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Abstract
It is often assumed that events cannot occur simultaneously when modelling data with point processes. This raises a problem
as real-world data often contains synchronous observations due to aggregation or rounding, resulting from limitations on
recording capabilities and the expense of storing high volumes of precise data. In order to gain a better understanding of
the relationships between processes, we consider modelling the aggregated event data using multivariate Hawkes processes,
which offer a description of mutually-exciting behaviour and have found wide applications in areas including seismology and
finance. Here we generalise existing methodology on parameter estimation of univariate aggregated Hawkes processes to the
multivariate case using aMonteCarlo expectation–maximization (MC-EM) algorithmand through a simulation study illustrate
that alternative approaches to this problem can be severely biased, with the multivariate MC-EMmethod outperforming them
in terms of MSE in all considered cases.
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1 Introduction

Modern data acquisition systems in many applications col-
lect vast amounts of data that can be characterised as time
series. An area of particular interest is cyber-security, where
network data are recorded and questions arise about the cor-
relation structure and ‘excitational’ effects in andbetween the
resulting time series. We aim to uncover trends within and
between such time stamped event data,whichwemodel using
point processes. For this, we are particularly interested in the
multivariate Hawkes process, which provides a model for
‘mutually exciting’ events. Introduced in Hawkes (1971a, b)
primarily to model the occurrence of seismic activity, mul-
tivariate Hawkes processes have found wide application
to many disciplines due to their ability to model cross-
excitation. In the case of financial data, multivariate Hawkes
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processes have been used to model the joint dynamics of
trades and mid-price changes of the NYSE (Bowsher 2007)
and an overview of literature surrounding the application of
these processes to finance is given in Bacry et al. (2015).
Additionally Hawkes processes have been considered within
cyber-security for modelling of computer network traffic
(Mark et al. 2019; Price-Williams and Heard 2019) and
social media activity, for example in Kobayashi and Lam-
biotte (2016) where propagation of ‘Twitter cascades’ is
considered. As discussed in Shlomovich et al. (2022) prac-
tical limitations on storing or recording high resolution data
results in an abundance of binned data, that is streams of
counts of occurrences per time bin. We can use the counting
process representation of a P-variate point process to model
this binneddata. Let N (p)(t)be the pth continuous time count
process (p = 1, . . . , P) denoting the number of events until
time t ∈ R where N (p)(0) = 0, N (p)(t) = N (p)((0, t]) for
t > 0 and −N (p)((t, 0]) for t < 0. We further denote

N (p)
t = N (p)(Δ(t + 1)) − N (p)(Δt),

to be the binned (aggregated) process. Then the discrete-time
vector process N t is given by

N t =
[
N (1)
t , . . . , N (P)

t

]
, t = 1, . . . , K ,
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where K = T /Δ and Δ is the bin width. Here we develop
and extend the methodology detailed in Shlomovich et al.
(2022) to handle parameter estimation of multivariate binned
Hawkes processes. We do this by considering the superpo-
sition of the multivariate count process. This is an elegant
methodwhichmanages to replicate both themarginal and the
cross-correlation structure of the true process. Results from a
simulation study, comparing the extendedMC-EMalgorithm
to both the INAR(p) and binned log-likelihood approxi-
mations are presented in Sect. 3. This method is shown to
produce estimates with lower MSE than currently available
alternatives. We additionally derive the Hessian of a multi-
variate Hawkes process with exponential kernel, required for
optimization, and present this in “Appendix B” along with
the gradient derived in Ozaki (1979).

1.1 Multivariate Hawkes processes

Formally, the P-dimensional Hawkes process N(t) =[
N (1)(t), . . . , N (P)(t)

]
is a class of stochastic process such

that independently for each p ∈ {1, . . . P},

Pr{dN (p)(t) = 1 | N(s) (s ≤ t)} = λ∗
(p)(t)dt + o(dt),

Pr{dN (p)(t) > 1 | N(s) (s ≤ t)} = o(dt),

where dN (p)(t) = N (p)(t + dt) − N (p)(t) (Hawkes 1971a).
It is characterized via its conditional intensity function (CIF)
λ∗

(p)(t), defined as

λ∗
(p)(t) = νp +

P∑
m=1

∫ t

−∞
gpm(t − u)dN (m)(u), (1)

where ν > 0 is a P-dimensional vector called the background
intensity and g(u) is the non-negative excitation kernel such
that g(u) = 0 for u < 0 and given by a P × P matrix of
functions. In this way, the intensity at an arbitrary time-point
is dependent on the history of the multivariate process allow-
ing for both self and mutually exciting behavior. In simple
cases, if gi j (u) = 0 for all u and i �= j , then this is non-cross
exciting behavior. That is the cross-covariances are equal to
zero and whilst the processes may be self exciting, they are
independent and thus not mutually exciting (Hawkes 1971a).
Further, in the bivariate case if g21(u) = 0 for all u but
g12(u) �= 0 for all u then N (1)(t) does not affect the like-
lihood of events in N (2)(t), but the converse does not hold.
In this case we have one way interaction between the two
processes involved.

The CIF from (1) can be written for an exponential kernel
as

λ∗
(p)(t) = νp +

P∑
m=1

Nm (t)∑
j=1

αpm exp
(
−βpm

(
t − tmj

))
,

where ν,α = (
αpm

)
,β = (

βpm
)
, p,m = 1, . . . P are known

as the baseline, excitation anddecayparameters, respectively.
Assuming stationarity of themultivariateHawkes processwe
have that the vector of stationary densities is

λ = E{λ∗}

so that

λ =
(
I P −

∫ ∞

0
g(u)du

)−1

ν = (I P − G(0))−1 ν,

where G(ω) is the Fourier transform of the excitation kernel
g(·), given by

G(ω) =
∫ ∞

−∞
e−iωτ g(τ )dτ.

Note that G(0) is commonly referred to as the branching
ratio, typically denoted by γ , with the condition for stationar-
ity being that the spectral radius ρ(γ ) < 1 (Hawkes 1971b).

2 Multivariate MCEM for binned Hawkes
processes

In a continuous time framework, maximum likelihood esti-
mation (MLE) can be used to estimate the model parameters
from a set of exact multivariate events on the interval [0, T ]
(Ozaki 1979) denoted

T =
{
T(p)

}
p=1,...P

=
{
t p1 , . . . t p

N (p)
T

}
p=1,...P

∈ [0, T ],

where T is the maximum observation or simulation time, t pl
is the lth event in process p, and N (p)(T ) is the total number
of events in process p. When we observe an aggregation of
these latent continuous times to a count process of events
per time bin, we lose information and in particular the likeli-
hood of our observed event times given a parameter set can
no longer be computed exactly due to reliance on the under-
lying time-stamps. In particular, the Hawkes process which
is defined by its CIF, depends on the history of the process,
which if ‘blurred’ by binning or rounding requires correct
handling in order to obtain meaningful parameter estimates.
In the univariate setting, a method for parameter estimation
based on theWhittle likelihood is presented in Cheysson and
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Lang (2022) and a modified Monte Carlo Expectation Max-
imisation (MC-EM) approach is presented in Shlomovich
et al. (2022), termed the Binned Hawkes Expectation Max-
imisation (BH-EM) algorithm; which is extended here for
multivariate data.

2.1 TheMonte Carlo EM algorithm

TheEMalgorithm (Dempster et al. 1977) augments observed
data by a latent quantity (Wei and Tanner 1990) to iter-
atively compute the maximizer of a likelihood. Here, the
observed data are the multivariate event counts per unit
time N t = [N (1)

t , . . . , N (P)
t ]. The latent data, T are the

unobserved, true event times. These are marked time-stamps
which are not observed due to practical restrictions. We
denote the parameter set to be Θ = {ν,α,β}, where ν is
P × 1, and α and β are P × P . The following two steps are
as detailed in Shlomovich et al. (2022):

1. In the E (Expectation) step, we compute

Qi+1(Θ,Θ i ) =∫

T

log(p(Θ | N,T ))p(T | N,Θ i )dT , (2)

where T denotes the sample space for T .
2. In the M (Maximization) step, maximize the conditional

expectation in (2) to obtain the updated parameter esti-
mate, Θ i+1.

Monte Carlo methods can be used to numerically compute
(2) if it is intractable, forming an algorithm known asMCEM
(Wei andTanner 1990).Aswe cannot sample the time-stamps
directly we use importance sampling to simulate proposals
T ∗ for T from a feasible alternative distribution, denoted
q(T | N,Θ i ).

Unique to themultivariate formulation is the need to retain
the latent covariance structure between the P processes. To
this end, we sample the times of the univariate superposi-
tion of the P-variate process. We then split the superposed
simulated time-stamps to P processes to create proposals
matching the multivariate counts. We refer to such viable
proposals as consistent. This approach is detailed further in
Sect. 2.2.Once sampled, each proposal isweighted according
to the probability it came from the desired distribution. That
is, given a set of M samples T ∗(1), . . . ,T ∗(M), we assign
weights

wk = p
(
T ∗(k) | N,Θ i )

q
(
T ∗(k) | N,Θ i ) , (3)

and approximate (2) with

Qi+1
(
Θ,Θ i ) =

∑M
k=1 wk log

(
p
(
Θ | N,T ∗(k)))

∑M
k=1 wk

. (4)

It is shown in Shlomovich et al. (2022) that if only proposing
consistent event times

p
(
T ∗(k) | N,Θ i

)
∝ p

(
T ∗(k) | Θ i

)
,

where log
(
p(T ∗(k) | Θ)

)
is given in Daley and Vere-Jones

(2003) by

logL(Θ;T ) =
P∑

p=1

logLp(Θ;T ),

=
P∑

p=1

⎡
⎣

N (p)(T )∑
j=1

log λ∗
(p)

(
t (p)j

)
−

∫ T

0
λ∗

(p)(u)du.

⎤
⎦ .

2.2 Multivariate sampling via the superposition
process

Generating consistent time-stamps for the latent multivariate
process such that the true covariance structure is sufficiently
captured is an important problem. We propose the following
method for this, which allows us to extend the work in Shlo-
movich et al. (2022) for multivariate count data. Consider
N t = [N1,t , . . . , NP,t ] being a binned P-variate Hawkes
process with exponential kernel. In order to generate possible
multivariate, continuous-time proposal, T ∗, of the underly-
ing event times, T , we first consider the superposed latent
time-stamps,

T̃ = sort
{∪pTp

}
,

whereTp represents the set of latent times for the pth process,
for p = 1, . . . , P , and thus the superposed binned count
process

Ñt = N1,t + · · · + NP,t .

We map the multivariate parameter set Θ = {ν,α,β} to a
corresponding set Θ̃ = {ν̃, α̃, β̃} which approximates the
univariate superposed process.

It is given that the intensity of the superposed count pro-
cess Ñ can be decomposed as

λ̃∗(t) =
P∑

p=1

λ∗
(p)(t), (5)

where λ̃∗(t) is the CIF for the superposed process. Using (5)
and λ∗

p(t) defined in Eq. (1) we have that
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λ̃∗(t) =
P∑

p=1

νp

+
P∑

p=1

P∑
m=1

∑
tm, j<t

αpm exp
{−βpm

(
t − tm, j

)}
. (6)

We approximate the CIF of the superposed process with
that of a univariate Hawkes process with exponential kernel
and parameters Θ̃ = {ν̃, α̃, β̃}. Doing so enables the cross
and self excitation effects to be sufficiently captured by the
internal correlation structure of the approximated superposed
process, which is significantly simpler to generate proposals
for. Specifically,

λ̃∗(t) ≈ λ̃∗
a(t),

= ν̃ +
∑
t j<t

α̃ exp
{
−β̃

(
t − t j

)}
, (7)

where λ̃∗
a(t) is the approximated CIF. By equating terms in

Eqs. (6) and (7), it is clear that the baseline for the super-
posed process is simple to handle, and can be defined as
ν̃ = ∑P

p=1 νp.

The choice of α̃ and β̃ requires more care as, from the
preceding two Equations, we approximate the contribution
to the CIF from excitational effects as

P∑
p=1

P∑
m=1

∑
tm, j<t

αpm exp
{−βpm

(
t − tm, j

)}

≈
Ñ (t)∑
t j<t

α̃ exp
{
−β̃

(
t − t j

)}
. (8)

To aid the choice of appropriate α̃ and β̃ we utilise the sta-
tionarity intensity of a univariate Hawkes process. We have
that

λ̃a = ν̃

1 − γ̃
,

where λ̃a is the stationary intensity for λ̃∗
a(t) and γ̃ is the

branching ratio for λ̃∗
a(t), equal to α̃/β̃ due to the exponential

form of the kernel. As the intensity of the superposed process
can be decomposed, as in (5), the stationary intensities can
similarly be decomposed. Therefore we have that

λ̃a ≈ λ̃ =
P∑

p=1

λp,

= 1

KΔ

P∑
p=1

E{Np(T )},

where KΔ = T . Noting that ν̃ = ∑P
p=1 νp, we thus have

γ̃ ≈ 1 − KΔ
∑P

p=1 νp∑P
p=1 E{Np(T )} . (9)

The relationship inEq. (9) aids the choice of α̃ and β̃ such that
we retain a consistent stationary intensity under the approxi-
mation of theCIFwith the exponential kernel given inEq. (7).
Further, the form inEq. (9) is simple to compute as E{Np(T )}
is well approximated by the mean number of events in each
process.

We find that a suitable choice for β̃ is

β̃ = weightedmean
{
βpm

}
p,m=1,...,P ,

=
∑P

p=1
∑P

m=1 ωmβpm∑P
p=1

∑P
m=1 ωm

, (10)

whereωm is the proportion of total events which are observed
in process m. This form is reached by considering Eq. (8).
The decay rate across events can approximately be given
by the mean of the multivariate decays, weighted according
to the proportion of events in each process. The benefit of
weighting the mean can be seen by reasoning about the case
when the processes have significantly different numbers of
events. Combining (10) with the relationship for γ̃ in Eq. (9)
we have

α̃ = weightedmean
{
βpm

}(
1 − KΔ

∑P
p=1 νp∑P

p=1 E{Np(T )}

)
. (11)

It is important to note that as this reparameterisation does
not rely on any latent continuous time-points, but rather just
the observed counts and current multivariate parameter esti-
mates, it is efficient to implement in practice.

Empiricial studies show this reparameterization accu-
rately recovers the true CIF of the superposed process. In
this waywe only simulate a univariate process, albeit a super-
posed version, and denote the simulated times as T̃ ∗. In order
to generate a realisation of the multivariate Hawkes process,
T ∗, with cross-covariances, we can then uniformly sample
the observed number of events in each bin for each process
from the T̃ ∗. In other words, we simulate a consistent set
of continuous times for the superposed process matching the
observed counts for Ñ (t), and then uniformly assign points
within each bin to each of the P processes. To reduce variance
of the estimates, the allocation of events to the P processes
can be conducted m̃ times to generate multiple possible mul-
tivariate versions of the proposed realisation of Ñ . If m̃ > 1,
the sample which maximises the log-likelihood is selected,
otherwise the single multivariate proposal is taken and the
MLE is used to estimate the parameters of the multivariate
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process from the continuous-time proposed realisation. We
present results for m̃ = 10 in Sect. 3.

This method provides us with an efficient way of artifi-
cially injecting cross-correlation into the consistent proposals
whilst also retaining themarginal properties. In order to speed
up the maximisation of the likelihood, we require the gradi-
ent and Hessian, given in “Appendix B”. The full algorithm
for this multivariate approach is derived and presented in
“Appendix C”.

2.3 Samplingmethod

The question remains of how to best sample the latent times.
The sequential simulation method detailed in Shlomovich
et al. (2022) is applicable in the multivariate extension due
to the reparameterization step meaning we need only sample
times for the univariate superposition process. In this case,
the normalised weight of the kth Monte Carlo sample (k =
1, . . . , M) is given by

wk = p
(
T ∗(k) | N,Θ i )

q
(
T ∗(k) | N,Θ i )

≡ exp
{
log

[
p

(
T ∗(k) | N,Θ i

)]

− log
[
q

(
T ∗(k) | N,Θ i

)]}
(12)

where M is the number of Monte Carlo samples. Further we
note that

log
(
q

(
T ∗(k) | N,Θ i

))
= log

(
q

(
T̃ ∗(k) | Ñ , Θ̃ i

))

+ log
(
Pr

(
T ∗(k) | T̃ ∗(k), N

))
,

where log
(
q

(
T̃ ∗(k) | Ñ , Θ̃ i

))
is the log-likelihood of the

sequentially sampled superposed times given the super-
posed counts and reparameterized univariate estimates, and

Pr
(
T ∗(k) | T̃ ∗(k), N

)
denotes the probability of the random

division of superposed time-points into a P-variate count
process matching the observed counts.

Large differences between p
(
T ∗(k) | N)

and q(T ∗(k)

| N) can result in the weights being close to zero. Therefore
we rescale the exponent term to avoid arithmetic underflow
when computing the weights. We have

exp
(
log

(
p

(
T ∗(k) | N,Θ i ))

− log
(
q

(
T ∗(k) | N,Θ i )) − C

)
∑M

k=1

(
exp

(
log

(
p

(
T ∗(k) | N,Θ i )))

− log
(
q

(
T ∗(k) | N,Θ i )) − C

)
,

=
exp

(
log

(
p

(
T ∗(k) | N,Θ i ))

− log
(
q

(
T ∗(k) | N,Θ i ))) / exp(C)∑M

k=1

(
exp

(
log

(
p

(
T ∗(k) | N,Θ i )))

− log
(
q

(
T ∗(k) | N,Θ i )) / exp(C)

)
,

= wk . (13)

Thus we can use Eq. (13) in place of Eq. (12).

3 Simulation study

We conduct a simulation study to compare the perfor-
mance of the multivariateMC-EM algorithm to the INAR(p)
method introduced in Kirchner (2016). We also compare the
results to an approximation which ignores inter-bin excita-
tion, referred to as the binned log-likelihood method. This
approach represents the CIF as a piecewise constant func-
tion within each bin, equivalently assuming that N (p)

j ∼
Poisson{Δλ∗

m ([ j − 1]Δ)}, where N (p)
j are the counts in the

j th bin of the pth process (Mark et al. 2019).
Given parameters ν, a 2 × 1 matrix, and α and β both

being 2× 2 matrices, along with some maximum simulation
time T , we can simulate realizations of a Hawkes process.
The generated eventsT represent the underlying process and
aggregating these to a chosen binningΔ allows us to simulate
the count data {N t , t = 1, . . . , K }. We then apply each of
the multivariate MC-EMmethods, INAR(p) and binned log-
likelihood approximation.

Boxplots for each of the ten estimated parameters used
for characterising the bivariate Hawkes process are given in
Fig. 1. The parameters used for simulation are

ν =
[
0.3
0.3

]
, α =

[
0.7 0.9
0.6 1.0

]
, β =

[
1.5 2.0
2.0 3.5

]
,

withΔ = 1 and T = 2000. The parameters have been chosen
as a stationary case with ample cross-excitation and non-
symmetric self-excitation. The mean parameter estimates
from repeated simulations is presented on the vertical axis.
The INAR(p) approximation method can yield highly vari-
able results,which is to be expected as themethod is primarily
intended for selecting a parametric kernel from continuous
timedata. The usual implementation of the INAR(p) involves
selecting Δ such that there is approximately one event per
bin, however for our application this is not possible and so
the choice of Δ here is chosen to better reflect real data. A
log-scale has been used in all four graphs relating to each
of α and β. Both the binned log-likelihood, and particularly
the INAR(p) method produced large outliers, resulting in
very large MSE relative to the MC-EM approach. Tables 1
and 2 present summary statistics for the outlier-trimmed data.
Specifically we remove the top and bottom 5% of parame-
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Fig. 1 For comparison, the
green dashed lines represent the
mean MLE of the ground truth
continuous times and the black
solid lines the ground truth
itself. Note, the INAR(p)
method can also produce
negative values which are not
shown in the case of log scales
being used. Log scales have
been used in any figure where a
parameter estimate was greater
than or equal to 1000
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ter estimates for each of the three methods and report the
relative bias, mean and standard deviation for each of the
parameters and methods. We see that even after removing
outliers and negative values from the INAR(p) parameter
estimates, the variability is much higher than that of the MC-
EM. The absolute value of the bias of both the INAR(p)
and binned log-likelihood approaches is also larger than that
of the MC-EM, in some cases significantly so. Overall, the
proposed MCEM approach has much improved estimation
performance than the other methods. Table 3 additionally
presents the ratio between the RMSE using T = 2000 and
T = 1000 for each of the estimation approaches, using 300
Hawkes process realizations for each method. By fixing Δ,
this allows the effect of doubling the number of bins K to be
explored.Aswith theMLE, for the proposedMCEMmethod,
it is expected that the RMSE reduces by approximately a

factor of 1/
√
2 when doubling K . We find that the mean

RMSE ratio across the 10 parameters is 0.762 for theMCEM
method, and 0.725 for theMLE acting on the continuous time
points.However both the INAR(p) and binned log-likelihood
methods have a significantly higher mean ratio, of 0.875 and
0.990 respectively.

Evaluation of the methods is additionally explored via
goodness of fit. This is an important aspect which allows us
to check the validity of the estimates given the data. Often,
the random change theorem, given in Daley and Vere-Jones
(2003), is used for considering goodness of fit by transform-
ing time-points using the compensator function

Λ(t pk ) =
∫ t pk

0
λ∗

(p)(u)du,
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Table 1 Relative bias for the
data trimmed, removing the top
and bottom 5% of values for
each of the three considered
methods

Parameter MCEM rel. bias INAR(p) rel. bias Binned LL rel. bias

ν(1) −0.003 0.813 0.117

ν(2) −0.010 0.633 0.363

α(1, 1) −0.007 22.427 0.066

α(1, 2) −0.140 204.556 −0.674

α(2, 1) −0.0683 64.167 −0.520

α(2, 2) −0.257 142.000 −0.510

β(1, 1) 0.013 0.847 −0.273

β(1, 2) −0.160 2.010 −0.725

β(2, 1) −0.0600 0.915 −0.632

β(2, 2) −0.2660 1.217 −0.609

Table 2 Mean and standard deviation values for the data trimmed to remove the top and bottom 5% of values each, to handle outliers

Ground truth MCEM Mean (sd) INAR(p) Mean (sd) Binned LL Mean (sd) MLE Mean (sd)

ν1 0.30 0.30 (0.02) 0.54 (0.04) 0.34 (0.20) 0.30 (0.02)

ν2 0.30 0.30 (0.018) 0.490 (0.036) 0.409 (0.099) 0.299 (0.016)

α(1, 1) 0.70 0.695 (0.05) 16.40 (79.40) 0.75 (0.20) 0.71 (0.05)

α(1, 2) 0.90 0.77 (0.06) 185.00 (394.00) 0.29 (0.09) 0.91 (0.08)

α(2, 1) 0.60 0.56 (0.05) 39.10 (127.00) 0.29 (0.11) 0.61 (0.06)

α(2, 2) 1.00 0.74 (0.06) 143.00 (236.00) 0.49 (0.33) 0.99 (0.09)

β(1, 1) 1.50 1.52 (0.12) 2.77 (2.72) 1.09 (0.18) 1.53 (0.11)

β(1, 2) 2.00 1.68 (0.14) 6.02 (5.56) 0.55 (0.14) 2.01 (0.18)

β(2, 1) 2.00 1.88 (0.19) 3.83 (3.90) 0.73 (0.21) 2.01 (0.19)

β(2, 2) 3.50 2.57 (0.29) 7.78 (5.93) 1.37 (0.32) 3.53 (0.41)

Table 3 Ratio of RMSE for K = 2000 to K = 1000 for each of the
methods considered, and the MLE

Parameter MCEM INAR(p) Binned LL MLE

ν(1) 0.621 0.944 1.02 0.687

ν(2) 0.743 0.977 0.974 0.727

α(1, 1) 0.583 0.682 0.876 0.719

α(1, 2) 0.926 0.720 0.974 0.715

α(2, 1) 0.759 0.716 0.972 0.832

α(2, 2) 1.00 1.02 1.03 0.690

β(1, 1) 0.582 0.844 0.997 0.709

β(1, 2) 0.951 0.836 1.01 0.775

β(2, 1) 0.742 0.834 1.01 0.710

β(2, 2) 0.706 1.00 1.04 0.686

Mean 0.762 0.858 0.990 0.725

The theoretical expected relationship is ≈ 1/
√
2 ≈ 0.707. The mean

ratio across all 10 parameters is also given for each approach

where t pk is the kth event in process p. In practice, λ∗
(p)(u) is

estimated using parameter estimates Θ̂ , and goodness of fit is
conducted by considering the distribution of the transformed
times, defined as T † = {t†1 , t†2 , . . .} = {Λ(t1),Λ(t2), . . .}.

By the random time change theorem, T † is a realization of
a unit rate Poisson process if and only if T is a realization
from the point process defined by Λ(·).

Figure 2 shows QQ-plots relating to count processes from
the simulation study. The continuous times froma single real-
ization of aHawkes process generated in the simulation study
are transformed using each of the parameter estimates from
the three approaches considered. TheQQ-plots then compare
the distribution of the interarrival times between each of the
transformed times and a unit rate exponential distribution.
We see that the estimates produced by theMC-EM algorithm
are indeed a viable parameter set for this realization under an
exponentialHawkesmodel,with the transformed time-points
being distributed very close to the theoretical distribution.We
also note that as the binned log-likelihoodmethod ignores the
effect of inter-bin excitation, it is expected that as the aver-
age number of counts in a bin increases, the fit from using
this method will worsen. Whilst the QQ-plots given in Fig. 2
demonstrate the viability of the estimated parameters for a
specific realization, in order to illustrate goodness of fit across
all realizations in the simulation study, Fig. 3 also presents
the distribution of Kolmogorov–Smirnov (KS) test statistics.
Here, the KS test is used to test the equality of the distri-
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Fig. 2 Goodness of fit plots show the MCEMmethod to yield the most
viable parameters

bution of the transformed interarrival times to an Exp(1)
distribution for each of the three methods considered. This is
done for all realizations used in the simulation study, and the
distribution of the resulting KS test statistics is presented in
Fig. 3. The MLE is also used to produce parameter estimates
from the true, continuous time stamps, with the resulting KS
test statistics also given in Fig. 3 for easier interpretation. It
is clear that the MC-EM approach is far more comparable to
the MLE results than the binned log-likelihood or INAR(p)
methods.

Note, variance estimation has not been discussed here, but
parametric bootstrapping would allow for approximations of
this to be obtained (Efron 1987).

4 Case study

Network flowdata, referred to asNetFlow, assembles records
exported by routers and describes communications between
devices connected to an enterprise network. Monitoring and
analysing NetFlow data has been successful at detecting a
range of malicious network behavior (Turcotte et al. 2018).
Here we detect both self-exciting effects in the communi-
cation between a pair of network devices, termed here as an
‘edge’, and mutually-exciting activity between such edges in
the Los Alamos National Lab (LANL) enterprise network.
By modelling the activity in this way, insight into the cor-
relation structure of communications in the network can be

0 0.2 0.4 0.6 0.8 1
0

50

Process 1 - BinLL

0 0.2 0.4 0.6 0.8 1
0

50
Process 2 - BinLL

0 0.2 0.4 0.6 0.8 1
0

100

Process 1 - INAR

0 0.2 0.4 0.6 0.8 1
0

100

Process 2 - INAR

0 0.2 0.4 0.6 0.8 1
0

50
Process 1 - MCEM

0 0.2 0.4 0.6 0.8 1
0

50
Process 2 - MCEM

0 0.2 0.4 0.6 0.8 1
0

50
Process 1 - MLE

0 0.2 0.4 0.6 0.8 1
0

50
Process 2 - MLE

Fig. 3 Distribution of KS test statistic for each of the 3 methods considered. MLEs from the true continuous realisation times are also used for
comparison
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Fig. 4 Counts of NetFlow event
data on 2 edges in the LANL
network
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obtained and monitored. We consider the methods outlined
in Sect. 3 for parameter estimation of aggregated Hawkes
processes as the NetFlow data is recorded at a 1 s resolution
resulting in multiple events occurring simultaneously.

Figure 4 presents a selected pair of edges in the LANL
network with possibe mutually-exciting Hawkes behavior in
the communications over a duration of 45 min, with a total of
171 events. We refer to the counts in the top plot as process
1 and the counts in the bottom plot as process 2. The win-
dow selected is chosen as a period of more frequent events
surrounded by no activity.

Parameter estimates are foundusing theMC-EM, INAR(p)
and binned log-likelihood methods and performance is con-
sidered using goodness of fit. This allows us to assesswhether
the estimates represent viable parameters for modelling the
observed data as a mutually-exciting Hawkes process. To
do this, we use the time rescaling theorem discussed in
Sect. 3. Figure 5 shows QQ-plots for the observed times,
uniformly redistributed within their respective bins so as to
obtain continuous times for the purpose of assessing good-
ness of fit (Gerhard and Gerstner 2010). From Fig. 5, the
parameter estimates obtained via the MC-EM algorithm are

likely viable parameters. The MC-EM parameter estimates
are

ν =
[
0.01
0.01

]
, α =

[
0.49 0.00
0.22 0.28

]
, β =

[
1.46 0.53
0.80 1.01

]
.

The branching ratio, defined in Sect. 1.1 is therefore

γ = α  β =
[
0.34 0.00
0.27 0.28

]
,

where  denotes element-wise division and γi j is the aver-
age number of events in process j directly triggered by each
event in process i .

These results indicate that there is mutually-exciting
behavior between these processes in one direction such that
process 2 does not affect process 1 but process 1 does affect
process 2, where process 1 is presented in blue in Fig. 4
and process 2 in red. There parameter estimates suggest that
for each event in process 1, an average of 0.27 events will
be triggered in process 2. The baseline parameters given by
ν indicate the rate of the events is approximately one event
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Fig. 5 QQ-plots of transformed time-points using parameters estimated
from each of the three methods for an edge in the LANL network. Note
that the INAR(p) method generates negative parameter estimates for
process 2 and therefore has a particularly poor fit
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Fig. 6 The excitation kernel g(x) as estimated by the MC-EM algo-
rithm. Note that only 3 curves are visible as ĝ12(x) is practically zero

every100 s.Bothprocesses aremodelledwith self-excitation,
with each event in processes 1 and 2 triggering 0.34 and 0.28
events in their respective processes. Figure 6 shows the esti-
mated excitation kernel components. From this we can see
nature of the exciting effects, where gi j (x) illustrates the
excitational effect which process j has on process i .

5 Conclusion

We have presented a novel method for generalising an
MCEM algorithm to handle multivariate aggregated data.
By reparameterizing our multivariate model in terms of
the superposed process we can inject the necessary cross-
covariance structure required for generating valid proposals.
We also present closed form expressions for the gradient
and Hessian of the log likelihood for increased computa-
tional efficiency. We further conducted a simulation study
to compare this approach to the INAR(p) approximation
detailed in Kirchner (2016) and a multivariate extension of
the binned log likelihood method from Mark et al. (2019)
and Shlomovich et al. (2022). As in the univariate case,
the MCEM method out-performed both alternatives in the
presented parameter set and moreover the bin width, Δ

can vary provided the interval bounds are known. The
multivariate extension can be applied for other Hawkes ker-
nels.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: Algorithmic details

In the simulation study presented here, the number of Monte
Carlo samples M = 10, and the number of splits m̃ = 10.
The L2 norm of the difference between successive param-
eter estimates is used for determining convergence. For the
case study presented, the MC-EM algorithm takes 8.64 s,
INAR(p) takes 0.11 s and the binned log likelihood takes 0.14
s. The simulation study presented has additionally been timed
on a 2020 MacBookPro 32GB RAM, 2.3 GHz Intel Core i7.
The MC-EM algorithm takes an average of 3.76 ∗ 103 s per
realization, INAR(p) takes 0.527 s per realization, where this
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includes the optimal selection of p and exponential fit. The
binned log-likelihood 0.46 s per realization.

Appendix B: Gradient and Hessian of multi-
variate continuous time Hawkes processes

The likelihood function of the multivariate Hawkes process
is given by

logL (Θ;T ) =
P∑

m=1

logLm (Θ;T )

where

logLm (Θ;T ) = −νmT

−
P∑

n=1

αmn

βmn

∑
k:tnk <T

[
1 − exp

(−βmn
(
T − tnk

))]

+
∑

k:tmk <T

log

(
νm +

P∑
n=1

αmn Rmn(k)

)
,

where Rmn(k) is defined as

Rmn(k) =
∑

i :tni <tmk

exp
(−βmn

(
tmk − tni

))
, k ≥ 2,

and Rmn(1) = 0. This can recursively be defined as

Rmn(k) = exp−βmn
(
tmk −tmk−1

)
Rmn(k − 1)

+
∑

i :tmk−1<tni <tmk

exp
(−βmn

(
tmk − tni

))
.

Therefore, the gradient can be expressed by the following.

∂Lm

∂νm
= −T +

∑
k:tmk <T

1

νm + ∑P
j=1 αmj Rmj (k)

,

∂Lm

∂αmn
= − 1

βmn

∑
k:tnk <T

[
1 − exp

(−βmn
(
T − tnk

))]

+
∑

k:tmk <T

Rmn(k)

νm + ∑P
j=1 αmj Rmj (k)

,

∂Lm

∂βmn
=αmn

β2
mn

∑
k:tnk <T

[
1 − exp

(−βmn
(
T − tnk

))]

− αmn

βmn

∑
k:tnk <T

[(
T − tnk

)
exp

(−βmn
(
T − tnk

))]

−
∑

k:tmk <T

αmn R′
mn(k)

νm + ∑P
j=1 αmj Rmj (k)

,

where

R′
mn(k) =

∑
i :tni <tmk

(
tmk − tni

)
exp

(−βmn
(
tmk − tni

))
,

k ≥ 2 and R′
mn(1) = 0.

We can also compute the Hessian for the continuous mul-
tivariate Hawkes likelihood. There are 15 categories to
consider, given here.

∂2Lm

∂ν2m
= −

∑
k:tmk <T

1(
νm + ∑P

j=1 αmj Rmj (k)
)2 ,

∂2Lm

∂νm∂νn
= 0, m �= n,

∂2Lm

∂α2
mn

= −
∑

k:tmk <T

[
Rmn(k)

νm + ∑P
j=1 αmj Rmj (k)

]2

,

∂2Lm

∂αmn∂αmn′
= −

∑
k:tmk <T

Rmn(k)Rmn′(k)(
νm + ∑P

j=1 αmj Rmj (k)
)2 ,

n′ �= n,

∂2Lm

∂αmn∂αm′n′
= 0, m′ �= m, n, n′ ∈ {1, . . . , P},

∂2Lm

∂αmn∂νm
= −

∑
k:tmk <T

Rmn(k)(
νm + ∑P

j=1 αmj Rmj (k)
)2 ,

∂2Lm

∂αmn∂νm′
= 0, m′ �= m,

∂2Lm

∂βmn∂νm
=

∑
k:tmk <T

αmn R′
mn(k)(

νm + ∑P
j=1 αmj Rmj (k)

)2 ,

∂2Lm

∂βmn∂νm′
= 0, m′ �= m,

∂2Lm

∂βmn∂αmn

= − 1

βmn

∑
k:tnk <T

[(
T − tnk

)
exp

(−βmn
(
T − tnk

))]

+ 1

β2
mn

T∑
k:tnk <T

[
1 − exp

(−βmn
(
T − tnk

))]

−
∑

k:tmk <T

R′
mn(k)

νm + ∑P
j=1 αmj Rmj (k)
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+
∑

k:tmk <T

αmn R′
mn(k)Rmn(k)(

νm + ∑P
j=1 αmj Rmj (k)

)2 ,

∂2Lm

∂βmn∂αmn′
=

∑
k:tmk <T

αmn R′
mn(k)Rmn′(k)(

νm + ∑P
j=1 αmj Rmj (k)

)2

∂2Lm

∂βmn∂αm′n′
= 0, m′ �= m, n, n′ ∈ {1, . . . , P},

∂2Lm

∂β2
mn

= −2αmn

β3
mn

∑
k:tnk <T

[
1 − exp

(−βmn
(
T − tnk

))]

+ 2αmn

β2
mn

∑
k:tnk <T

[(
T − tnk

)
exp

(−βmn
(
T − tnk

))]

+ αmn

βmn

∑
k:tnk <T

[(
T − tnk

)2 exp (−βmn
(
T − tnk

))]

+
∑

k:tmk <T

[
αmn R′′

mn(k)

νm + ∑P
j=1 αmj Rmj (k)

−
(

αmn R′
mn(k)

νm + ∑P
j=1 αmj Rmj (k)

)2]
,

where

R′′
mn(k) =

∑
i :tni <tmk

(
tmk − tni

)2 exp (−βmn
(
tmk − tni

))
,

k ≥ 2 and R′′
mn(1) = 0.

∂2Lm

∂βmn∂βmn′
= −

∑
k:tmk <T

αmn R′
mn(k)αmn′ R′

mn′(k)(
νm + ∑P

j=1 αmj Rmj (k)
)2 ,

n′ �= n,

∂2Lm

∂βmn∂βm′n′
=0, m′ �=m, n, n′ ∈ {1, . . . , P}.

This covers all cases required for the full Hessian matrix.

Appendix C: Multivariate MC-EM algorithm

Herewe provide an algorithm for the parameter estimation of
multivariate aggregated Hawkes processes via the MC-EM
procedure. Code is available in MATLAB at https://github.
com/lshlomovich/MCEM_Multivariate_Hawkes.

Algorithm 1MC-EM
1: function MCEM(N, M, m̃, ε)
2: Ñ ← ∑P

p=1 N
(p), to generate the superposed process, where P

is the dimension of N
3: [ν1,α1,β1] = Θ1 ← Unif(P, 1 + 2P) such that the spectral

radius, ρ(γ ) < 1 to ensure stationarity
4: i ← 1
5: while tolerance > ε do
6: Θ̃ i = [ν̃i , α̃i , β̃

i ], the corresponding superposed estimate, is
formed using the reparameterization given in Section 2.2

7: for j = 1 to M do
8: T̃ ∗( j) ∼ q(T̃ | Ñ, Θ̃ i ), generate univariate proposal times

as in Algorithm 1 from Shlomovich et al. (2022)
9: for l = 1 to m̃ do
10: Uniformly sample without replacement the observed

number of points for each bin, for each process from T̃ ∗( j) to form
T ∗( j,l). This is the MC sample of the multivariate latent times T ,
using the j th MC sample of the superposed latent times T̃

11: end for
12: T ∗( j) ← T ∗( j,l) such that l =

argmaxl
(
log

(
p

(
T ∗( j,l) | Θ i

)))
13: log(w j ) ← log

(
p(T ∗( j) | Θ i )/q(T ∗( j) | N,Θ i )

)
14: end for
15: w = exp(log(w)−C), scale theweightswith an appropriately

chosen C , such as C ≈ min(log(w))

16: Qi+1(Θ,Θ i ) ← ∑M
k=1 wk log(p(Θ | N,T ∗))/

∑M
k=1 wk

17: Θ i+1 ← argmaxΘ,ρ(γ )<1 Qi+1(Θ,Θ i )

18: tolerance ← norm(Θ i+1 − Θ i )

19: i ← i + 1
20: end while
21: return {Θ i } � Set of parameter estimates
22: end function
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