=217392)

|                                                                                                                                                                                                                                         | HF-alone (N=170297)                                                                                             | COPD +HF (N=32695)                                                                                                                  | Asthma +HF (N=14400)                                                                                                        | Overall (N=21739                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Median (IQR)                                                                                                                                                                                                                            | 8 (3, 15)                                                                                                       | 8 (4, 16)                                                                                                                           | 7 (3, 14)                                                                                                                   | 8 (4, 15)                                                                 |
| IMD Wales (quartile)                                                                                                                                                                                                                    | N=8205                                                                                                          | N=1889                                                                                                                              | N=776                                                                                                                       | N=N=10870                                                                 |
| 1st (most deprived)                                                                                                                                                                                                                     | 2126 (25.9%)                                                                                                    | 371 (19.6%)                                                                                                                         | 188 (24.2%)                                                                                                                 | 2685 (24.7%)                                                              |
| 2nd                                                                                                                                                                                                                                     | 2058 (25.1%) 396                                                                                                | (21.0%) 190                                                                                                                         | (24.5%) 83                                                                                                                  | 2644 (24.3%)                                                              |
| 3rd                                                                                                                                                                                                                                     | 1977 (24.1%)                                                                                                    | 459 (24.3%)                                                                                                                         | 196 (25.3%)                                                                                                                 | 2632 (24.2%)                                                              |
| 4th (least deprived)                                                                                                                                                                                                                    | 1824 (22.2%)                                                                                                    | 607 (32.1%)                                                                                                                         | 185 (23.8%)                                                                                                                 | 2616 (24.1%)                                                              |
| Missing*                                                                                                                                                                                                                                | -                                                                                                               | -                                                                                                                                   | -                                                                                                                           | -                                                                         |
| IMD England (quartile)                                                                                                                                                                                                                  | N=159540                                                                                                        | N=30352                                                                                                                             | N=13433                                                                                                                     | N=203325                                                                  |
| 1st (most deprived)                                                                                                                                                                                                                     | 35836 (22.5%)                                                                                                   | 9338 (30.8%)                                                                                                                        | 3449 (25.7%)                                                                                                                | 48623 (23.9%)                                                             |
| 2nd                                                                                                                                                                                                                                     | 38347 (24.0%)                                                                                                   | 7762 (25.6%)                                                                                                                        | 3403 (25.3%)                                                                                                                | 49512 (24.4%)                                                             |
| 3rd                                                                                                                                                                                                                                     | 40131 (25.2%)                                                                                                   | 6848 (22.6%)                                                                                                                        | 3166 (23.6%)                                                                                                                | 50145 (24.7%)                                                             |
| 4th (least deprived)                                                                                                                                                                                                                    | 41 387 (25.9%)                                                                                                  | 5615 (18.5%)                                                                                                                        | 3072 (22.9%)                                                                                                                | 50074 (24.6%)                                                             |
| Missing                                                                                                                                                                                                                                 | 3839 (2.4%)                                                                                                     | 789 (2.6%)                                                                                                                          | 343 (2.6%)                                                                                                                  | 4971 (2.4%)                                                               |
| *Not shown due to small numbers.<br>AF, atrial fibrillation; COPD, chronic obstructive pulmonary of<br>heart failure; HFpEF, heart failure with preserved ejection fra<br>disease; IMD, indices of multiple deprivation; LOS, length of | disease; CRT-D, cardiac resynchr<br>action; HFrEF, heart failure with re<br>f stay; MDT, multidisciplinary tear | onisation therapy defibrillator; (<br>duced ejection fraction; ICD, in<br>m; NYHA, New York Heart Asso                              | CRT-P, cardiac resynchronisation<br>plantable cardioverter defibrillato<br>ciation.                                         | therapy pacemaker; HF<br>or; IHD, ischaemic hearl                         |
| and hypertension compared with HI<br>AF was less common in the asthma-F<br>the HF-alone group; there were also r<br>HFpEF.                                                                                                              | COPD and in-hos<br>COPD was associ<br>patients with HFrI<br>those with HFpEF<br>Conversely, asth                | spital death differed<br>ated with an increas<br>$EF(OR_{adj}: 1.15, 1.09 t)$<br>$(OR_{adj}: 1.05, 0.99 t)$<br>uma was associated v | according to<br>se in mortality<br>to 1.21), but no<br>1.10).<br>vith a decrease                                            |                                                                           |
| <b>In-hospital death</b><br>The association between COPD and is<br>presented in figure 1, table 2 and on<br>table 4. Overall, COPD was independent<br>increased odds of in-hospital death                                               | n-hospital death is<br>line supplemental<br>ntly associated with<br>((adjusted)OR <sub>adi</sub> ,              | the odds of in-hos<br>without asthma (0<br>odds of death did<br>asthma-HF (figure<br>Sensitivity anal                               | pital death compared<br>OR <sub>adj</sub> , 95% CI: 0.85, (<br>not vary by EF statu<br>e 1, table 2).<br>yses where smoking | d with HF patie<br>0.79 to 0.88). 7<br>s for patients v<br>s status and H |

increased odds of in-hospita 95% CI: 1.10, 1.06 to 1.14). The relationship between COP 1.1 (1.06-1.14) 0.84 (0.79-0.88 1.74 (1.71-1.78) 0.91 (0.89-0.94) 1.25 (1.2-1.29) 1.13 (1.1-1.16) 0.8 (0.78-0.83) 1.05 (1.02-1.08) ΔE 0.99 (0.97-1.02) NYHA III/IV (vs. NYHA I/II) 1.12 (1.08-1.17) 0.69 (0.67-0.72) 1.06 (1.03-1.09) HFrEF (vs. HFpEF)



1.00 1.25 Adjusted Odds Ratios (95% CII

according to EF: e in mortality in 5 1.21), but not in .10).

ith a decrease in with HF patients .79 to 0.88). The for patients with

status and BMI were imputed due to missing data (online supplemental table 5), and where patients with a confirmed HF diagnosis only were included (online supplemental table 6), showed similar results to the main analysis.

### **Referrals to HF services**

In the fully adjusted models, COPD was associated with decreased likelihood of outpatient referral to a cardiologist  $(OR_{adi}, 95\% CI 0.79, 0.77 \text{ to } 0.81)$  and to a HF-MDT  $(OR_{adi}, 95\% CI 0.94, 0.91 to 0.97)$ . Patients with COPD-HFrEF were less likely to be referred to a cardiologist than those with HFrEF without COPD (ORadi: 0.85, 95% CI 0.81 to 0.88) while patients with COPD-HFpEF were significantly less likely to be referred, compared with HFpEF without COPD (OR<sub>adi</sub>, 95 CI% 0.73, 0.70 to 0.76). COPD was associated with a decreased likelihood of documented HF-MDT referral only for patients with HFpEF  $(OR_{adi}, 95\% CI, 0.90, 0.86 to 0.94).$ 

Overall, referral odds did not differ in patients with asthma-HF compared with those with HF-alone. There was a significant increase in the odds of referral to a cardiologist for those with asthma-HFrEF (OR<sub>adi</sub>, 95% CI 1.08, 1.03 to 1.14) and a decreased likelihood of referral for patients with asthma-HFpEF (OR<sub>adi</sub> 95 CI, 0.93, 0.88 to 0.98), compared with HFrEF, HFpEFalone, respectively. Referrals to HF nurse or HF MDT

|                                                                                                                                                                                                                                                    | Fully adjusted* interaction model C<br>OR (95% CI)                                                                                                                                                                                     | OPD×EF                                                                                                                                                            | Fully adjusted† interaction mode OR (95% CI)                                                                                                                    | el asthma×EF                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Outcome                                                                                                                                                                                                                                            | COPD×HFrEF                                                                                                                                                                                                                             | COPD×HFpEF                                                                                                                                                        | Asthma×HFrEF                                                                                                                                                    | Asthma×HFpEF                              |
| In-hospital death<br>(N=194 156‡)                                                                                                                                                                                                                  | Interaction p value=0.01                                                                                                                                                                                                               |                                                                                                                                                                   | Interaction p value=0.842                                                                                                                                       |                                           |
| Fixed effects                                                                                                                                                                                                                                      | 1.15 (1.09 to 1.21, p=0.294×10 <sup>-10</sup> )                                                                                                                                                                                        | 1.05 (0.99 to 1.10, p=0.081)                                                                                                                                      | 1                                                                                                                                                               | I                                         |
| Random effects (hospitals, n=216)                                                                                                                                                                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                                   |                                                                                                                                                                 |                                           |
| Variance                                                                                                                                                                                                                                           | 0.201                                                                                                                                                                                                                                  |                                                                                                                                                                   | 1                                                                                                                                                               |                                           |
| LR test p value§                                                                                                                                                                                                                                   | p=0.22×10 <sup>-16</sup>                                                                                                                                                                                                               |                                                                                                                                                                   | 1                                                                                                                                                               | I                                         |
| Referral to cardiology follow-up<br>(N=166 658‡)                                                                                                                                                                                                   | Interaction p value=0.288×10 <sup>-7</sup>                                                                                                                                                                                             |                                                                                                                                                                   | Interaction p value=0.0001                                                                                                                                      |                                           |
| Fixed effects                                                                                                                                                                                                                                      | 0.85 (0.81, 0.88, p=0.2×10 <sup>-16</sup> )                                                                                                                                                                                            | 0.73 (0.70, 0.76, p=0.2×10 <sup>-16</sup> )                                                                                                                       | 1.08 (1.03 to 1.14, p=0.2×10 <sup>-16</sup> )                                                                                                                   | 0.93 (0.88 to 0.98, p=0.003)              |
| Random effects (hospitals, n=216)                                                                                                                                                                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                                   |                                                                                                                                                                 |                                           |
| Variance                                                                                                                                                                                                                                           | 0.512                                                                                                                                                                                                                                  |                                                                                                                                                                   | 0.512                                                                                                                                                           |                                           |
| LR test p value§                                                                                                                                                                                                                                   | 0.22×10 <sup>-16</sup>                                                                                                                                                                                                                 |                                                                                                                                                                   | p=0.22×10 <sup>-16</sup>                                                                                                                                        |                                           |
| Referral to HF MDT<br>(N=149 098‡)                                                                                                                                                                                                                 | Interaction p value=0.017                                                                                                                                                                                                              |                                                                                                                                                                   | Interaction p value=0.095                                                                                                                                       |                                           |
| Fixed effects                                                                                                                                                                                                                                      | 0.97 (0.93, 1.02, p=0.263)                                                                                                                                                                                                             | 0.90 (0.86, 0.94, p=0.265×10 <sup>-5</sup> )                                                                                                                      | 1                                                                                                                                                               | I                                         |
| Random effects (hospitals, n=216)                                                                                                                                                                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                                   |                                                                                                                                                                 |                                           |
| Variance                                                                                                                                                                                                                                           | 2.139                                                                                                                                                                                                                                  |                                                                                                                                                                   | 1                                                                                                                                                               | Ι                                         |
| LR test p value§                                                                                                                                                                                                                                   | 0.22×10 <sup>-16</sup>                                                                                                                                                                                                                 |                                                                                                                                                                   | 1                                                                                                                                                               | I                                         |
| Referral to HF nurse<br>(N=166 723‡)                                                                                                                                                                                                               | Interaction p value=0.249                                                                                                                                                                                                              |                                                                                                                                                                   | Interaction p value=0.450                                                                                                                                       |                                           |
| *Adjusted for age, sex, diabetes, hyper<br>†Adjusted for age, sex, diabetes, hyper<br>‡Excludes patients with missing data o<br>§Likelihood ratio test comparing fixed t<br>COPD, chronic obstructive pulmonary of<br>MDT, multidisciplinary team. | tension, ischaemic heart disease, atrial fibr<br>rtension, ischaemic heart disease, atrial fibr<br>on covariates included in model.<br>to random effects for hospital model fit, sig<br>disease; HF, heart failure; HFpEF, heart fail. | illation, asthma, place of care and Ne<br>illation, COPD, place of care and Ne<br>nificant indicates random-effects mo<br>ure with preserved ejection fraction; H | w York Heart Association status.<br>w York Heart Association status.<br>del performed better than fixed-effects m<br>IFrEF, heart failure with reduced ejection | nodel.<br>fraction; LR, likelihood ratio; |



**Figure 2** Association between chronic obstructive pulmonary disease (COPD), asthma and referrals to heart failure services, adjusted for age, sex, valve disease; ischaemic heart disease, hypertension, diabetes, atrial fibrillation, New York Heart Association, place of care and ejection fraction status. MDT, multidisciplinary team.

were not different between those with HF-alone or HF and asthma (figure 2).

#### **HF** medication prescription at discharge

Patients with COPD-HF had lower prescription proportions of ACEIs/ARBs, beta-blockers and double (ACEi/ ARB+beta-blocker) and triple therapy (ACEi/ARB+betablocker+MRA) compared with those with HF-only. ACEIs/ARBs, MRAs and triple therapy were prescribed more frequently in the asthma-HF group compared with the HF-alone group; however, beta-blockers or double therapy were less often prescribed for asthma-HF versus HF-alone (figure 3).

In patients with HFrEF, COPD and asthma were associated with decreased likelihood of beta-blocker prescription at discharge ( $OR_{adj}$  0.66, 95% CI 0.59 to 0.67,  $OR_{adj}$ : 0.57, 95% CI 0.54 to 0.60). COPD was associated with

lower chance of ACEi/ARB prescription, but did not affect MRA prescriptions, while asthma was associated with increased odds of ACEi/ARB and MRA (table 3).

#### DISCUSSION

This is the first study to provide a large assessment of contemporary HF practice, generalisable to the population of England–Wales, evaluating the effect of COPD and asthma on clinical and management outcomes. We found that patients with COPD-HF were more likely to die during their HF admission, compared with patients with HF-only; those with asthma-HF had a reduced probability of in-hospital death, compared with patients with HF-alone. Referrals to HF services also differed: COPD was associated with a 21% reduction in post-discharge



**Figure 3** Heart failure (HF) medication prescription rates at discharge, according to comorbid respiratory disease status. ACEi, ACE Angiotensin-converting enzyme; ARB, angiotensin receptor blocker; COPD, chronic obstructive pulmonary disease; MRA, mineralocorticoid receptor antagonist.

പ്പ

| Table 3 Association betweer                                                                                                                                                                 | COPD, asthma and HF medicatic                                                                                                                                                | on prescription at discharge in patier                                                                                                                                                  | ints with HFrEF                                                                                                                                                         |                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Medication prescription at discharge                                                                                                                                                        | COPD unadjusted<br>OR (95% CI)                                                                                                                                               | COPD fully adjusted*<br>OR (95% CI)                                                                                                                                                     | Asthma unadjusted<br>OR (95% CI)                                                                                                                                        | Asthma fully adjusted†<br>OR (95% CI)                |
| Beta-blockers (N=86 449*,†)                                                                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                         |                                                      |
| Fixed effects                                                                                                                                                                               | 0.61 (0.58, 0.64, p=0.22×10 <sup>-16</sup> )                                                                                                                                 | 0.66 (0.64, 0.68, p=0.22×10 <sup>-16</sup> )                                                                                                                                            | 0.63 (0.59, 0.67, p=0.22×10 <sup>-16</sup> )                                                                                                                            | 0.57 (0.54 0.60, p=0.22×10 <sup>-16</sup> )          |
| Random effects                                                                                                                                                                              |                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                         |                                                      |
| Variance                                                                                                                                                                                    | 0.553                                                                                                                                                                        | 0.578                                                                                                                                                                                   | 0.549                                                                                                                                                                   | 0.578                                                |
| LR test p value                                                                                                                                                                             | 0.22×10 <sup>-16</sup>                                                                                                                                                       | 0.22×10 <sup>-16</sup>                                                                                                                                                                  | 0.22×10 <sup>-16</sup>                                                                                                                                                  | 0.22×10 <sup>-16</sup>                               |
| ACEis/ARBs (n=96080*,†)                                                                                                                                                                     |                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                         |                                                      |
| Fixed effects                                                                                                                                                                               | 0.87 (0.84, 0.90, p=0.139×10 <sup>-13</sup> )                                                                                                                                | 0.91 (0.87 to 0.95, p=0.256×10 <sup>-6</sup> )                                                                                                                                          | 1.13 (1.07, 1.19, p=0.16×10 <sup>-6</sup> )                                                                                                                             | 1.07 (1.01, 1.13, p=0.0143)                          |
| Random effects                                                                                                                                                                              |                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                         |                                                      |
| Variance                                                                                                                                                                                    | 0.149                                                                                                                                                                        | 0.130                                                                                                                                                                                   | 0.148                                                                                                                                                                   | 0.130                                                |
| LR test p value                                                                                                                                                                             | 0.22×10 <sup>-16</sup>                                                                                                                                                       | 0.22×10 <sup>-16</sup>                                                                                                                                                                  | 0.22×10 <sup>-16</sup>                                                                                                                                                  | 0.22×10 <sup>-16</sup>                               |
| MRA (N=96080*,†)                                                                                                                                                                            |                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                         |                                                      |
| Fixed effects                                                                                                                                                                               | 0.97 (0.94, 1.01, p=0.114)                                                                                                                                                   | 1.02 (0.98, 1.06, p=0.268)                                                                                                                                                              | 1.08 (1.04, 1.13, p=0.00043)                                                                                                                                            | 1.07 (1.02, 1.12, p=0.0084)                          |
| Random effects                                                                                                                                                                              |                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                         |                                                      |
| Variance                                                                                                                                                                                    | 0.232                                                                                                                                                                        | 0.195                                                                                                                                                                                   | 0.226                                                                                                                                                                   | 0.195                                                |
| LR test p value                                                                                                                                                                             | 0.22×10 <sup>-16</sup>                                                                                                                                                       | 0.22×10 <sup>-16</sup>                                                                                                                                                                  | 0.22×10 <sup>-16</sup>                                                                                                                                                  | 0.22×10 <sup>-16</sup>                               |
| Likelihood ratio test comparing fix<br>*Adjusted for age, sex, diabetes, I<br>†Adjusted for age, sex, diabetes, I<br>ACEI, ACE inhibitor; ARB, angiote<br>mineralocorticoid receptor antago | ed to random effects for hospital mode<br>ypertension, ischaemic heart disease,<br>yypertension, ischaemic heart disease,<br>nsin receptor blocker; COPD, chronic o<br>nist. | el fit, significant indicates random-effects<br>atrial fibrillation, asthma, place of care a<br>, atrial fibrillation, COPD, place of care a<br>obstructive pulmonary disease; HFrEF, h | is model performed better than fixed-el<br>and New York Heart Association status<br>and New York Heart Association status<br>neart failure with reduced ejection fracti | ffects model.<br><br>ion; LR, likelihood ratio; MRA, |

cardiology referral while a diagnosis of asthma did not affect this outcome.

Airways diseases, particularly COPD, are associated with adverse events in patients with HF<sup>1-3</sup><sup>14-16</sup>; however, diagnostic misclassification is underestimated and studies on the independent effect of asthma are lacking. We report several findings which add to previous literature.

The finding that COPD is associated with in-hospital mortality confirms reports from previous European data which considered longer term follow-ups.<sup>17</sup> <sup>18</sup> A greater severity of cardiovascular disease among those with COPD-HF may have contributed to the increase in mortality, as indicated by the higher proportions of patients in NYHA classes III and IV, compared with those with HF-alone. Further explanations could include admission to non-cardiology wards for patients with COPD-HF, which has been linked to poorer outcomes in acute HF.<sup>19</sup>

A COPD diagnosis was associated with increased in-hospital death in those with HFrEF, but not in those with HFpEF, which is surprising, given that COPD is suggested to be more severe in the latter group.<sup>20</sup> In contrast with our report, previous studies found that risk of death is increased in those with COPD-HFpEF compared with COPD-HFrEF<sup>21 22</sup>; however, these may be confounded by a lack of validity of EF status (inferred by ICD codes rather than echocardiography) or spirometry to confirm COPD status, consideration of long-term rather than short-term effects on mortality, or by including chronic rather than hospitalised HF. Our result therefore may be explained by poor uptake of disease-modifying treatments available for HFrEF in those with COPD,<sup>17</sup> which has been previously reported and could be more pronounced in a cohort of patients newly admitted for HF.

After adjusting for age, sex and other baseline characteristics including comorbidities, and further adjustments for smoking status and BMI, differences between those with and without COPD, respectively asthma, did not materially change the association between the two lung diseases with in-hospital mortality. This suggests an independent contribution of COPD to increased mortality in patients hospitalised with HF, significant beyond the potential confounders considered in this analysis.

While previous reports suggest that asthma is associated with increased risk of developing cardiovascular disease,<sup>6</sup> no prior study has reported on the association between asthma and death during acute HF hospitalisation. We found that, on average, asthma was independently associated with a 24% reduction in risk of death in patients with HF. The mechanisms underlying this epidemiological association are unclear. Several factors may explain our result. Asthma management is reliant on anti-inflammatory agents such as inhaled corticosteroids (ICS), which have been linked to cardioprotective effects<sup>23 24</sup> including lower all-cause mortality and lower risk of myocardial infarction (MI, a precursor to HF). Potential long-term ICS use in our asthma-HF cohort could have diminished patients' baseline mortality risk.

The nature of inflammation is different in COPD compared with asthma and influences response to medication. One hypothesis which may underlie the diverging findings on the effect of the two lung diseases on outcomes in patients with HF thus relates to differences in management and their subsequent differential cardiovascular risk. Bronchodilator medications, which are central to the symptomatic treatment of COPD, have been associated with increased cardiovascular risk.9 While combination treatments such as ICS/long-acting beta-agonists (LABA) may have a good cardiovascular safety profile in asthma, this differs in COPD.<sup>8 16</sup> Randomised controlled trials have not demonstrated mortality benefits with ICS in individuals with COPD, although some observational studies suggest the opposite. The largest trial<sup>25</sup> examining all-cause mortality in 16000 patients with COPD and risk of cardiovascular disease showed that the treatments evaluated (LABA and/or ICS) were well tolerated by patients; however, the effect on patients with existing HF remains under debate.

Since both lung diseases were diagnosed prior to HF admission, it would be plausible to assume that any effects of long-term pulmonary medication could influence the chance of death in our cohort. Thus, the heightened risk of in-hospital mortality observed in the COPD-HF group, but not in asthma-HF, could be related to more frequent use of bronchodilators and a poorer safety profile of ICS in COPD compared with asthma. Alternatively, COPDspecific characteristics such as progressive lung function decline may have influenced in-hospital mortality in those admitted for HF.

However, due to large amounts of missing data on respiratory disease medication prescription in our cohort (online supplemental table 7), we could not verify these assumptions in our dataset. Future studies incorporating accurate information on bronchodilator use in patients with concomitant HF and respiratory disease should be conducted.

The association between COPD/asthma and referral to follow-up cardiology services has not been studied before in hospitalised patients with HF. Overall, patients with COPD-HF were less likely to be referred to a cardiology service after hospital discharge, compared with those who had HF-alone. This indicates that a COPD diagnosis may be an obstacle preventing access to HF specialist care. According to NICE, all patients with a HF diagnosis need to be seen by a HF specialist within 2weeks of discharge, but data suggest that these timelines are not met.<sup>26</sup> The compounded effect of a COPD diagnosis has the potential to further impair the long-term prognosis of these comorbid patients. Furthermore, more than 60% of patients with COPD and HF were admitted to a general ward rather than a specialised cardiology ward, which may also explain the low likelihood of cardiology referrals in this group.

Our study also indicated that EF status mediated the relationship with referrals, as individuals with COPD-HFpEF were less likely to have an appointment compared with their COPD-HFrEF counterparts. This is particularly worrying as HF, irrespective of EF, is best monitored and managed within specialist HF teams.

Asthma did not adversely influence referrals to HF services, but we identified an increased likelihood of referral to cardiology in asthma-HFpEF as compared with asthma-HFrEF. One possible explanation is greater uncertainty in clinical management of patients with HFpEF, leading to increased referral, although this needs to be assessed in future studies. Clarifying these clinical management pathways offers a potential to improve HF prognosis by ensuring access to care is timely and tailored to individual patients' risk, pathology and health.

Patients with COPD-HFrEF were 34% less likely to receive a beta-blocker prescription at discharge, compared with patients with HFrEF alone, despite recent data supporting use of these agents in COPD.<sup>27 28</sup> Similar to data on patients post-MI,<sup>29</sup> it is worrying that COPD was also associated with decreased likelihood of guideline recommended ACEi/ARB prescription in those with HF, as there is no contraindication for those with pulmonary disease. Efforts need to be made to ensure appropriate therapeutic management of these patients.

Those with asthma-HFrEF had 43% less chance of being prescribed a beta-blocker compared with patients with HF-alone. Current guidelines recommend that asthma patients with chronic HFrEF should not receive disease-modifying beta-blocker treatment due to possible bronchoconstriction, despite evidence to suggest that cardioselective beta-blockade may be used with careful up-titration and monitoring,<sup>30–31</sup> where benefits may outweigh risks in individual patients. Based on the low uptake across the whole spectrum of HF medications in patients with additional lung disease (figure 3), we expect these patients would have worse prognosis compared with their more adequately treated counterparts.

Considering these results, management needs to be optimised in patients with COPD or asthma and concurrent HF. The arrival of new treatments such as sodium-glucose co-transporter 2 inhibitors (SGLT2-i) have widened treatment choice in HFrEF, and there is now evidence supporting their use in individuals with COPD.<sup>32</sup> Given beta-blockers are avoided in asthma, these new treatments should urgently be assessed in this population, as data are currently lacking.

### **Strengths and limitations**

The main strength of this study is the large sample size and representativeness of a hospitalised population with HF from England and Wales. We did not, however, have information on duration and severity of asthma or COPD, nor lung function test results and thus we could not verify accuracy of these diagnoses, which are often subject to misclassification, especially in the elderly.<sup>33</sup> Data on bronchodilator use was largely missing for our cohort (online supplemental table 7), limiting assessment of both diagnostic accuracy of the respiratory diseases, and association with outcomes evaluated in this study. We also could not differentiate between childhood as thma or late-onset as thma which may have different implications.  $^{\rm 34}$ 

HFpEF was determined as a HF diagnosis without systolic dysfunction, which has been used in previous NHFA reports. Nevertheless, there is no consensus gold standard HFpEF diagnosis<sup>12</sup> and it remains difficult to validate. Further work in this area is needed, particularly in accurately distinguishing between HFpEF and COPD, which have similar clinical presentation.

There was a considerable proportion of missing data on bronchodilators/inhaled corticosteroids in the dataset which prevented assessment of whether the impact of COPD and asthma on outcomes is mediated, in part, by their treatment. Future studies incorporating accurate information on bronchodilator use in patients with concomitant HF and respiratory disease should be conducted.

Smoking status was also characterised by a large percentage of missing data; however, an analysis using multiple imputation indicated that even after adjusting for this confounder in the imputed dataset, the association between both COPD and asthma on in-hospital mortality remained unchanged (online supplemental table 5).

We only focused on decompensated HF and the picture may change when investigating long-term mortality, recurrent admissions or other aspects of treatment such as medication adherence.

While the referral likelihood estimates provide a first glimpse into the association between COPD/asthma and potential healthcare service provision for patients with HF in England–Wales, we did not have access to data on concrete healthcare utilisation among our cohort.

Due to lack of data, we could not establish whether cause of death varied among the groups and whether the increased mortality associated with COPD was underlined by higher rates of respiratory versus cardiac or other disease.

# CONCLUSION

This analysis adds to the growing body of evidence that COPD and asthma affect outcomes in patients with acute HF. Our data suggest that while COPD is a main contributor to in-hospital mortality and is associated with decreased referral to cardiology services among patients with HF, asthma does not negatively impact these outcomes. Both lung diseases are, however, responsible for significant decreases in the prescription of HF treatments at discharge, particularly beta-blockers. These findings highlight a need for better integration of cardiopulmonary services with an aim to tailor healthcare provision for these patients.

**Contributors** Conceptualisation and methodology: CG, JKQ, CK. Original draft: CG. Editing and final approval: CG, JKQ, RZ, CK. Data curation and formal data analysis: CG. Data acquisition: JKQ. Guarantor: CG

Funding CG is funded by a NHLI PhD studentship. Grant number: N/A.

# **Open access**

#### Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Not applicable.

Ethics approval This study involved analysis of pre-existing, de-identified data, thus it was exempt from Institutional Review Board approval.

Provenance and peer review Not commissioned; externally peer reviewed.

**Data availability statement** Data may be obtained from a third party and are not publicly available. The data that support the findings of this study have been provided by the Healthcare Quality Improvement Partnership from the National Heart Failure Audit Programme, but restrictions apply to the availability of these data and so are not publicly available.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

**Open access** This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

#### **ORCID** iDs

Claudia Gulea http://orcid.org/0000-0001-9607-5901 Jennifer K Quint http://orcid.org/0000-0003-0149-4869

#### REFERENCES

- 1 Lawson CA, Mamas MA, Jones PW, et al. Association of medication intensity and stages of airflow limitation with the risk of hospitalization or death in patients with heart failure and chronic obstructive pulmonary disease. JAMA Netw Open 2018;1:e185489.
- 2 Gulea C, Zakeri R, Quint JK. Impact of chronic obstructive pulmonary disease on readmission after hospitalization for acute heart failure: a nationally representative US cohort study. *Int J Cardiol* 2019;290:113–8.
- 3 Hawkins NM, Virani S, Ceconi C. Heart failure and chronic obstructive pulmonary disease: the challenges facing physicians and health services. *Eur Heart J* 2013;34:2795–807.
- 4 Lipworth B, Wedzicha J, Devereux G, et al. Beta-Blockers in COPD: time for reappraisal. *Eur Respir J* 2016;48:880–8.
- 5 Baker JG, Wilcox RG.  $\beta$ -Blockers, heart disease and COPD: current controversies and uncertainties. *Thorax* 2017;72:271–6.
- 6 Pollevick ME, Xu KY, Mhango G, et al. The relationship between asthma and cardiovascular disease: an examination of the Framingham offspring study. Chest 2021;159:1338-1345.
- 7 Iribarren C, Tolstykh IV, Miller MK, et al. Adult asthma and risk of coronary heart disease, cerebrovascular disease, and heart failure: a prospective study of 2 matched cohorts. Am J Epidemiol 2012;176:1014–24.
- 8 Buist AS. Similarities and differences between asthma and chronic obstructive pulmonary disease: treatment and early outcomes. *Eur Respir J Suppl* 2003;39:30S–5.
- 9 Salpeter SR, Ormiston TM, Salpeter EE. Cardiovascular effects of beta-agonists in patients with asthma and COPD: a meta-analysis. Chest 2004;125:2309–21.
- 10 Gershon A, Croxford R, Calzavara A, et al. Cardiovascular safety of inhaled long-acting bronchodilators in individuals with chronic obstructive pulmonary disease. JAMA Intern Med 2013;173:1175–85.
- 11 Singh S, Loke YK, Enright PL, et al. Mortality associated with tiotropium mist inhaler in patients with chronic obstructive pulmonary disease: systematic review and meta-analysis of randomised controlled trials. *BMJ* 2011;342:d3215.

- 12 Pieske B, Tschöpe C, de Boer RA, et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J 2019;40:3297–317.
- 13 The heart failure dataset for the National Audit of Heart failure. Available: https://www.nicor.org.uk/national-cardiac-auditprogramme/datasets/ [Accessed 26 April 2021].
- 14 Hawkins NM, Petrie MC, Jhund PS, *et al.* Heart failure and chronic obstructive pulmonary disease: diagnostic pitfalls and epidemiology. *Eur J Heart Fail* 2009;11:130–9.
- 15 Lainscak M, Anker SD. Heart failure, chronic obstructive pulmonary disease, and asthma: numbers, facts, and challenges. ESC Heart Fail 2015;2:103–7.
- 16 Rabe KF, Hurst JR, Suissa S. And COPD: dangerous liaisons? *Eur Respir Rev* 2018;27.
- 17 Canepa M, Straburzynska-Migaj E, Drozdz J, et al. Characteristics, treatments and 1-year prognosis of hospitalized and ambulatory heart failure patients with chronic obstructive pulmonary disease in the European Society of Cardiology Heart Failure Long-Term Registry. Eur J Heart Fail 2018;20:100–10.
- 18 Staszewsky L, Cortesi L, Tettamanti M, et al. Outcomes in patients hospitalized for heart failure and chronic obstructive pulmonary disease: differences in clinical profile and treatment between 2002 and 2009. Eur J Heart Fail 2016;18:840–8.
- 19 Gheorghiade M, Sopko G, De Luca L, et al. Navigating the crossroads of coronary artery disease and heart failure. *Circulation* 2006;114:1202–13.
- 20 Iversen KK, Kjaergaard J, Akkan D, et al. Chronic obstructive pulmonary disease in patients admitted with heart failure. J Intern Med 2008;264:361–9.
- 21 Ather S, Chan W, Bozkurt B, et al. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol 2012;59:998–1005.
- 22 Museedi AS, Alshami A, Douedi S, et al. Predictability of inpatient mortality of different comorbidities in both types of acute decompensated heart failure: analysis of national inpatient sample. *Cardiol Res* 2021;12:29–36.
- 23 Camargo CA, Barr RG, Chen R, *et al.* Prospective study of inhaled corticosteroid use, cardiovascular mortality, and all-cause mortality in asthmatic women. *Chest* 2008;134:546–51.
- 24 Suissa S, Assimes T, Brassard P, *et al.* Inhaled corticosteroid use in asthma and the prevention of myocardial infarction. *Am J Med* 2003;115:377–81.
- 25 Vestbo J, Anderson JA, Brook RD, *et al*. Fluticasone furoate and vilanterol and survival in chronic obstructive pulmonary disease with heightened cardiovascular risk (SUMMIT): a double-blind randomised controlled trial. *Lancet* 2016;387:1817–26.
- 26 Hayhoe B, Kim D, Aylin PP, et al. Adherence to guidelines in management of symptoms suggestive of heart failure in primary care. *Heart* 2019;105:678–85.
- 27 Gulea C, Zakeri R, Quint JK. Effect of beta-blocker therapy on clinical outcomes, safety, health-related quality of life and functional capacity in patients with chronic obstructive pulmonary disease (COPD): a protocol for a systematic literature review and meta-analysis with multiple treatment comparison. *BMJ Open* 2018;8:e024736.
- 28 Salpeter SR, Ormiston TM, Salpeter EÉ, et al. Cardioselective betablockers for chronic obstructive pulmonary disease: a meta-analysis. *Respir Med* 2003;97:1094–101.
- 29 Rothnie KJ, Smeeth L, Herrett E, *et al.* Closing the mortality gap after a myocardial infarction in people with and without chronic obstructive pulmonary disease. *Heart* 2015;101:1103–10.
- 30 Shaw SM, Williams SG. Should beta-blockade continue to be withheld from patients with chronic heart failure and asthma? *Eur Heart J* 2009;30:1287–87.
- 31 Gulea C, Zakeri R, Alderman V, et al. Beta-Blocker therapy in patients with COPD: a systematic literature review and meta-analysis with multiple treatment comparison. *Respir Res* 2021;22:64.
- 32 Canepa M, Ameri P, Lainscak M. Chronic obstructive pulmonary disease and comorbidities in heart failure: the next frontier of sodium-glucose co-transporter 2 inhibitors? *Eur J Heart Fail* 2021;23:644–7.
- 33 Bloom CI, Nissen F, Douglas IJ, et al. Exacerbation risk and characterisation of the UK's asthma population from infants to old age. *Thorax* 2018;73:313–20.
- 34 Ingebrigtsen TS, Marott JL, Vestbo J, et al. Coronary heart disease and heart failure in asthma, COPD and asthma-COPD overlap. BMJ Open Respir Res 2020;7:e000470.

### **Supplemental Material**

#### **Supplemental Methods**

#### Data source

The NHFA was established in 2007 for hospitals in England-Wales to assess the quality of care and outcomes of hospitalised patients with a HF diagnosis in the first position at death or discharge, identified using ICD-10 codes (**Supplementary Table 1**). Admissions coded in the audit are compared to HF episodes in the Hospital Episode Statistics (HES) in England and the Patient Episode Database of Wales (PEDW) to determine the case ascertainment rate. The number of participating NHS trusts fluctuated from 145 in 2012–13 (97%) to 136 (82%) in 2017/2018. This corresponds to an increase from capturing 60% of national HF admissions in 2012, to 76% at the end of April 2018. Data are entered into the audit by hospital staff, using case ascertainment forms and data are categorised as mandatory (main indicators such as HF treatments, comorbidities, echocardiography) or non-mandatory (i.e., smoking status, pulmonary oedema, ethnicity). Since non-mandatory data elements are not expected to be included, there are considerable proportions of missing data across these variables (**Supplemental Table 2**). Some mandatory variables also have significant amounts of missing data (e.g., more than 70% missing data on BNP measurements, weight, height). The breadth of variables collected varied throughout the history of the audit, to reflect changes in HF guidelines and quality standards, which evolved over time. For example, haemoglobin and serum creatinine were collected routinely only after 2012<sup>1</sup>.

# **Statistical analysis**

The analysis for the main outcome was implemented in a stepwise manner. First, an unconditional model including, COPD was considered. In a second step we added asthma. Third, we added an interaction term between COPD and asthma, to assess whether both diagnoses had a significant contribution to the model. In lack of statistical significance these patients were not considered in further analyses. We then evaluated effect modification by EF status (HFrEF/HFpEF) by including separately an interaction term between COPD and EF, then asthma and EF.

Handling of missing data Sensitivity analysis – missing data imputation

While the proportions of missing data (see above) were considerable, we deemed necessary to investigate further two important factors: "smoking status" and "Body Mass Index (BMI)". In particular, we were interested in assessing whether COPD has an independent association with death in patients with HF, when controlling for smoking status, or whether the relationship is influenced by this factor.

We assumed data on smoking and BMI to be missing at random in our cohort, as the distribution in observed cases was similar to other UK cohorts of patients with HF<sup>23</sup>. We then used a multi-level approach<sup>4</sup> which takes into consideration the hierarchical data structure, clustered at hospital level. A Gibbs sampling procedure was used to generate 20 imputed data sets after a burn-in of 1000 iterations.

# **Table 1**. Inclusion criteria for National Heart Failure Audit

| ICD-10 code        | Diagnosis                                                          |
|--------------------|--------------------------------------------------------------------|
| 111.0              | Hypertensive heart disease with (congestive) heart failure         |
| 125.5              | Ischaemic cardiomyopathy                                           |
| 142.0              | Dilated cardiomyopathy                                             |
| 142.9              | Cardiomyopathy, unspecified                                        |
| 150.0              | Congestive heart failure                                           |
| 150.1              | Left ventricular failure                                           |
| 150.9              | Heart failure, unspecified                                         |
| ICD= International | Statistical Classification of Diseases and Related Health Problems |

**Table 2.** Comorbidity definitions, according to NHFA dataset<sup>1</sup>, variables recorded from patient history

| COPD                     | History of COPD - chronic bronchitis, emphysema or their cooccurrence. Must be indicated by pulmonary function testing evidence .ie FEV1<75% predicted value or use of beta agonist/steroid |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | innaiers.                                                                                                                                                                                   |
| Asthma                   | History of childhood asthma and atopy, or asthma confirmed by respiratory physician for adult                                                                                               |
|                          | onset.                                                                                                                                                                                      |
| Diabetes                 | Diagnosis of diabetes prior to admission. This includes a confirmed diagnosis of diabetes and/or                                                                                            |
|                          | the use of an oral hypoglycaemic agent or insulin, and/or a fasting blood glucose >6.7, and/or a                                                                                            |
|                          | random blood glucose >11                                                                                                                                                                    |
|                          |                                                                                                                                                                                             |
| Hypertension             | Recorded Blood Pressure >140/90 on at least two occasions prior to admission, or already                                                                                                    |
|                          | receiving treatment (drug, dietary or lifestyle) for hypertension                                                                                                                           |
| Ischemic heart disease   | History of myocardial infarction, angina, ECG evidence of MI, CABG or angiogram documenting                                                                                                 |
|                          | coronary artery disease.                                                                                                                                                                    |
| Cerebrovascular accident | A past neurological deficit of cerebrovascular cause, including episodes that persist beyond 24                                                                                             |
|                          | hours and transient ischaemic attacks lasting less than 24 hours.                                                                                                                           |
| Atrial fibrillation      | An ECG was performed showing atrial fibrillation.                                                                                                                                           |
| Valve disease            | History of clinically diagnosed valve disease, moderate or severe stenosis or regurgitation on                                                                                              |
|                          | imaging, or an operative valve replacement/repair                                                                                                                                           |

<sup>&</sup>lt;sup>1</sup> Available: https://www.nicor.org.uk/national-cardiac-audit-programme/datasets/

**Table 3.** Model building - association between COPD, asthma (including interaction with ejection fraction group) and in-hospital death in patients hospitalised for heart failure.

| Predictors                                     | Model 1             | Model 2                        | Model 3                       | Model 4                    | Model 5a                       | Model 5b                       | Model 6                      |
|------------------------------------------------|---------------------|--------------------------------|-------------------------------|----------------------------|--------------------------------|--------------------------------|------------------------------|
| Fixed effects<br>[coefficient<br>estimate, SE] |                     |                                |                               |                            |                                |                                |                              |
| COPD                                           | 0.064               | 0.0706                         | 0.060                         | -0.0445                    | 0.064 [0.017,                  | -0.029                         | 0.0468 [0.026,               |
|                                                | [0.017,<br>p<0.001] | [0.0174,<br>p<0.001]           | [0.018,<br>p<0.001]           | [0.0256,<br>p=0.081]       | p<0.001]                       | [0.0242,<br>p=0232]            | p=0.081]                     |
| Asthma                                         | -                   | -0.263<br>[0.0255,<br>p<0.001] | -0.287<br>[0.029,<br>p<0.001] | -0.302 [0.040,<br>p<0.001] | -0.2719<br>[0.034,<br>p<0.001] | -0.266<br>[0.0255,<br>p<0.001] | -0.179 [0.028,<br>p<0.001]   |
| COPD*Asthma                                    | -                   | -                              | 0.098<br>[0.0573,<br>p=0.087] | 0.149 [0.076,<br>p=0.051]  | -                              | -                              | -                            |
| EF                                             | -                   | -                              | -                             | -0.208 [0.015,<br>p<0.001] | -0.173 [0.014,<br>p<0.001 ]    | -0.207<br>[0.0149,<br>p<0.001] | 0.0410 [0.017,<br>p<0.05]    |
| COPD *EF                                       | -                   | -                              | -                             | 0.205 [0.036,<br>p<0.001]  | -                              | 0.195 [0.034,<br>p<0.001]      | 0.096 [0.037,<br>p<0.05]     |
| Asthma*EF                                      | -                   | -                              | -                             | 0.018 [0.058,<br>p=0.753]  | 0.013 [0.05,<br>p=0.797]       | -                              | -                            |
| COPD*Asthma*EF                                 | -                   | -                              | -                             | -0.093 [0.112,<br>p=0.402] | -                              | -                              | -                            |
| Age                                            | -                   | -                              | -                             | -                          | -                              | -                              | 0.553 [0.0101,<br>p<0.001]   |
| Female (vs. male)                              | -                   | -                              | -                             | -                          | -                              | -                              | -0.0922 [0.0150,<br>p<0.001] |

| Valve disease      | -        | -        | -        | -        | -        | -        | 0.219 [0.0169,   |
|--------------------|----------|----------|----------|----------|----------|----------|------------------|
|                    |          |          |          |          |          |          | p<0.001]         |
| IHD                | -        | -        | -        | -        | -        | -        | 0.1204 [0.015,   |
|                    |          |          |          |          |          |          | p<0.001]         |
| Hypertension       | -        | -        | -        | -        | -        | -        | -0.220 [0.0148,  |
|                    |          |          |          |          |          |          | p<0.001]         |
| Diabetes           | -        | -        | -        | -        | -        | -        | 0.0489 [0.0164,  |
|                    |          |          |          |          |          |          | p<0.01]          |
| AF                 | -        | -        | -        | -        | -        | -        | -0.0056 [0.0147, |
|                    |          |          |          |          |          |          | p=0.703]         |
| NYHA               | -        | -        | -        | -        | -        | -        | 0.116 [0.018,    |
|                    |          |          |          |          |          |          | p<0.001]         |
| Place of care      | -        | -        | -        | -        | -        | -        | -0.363 [0.0168,  |
| (cardiology vs not |          |          |          |          |          |          | p<0.001]         |
| cardiology)        |          |          |          |          |          |          |                  |
| Random effects     |          |          |          |          |          |          |                  |
| (hospitals,        |          |          |          |          |          |          |                  |
| n=219)             |          |          |          |          |          |          |                  |
| Variance           | 0.205    | 0.208    | 0.208    | 0.201    | 0.201    | 0.201    | 0.159            |
| SD                 | 0.453    | 0.456    | 0.456    | 0.448    | 0.449    | 0.449    | 0.399            |
| AIC                | 160533.4 | 158837.1 | 158836.2 | 158652.0 | 158681.2 | 158649.7 | 133038.5         |
|                    |          |          |          |          |          |          |                  |

Abbreviations

AIC= Akaike information criterion; AF= atrial fibrillation; COPD= chronic obstructive pulmonary disease; CI=confidence intervals; EF= ejection fraction; NYHA= New York Heart Association; IHD= ischemic heart disease; SD= standard deviation; SE= standard error

Results from a 2-level unconditional model that included COPD as fixed-effect and hospital as random effect suggested COPD was associated with an increase in the estimate for in-hospital mortality. The addition of asthma to this model indicated it had an inverse relationship with likelihood of death. A test for the interaction between COPD and asthma was not significant, thus, it was not considered in subsequent analyses. Further, we wanted to assess whether the effects of COPD, respectively asthma on in-hospital death are different with respect to EF status group therefore, we added a three-way interaction between COPD, asthma and EF to the model. We detected a significant interaction between COPD and EF only, suggesting the effect of COPD only, not asthma would

be differential according to the EF status. In the final model, we estimated the association between COPD and mortality in HFrEF and in HFpEF and adjusted for baseline covariates.

**Table 4**. Association between COPD, asthma and in-hospital death

| Predictors              | COPD only (95% CI)       | COPD + asthma              | Fully adjusted model                | Model with COPD and EF<br>interaction, fully adjusted |
|-------------------------|--------------------------|----------------------------|-------------------------------------|-------------------------------------------------------|
|                         |                          |                            |                                     | OR (95% CI)                                           |
| Fixed effects (95%      |                          |                            |                                     | P-value for interaction =0.01                         |
| CI)                     |                          |                            |                                     |                                                       |
| COPD                    | 1.07 (1.03 – 1.10)       | 1.07 (1.04-1.11)           | 1.10 (1.06 – 1.14)                  | 1.04 (0.99-1.10)                                      |
| Asthma                  | -                        | 0.77 (0.73 – 0.80)         | 0.84 (0.79, 0.88)                   | 0.83 (0.79-0.88)                                      |
| COPD (Yes vs. No):      | -                        | -                          | -                                   | 1.05 (0.99 – 1.10)                                    |
| HFpEF                   |                          |                            |                                     |                                                       |
| COPD (Yes vs. No):      | -                        | -                          | -                                   | 1.15 (1.09 – 1.21)                                    |
| HFrEF                   |                          |                            |                                     |                                                       |
| Age                     | -                        |                            | 1.74 (1.71 -1.78)                   | 1.74 (1.71-1.77)                                      |
| Female (vs. male)       | -                        |                            | 0.91 (0.89-0.94)                    | 0.91 (0.89-0.94)                                      |
| Valve disease           | -                        |                            | 1.25 (1.20-1.29)                    | 1.25 (1.20-1.29)                                      |
| IHD                     | -                        |                            | 1.12 (1.10-1.16)                    | 1.13 (1.10-1.16)                                      |
| Hypertension            | -                        |                            | 0.8 (0.78-0.83)                     | 0.80 (0.78-0.83)                                      |
| Diabetes                | -                        |                            | 1.05 (1.02-1.08)                    | 1.05 (1.02-1.08)                                      |
| AF                      | -                        |                            | 0.99 (0.97-1.02)                    | 0.99 (0.96-1.02)                                      |
| NYHA (III/IV vs. I/II)  | -                        |                            | 1.12 (1.08-1.17)                    | 1.12 (1.08-1.17)                                      |
| Place of care           | -                        |                            | 0.69 (0.67-0.72)                    | 0.69 (0.67-0.71)                                      |
| (cardiology vs. not     |                          |                            |                                     |                                                       |
| cardiology ward)        |                          |                            |                                     |                                                       |
| Random effects          |                          |                            |                                     |                                                       |
| (Variance)              |                          |                            |                                     |                                                       |
| LR test p-value         | P<0.001                  | P<0.001                    | P<0.001                             | P<0.001                                               |
| Likelihood ratio test c | omparing fixed to randon | n effects for hospital mod | el fit, significant indicates rando | m effects model performed better than                 |
| fixed effects model     |                          |                            |                                     |                                                       |
| Abbreviations           |                          |                            |                                     |                                                       |

AF= atrial fibrillation; COPD= chronic obstructive pulmonary disease; CI=confidence intervals; EF= ejection fraction; LR= Likelihood ratio test; NYHA= New York Heart Association; IHD= ischemic heart disease; SD= standard deviation.

**Table 5.** Association between COPD and in-hospital mortality in patients hospitalised with heart failure. Results from 20 models using imputed smoking status and BMI (estimates combined using Rubin's rule).

|                                                          | Fully adjusted model, OR (95% CI)      |
|----------------------------------------------------------|----------------------------------------|
| Fixed effects (95% CI)                                   |                                        |
| COPD                                                     | 1.12 (1.07 – 1.17)                     |
| Asthma                                                   | 0.84 (0.80 - 0.90)                     |
| Age                                                      | 1.67 (1.62 – 1.71)                     |
| Female (vs. male)                                        | 0.89 (0.86 – 0.92)                     |
| Valve disease                                            | 1.22 (1.18 – 1.26)                     |
| IHD                                                      | 1.13 (1.10 – 1.17)                     |
| Hypertension                                             | 0.82 (0.89 – 0.85)                     |
| Diabetes                                                 | 1.12 (1.08 – 1.15)                     |
| AF                                                       | 1.01 (0.98 - 1.04)                     |
| NYHA (III/IV vs. I/II)                                   | 1.15 (1.10 – 1.20)                     |
| Place of care (cardiology vs. no cardiology ward)        | 0.70 (0.69 – 0.73)                     |
| EF                                                       | 1.03 (0.99 – 1.06)                     |
| Smoking status (ref: Current smoker)                     |                                        |
| Ex-smoker                                                | 0.90 (0.77 – 1.06)                     |
| Never                                                    | 1 (0.84 – 1.19)                        |
| BMI (ref: normal weight)                                 |                                        |
| Underweight                                              | 1.31 (1.21 – 1.43)                     |
| Overweight                                               | 0.86 (0.81 – 0.91)                     |
| Obese                                                    | 0.77 (0.73 – 0.81)                     |
| Random effects (Variance)                                |                                        |
| LR test p-value                                          | P<0.001                                |
| Abbreviations                                            |                                        |
| AF= atrial fibrillation; BMI= Body Mass index; CI= conf  | idence intervals; COPD= chronic        |
| obstructive pulmonary disease; EF= ejection fraction;    | IHD= ischemic heart disease; NYHA= New |
| I York Heart Association: OR= Odds ratio: ref= reference | 2                                      |

**Table 6.** Association between COPD and in-hospital mortality in patients hospitalised with a confirmed diagnosis of HF.

|                                                                  | Fully adjusted model, OR (95% CI)        |  |  |  |
|------------------------------------------------------------------|------------------------------------------|--|--|--|
| Fixed effects (95% CI)                                           |                                          |  |  |  |
| COPD                                                             | 1.11 (1.07 - 1.16)                       |  |  |  |
| Asthma                                                           | 0.84 (0.79 - 0.89)                       |  |  |  |
| Age                                                              | 1.04 (1.04 - 1.05)                       |  |  |  |
| Female (vs. male)                                                | 0.91 (0.88 - 0.94)                       |  |  |  |
| Valve disease                                                    | 1.26 (1.22 - 1.30)                       |  |  |  |
| IHD                                                              | 1.15 (1.11 - 1.18)                       |  |  |  |
| Hypertension                                                     | 0.81 (0.79 - 0.84)                       |  |  |  |
| Diabetes                                                         | 1.06 (1.03 - 1.10)                       |  |  |  |
| AF                                                               | 0.98 (0.95 - 1.01)                       |  |  |  |
| NYHA (III/IV vs. I/II)                                           | 1.13 (1.08 - 1.18)                       |  |  |  |
| Place of care (cardiology vs. no cardiology ward)                | 0.69 (0.66 - 0.71)                       |  |  |  |
| EF                                                               | 1.04 (1.01 - 1.08)                       |  |  |  |
| Random effects (Variance)                                        | 0.166                                    |  |  |  |
| LR test p-value                                                  | p<0.001                                  |  |  |  |
| Abbreviations                                                    |                                          |  |  |  |
| AF= atrial fibrillation; BMI= Body Mass index; CI= confider      | nce intervals; COPD= chronic obstructive |  |  |  |
| pulmonary disease; EF= ejection fraction; IHD= ischemic h        | eart disease; LR= Likelihood ratio test; |  |  |  |
| NYHA= New York Heart Association; OR= Odds ratio; ref= reference |                                          |  |  |  |

# **Table 7.** Variables with considerable missingness in the National Heart Failure Audit 2012-2018

|                                | HF alone       | COPD + HF     | Asthma + HF   | Overall        |
|--------------------------------|----------------|---------------|---------------|----------------|
|                                | (N=170297)     | (N=32695)     | (N=14400)     | (N=217392)     |
| Cerebrovascular accident       | 2882 (1.7%)    | 582 (1.8%)    | 244 (1.7%)    | 3708 (1.7%)    |
| Missing                        | 145636 (85.5%) | 28115 (86.0%) | 12279 (85.3%) | 186030 (85.6%) |
| Alcohol units/week             |                |               |               |                |
| Median [Q1, Q3]                | 0 [0, 1.00]    | 0 [0, 2.00]   | 0 [0, 0]      | 0 [0, 1.00]    |
| Missing                        | 159233 (93.5%) | 30570 (93.5%) | 13314 (92.5%) | 203117 (93.4%) |
| Smoking status                 |                |               |               |                |
| Current smoker                 | 1869 (1.1%)    | 911 (2.8%)    | 143 (1.0%)    | 2923 (1.3%)    |
| Ex-smoker                      | 8371 (4.9%)    | 2505 (7.7%)   | 715 (5.0%)    | 11591 (5.3%)   |
| Never-smoker                   | 8823 (5.2%)    | 673 (2.1%)    | 896 (6.2%)    | 10392 (4.8%)   |
| Missing                        | 151234 (88.8%) | 28606 (87.5%) | 12646 (87.8%) | 192486 (88.5%) |
| Chest X-ray (pulmonary oedema) | 3954 (2.3%)    | 692 (2.1%)    | 334 (2.3%)    | 4980 (2.3%)    |
| Missing                        | 157253 (92.3%) | 30528 (93.4%) | 13311 (92.4%) | 201092 (92.5%) |
| Medications at admission       |                |               |               |                |
| ACEi                           | 6316 (3.7%)    | 1116 (3.4%)   | 513 (3.6%)    | 7945 (3.7%)    |
| Contraindicated                | 592 (0.3%)     | 140 (0.4%)    | 59 (0.4%)     | 791 (0.4%)     |
| Missing                        | 152642 (89.6%) | 29598 (90.5%) | 12903 (89.6%) | 195143 (89.8%) |
| ARB                            | 2392 (1.4%)    | 453 (1.4%)    | 305 (2.1%)    | 3150 (1.4%)    |
| Not applicable                 | 2570 (1.5%)    | 513 (1.6%)    | 240 (1.7%)    | 3323 (1.5%)    |
| Stopped                        | 0 (0%)         | 0 (0%)        | 0 (0%)        | 0 (0%)         |
| Contraindicated                | 338 (0.2%)     | 88 (0.3%)     | 32 (0.2%)     | 458 (0.2%)     |
| Missing                        | 151870 (89.2%) | 29463 (90.1%) | 12781 (88.8%) | 194114 (89.3%) |
| Beta-blocker                   | 9516 (5.6%)    | 1446 (4.4%)   | 598 (4.2%)    | 11560 (5.3%)   |
| Not applicable                 | 762 (0.4%)     | 144 (0.4%)    | 88 (0.6%)     | 994 (0.5%)     |
| Contraindicated                | 153 (0.1%)     | 136 (0.4%)    | 74 (0.5%)     | 363 (0.2%)     |
| Missing                        | 151820 (89.2%) | 29481 (90.2%) | 12831 (89.1%) | 194132 (89.3%) |
| Loop diuretic                  | 5519 (3.2%)    | 1202 (3.7%)   | 490 (3.4%)    | 7211 (3.3%)    |

| BMJ | Open |
|-----|------|
|-----|------|

| Missing                                                                                                              | 160255 (94.1%)    | 30820 (94.3%)     | 13532 (94.0%)     | 204607 (94.1%)    |  |  |
|----------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|--|--|
| Thiazide or Metolazone                                                                                               | 925 (0.5%)        | 140 (0.4%)        | 81 (0.6%)         | 1146 (0.5%)       |  |  |
| Stopped*                                                                                                             | -                 | -                 | -                 | -                 |  |  |
| Missing                                                                                                              | 152559 (89.6%)    | 29604 (90.5%)     | 12891 (89.5%)     | 195054 (89.7%)    |  |  |
| MRA                                                                                                                  | 2356 (1.4%)       | 502 (1.5%)        | 221 (1.5%)        | 3079 (1.4%)       |  |  |
| Not applicable                                                                                                       | 225 (0.1%)        | 45 (0.1%)         | 27 (0.2%)         | 297 (0.1%)        |  |  |
| Contraindicated                                                                                                      | 36 (0.0%)         | *                 | *                 | 42 (0.0%)         |  |  |
| Missing                                                                                                              | 152494 (89.5%)    | 29570 (90.4%)     | 12885 (89.5%)     | 194949 (89.7%)    |  |  |
| Digoxin                                                                                                              | 1700 (1.0%)       | 399 (1.2%)        | 168 (1.2%)        | 2267 (1.0%)       |  |  |
| Missing                                                                                                              | 152631 (89.6%)    | 29622 (90.6%)     | 12874 (89.4%)     | 195127 (89.8%)    |  |  |
| ССВ                                                                                                                  | 2847 (1.7%)       | 479 (1.5%)        | 280 (1.9%)        | 3606 (1.7%)       |  |  |
| Missing                                                                                                              | 155279 (91.2%)    | 30261 (92.6%)     | 13150 (91.3%)     | 198690 (91.4%)    |  |  |
| Bronchodilators                                                                                                      | 919 (0.5%)        | 1390 (4.3%)       | 750 (5.2%)        | 3059 (1.4%)       |  |  |
| Missing                                                                                                              | 155316 (91.2%)    | 30248 (92.5%)     | 13136 (91.2%)     | 198700 (91.4%)    |  |  |
| Ivabradine                                                                                                           | 186 (0.1%)        | 64 (0.2%)         | 31 (0.2%)         | 281 (0.1%)        |  |  |
| Missing                                                                                                              | 153320 (90%)      | 29666 (90.7%)     | 12845 (89.2%)     | 195831 (90.1%)    |  |  |
| BMI                                                                                                                  |                   |                   |                   |                   |  |  |
| Median [Q1, Q3]                                                                                                      | 26.5 [22.9, 31.1] | 27.1 [22.8, 32.2] | 28.0 [23.6, 33.7] | 26.7 [22.9, 31.4] |  |  |
| Missing                                                                                                              | 125287 (73.6%)    | 23693 (72.5%)     | 10274 (71.3%)     | 159254 (73.3%)    |  |  |
| BNP                                                                                                                  |                   |                   |                   |                   |  |  |
| Median [Q1, Q3]                                                                                                      | 428 [1.00, 1100]  | 350 [1.00, 985]   | 353 [1.00, 871]   | 412 [1.00, 1070]  |  |  |
| Missing                                                                                                              | 153043 (89.9%)    | 29385 (89.9%)     | 12978 (90.1%)     | 195406 (89.9%)    |  |  |
| NT_proBNP                                                                                                            |                   |                   |                   |                   |  |  |
| Median [Q1, Q3]                                                                                                      | 2790 [404, 7530]  | 2490 [349, 6820]  | 2440 [426, 6330]  | 2700 [393, 7320]  |  |  |
| Missing                                                                                                              | 153022 (89.9%)    | 29161 (89.2%)     | 12818 (89.0%)     | 195001 (89.7%)    |  |  |
| *not shown due to small numbers policy                                                                               |                   |                   |                   |                   |  |  |
| ACEi= angiotensin-converting-enzyme inhibitors; ARB= angiotensin receptor blockers; BMI= Body mass index; BNP= brain |                   |                   |                   |                   |  |  |

natriuretic peptide; NT\_proBNP= N-terminal (NT)-pro hormone BNP; MRA=mineralocorticoid receptor antagonist

Figure 1. Study flow

HF= heart failure; COPD=chronic obstructive pulmonary disease



# Supplemental references

- 1. Shoaib A, Mamas MA, Ahmad QS, et al. Characteristics and outcome of acute heart failure patients according to the severity of peripheral oedema. *Int J Cardiol* 2019;285:40-46. doi: 10.1016/j.ijcard.2019.03.020 [published Online First: 2019/03/25]
- 2. Conrad N, Judge A, Tran J, et al. Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. *The Lancet* 2018;391(10120):572-80. doi: 10.1016/s0140-6736(17)32520-5
- Lawson CA, Mamas MA, Jones PW, et al. Association of Medication Intensity and Stages of Airflow Limitation With the Risk of Hospitalization or Death in Patients With Heart Failure and Chronic Obstructive Pulmonary Disease. JAMA Netw Open 2018;1(8):e185489. doi: 10.1001/jamanetworkopen.2018.5489 [published Online First: 2019/01/16]
- 4. Quartagno M, Grund S, and Carpenter J. Jomo: a flexible package for two-level joint modelling multiple imputation. R Journal 2019;9.1