
ar
X

iv
:1

91
1.

09
73

3v
1 

 [
m

at
h.

PR
] 

 2
1 

N
ov

 2
01

9

A class of integration by parts formulae in

stochastic analysis I

K. D. Elworthy and Xue-Mei Li
Mathematics Institute

University of Warwick
Coventry CV4 7AL,U.K.

1 Introduction

Consider a Stratonovich stochastic differential equation

dxt = X(xt) ◦ dBt + A(xt)dt (1)

with C∞ coefficients on a compact Riemannian manifold M , with associated
differential generator A = 1

2
∆M +Z and solution flow {ξt : t ≥ 0} of random

smooth diffeomorphisms of M . Let Tξt : TM → TM be the induced map on
the tangent bundle of M obtained by differentiating ξt with respect to the
initial point. Following an observation by A. Thalmaier we extend the basic
formula of [EL94] to obtain

EdF (Tξ· (h·)) = EF (ξ·(x))

∫ T

0

〈

Tξs

(

ḣs

)

, X (ξs(x)) dBs

〉

(2)

where F ∈ FC∞
b (Cx(M)), the space of smooth cylindrical functions on the

space Cx(M) of continuous paths γ : [0, T ] → M with γ(0) = x, dF is
its derivative, and h· is a suitable adapted process with sample paths in
the Cameron-Martin space L2,1

0 ([0, T ];TxM). Set Fx
t = σ{ξs(x) : 0 ≤ s ≤

t}. Taking conditional expectation with respect to Fx
T , formula (2) yields

integration by parts formulae on Cx(M) of the form

EdF (γ)(V̄ h) = EF (γ)δV
h
(γ) (3)

where V̄ h is the vector field on Cx(M)

V̄ h(γ)t = E {Tξt(ht) |ξ·(x) = γ }
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and δV
h
: Cx(M) → R is given by

δV
h
(γ) = E

{
∫ T

0

< Tξs(ḣs), X(ξs(x))dBs > |ξ·(x) = γ

}

.

When h· is adapted to Fx
· results from [ELJL95] extending [EY93] give

explicit expressions for V̄ h and δV̄ h in terms of the Ricci curvature of the
LeJan-Watanabe connection associated to (1). Equation (3) then reduces to
a Driver’s integration by parts formula, Theorem 3.3 below, but no hypothe-
sis of torsion skew symmetry of the connection is required: the integration by
parts formulae follow for the adjoint of any metric connection. In particular
for any such connection there is a Hilbert “tangent space” of “good” direc-
tions obtained by parallel translation of the Cameron-Martin space of paths
in TxM . (In fact it is the “Ricci flow” or “Dohrn-Guerra parallel transla-
tion” (see Nelson [Nel84]), leading to the “damped gradient” ([FM93]) which
occurs more naturally.) However, in Remark 2.4, we show that in this case
V̄h is in the class for which integration by parts formulae are known, so that
the results of 2.3, 3.3, 3.5 are not claimed to be new in substance.

Although this filtering out of the extraneous noise gives intrinsic results
comparable to those of Driver [Dri92], this viewpoint throws away a lot of the
structure we have. Moreover integration by parts formulae such as (2) should
have some connection with quasi-invariance properties of flows associated to
the vector fields. Flows for the V̄ h on Cx(M) do not appear to be easy to
analyse in general. However in §3 we show that in the context of Diff M
valued processes there are very natural flows associated and (2) has a rather
natural geometric interpretation. This leads to another elementary proof of
(2) and in Theorem 4.1 we use this method to obtain integration by parts
formulae for the free path space.

There are at least 3 proofs of (2). The first given here is via Itô’s for-
mula and elementary martingale calculus (it requires F to be cylindrical),
the second given here is based on the Girsanov-Maruyama theorem (and
works for more general F ), and a third method would be to deduce it from
the standard integration by parts formula on Wiener space applied to the
functional F ◦ ξ, c.f. [Bis81]. Indeed this work was stimulated by D. Bell and
D. Nualart pointing out that this third approach could be used to deduce
the basic formula of [EL94]. The point made (and carried out) in [Elw92]
and [EL94] that the first approach can be applied directly to ’Ricci flows’
instead of derivative flows to give intrinsic formulae without stochastic flows,
also needs to be emphasized: see also [SZ]. As such it gives the details of
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how ‘Bismut’s formula’ (essentially integration by parts when F is a function
of paths evaluated at just one time t) leads to the full integration by parts
formula.

There are also now many proofs of Driver’s results for Cx(M) and for the
free path space and their extensions. See [Hsu95], [ES95], [LN] (with a very
concise proof), [AM], [Aid], and [CM].

Acknowledgment: This research was supported by SERC grant GR/H67263
and stimulated and helped by our contacts with A. Thalmaier.

2 The integration by parts formula from fi-

nite dimensional manifolds to path spaces

In this section we deduce by induction an integration by parts formula on
the path space from a formula on the base manifold M . The key is to obtain
formula (10) for M .

Let h : Ω×[0, T ] → TxM be an adapted process with h(ω) : [0, T ] → TxM
in L2,1 for almost all ω.

Lemma 2.1 If h : Ω × [0, T ] → TxM is adapted, L2,1 for a.s. ω and
(

∫ T

0
|ḣs|2ds

)1/2

∈ L1+ǫ for some ǫ > 0. Then for t < T ,

E

{

∫ t

0
< Tξs(ḣs), X(ξs(x))dBs > |ξT (x)

}

= E

{

∫ T

t
< Tξs(−), X(ξs(x))dBs >

ht−h0

T−t
|ξT (x)

}

.
(4)

If furthermore h· is non-random then for t ≤ T ,

E

{

∫ t

0
< Tξs(ḣs), X(ξs(x))dBs > |ξT (x)

}

= E

{

∫ t

0
< Tξs(−), X(ξs(x))dBs >

(

ht−h0

t

)

|ξT (x)
}

.
(5)

Proof. First by the Burkholder-Davis-Gundy inequality, for some constant
c1,

E

∣

∣

∣

∣

∫ T

0

< Tξs(ḣs), X(ξs(x))dBs >

∣

∣

∣

∣

≤ c1E

(
∫ T

0

|Tξs(ḣs)|2ds
)

1

2

≤ c1

(

E sup
0≤s≤T

|Txξs|
1+ǫ
ǫ

)
ǫ

1+ǫ

[

E

(
∫ T

0

|ḣs|2ds
)

1+ǫ
2

]

1

1+ǫ

.
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This is finite since sup0≤s≤t |Txξs| ∈ Lq for all 1 ≤ q < ∞, e.g. see [Li94].
Moreover, since the adapted processes in L∞(Ω,F ,P;C1 ([0, T ];TxM)) are
dense in the subspace of adapted processes in L1+ǫ (Ω,F ,P;L2,1 ([0, T ];TxM)),
this estimate allows us to assume that h belongs to the former space.

Set Mt =
∫ t

0
< Txξs(−), X(ξs(x))dBs >. Then {M·} is a T ∗

xM valued
local martingale. If 0 = t0 < t1 < . . . < tl = t is a partition of [0, t],
∆jt = tj+1 − tj, and ∆jM = Mtj+1

−Mtj , then

l−1
∑

j=1

∆jM(ḣtj ) →
∫ t

0

ḣsdMs =

∫ t

0

< Tξs(ḣs), X(ξs(x))dBs > (6)

and the convergence is in L1.
On the other hand if v0 ∈ TxM and Pt is the probabilistic semigroup

associated to the S.D.E. and f a bounded measurable function then

d(PTf)(v0) =
1

T
Ef(ξT (x))

∫ T

0

〈Tξs(v0), X(ξs(x))dBs〉 . (7)

See [EL94]. However by an observation of Thalmaier: the same proof shows
that for any r, h ∈ [0, T ] with h > 0 and r + h ≤ T

d(PTf)(v0) =
1

h
Ef(ξT (x))

∫ r+h

r

〈Tξs(v0), X(ξs(x))dBs〉

c.f. [SZ]. From these two formulae we obtain:

E

{

1
T

∫ T

0
< Tξs(v0), X(ξs(x))dBs > |ξT (x)

}

= E

{

1
h

∫ r+h

r
< Tξs(v0), X(ξs(x))dBs > |ξT (x)

}

.
(8)

For any 0 ≤ r ≤ T , let {ξrs(x) : r ≤ s ≤ T, x ∈ M} be the solution flow to
(1) starting from x at time r. The flow ξr· can be taken to be adapted to a
filtration {F r

s : r ≤ s ≤ T} independent of Fr, and then we have ξrsξr = ξs,
almost surely, r ≤ s ≤ T . ¿From this, time homogeneity, and (8),

E

{

l−1
∑

j=1

∆jM(ḣtj ) |ξT (x)
}

= E

{

l−1
∑

j=1

∆jt
1

∆jt

∫ tj+1

tj

〈

Tξtjs

(

Tξtj

(

ḣtj )
))

, X
(

ξtjs
(

ξtj(x)
))

dBs

〉
∣

∣

∣
ξ
tj
T (ξtj (x))

}
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= E

{

l−1
∑

j=1

∆jt
1

T − t

∫ T

t

〈

Tξtjs

(

Tξtj(ḣtj )
)

, X
(

ξtjs
(

ξtj (x)
))

dBs

〉
∣

∣

∣
ξ
tj
T (ξtj (x))

}

= E

{

l−1
∑

j=1

∆jt
1

T − t

∫ T

t

< Tξs(ḣtj ), X(ξs(x))dBs > |ξT (x)
}

→ E

{
∫ T

t

< Tξs(−), X(ξs(x))dBs >
ht − h0

T − t
|ξT (x)

}

.

Comparing with (6) this gives the first required identity. When h· is
non-random the second follows immediately from (8).

Remark:

As in [SZ] a further modification is possible replacing (8) by:

1

T
E

{
∫ T

0

< Tξs(v0), X(ξs(x))dBs > |ξT (x)
}

=
1

∫ T

0
Ψ(r)dr

E

{
∫ T

0

Ψ(s) < Tξs(v0), X(ξs(x))dBs > |ξT (x)
}

for Ψ : [0, T ] → R integrable with
∫ T

0
Ψ(r)dr 6= 0. The argument leads to,

for non-random h,

E

{

∫ t

0
< Tξs(ḣs), X(ξs(x))dBs > |ξT (x)

}

= E

{

∫ t

0
Ψ(s) < Tξs(−), X(ξs(x))dBs >

(

ht−h0∫ t

0
Ψ(r)dr

)

|ξT (x)
}

.
(9)

Corollary 2.2 Under the conditions of the lemma, for any C1 function f :
M → R,

Ef (ξT (x))

∫ T

0

< Tξs(ḣs), X(ξs(x))dBs >= Edf (TξT (hT − h0)) . (10)

Proof. First by the composition property of solution flows,

E

{
∫ T

t

< Tξs(−), X(ξs(x))dBs >
ht − h0

T − t
|ξT (x)

}

= E

{
∫ T

t

< Tξts(−), X(ξts (ξt(x)))dBs >
Tξt(ht − h0)

T − t

∣

∣ξtT (ξt(x))

}

.
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As in the proof of the lemma, (4) yields

Ef(ξT (x))

∫ t

0

< Tξs(ḣs), X(ξs(x))dBs >

= Ef(ξtT (ξt(x))

∫ T

t

〈

Tξts(−), X(ξts(ξt(x))dBs

〉 Tξt(ht − h0)

T − t

= E {dPT−t(f) (Tξt(ht − h0))}

by [EL94], since F t
· is independent of Ft. Now let t increase to T and the

required result follows.

Next consider a cylindrical function F on Cx(M), the space of continuous
paths with base point x. Write

F (γ·) = f(γt1 , . . . , γtk),

for (t1, . . . , tk) ∈ [0, T ]k, γ ∈ Cx(M) and f a smooth function onMk. Suppose
h0 = 0 and consider the tangent vector field V h(ξ·(x)) along {ξt(x) : 0 ≤ t ≤
T} on Cx(M) given by

V h(ξ·)t = Txξt(ht).

Then

dF (V h(ξ·)) =

k
∑

j=1

djfξt
(

V h(ξ·)tj
)

. (11)

Here ξt = (ξt1 , . . . , ξtk) and djf is the partial derivative of f in the jth
direction.

Let

δV h(ξ·) =

∫ T

0

< Txξs(ḣs), X(ξs(x))dBs > .

Theorem 2.3 Let h : [0, T ] × Ω → TxM be an adapted stochastic process

with almost surely all h(ω) ∈ L2,1
0 and E

(

∫ T

0
|ḣs|2ds

)
1+ǫ
2

< ∞ for some ǫ > 0.

Then

EdF (V h(ξ·)) = EF (ξ·(x))δV
h(ξ·). (12)

Proof. We prove by induction on k. When k = 1, this is just (10), the
formula for functions. Let Ω = C0([0, T ];R

n) be the canonical probability
space. We set Ω1 = C0([0, t1];R

n) and Ω2 = C0([t1, T ];R
n). There is then

the standard decomposition of filtered spaces

{Ω,F ,Ft, 0 ≤ t ≤ T,P}
= {Ω1,F ,Ft, 0 ≤ t ≤ t1,P1} × {Ω2,F ,F t1

t , t1 ≤ t ≤ T,P2}
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in the sense that Ft = Ft∗Ω2 if t ≤ t1, and Ft = Ft1 ∗F t1
t if t ≥ t1. As before

let ξt1t (y0), t1 ≤ t ≤ T, y0 ∈ M be the solution flow to (1) starting at time t1,
i.e. ξt1t1 (y0) = y0. We will consider it as a function of ω2 ∈ Ω2, adapted to
F t1

· , while {ξt : 0 ≤ t ≤ t1} will be considered on Ω1, and {ξt : t1 ≤ t ≤ T}
on Ω1 × Ω2 = Ω. The composition property for flows gives

ξt1t (ξt1(x, ω1), ω2) = ξt (x, (ω1, ω2)) , each t1 ≤ t ≤ T, a.s.

Assume the required result holds for cylindrical functions depending on
k − 1 times, some k ∈ {2, 3 . . .}. Take y0 ∈ M and define f y0

1 : Mk−1 → R

and F y0
1 : Ω2 → R by:

f y0
1 (x1, . . . , xk−1) = f(y0, x1, . . . , xk−1)

and
F y0
1 (ω2) = f(y0, ξ

t1
t2 (y0, ω2), . . . , ξ

t1
tk
(y0, ω2)).

Take h1
· : Ω2 → L2,1

0 ([t1, T ];Ty0M), adapted toF t1
· , and with E

(

∫ T

t1
|ḣ1

s|2ds
)

1+ǫ
2

finite. By time homogeneity our inductive hypothesis gives

∑k
j=2

∫

Ω2
djf

(

y0, ξ
t1
t2 (y0, ω2), . . . , ξ

t1
tk
(y0, ω2)

)

(

Tξt1tj (h
1
tj
(ω2), ω2)

)

dP2(ω2)

=
∫

Ω2
f
(

y0, ξ
t1
t2 (y0, ω2), . . . , ξ

t1
tk
(y0, ω2)

)

×
∫ T

t1

〈

Tξt1r (ḣ
1
r(ω2), ω2), X(ξt1r (y0, ω2))dBr(ω2)

〉

dP2(ω2).

(13)
Now for ω1 ∈ Ω1 (outside of a certain measure zero set) we can take

y0 = ξt1(x0, ω1) and

h1
t (ω2) = Tξt1 (ht (ω1, ω2)− ht1(ω1), ω1) .

Then, for almost all ω1 ∈ Ω1, we have h1
· adapted to F t1

· . Substitute this in
(13). Using the composition property, and then integrating over Ω1 yields

∑k
j=2Ed

jf(ξt)
(

Tξtj(htj − ht1)
)

= Ef(ξt(x))
∫ T

t1

〈

Tξr(ḣr), X(ξr(x))dBr

〉

.
(14)

On the other hand we can define g : M → R
1 by

g(x) =

∫

Ω2

f
(

x, ξt1t2 (x, ω2), . . . , ξ
t1
tk
(x, ω2)

)

and apply formula (10) to g to obtain:

7



∫

Ω1

dg(Tξt1(ht1))dP1(ω1) =

∫

Ω1

g(ξt1(x))

∫ t1

0

〈

Tξr(ḣr)), X(ξr(x0))dBr

〉

dP1(ω1).

But note that

∫

Ω1

dg(Tξt1(ht1))dP1(ω1) =
k

∑

j=1

Edkfξt(Tξtj (ht1)),

and therefore

k
∑

j=1

Edjfξt(Tξtj(ht1)) = Ef(ξt)

∫ t1

0

〈

Tξr(ḣr), X(ξr(x))dBr

〉

(15)

Adding (14) we arrive at (12):

k
∑

j=1

Edjfξt(Tξtj(htj )) = Ef(ξt(x))

∫ T

0

〈

Tξr(ḣr), X(ξr(x))dBr

〉

.

B. Let ∇̃ be a metric connection for the manifold M with torsion T , and
∇̃′ its adjoint connection defined by

∇̃′
V1
V2 = ∇̃V1

V2 − T (V1, V2).

Here V1, V2 are vector fields. Let R̃ be the curvature tensor of ∇̃ and define

R̃ic
#
: TM → TM by R̃ic

#
(v) = trace R̃(v,−)−. If {xs} is a diffusion on M

with generator 1
2
trace∇̃grad+LZ denote by /̃/s the parallel transport along

{xs}, and {B̃s : 0 ≤ s ≤ t} the martingale part of the anti-development of

{xs : 0 ≤ s ≤ t} using /̃/s, a Brownian motion on Tx0
M . Let vs = W̃Z

s (v0)
be the solution to

D̃′

∂s
vs = −1

2
R̃ic

#
(vs) + ∇̃Z(vs)

starting from v0 ∈ Tx0
M . Here D̃′ denotes the covariant differentiation along

the paths of {xt} using the adjoint connection. We will show that (12) implies
Driver’s integration by parts formula. However we do not need to assume ∇̃′

(or equivalently ∇̃) is torsion skew symmetric.

Corollary 2.4 Let F be a cylindrical function on Cx0
(M). Suppose h :

[0, T ]× Ω → Tx0
M is adapted to the filtration of {xs : 0 ≤ s < ∞} and such

8



that h(ω) is in L2,1
0 for almost all ω and h ∈ L1+ǫ

(

Ω,F ,P;L2,1
0 ([0, T ];Tx0

M)
)

for some ǫ > 0. Then

EdF (W̃Z
· (h·)) = EF (ξ·(x0))

∫ T

0

< W̃Z
s (ḣs), /̃/sdB̃s > . (16)

When ∇̃′ is metric for some Riemannian metric on M , it suffices to have

h ∈ L1
(

Ω,F ,P;L2,1
0 ([0, T ])

)

.

Proof. By a result of [ELJL95] we can choose X such that ∇̃ equals the Le
Jan-Watanabe connection induced from the stochastic differential equation

dxt = X(xt) ◦ dBt + Z(xt)dt

and the solution flow {ξ·(x)} has generator 1
2
trace∇̃grad+LZ (c.f. Corollary

3.4 of [ELJL95]). Moreover the conditioned process of the derivative flow
Tξt(v0) with respect to the natural filtration of {ξ·(x0)} is given by {W̃Z

· (v0)}:

E{Tξt(v0) | Fx0

T } = W̃Z
t (v0),

by Theorem 3.2 of [ELJL95] extending [EY93]. The result follows since B̃t

equals
∫ t

0
/̃/

−1

s X(ξs(x0))dBs.

If ∇̃′ is metric for some Riemannian metric then sup0≤s≤t |W̃Z
s | is in

L∞ (Ω,F ,P) and so the Burkholder-Davis-Gundy inequality used as in the
proof of Lemma 2.1 allows us to take ǫ = 0.

Remarks 2.5. (i). Let S : TM × TM → TM be a tensor fields of type
(1,2), and let ∇ refer to the Levi-Civita connection of M . Then, by [KN69]
p.146, a connection ∇̃ can be defined by

∇̃V1
(V2) = ∇V1

(V2) + S(V1, V2)

for vector fields V1, V2. and all linear connections on M can be obtained this
way. It is easy to see that ∇̃ is metric if and only if

< S(W,U), V >= − < U, S(W,V ) >

for all vector fields U , V , W , i.e. if and only if S(W,−) is skew symmetric.
On the other hand the adjoint connection is given by

∇̃′
V1
(V2) = ∇V1

(V2) + S(V2, V1)

so that it is torsion skew symmetric if also S(−,W ) is skew symmetric.
In terms of the Levi-Civita connection our vector fields V̄ h for which the
integration by parts formula hold therefore satisfy an equation of the form

9



DV̄ h
t = −S(V̄ h

t , ◦dxt) + Λt(V̄
h
t )dt+W h

t (ḣt)dt+∇A(v̄ht )dt

where Λt is linear (also depending on S). In particular they are “tangent
processes” in the sense proposed by Driver, for which integration by parts
formulae are known: see [Dri95b], [CM], [AM], and [Aid], [Dri95a].

(ii) For cylinder functions depending on one time only such integration
by parts formulae go back to Bismut [Bis84].

3 Geometric intepretation and a shorter proof

A. The processes Txξt(ht) cannot strictly speaking be considered as tangent
vectors or vector fields on Cx(M). In some sense they form tangent vectors
at ξ·(x,−) to the space of processes (or semi-martingales)

[0, T ]× Ω → M

since Txξt(ht(ω), ω) ∈ Tξt(x,ω)M for (t, ω) ∈ [0, T ] × Ω or equivalently as
’tangent vectors’ to the space of random variables

Ω → Cx(M)

at ω 7→ ξ·(x, ω). However c.f. [Dri92] there is still no natural associated flow.
In fact the most natural interpretation takes into account the variable x and
replaces Cx(M) by PidDiffM the space of paths on the diffeomorphism group
of M , as we now describe.

Let DiffM be the space of C∞ diffeomorphisms of M . We can consider
it with a rather formal differential structure or if the reader prefers it can be
replaced by a suitable Sobolev space of diffeomorphisms, to give a Hilbert
manifold (as in [Elw82] following [EM70]). In any case the tangent space
Tα(DiffM) will be identified with all vector fields on M over α i.e. smooth
v : M → TM such that v(x) ∈ Tα(x)M for all x ∈ M . If PDiffM refers
to continuous paths φ : [0, T ] → DiffM with φ(0) = idM then TφPDiffM
will be identified with continuous v : [0, T ] → TDiffM vanishing at t = 0,
such that v(t) ∈ Tφ(t)DiffM , or equivalently v : [0, T ] × M → TM with
v(t)(x) ∈ Tφ(t)(x)M .

B. Given our S.D.E. (1) now take h ∈ L2,1
0 ([0, T ];Rn). There is Xh

·, the
time dependent vector field X(·)(ht) on M . From this we obtain a field Uh

on PDiffM by

Uh(φ)t(x) = Txφt(X(x)ht). (17)

10



This is just the left invariant vector field on PDiffM corresponding to Xh
· ∈

TePDiffM for e(t) = idM , 0 ≤ t ≤ T .
For each 0 ≤ t ≤ T let Hτ

t : M → M , τ ∈ R be the solution flow to the
vector field X(·)(ht) so

{

∂
∂τ
Hτ

t (x) = X(Hτ
t (x))ht

H0
t (x) = x.

(18)

Lemma 3.1 The vector field Uh on PDiffM has solution flow Φτ : PDiffM →
PDiffM , τ ∈ R given by Φτ (φ)t(x) = φt(H

τ
t (x)).

Proof. By left invariance we can suppose φ = e. We then need only to
observe that

∂

∂τ
Hτ

t (x) = THτ
t (X(x)ht)

for each 0 ≤ t ≤ T : a standard property of ordinary, time-independent
dynamical systems which is seen by differentiating the identity

Hτ+σ
t = Hτ

t ◦Hσ
t (x)

with respect to σ at σ = 0.

C. In the case where h is random, with h : Ω → L2,1
0 ([0, T ];Rd) adapted,

we can use the same notation to obtain a variation of our stochastic flow
{ξt : 0 ≤ t ≤ T} on M generated by the vector field V h, and given explicitly
by

ξτ· = Φτ (ξ·),

i.e.
ξτt (x) = ξt(H

τ
t (x)). (19)

In particular
∂

∂τ
ξτt (x) |τ=0 = Tξt (X(x)ht) . (20)

Using the structure of Cx(M) as a C∞ Banach manifold let BC1(Cx(M))
be the space of C1 maps F : Cx(M) → R such that there is a constant |dF |∞
with

|dF (v)| ≤ |dF |∞ sup
0≤t≤T

|vt| (21)

for all tangent vectors v : [0, T ] → TM to Cx(M). Set V
X(h)
t (x) = Tξt (X(x)(ht)),

which gives rise to a vector field along {ξ·(x)} on Cx(M).
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Proposition 3.2 Suppose h : [0, T ]× Ω → TxM is adapted, belongs to L2,1
0

a.s. and such that E
(

∫ T

0
|ḣs|2ds

)
1+ǫ
2

< ∞ for some ǫ > 0. Then for each

x ∈ M the processes ξτ· (x), τ ∈ R have mutually equivalent laws P
x
τ , τ ∈ R

on Cx(M) with

dPx
τ

dPx
0

= exp

{
∫ T

0

< X(ξτs (x))
∗Tξs

(

∂

∂s
Hτ

s (x)

)

, dBs > −1

2

∫ T

0

|Tξs
(

∂

∂s
Hτ

s (x)

)

|2ds
}

.

Moreover, for any F ∈ BC1(Cx(M)),

EdF (V X(h)
· ) = EF (ξ·)

∫ T

0

〈

X(ξs(x))dBs, V
X(ḣ)
s (x))

〉

.

Proof. For the equivalent part note that {ξτt : 0 ≤ t ≤ T} satisfies the
equation:

dξτt (x) = X (ξτt (x)) ◦ dBt + A(ξτt (x))dt + Tξt

(

∂

∂t
Hτ

t (x)

)

dt.

A straightforward argument shows that

∫ T

0

∣

∣

∣

∣

X(ξτs (x))
∗Tξs

(

∂

∂s
Hτ

s (x)

)
∣

∣

∣

∣

2

ds < ∞, a.s.

Therefore if we set

M τ
t =

∫ t

0

〈

X(ξs(x))
∗Tξs

(

∂

∂s
Hτ

s (x)

)

, dBs

〉

,

then by the Girsanov-Maruyama theorem, P x
τ is equivalent to P x

0 and

dPx
τ

dPx
0

= eM
τ
T
− 1

2
<Mτ>T . (22)

Consequently,

EF (ξτ· (x)) = EF (ξ·(x))
dPx

τ

dPx
0

.

Now suppose h· and
∫ ·

0
|ḣs|2ds are bounded on [0, T ]×Ω. Differentiating with

respect to τ at τ = 0 and using (18) gives

EdF (Tξ·(X(x)h·)) = EF (ξ·(x))
∂

∂τ

(

dPx
τ

dPx
0

)

τ=0

,

since |dF | is bounded and sup0≤s≤T |Tξs| ∈ ∩1≤p<∞Lp.

12



The second statement follows from differentiation of (22), using the fact

that
(

dPx
τ

dPx
0

)

τ=0
= 1 and ∂

∂t
Hτ

t (x) |τ=0 = 0:

∂

∂τ

(

dPx
τ

dPx
0

)

τ=0

=

(

dPx
τ

dPx
0

)

τ=0

·
[(

∂

∂τ
M τ

T

)

τ=0

− 1

2

(

∂

∂τ
〈M τ

T 〉
)

τ=0

]

=

∫ T

0

〈

X(ξs(x))dBs,
D

∂τ

[

Tξs

(

∂

∂s
Hτ

s (x)

)]〉

τ=0

=

∫ T

0

〈

X(ξs(x))dBs, T ξs(
D

∂s
X(Hτ

s (x))hs)

∣

∣

∣

∣

τ=0

〉

=

∫ T

0

〈

X(ξs(x))dBs, T ξs(X(x)ḣs)
〉

.

For general h take a sequence of bounded hn which converges to h in
L

1+ǫ
2 (Ω, L2,1

0 ([0, T ])) to finish the proof. See the proof of theorem 4.1.

The following is an analogue of Corollary 2.4: here ∇̃ is any metric con-
nection and W̃Z

· is as in Corollary 2.4,

Theorem 3.3 Let F ∈ BC1(Cx(M)) and h(ω) ∈ L2,1
0 ([0, T ];Rn) a.s.. Sup-

pose h· is adapted to the filtration of {Fx
· } and such that E

(

∫ T

0
|ḣs|2ds

)
1+ǫ
2

<

∞ for some ǫ > 0. Then

EdF (W̃Z
· (h·)) = EF (ξ·(x))

∫ T

0

< W̃Z
s (ḣs), /̃/sdB̃s > . (23)

If ∇̃′ is metric for some Riemannian metric, we can take ǫ = 0.

4 Integration by parts for the free path space

It is easy to modify the proof of Proposition 3.2 to the case where h(0) 6= 0
and so obtain an integration by parts formula for the free path space PM =
∪x∈MPxM with uniform topology and measure given by the Riemannian
measure of M together with the laws of {ξ·(x) : x ∈ M}. In fact it is
straightforward to generalize to the case of an x-dependent h·. For this let
C1(TM) be the space of C1 vector fields on M with its usual topology:

Theorem 4.1 Let h : [0, T ] × Ω → C1(TM) be a cadlag adapted process

such that the TxM valued process h·(x) has sample paths in L2,1([0, T ];TxM)

13



for each x ∈ M with |h0(·)| +
√

∫ t

0
|ḣs(·)|2ds in L1+ǫ (Ω×M ;R) for some

ǫ > 0. Let F be in BC1(PM ;R). Then

E
∫

M
dF (Txξ·(h·(ω)(x))) dx

= E
∫

M
F (ξ·(x))

{

−divh0(x) +
∫ T

0

〈

Tξs(ḣs(x)), X(ξs(x))dBs

〉}

dx.

(24)

Proof. Proceed as for Proposition 3.2 but with X(x)ht replaced by ht(x).
In particular the definition (6) of Hτ

t becomes

∂

∂τ
Hτ

t (x) = ht (H
τ
t (x))

H0
t (x) = x.

while ξτt is defined by (19). However now ξτ0 (x) = ξ0 (H
τ
0 (x)): the starting

point is transported by the flow of h0(x).
We first assume h· and

∫ ·

0
|ḣs|2ds are bounded on Ω × M . Then the

Girsanov-Maruyama theorem gives us equivalence between the measures P x
τ

and P
Hτ

0
(x)

0 with

∫

M

EF (ξτ· (x)) dx =

∫

M

EF (ξ·(H
τ
0 (x)))

dPx
τ

dP
Hτ

0
(x)

0

dx.

On differentiating this there is the extra term

∫

M

dF

(

Tξ·(
∂

∂τ
Hτ

0 (x)

∣

∣

∣

∣

τ=0

)

)

dx

=

∫

M

dF (Txξ· (h0(x))) dx

=

∫

M

dx (F ◦ ξ·) (h0(x)) dx

where dx (F ◦ ξ·) refers to the derivative in M of F ◦ ξ· : M × Ω → R. Now
apply the classical Stokes theorem on M to get:

E

∫

M

dF (Txξ·(h·(ω)(x)))dx

= E

∫

M

F (ξ·(x))

{

−divh0(x) +

∫ T

0

< Txξs(ḣs(x)), X(ξs(x))dBs >

}

dx.
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For general h let τR be the first exit time of ||h·||C1 +
∫ ·

0
|hs(x)|2ds from

[0, R). Set hR
t (x) = ht∧τR(x)χ{||h0||C1<R}. We have:

E

∫

M

dF (Txξ·(h
R
· (ω)(x)))dx

= Eχ{||h0||C1<R}

∫

M

F (ξ·(x))

{

−divh0(x) +

∫ T∧τR

0

< Txξs(ḣs(x)), X(ξs(x))dBs >

}

dx.

Now let R → ∞. The left hand side converges to E
∫

M
dF (Tξ·(h·(ω)(x)))dx

since
|dF (Tξ·(h

R
· (ω)(−)))| ≤ c̃ sup

t
|Tξt(ω)| sup

t
|ht(−, ω)|

and supx E
(

supt |Tξt|
∫

M
supt |ht(x, ω)|dx

)

< ∞ from

sup
t

|ht(x)| ≤ |h0(ω)|+
∫ T

0

|ḣs(ω)|ds

≤ |h0(ω)|+
√
T

√

∫ T

0

|ḣs(ω)|2ds ∈ L1+ǫ(Ω×M)

Using Burkholder-Davis-Gundy inequality to justify the integration on
the right hand side we see that it converges to the right hand side of (24).

Just as before the intrinsic formulae can be deduced using [ELJL95]:

Theorem 4.2 Let F be in BC1(PM ;R) and h be as in Theorem 4.1 but with

h·(x) adapted to the filtration of {Fx
· }, and divh0 ∈ L1 (Ω×M,R). Then for

any metric connection ∇̃ on M ,

E
∫

M
dF

(

W̃Z
· (h·(ω)(x))

)

dx

= E
∫

M
F (ξ·(x))

{

−divh0(x) +
∫ T

0

〈

W̃Z
s (ḣs(x)), /̃/sdB̃s

〉}

dx.
(25)

If furthermore ∇̃′ is metric with respect to a Riemannian metric, we can take

ǫ = 0.

Proof. The proof is just as that of Theorem 3.3.
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