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Abstract
We study non-convex optimization problems over simplices. We show that for a
large class of objective functions, the convex approximation obtained from the
Reformulation-Linearization Technique (RLT) admits optimal solutions that exhibit a
sparsity pattern. This characteristic of the optimal solutions allows us to conclude that
(i) a linear matrix inequality constraint, which is often added to tighten the relaxation,
is vacuously satisfied and can thus be omitted, and (ii) the number of decision vari-
ables in the RLT relaxation can be reduced fromO(n2) toO(n). Taken together, both
observations allow us to reduce computation times by up to several orders of mag-
nitude. Our results can be specialized to indefinite quadratic optimization problems
over simplices and extended to non-convex optimization problems over the Cartesian
product of two simplices as well as specific classes of polyhedral and non-convex
feasible regions. Our numerical experiments illustrate the promising performance of
the proposed framework.
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1 Introduction

In this paper, we study non-convex optimization problems of the form

sup
x

f (x) + g(x)

s. t. Ax ≤ b
x ∈ R

n,

(1)

where f : R
n �→ R is a generic function, g : R

n �→ R is concave, A ∈ R
m×n

and b ∈ R
m . Since f is not necessarily concave, problem (1) is a hard optimization

problem even if P = NP [22, Theorem 1]. In the special case where f is convex,
problem (1) recovers the class of DC (difference-of-convex-functions) optimization
problems over a polyhedron [13]. Significant efforts have been devoted to solving prob-
lem (1) exactly (most commonly via branch-and-bound techniques) or approximately
(often via convex approximations). For both tasks, the Reformulation-Linearization
Technique (RLT) can be used to obtain tight yet readily solvable convex relaxations
of (1).

Originally, RLT has been introduced to equivalently reformulate binary quadratic
optimization problems as mixed-binary linear optimization problems [1]. To this end,
each linear constraint in the original problem is multiplied with each binary decision
variable to generate implied quadratic inequalities. These inequalities are subsequently
linearized through the introduction of auxiliary decision variables whose values coin-
cide with the generated quadratic terms. This idea is reminiscent of the McCormick
envelopes [17], which relax bilinear expressions by introducing implied inequalities
that are subsequently linearized. RLT has been extended to (continuous) polynomial
optimization problems [26], where implied inequalities are generated from multiply-
ing and subsequently linearizing existing bound constraints.

In this work, we consider a variant of RLT—the Reformulation-Convexification
Technique [27]—which applies to linearly constrained optimization problems that
maximize a non-concave objective function. This RLT variant (which we henceforth
simply call ‘RLT’ for ease of exposition) replaces the non-concave function f in
problem (1) with an auxiliary function f ′ : R

n×n × R
n �→ R that is concave over

the lifted domain (X, x) ∈ S
n × R

n and that satisfies f ′(X, x) = f (x) whenever
X = xx�. For the special case where f (x) = x�Px for an indefinite symmetric
matrix P ∈ S

n , for example, we can choose f ′(X, x) = 〈P, X〉. RLT then augments
problem (1) with the decision matrix X ∈ S

n and the constraints

a�
i Xa j − (bi a j + b j ai )�x + bib j ≥ 0 ∀i, j = 1, . . . ,m, (2)

where a�
i denotes the i-th row of the matrix A. The constraints (2) are justified by

the fact that the pairwise multiplications (a�
i x − bi )(a�

j x − b j ) of the constraints
in problem (1) have to be non-negative, and those multiplications coincide with the
constraints (2) whenever X = xx�. To obtain a convex relaxation of problem (1), the
non-convex constraint X = xx� is either removed (which we henceforth refer to as
‘classical RLT’, see [24]) or relaxed to the linear matrix inequality (LMI) constraint
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X � xx� (henceforth referred to as RLT/SDP, see [2,3,25]). Even though the matrix
X linearizes quadratic terms, we emphasize that the problems we are considering are
not restricted to quadratic programs since f may be a generic nonlinear function.

RLT and its extensions have been exceptionally successful in providing tight
approximations to indefinite quadratic [25], polynomial [26] and generic non-convex
optimization problems [15,29], and RLT is routinely implemented in state-of-the-art
optimization software, includingANTIGONE [20], CPLEX [14], GLoMIQO [19] and
GUROBI [10].

In this paper, we assume that the constraints of problem (1) describe an n-
dimensional simplex.Under this assumption,we show that for a large class of functions
f that admit a monotone lifting (which includes, among others, various transforma-
tions of quadratic functions as well as the negative entropy), the RLT relaxation of
problem (1) admits an optimal solution (X�, x�) that satisfies X� = diag(x�). This
has two important consequences. Firstly, we show that when the feasible region of
problem (1) is a simplex, X� = diag(x�) satisfies X� � x�x��, that is, the RLT and
RLT/SDP relaxations are equivalent, and the computationally expensive LMI con-
straint X � xx� can be omitted in RLT/SDP. Secondly, we do not need to introduce
the decision matrix X ∈ S

n in the RLT relaxation, which amounts to a dramatic
reduction in the size of the resulting relaxation. We also discuss how our result can be
extended to instances of problem (1) over the Cartesian product of two simplices, a
generic polyhedron, or a non-convex feasible region as well as an indefinite quadratic
objective function.

Indefinite quadratic optimization over simplices (also known as standard quadratic
optimization) has a long history, and it has found applications, among others, in
mean/variance portfolio selection and the determination of the maximal cliques on a
node-weighted graph [6]. More generally, non-convex polynomial optimization prob-
lems over simplices have been proposed for the global optimization of neural networks
[4], portfolio optimization using the expected shortfall risk measure [5] and the com-
putation of the Lebesgue constant for polynomial interpolation over a simplex [11]; see
[8] for a general discussion. Simplicial decompositions of non-convex optimization
problems are also studied extensively in the global optimization literature [12].

The remainder of this paper proceeds as follows. We analyze the RLT relaxations
of simplex instances of problem (1) in Sect. 2 and report on numerical experiments
in Sect. 3, respectively. “Appendix A” extends our findings to well-structured opti-
mization problems over the Cartesian product of two simplices, specific classes of
polyhedral and non-convex feasible regions, as well as indefinite quadratic objective
functions. “Appendix B”, finally, contains additional numerical experiments.

Notation. We denote by R
n (Rn+) the (non-negative orthant of the) n-dimensional

Euclidean space and by Q the set of rational numbers. The cone of (positive semidef-
inite) symmetric matrices in R

n×n is denoted by S
n (Sn+). Bold lower and upper case

letters denote vectors and matrices, respectively, while standard lower case letters are
reserved for scalars. We denote the i-th component of a vector x by xi , the (i, j)-th
element of a matrix A by Ai j and the i-th row of a matrix A by a�

i . We write X � Y
to indicate that X − Y is positive semidefinite. The trace operator is denoted by tr(·),
and the trace inner product between two symmetric matrices is given by 〈·, ·〉. Finally,
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diag(x) is a diagonal matrix whose diagonal elements coincide with the components
of the vector x.

2 RLT and RLT/SDP over simplices

This section studies instances of problem (1) where the constraints Ax ≤ b describe
the n-dimensional probability simplex:

sup
x

f (x) + g(x)

s. t.
n∑

i=1

xi = 1

x ∈ R
n+.

(3)

Assuming that the feasible region describes a probability simplex, as opposed to
any other full-dimensional simplex in R

n , does not restrict generality. Indeed, we can
always redefine the objective function as f (x) ← f (Tx) and g(x) ← g(Tx) for the
invertible matrix T ∈ R

n×n that has as columns the extreme points of the simplex to
be considered. The pairwise products between the constraints xi ≥ 0, i = 1, . . . , n,
and

∑n
i=1 xi = 1 result in the RLT constraints

X ≥ 0,
n∑

j=1

Xi j =
n∑

j=1

X ji = xi ∀i = 1, . . . , n;

here we omit the constraint
∑n

i=1
∑n

j=1 Xi j = 1 as it is implied by the above con-
straints and the fact that

∑n
i=1 xi = 1. Thus, the RLT relaxation of problem (3) can

be written as

sup
X,x

f ′(X, x) + g(x)

s. t.
n∑

j=1

Xi j =
n∑

j=1

X ji = xi ∀i = 1, . . . , n

n∑

i=1

xi = 1

X ≥ 0, X ∈ S
n, x ∈ R

n+,

(4)

where the auxiliary function f ′ has to be suitably chosen, while the RLT/SDP relax-
ation contains the additional LMI constraint X � xx�.

We now define a condition which ensures that the RLT relaxation (4) of problem (3)
admits an optimal solution (X�, x�) with X� = diag (x�).

Definition 1 We say that f : R
n+ �→ R has a monotone lifting if there is a concave

function f ′ : S
n × R

n+ �→ R such that f ′(X, x) = f (x) whenever X = xx�, as
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well as f ′(X ′, x) ≥ f ′(X, x) for all (X, x) ∈ S
n × R

n+ and all X ′ ∈ S
n satisfying

X ′ � X .

The requirement in Definition 1 that f ′(X, x) = f (x) whenever X = xx� is
needed for the correctness of the RLT relaxation. The concavity of f ′ is required
for the RLT relaxation to be a convex optimization problem. The assumption that
f ′(X ′, x) ≥ f ′(X, x) for all (X, x) ∈ S

n × R
n+ and all X ′ ∈ S

n satisfying X ′ � X ,
finally, will allow us to deduce an optimal solution for X based on the value of x.
Indeed, we will see below in Theorem 1 that the RLT relaxation (4) of an instance of
problem (3) admits optimal solutions (X�, x�) satisfying X� = diag(x�)whenever the
auxiliary function f ′ in (4) is a monotone lifting of the function f in (3). Intuitively
speaking, Definition 1 enables us to weakly improve any solution (X, x) satisfying
X �= diag(x) by iteratively moving off-diagonal elements of X to the diagonal. Before
presenting the formal result, we provide some examples of functions f that admit
monotone liftings.

Proposition 1 The following function classes have monotone liftings:

1. Generalized linearithmic functions: f (x) = ∑L
�=1(t

�
� x+ t�) ·h�(t�� x+ t�) with

(i) t� ∈ R
n+, t� ∈ R+ and h� : R �→ R concave and non-decreasing, or (ii)

t� ∈ R
n, t� ∈ R and h� : R �→ R affine and non-decreasing.

2. Linear combinations: f (x) = ∑L
�=1 t� · f�(x) with t� ∈ R+, where each f� :

R
n �→ R has a monotone lifting.

3. Concave compositions: h(x) = g( f (x)) for f : R
n+ �→ Rwith a monotone lifting

as well as a concave and non-decreasing g : R �→ R.
4. Linear pre-compositions: h(x) = f (Tx) for f : R

p
+ �→ R with a monotone

lifting as well as T ∈ R
p×n.

5. Pointwise minima: h(x) = min{ f1(x), . . . , fL(x)} where each f� : R
n+ �→ R

has a monotone lifting.

Proof In view of case (i) of the first statement, we choose

f ′(X, x) =
L∑

�=1

(t�� x + t�) · h�

(
t�� Xt� + 2t� t�� x + t2�

t�� x + t�

)
,

which is concave in (X, x) since it constitutes the sum of perspectives of concave
functions [7, §3.2.2 and §3.2.6]. Whenever X = xx�, we have

t�� Xt� + 2t� t�� x + t2� = t�� xx� t� + 2t� t�� x + t2� = (t�� x + t�)
2,

and thus the standard limit convention for perspective functions implies that
f ′(X, x) = f (x) for all x ∈ R

n+. Moreover, for any x ∈ R
n+, we have

t�� X ′ t� ≥ t�� Xt� ∀X, X ′ ∈ S
n : X ′ � X,
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where the inequality holds since X ′ − X � 0. We conclude that

h�

(
t�� X ′ t� + 2t� t�� x + t2�

t�� x + t�

)
≥ h�

(
t�� Xt� + 2t� t�� x + t2�

t�� x + t�

)

as 2t� t�� x + t2� ≥ 0 and t�� x + t� ≥ 0 due to the non-negativity of t�, t� and x, which
implies that f ′(X ′, x) ≥ f ′(X, x) as desired.

One readily verifies that in the special case where each h� is affine, the concavity
of f ′, the agreement of f ′ with f when X = xx� and the monotonicity of f ′ with
respect to X ′ � X continue to hold even when t� and/or t� fail to be non-negative.
This establishes case (ii) of the first statement.

As for the second statement, let f ′
� : S

n × R
n+ �→ R be monotone liftings of

f�, � = 1, . . . , L . We claim that f ′(X, x) = ∑L
�=1 t� · f ′

�(X, x) is a monotone
lifting of f . Indeed, one readily verifies that f ′ inherits concavity in (X, x) and
agreement with f when X = xx� from its constituent functions f ′

�. Moreover, since
f ′
�(X

′, x) ≥ f ′
�(X, x) for all X, X ′ ∈ S

n with X ′ � X , � = 1, . . . , L , we have
f ′(X ′, x) ≥ f ′(X, x) as well.
In view of the third statement, let f ′ be a monotone lifting of f . We claim that

in this case, h′(X, x) = g( f ′(X, x)) is a monotone lifting of h. Indeed, h′ is a
non-decreasing concave transformation of a concave function and is thus concave [7,
§3.2.5]. Moreover, since f ′(X, x) = f (x) for X = xx�, we have

h′(X, x) = g( f ′(X, x)) = g( f (x)) = h(x)

whenever X = xx�. Finally, the monotonicity of g implies that

h′(X ′, x) = g( f ′(X ′, x)) ≥ g( f ′(X, x)) = h′(X, x)

for all X, X ′ ∈ S
n with X ′ � X .

For the fourth statement, we set h′(X, x) = f ′(TXT�, Tx), where f ′ is a mono-
tone lifting of f . The function h′ is concave since it constitutes a composition of a
concave function with a linear function [7, §3.2.2]. Moreover, for any x ∈ R

n+ and
X = xx�, we have

h′(X, x) = f ′(TXT�, Tx) = f (Tx),

where the second identity holds since TXT� = (Tx)(Tx)� whenever X = xx�
as well as f ′(X, x) = f (x) for X = xx�. To see that h′(X ′, x) ≥ h′(X, x) for all
x ∈ R

n+ and all X, X ′ ∈ S
n satisfying X ′ � X , we note that

h′(X ′, x) = f ′(TX ′T�, Tx) ≥ f ′(TXT�, Tx) = h′(X, x),

where the inequality follows from the fact that

X ′ � X �⇒ T (X ′ − X)T� � 0 �⇒ TX ′T� � TXT�
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and the assumption that f ′ is a monotone lifting.
For the last statement, we set h′(X, x) = min{ f ′

1(X, x), . . . , f ′
L(X, x)}, where

f ′
� : S

n × R
n+ �→ R is a monotone lifting of f� for all � = 1, . . . , L . The function

h′ is concave as it is a minimum of concave functions [7, §3.2.3]. Moreover, for any
x ∈ R

n+ and X = xx�, we have

h′(X, x) = min{ f ′
1(X, x), . . . , f ′

L(X, x)} = min{ f1(x), . . . , fL(x)} = f (x),

since each f ′
� is amonotone lifting of f�. Similarly, for any x ∈ R

n+ and any X, X ′ ∈ S
n

satisfying X ′ � X , we have

h′(X ′, x) = min{ f ′
1(X

′, x), . . . , f ′
L(X ′, x)}

≥ min{ f ′
1(X, x), . . . , f ′

L(X, x)} = h′(X, x),

where the inequality again follows from the fact that each f ′
� is a monotone lifting of

f�. This concludes the proof. ��
Through an iterative application of its rules, Proposition 1 allows us to construct a

rich family of functions that admit monotone liftings. We next list several examples
that are of particular interest.

Corollary 1 The functions listed below have monotone liftings.

1. Convex quadratic functions: f (x) = x� Qx + q�x + q with Q ∈ S
n+.

2. Conic quadratic functions: f (x) = ‖Fx‖2+ f�x+ f , where F ∈ R
k×n, f ∈ R

n

and f ∈ R.
3. Negative entropy: f (x) = ∑n

i=1 ci · xi ln xi with ci ∈ R+.
4. Power functions: f (x) = xa with a ∈ [1, 2] and a ∈ Q.

Proof In view of the first statement, let Q = L�L for L ∈ R
n×n , where L can be

computed from a Cholesky decomposition. Identifying t�� with the �-th row of L and
setting t� = 0, � = 1, . . . , n, we then obtain

f (x) = (Lx)�(Lx) + q�x + q

=
n∑

�=1

(t�� x)2 + q�x + q

=
n∑

�=1

(t�� x + t�) · h�(t�� x + t�) + q�x + q,

where h� : R �→ R is the identity function, � = 1, . . . , n. The first expression on the
right-hand side satisfies the conditions of the first statement of Proposition 1 and thus
admits a monotone lifting. The remaining term g(x) = q�x + q admits the trivial
lifting g′(X, x) = q�x + q, and the second statement of Proposition 1 thus implies
that the function f has a monotone lifting as well.
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As for the second statement, we note that

f (x) =
√
x�F�Fx + f�x + f .

Since F�F � 0 by construction, the term x�F�Fx has a monotone lifting due to
the first statement of this corollary. Moreover, since x �→ √

x is non-decreasing and
concave, the third statement of Proposition 1 implies that the expression

√
x�F�Fx

admits a monotone lifting. The remaining term g(x) = f�x + f again admits the
trivial lifting g′(X, x) = f�x + f , and the second statement of Proposition 1 thus
implies that the function f has a monotone lifting as well.

In view of the third statement, we first note that each term xi ln xi has a monotone
lifting if we choose t i = ei , where ei denotes the i-th canonical basis vector in R

n ,
and ti = 0 in the first statement of Proposition 1. Since f constitutes a weighted
sum of these terms, the existence of its monotone lifting then follows from the second
statement of Proposition 1.

As for the last statement, we note that f (x) = x · h(x) with h(x) = xa−1. Since h
is concave and non-decreasing, the first statement of Proposition 1 implies that f has
a monotone lifting. ��

Any indefinite quadratic function can be represented as the sum of a convex
quadratic and a concave quadratic function [9,23]. Thus, if problem (3) optimizes
an indefinite quadratic function over a simplex (i.e., if it is a standard quadratic opti-
mization problem), then we can redefine its objective function as a sum of a convex
quadratic and a concave quadratic function and subsequently apply the first statement
in Proposition 1 to the convex part of the objective function.

We are now ready to prove the main result of this section.

Theorem 1 If the function f in problem (3) has a monotone lifting f ′, then the cor-
responding RLT relaxation (4) has an optimal solution (X�, x�) satisfying X� =
diag(x�).

Proof The RLT relaxation (4) maximizes the concave and, a fortiori, continuous func-
tion f ′(X, x) + g(x) over a compact feasible region. The Weierstrass theorem thus
guarantees that the optimal value of problem (4) is attained.

Let (X�, x�) be an optimal solution to the RLT relaxation (4). If X� = diag(x�),
then there is nothing to prove. If X� �= diag(x�), on the other hand, then there is
i, j ∈ {1, . . . , n}, i �= j , such that X�

i j = X�
j i > 0. Define X ′ ∈ S

n as X ′ = X� + T ,
where Ti j = Tji = −X�

i j , Tii = Tj j = X�
i j and Tkl = 0 for all other components

k, l. Note that T � 0 since z�T z = X�
i j (zi − z j )2 ≥ 0 for all z ∈ R

n . We thus
have X ′ = X� + T � X�, which implies that f ′(X ′, x�) ≥ f ′(X�, x�) since f ′ is a
monotone lifting of f . In addition, the row and column sums of X� and X ′ coincide
by construction, and thus (X ′, x�) is also feasible in the RLT relaxation (4).

By construction, the matrix X ′ contains two non-zero off-diagonal elements less
than the matrix X�. An iterative application of the argument from the previous para-
graph eventually results in an optimal diagonal matrix X ′, which by the constraints of
the RLT relaxation (4) must coincide with diag(x�). This proves the statement of the
theorem. ��
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Theorem 1 allows us to replace the n×n decisionmatrix X in the RLT relaxation (4)
of problem (3) with diag(x) and thus significantly reduce the size of the optimization
problem. Our numerical results (cf. Sect. 3) indicate that this can in turn result in
dramatic savings in solution time. Another important consequence of Theorem 1 is
given next.

Corollary 2 If the function f in problem (3) has a monotone lifting f ′, then the optimal
value of the corresponding RLT relaxation (4) coincides with the optimal value of the
corresponding RLT/SDP relaxation.

Proof Recall that the RLT/SDP relaxation of problem (3) is equivalent to the RLT
relaxation (4), except for the additional constraint that X � xx�. According to Theo-
rem 1, it thus suffices to show that diag(x�) � x�x�� for the optimal solution (X�, x�)

considered in the theorem’s statement.
Note that the constraints of theRLT relaxation (4) imply that x� ≥ 0 and

∑n
i=1 x

�
i =

1. For any vector y ∈ R
n , we can thus construct a random variable Ỹ that attains the

value yi with probability x�
i , i = 1, . . . , n. We then have

y� diag(x�) y = E
[
Ỹ 2] ≥ E

[
Ỹ

]2 = y�[
x�x��]

y,

since Var
[
Ỹ

] = E
[
Ỹ 2

] − E
[
Ỹ

]2 ≥ 0. We thus conclude that diag(x�) − x�x�� � 0,
that is, the optimal solution (X�, x�) considered by Theorem 1 vacuously satisfies the
LMI constraint of the RLT/SDP relaxation. ��

Corollary 2 shows that whenever f has a monotone lifting, the RLT/SDP reformu-
lation offers no advantage over the RLT relaxation (4) of problem (3).

3 Numerical experiments

We compare our RLT formulation against standard RLT and RLT/SDP implementa-
tions on non-convex optimization problems over simplices. All experiments are run
on an 8-th Generation Intel(R) Core(TM) i7-8750H processor using MATLAB 2018b
[28], YALMIP R20200930 [16] and MOSEK 9.2.28 [21].

We consider instances of problem (3) whose objective functions satisfy

f (x) =
∥∥∥∥DQ(x − 1

n
· 1)

∥∥∥∥
2

2
and g(x) = 1

n

n∑

i=1

ln(xi ),

where D ∈ S
n is a diagonal scaling matrix whose diagonal elements are chosen

uniformly at random from the interval [0, 10], Q ∈ R
n×n is a uniformly sampled

rotation matrix [18], and 1 ∈ R
n is the vector of all ones (cf. Fig. 1).

It follows from our discussion in Sect. 2 that the optimal values of the RLT and
RLT/SDP relaxations coincide for the test instances considered in this section, and
there are always optimal solutions (X�, x�) satisfying X� = diag(x�). Figure 2 com-
pares the runtimes of our RLT formulation, which replaces the matrix X with diag(x),
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Fig. 1 Example non-convex optimization instance for n = 3. The convex quadratic function f is minimized
at the center of the simplex andmaximized at a vertex. The addition of the concave barrier function g ensures
that the overall maximum is attained in the interior of the simplex
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Fig. 2 Median solution times (in log10 secs, left, and secs, right) of our RLT formulation (‘Proposed RLT’)
and the standard RLT and RLT/SDP formulations over 25 non-convex simplicial optimization instances

with those of the standard RLT and RLT/SDP formulations. As expected, our RLT
formulation substantially outperforms both alternatives.
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Online supplement: appendices

A Theoretical extensions

We extend our findings to instances of problem (1) whose feasible regions consti-
tute the Cartesian product of two simplices (“Appendix A.1”) and specific classes of
bounded polyhedra (“Appendix A.2”) and non-convex sets (“Appendix A.3”), as well
as to quadratic optimization problems whose objective functions do not directly admit
monotone liftings (“Appendix A.4”).

A.1 Cartesian product of two simplices

Consider the following extension of problem (3),

sup
x, y

f (x, y) + g(x, y)

s. t.
n1∑

i=1

xi = 1,
n2∑

j=1

y j = 1

x ∈ R
n1+ , y ∈ R

n2+ ,

(5)

which optimizes the sum of a generic function f and a (jointly) concave function g
over the Cartesian product of two simplices. The standard RLT reformulation for this

problem introduces the (n1 + n2)2 auxiliary decision variables

(
X Z
Z� Y

)
∈ S

n1+n2

as well as the following additional constraints:

n1∑

j=1

Xi j =
n1∑

j=1

X ji = xi ∀i = 1, . . . , n1

n2∑

j=1

Yi j =
n2∑

j=1

Y ji = yi ∀i = 1, . . . , n2

n2∑

j=1

Zi j = xi ,
n1∑

j=1

Z jk = yk ∀i = 1, . . . , n1, ∀k = 1, . . . , n2

Xi j ,Ykl , Zik ≥ 0 ∀i, j = 1, . . . , n1, ∀k, l = 1, . . . , n2.

(6)

Using similar arguments as in Sect. 2, we now show that a significant number of
decision variables can be removed from theRLT relaxation if function f in problem (5)
has a monotone lifting f ′.

Theorem 2 If the function f in problem (5) has a monotone lifting f ′, then the cor-
responding RLT relaxation has an optimal solution (X�,Y �, Z�, x�, y�) satisfying
X� = diag(x�) and Y � = diag( y�).
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Proof Fix any optimal solution (X�,Y �, Z�, x�, y�) to problem (5). The statement
follows if we apply the arguments of the proof of Theorem 1 to the blocks X� and Y �

of the matrix

(
X� Z�

Z�� Y �

)
. ��

Note that in Theorem 2 we cannot apply the same arguments to the blocks Z� and
Z�� since they do not lie on the diagonal of the main matrix. We can furthermore
show that, as in the case of a single simplex, the RLT and RLT/SDP relaxations are
equally tight for problem (5).

Corollary 3 If the function f in problem (5) has a monotone lifting f ′, then the optimal
value of the corresponding RLT relaxation coincides with the optimal value of the
corresponding RLT/SDP relaxation.

Proof Given an optimal solution (X�,Y �, Z�, x�, y�) to problem (5) that satisfies
X� = diag(x�) and Y � = diag( y�), as justified by Theorem 2, the statement of the
corollary follows if we show that

(
diag(x�) Z�

Z�� diag( y�)

)
�

(
x�

y�

) (
x�

y�

)�
.

For any a ∈ R
n1 and b ∈ R

n2 , we have that

(
a
b

)� (
diag(x�) − x�x�� Z� − x� y��
Z�� − y�x�� diag( y�) − y� y��

)(
a
b

)

= a� (
diag(x�) − x�x��)

a + b� (
diag( y�) − y� y��)

b

+ 2a� (
Z� − x� y��)

b ≥ 0. (7)

The last inequality follows from similar arguments as in the proof of Corollary 2,
which show that

a� (
diag(x�) − x�x��)

a = Var
[
Ã
]
, b� (

diag( y�) − y� y��)
b = Var

[
B̃

]

for the random variables Ã and B̃ that attain the values ai and b j with probabilities
x�
i and y�

j , i = 1, . . . , n1 and j = 1, . . . , n2, respectively. Likewise, we observe that

a� (
Z� − x� y��)

b = E
[
Ã B̃

] − E
[
Ã
]
E

[
B̃

]
,

where we assume that the random variable Ã B̃ attains the values aib j with probability
Z�
i j , i = 1, . . . , n1 and j = 1, . . . , n2. Note that this joint probability distribution is

consistentwith ourmarginal distributions specified above since theRLT constraints (6)
guarantee that Z�

i j ≥ 0,
∑n2

k=1 Z
�
ik = x�

i and
∑n1

k=1 Z
�
k j = y�

j . The previous arguments
imply that the sum on the left-hand side of the inequality in (7) evaluates to

Var
[
Ã
] + Var

[
B̃

] + 2Cov
[
Ã, B̃

] = Var
[
Ã + B̃

] ≥ 0,
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which concludes the proof. ��

We emphasize that one can readily construct counterexamples which show that our
results in this section do not extend to three or more simplices.

A.2 Linear constraints

Consider a generic instance of problem (1) whose feasible region is bounded, and
let the columns of the matrix V ∈ R

n×p denote the p extreme points of the feasible
region. Problem (1) is equivalent to

sup
x′

f (Vx′) + g(Vx′)

s. t.
p∑

i=1

x ′
i = 1

x′ ∈ R
p
+,

(8)

which is an instance of problem (3) studied in Sect. 2. The fourth statement of Propo-
sition 1 implies that the objective component f in problem (8) has a monotone lifting
whenever the component f in the original problem (1) has one. Note that the num-
ber p of decision variables in problem (8) is typically exponential in the number m
of constraints in the original problem (1). Notable exceptions exist, however, such
as bijective transformations of the 1-norm ball, {Tx : x ∈ R

n, ‖x‖1 ≤ 1} with
T ∈ R

n×n invertible, which have p = 2n extreme points, as well as the unit simplex,
{x ∈ R

n+ : ∑
i xi ≤ 1}, which has p = n + 1 extreme points.

The RLT relaxation of the original problem (1) is typically strictly weaker than the
corresponding RLT/SDP relaxation. Corollary 2 shows, however, that both relaxations
are equally tight in the lifted problem (8), and Theorem 1 allows us to replace the
decision matrix X ′ ∈ S

p in the lifted problem with diag(x′). We next compare the
tightness of theRLT/SDP relaxation of the original problem (1)with theRLT relaxation
of the lifted problem (8).

Theorem 3 The RLT relaxation of the lifted problem (8) is at least as tight as the
RLT/SDP relaxation of the original problem (1).

Proof The statement of the theorem follows if for any feasible solution (X ′, x′) of the
RLT relaxation of the lifted problem (8) we can construct a feasible solution (X, x)

of the RLT/SDP relaxation of the original problem (1) that attains a weakly larger
objective value. To this end, fix any feasible solution (X ′, x′) of the RLT relaxation of
problem (8) and set (X, x) = (V diag(x′) V�, Vx′). Intuitively speaking, this choice
of (X, x) interprets x′ as the convex weights of the vertices V = [V 1 . . . V p] of the
feasible region of problem (1) and therefore sets x = Vx′.Moreover, note that diag(x′)
is an ‘optimal’ representation of x′x′� in the RLT relaxation of problem (8). Since
x′x′� corresponds to Vx′x′�V� in problem (1), we thus set X = Vdiag(x′)V�.
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We first note that the objective value of (X, x) in the relaxation of (1) is at least as
large as the objective value of (X ′, x′) in the relaxation of (8):

f ′(X, x) + g(x) = f ′(V diag(x′) V�, Vx′) + g(Vx′)
≥ f ′(VX ′ V�, Vx′) + g(Vx′).

Here, the left-hand side represents the objective value of (X, x) in the RLT/SDP
relaxation of problem (1) and the right-hand side represents the objective value of
(X ′, x′) in theRLT relaxation of problem (8) if we adopt themonotone lifting proposed
in the proof of statement 4 of Proposition 1. The inequality holds since diag(x′) � X ′,
which can be shown using similar arguments as in the proof of Theorem 1.

To see that (X, x) is feasible for the RLT/SDP relaxation of problem (1), we first
note that

Ax = AVx′ ≤ b,

since Vx′ is a convex combination of the vertices of the polyhedron {x ∈ R
n : Ax ≤

b}. Moreover, we have

X = V diag(x′) V� � Vx′x′� V� = xx�,

where the inequality holds since diag(x′) � x′x′� due to similar arguments as in the
proof ofCorollary 2. In the remainder of the proof,we show that theRLTconstraints (2)
hold as well. To this end, we note that

a�
i Xa j − (bi a j + b j ai )�x + bib j

= a�
i V diag(x′) V�a j − (bi a j + b j ai )�Vx′ + bib j

= a�
i

( p∑

�=1

x ′
�V �V�

�

)
a j − (bi a j + b j ai )�

( p∑

�=1

x ′
�V �

)
+ bib j , (9)

where V � denotes the �-th column of V . To see that (9) is indeed non-negative, we
distinguish between four cases based on the values of bi and b j .

Case 1: bi , b j = 0. In this case, the expression (9) simplifies to
∑p

�=1 x
′
� · (a�

i V �)

(a�
j V �), which constitutes a sum of non-negative terms since x′ ≥ 0 as well as

a�
i V � ≤ bi = 0 and a�

j V � ≤ b j = 0.

Case 2: bi �= 0, b j = 0 or bi = 0, b j �= 0. We assume that bi �= 0, b j = 0; the other
case follows by symmetry. Assume further that bi > 0; the case where bi < 0 can
be shown similarly. Dividing the expression (9) by bi and removing the terms that
contain b j yields

p∑

�=1

x ′
� ·

(
a�
i V �

bi
− 1

)
· V�

� a j ,
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and this expression constitutes a sum of non-negative terms since x ′
� ≥ 0 multiplies

the product of two non-positive terms: We have a�
i V �/bi ≤ 1 since a�

i V � ≤ bi , and
we have V�

� a j ≤ b j = 0.

Case 3: bi , b j > 0 or bi , b j < 0. We assume that bi , b j > 0; the other case follows
similarly. Dividing the expression (9) by bib j > 0 yields

p∑

�=1

x ′
� (α�β� − α� − β�) + 1 with α� = a�

i V �

bi
and β� = a�

j V �

b j
, (10)

where α�, β� ≤ 1 since a�
i V � ≤ bi and a�

j V � ≤ b j . Since

min {αβ − α − β : α, β ≤ 1, α, β ∈ R} = −1,

each multiplier of x ′
� in (10) is bounded from below by −1, which implies that the

sum involving x ′
� is bounded from below by −1, and thus the overall expression (10)

is non-negative as desired.

Case 4: bi > 0, b j < 0 or bi < 0, b j > 0. We assume that bi > 0, b j < 0; the other
case follows by symmetry. Dividing (9) by bib j < 0 yields (10), which now needs to
be non-positive. Note that α� ≤ 1 while β� ≥ 1, since b j < 0. The statement now
follows from an argument analogous to the previous case as

max {αβ − α − β : α ≤ 1, β ≥ 1 α, β ∈ R} = −1,

which implies that the overall expression (10) is non-positive as desired. ��
For problems with a moderate number p of vertices, the RLT relaxation of the lifted

problem (8), which involves p non-negative decision variables and a single constraint,
might be easier to solve than the RLT/SDP relaxation of the original problem (1),
which involvesO(n2) decision variables,O(m2) constraints as well as a restriction to
the semidefinite cone. In addition, as proven in Theorem 3, the RLT relaxation of the
lifted problem is always at least as tight as the standard RLT/SDP relaxation.

A.3 Nonlinear constraints

We now study the following generalization of problem (3):

sup
x

f (x) + g(x)

s. t.
n∑

i=1

xi = 1

fi (x) + gi (x) ≥ 0 ∀i = 1, . . . ,m
x ∈ R

n+.

(11)

Here, f : R
n �→ R as well as fi : R

n �→ R are assumed to admit monotone liftings,
and g : R

n �→ R as well as gi : R
n �→ R are concave, i = 1, . . .m. If we replace both
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f and fi : R
n �→ R with their respective monotone liftings f ′ and f ′

i , i = 1, . . .m,
then one can readily verify that the RLT relaxation

sup
X,x

f ′(X, x) + g(x)

s. t.
n∑

j=1

Xi j =
n∑

j=1

X ji = xi ∀i = 1, . . . , n

n∑

i=1

xi = 1

f ′
i (X, x) + gi (x) ≥ 0 ∀i = 1, . . . ,m
X ≥ 0, X ∈ S

n, x ∈ R
n+

(12)

is optimized by a solution (X�, x�) that satisfies X� = diag(x�) as well as X� �
x�x��. The definition of monotone liftings implies that (12) is a convex optimization
problem.

A special case of problem (11) arises when the constraint functions fi , i =
1, . . . ,m, are absent and when f and gi , i = 1, . . . ,m, depend on separate parts
of the decision vector x, that is, if problem (11) can be written as

sup
x, y

f (x) + g(x, y)

s. t.
n1∑

i=1

xi = 1

x ∈ R
n1+ , y ∈ Y,

where Y ⊆ R
n2 denotes the feasible region for the decision vector y. Omitting the

RLT constraints that involve cross-products of the constraints involving x and the
constraints involving y, Theorem 1 and Corollary 2 imply that the RLT relaxation

sup
X,x, y

f ′(X, x) + g(x, y)

s. t.
n1∑

j=1

Xi j =
n1∑

j=1

X ji = xi ∀i = 1, . . . , n1

n1∑

i=1

xi = 1

X ≥ 0, X ∈ S
n1, x ∈ R

n1+ , y ∈ Y

has an optimal solution (X�, x�, y�) satisfying X� = diag(x�).

A.4 Standard quadratic optimization

A standard quadratic optimization problem maximizes a (usually non-convex)
quadratic function ϕ(x) = x� Qx + q�x + q, Q ∈ S

n , q ∈ R
n and q ∈ R, over

the probability simplex. Since Q � 0 in general, our results from Sect. 2 are not
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directly applicable. By decomposing Q into Q = Q+ − Q− such that Q+, Q− � 0,
however, we obtain an instance of problem (3) where f (x) = x� Q+x+q�x+q and
g(x) = −x� Q−x. The first statement of Corollary 1 then allows us to apply Theo-
rem 1 and Corollary 2 to the reformulated standard quadratic optimization problem.
It is worth noting that different decomposition schemes could lead to different RLT
relaxations of varying tightness. For a review of decomposition schemes, we refer to
[9,23].

Instead of decomposing the objective function of the standard quadratic optimiza-
tion problem and utilizing the results from Sect. 2, one can alternatively apply the
RLT or RLT/SDP relaxation directly to the original standard quadratic optimization
problem. Our numerical results indicate that for the eigenvalue-based matrix decom-
position, the RLT/SDP relaxation outperforms our formulation in terms of tightness,
whereas the RLT relaxation and our formulation are in general incomparable, that is,
either formulation can be superior for a given instance. In terms of runtime, on the
other hand, our formulation outperforms the RLT and RLT/SDP relaxations. This is
not surprising as our formulation optimizes over n decision variables, whereas the
RLT and RLT/SDP relaxations involve O(n2) decision variables due to the presence
of the decision matrix X .

B Additional numerical experiments

We compare our RLT formulation against standard RLT and RLT/SDP implementa-
tions on non-convex optimization problems over polyhedra (“Appendix B.1”) as well
as on indefinite quadratic optimization problems over simplices (“Appendix B.2”).

B.1 Non-convex optimization over polyhedra

We consider instances of problem (8) where

f (x) = ‖DQx‖22 and g(x) =
n∑

i=1

ln(1 − x2i ).

Here, D ∈ S
n and Q ∈ R

n×n are generated as in Sect. 3, and the feasible region
(prior to its lifting) is the hypercube [−1, 1]n in R

n . Following our discussion in
“Appendix A.2”, our RLT reformulation operates on the lifted space R

2n , where the
feasible region is described by a probability simplex whose vertices correspond to the
vertices of the hypercube, whereas the standard RLT and RLT/SDP reformulations
operate directly on the formulation (1) that involves of 2n halfspaces in R

n .
Figure 3 reports the optimality gaps and solution times for instances with n =

1, . . . , 10 decision variables. As expected from Theorem 3, our RLT formulation
outperforms both RLT and RLT/SDP in terms of the objective value. Interestingly,
the outperformance over RLT is substantial and grows with the dimension n. On the
other hand, since the number of decision variables in our RLT reformulation grows
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Fig. 3 Median relaxationgaps (left) and solution times (right, in log10 secs) of our proposedRLTformulation
as well as the standard RLT and RLT/SDP formulations over 25 non-convex hypercubic optimization
instances. The relaxation gaps are recorded as 100% · (z − z�)/max{1, |z�|}, where z� is the optimal
value of the proposed RLT relaxation, and z refers to the optimal value of the standard RLT or RLT/SDP
relaxations

exponentially in n, our reformulation is only viable for small problem instances with
up to n = 10 decision variables.

With its exponential number of vertices, the hypercubic feasible region of our
previous experiment constitutes the least favourable setting for our proposed RLT
formulation. We next study instances of problem (8) where k < n of the decision
variables (hereafter y) reside in a hypercube, whereas the remaining n − k decision
variables (hereafter x) are restricted to a simplex. In this case, the feasible region of the
original problem is described by n+k+2 halfspaces inR

n , whereas the feasible region
of the lifted problem constitutes a simplex with 2k · (n − k) vertices. The objective
function is described by

f (x, y) =
∥∥∥∥DQ

(
x − 1

n−k · 1
y

)∥∥∥∥
2

2
, g(x, y) = 1

n − k

n−k∑

i=1

ln(xi ) +
k∑

i=1

ln(1 − y2i ),

where D ∈ S
n and Q ∈ R

n×n are generated as before. Figure 4 reports the runtimes
of our proposed RLT reformulation as well as the standard RLT and RLT/SDP formu-
lations for problem instances with k = 3 and n = 10, 20, . . . , 150 decision variables.
Our RLT reformulation significantly outperforms the RLT/SDP formulation in terms
of runtimes, and it also improves upon the standard RLT formulation for n ≥ 60. We
note that in terms of the relaxation gaps, our RLT reformulation also outperforms both
standard RLT (by about 2%) and RLT/SDP (by about 0.5%), which is in accordance
with Theorem 3. Since the differences are small (around 1%), however, we do not
illustrate them in the graph.
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Fig. 4 Median solution times (in
log10 secs) of our RLT
formulation (‘Proposed RLT’) as
well as the standard RLT and
RLT/SDP formulations over 25
non-convex optimization
instances whose feasible region
emerges from the Cartesian
product of a simplex and a
hypercube
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Fig. 5 Median relaxation gaps of our proposed RLT formulation (‘Proposed RLT’) and the standard RLT
formulation over 25 standard quadratic optimization instances. The relaxation gaps are recorded as 100% ·
(z − z�)/max{1, |z�|}, where z� is the optimal value of the RLT/SDP relaxation and z refers to the optimal
value of our RLT formulation or the standard RLT formulation
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Fig. 6 Median solution times (in log10 secs, left, and secs, right) of our RLT formulation (‘Proposed RLT’)
and the standard RLT and RLT/SDP formulations over 25 standard quadratic optimization instances
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B.2 Standard quadratic optimization

In our final experiment, we maximize an indefinite quadratic function ϕ(x) = x� Qx
over the simplex in R

n . To this end, we select Q = V DV�, where D ∈ S
n is a

diagonal scaling matrix whose diagonal elements are sampled uniformly at random
from the interval [−7.5, 2.5] (type 1) or [−5, 5] (type 2), and V ∈ R

n×n is a uniformly
sampled rotation matrix [18].

Following our discussion in “Appendix A.4”, our RLT formulation decomposes
the function ϕ into a convex part f (x) = x�V D+V�x and a concave part g(x) =
x�V D−V�x, where D+ and D− contain the positive and negative eigenvalues of D,
respectively. In contrast, the standard RLT and RLT/SDP formulations directly operate
on the function ϕ. Figures 5 and 6 compare the three approaches in terms of objective
values and the required runtimes. The figures show that RLT/SDP tends to provide the
tightest relaxations and that our proposed RLT formulation offers tighter relaxations
than the standardRLT formulation on type 1 instances,whereas the situation is reversed
for type 2 instances. In terms of runtimes, on the other hand, our RLT formulation
clearly dominates both alternatives as expected.
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