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Large Displacement Analysis of Elasto-Plastic Thin-Walled Frames 

Part I: Formulation and Implementation 

B.A. Izzuddin1 and D. Lloyd Smith2  

ABSTRACT 

This paper presents a new formulation for the large displacement analysis of thin-walled 

frames taking into account the effects of elasto-plastic material behaviour. The proposed 

formulation is derived in an Eulerian (convected) local system which allows relatively simple 

strain-displacement relationships to be used. Furthermore, the formulation employs the fibre 

approach for representing the spread of plasticity over a general open cross-section, and is 

capable of modelling initial imperfections, residual stresses and the Wagner effect. In 

accounting for material plasticity effects, consideration is given to the interaction between 

normal stresses and shear stresses due to twisting. Since the shear strain is directly related to 

the rate of twist, the shear stress in the yield function is replaced by an equivalent contribution 

to the cross-sectional torque, which leads to considerable computational advantages. The 

present paper describes the formulation details and the implementation of material plasticity 

effects for kinematic and isotropic strain-hardening, whereas the companion paper provides a 

number of verification and application examples. 
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INTRODUCTION 

The past few years have witnessed intensive research efforts directed towards the 

development of advanced nonlinear analysis tools which are capable of predicting the response 

of various structural forms in the large displacement inelastic domain. Several researchers, 

however, have been concerned with the development of analysis methods which provide 

accurate predictions at minimal computational cost, since the nonlinear analysis of realistic 

structures can prove to be prohibitively expensive, even using the most powerful of 

computers. 

The earliest attempts at understanding the behaviour of thin-walled structures were focused 

on the investigation of lateral torsional buckling. With the assumption of elastic response, 

mathematical expressions were derived for the buckling loads of beams with various boundary 

conditions (Bleich, 1952; Allen and Bulson, 1980). Barsoum and Gallagher (1970) introduced 

a numerical approach for elastic buckling calculations based on the finite element method, 

allowing the effects of general boundary conditions to be investigated. Trahair and 

Kitipornchai (1972) considered the elasto-plastic lateral torsional buckling of I-beams subject 

to uniform bending moment; for this, they reverted to the mathematical expressions for elastic 

buckling, in which they then replaced the elastic Young's and shear modulii by tangent values 

so as to account for the spread of plasticity within the cross-section. While the buckling 

analysis was simplified by the consideration of a uniform bending moment, assumptions had to 

be made regarding the value of the shear tangent modulus, and complexities were introduced 

by residual stresses causing a change in the position of the shear centre upon yielding. 

Nethercot (1975) combined finite element approximation (Barsoum and Gallagher, 1970) with 

the tangent modulus approach (Trahair and Kitipornchai, 1972) to study the inelastic lateral 

torsional buckling of I-beams under non-uniform bending moment. Recently, Pi and Trahair 

(1992) included the effects of pre-buckling deflections on the lateral torsional buckling of 

beam-columns with a mono-symmetric cross-section. 
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With the advent of powerful computers, large displacement analysis methods became the 

focus of research efforts, promising the ability to predict the buckling, as well as the post-

buckling, response of structures. In the context of framed structures, initial efforts were 

concerned with the development of one-dimensional finite element approaches for modelling 

large displacements and finite rotations in the absence of warping effects, three main 

approaches being identified: Total Lagrangian, Updated Lagrangian and Eulerian. In the Total 

Lagrangian approach, system variables are referred to the initial position of the element, 

leading to complex strain-displacement relationships (Mallet and Marcal, 1968; El-Zanaty and 

Murray, 1983). In the Updated Lagrangian approach, system quantities are referred 

incrementally to the last known equilibrium configuration, which results in simpler strain-

displacement relationships, although there are restrictions on the size of the incremental step 

(Wen and Rahimzadeh, 1983). In the Eulerian approach, system quantities are referred to the 

current unknown configuration (Oran, 1973), allowing linear strain-displacement relationships 

to be used in the local system, with geometric nonlinearities introduced through 

transformations between the global and local system (Izzuddin and Elnashai, 1993-a). 

The large displacement analysis of elastic thin-walled frames required further developments in 

which warping freedoms had to be incorporated to enforce cross-sectional displacement 

continuity between adjacent elements in the case of non-uniform warping. Most of these 

developments were based on the Updated Lagrangian approach (Bazant and El Nimeiri, 1973; 

Chan and Kitipornchai, 1987; Conci and Gattass, 1990-a; Chen and Blandford, 1991), 

although the extension of an Eulerian approach to thin-walled frames has been recently 

proposed by the first author (Izzuddin, 1995). 

In addition to the above developments, realistic large displacement analysis of framed 

structures required incorporation of the effects of material nonlinearity. Meek and Loganathan 

(1990) modelled material elasto-plasticity in terms of uniaxial normal stresses, and later Meek 

and Lin (1990) included the interaction of normal and shear stresses in the plastic range, 

although in both cases only closed cross-sections were considered and warping effects were 

ignored. A similar approach, founded on uniaxial stresses, was set out by Izzuddin and 
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Elnashai (1993-b) in the context of adaptive elasto-plastic analysis of steel frames. For thin-

walled frames, Epstein et al. (1978) proposed an elasto-plastic formulation based on a tangent 

modulus approach; but it neither accounts for strain reversals nor for plastic interaction 

between shear and normal stresses. Conci and Gattass (1990-b) adopted a plastic-hinge 

approach and commented on the difficulty of establishing the yield condition as a relationship 

between generalised cross-sectional stresses. Hasegawa et al. (1987) considered plasticity in 

terms of material stresses, although the interaction between shear and normal stresses was 

simplified by the assumption that the tangent shear modulus is proportional to the normal 

tangent modulus. The most recent and complete work is that of Pi and Trahair (1994), where 

a Total Lagrangian approach was used, and a von Mises interaction with isotropic work 

hardening was assumed between the shear and normal stresses in the plastic range. However, 

the proposed method was based on complex strain-displacement relationships necessitated by 

the Total Lagrangian approach, it considered only collinear beam-column systems, and it 

imposed excessive computational requirements in material plasticity calculations. 

This paper presents a new one-dimensional formulation for the large displacement analysis of 

elasto-plastic frames composed of members with any thin-walled open cross-section. The 

proposed formulation is derived in a local Eulerian system (Izzuddin, 1995), thereby allowing 

simplified strain-displacement relationships to be used. The spread of plasticity is modelled 

with the new formulation through the use of monitoring points for stresses and strains over 

the cross-section and two Gauss points along the element length. In addition, the formulation 

accounts for initial twist imperfections, residual stresses and the Wagner effect (Goto and 

Chen, 1989). The von Mises yield criterion is employed to model the plastic interaction of 

shear stresses (arising from torsion) and normal stresses, where both isotropic and kinematic 

strain hardening are considered. In this context, it is shown that considerable computational 

benefits are achieved by replacing the shear stress in the yield condition with an equivalent 

contribution to the cross-sectional torque. The paper proceeds by describing the Eulerian 

approach and providing the cubic formulation details, the companion paper (Izzuddin and 
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Lloyd Smith, 1995) presenting verification examples and applications for the proposed 

formulation. 

EULERIAN APPROACH 

The proposed elasto-plastic formulation is derived in a local Eulerian system (Izzuddin, 1995), 

where the element displacements are referred to the element chord in the current (unknown) 

configuration, as shown in Fig. 1. Vectors 
  
(y

1
c, z

1
c )  and 

  
(y
2
c, z

2
c )  represent the cross-sectional 

orientation at the two element nodes, whereas vector   (x c ) represents the current element 

chord (Izzuddin and Elnashai, 1993-a). In order to facilitate one-dimensional modelling, the 

following assumptions are made regarding the displacements over a general open cross-

section: 

1. plane sections remain plane in the absence of cross-sectional warping, 

2. in-plane shear strains at the mid-plane of component plates, as well as the out-of-

plane shear strains, are zero, and 

3. the projection of the displaced cross-section on a plane perpendicular to the axial 

direction is always of the same shape and size; that is cross-sectional distortion is 

ignored. 

With these assumptions, the strain state of a cross-section can be completely defined in terms 

of four reference line displacements (ug, vg ,wg,g ) , shown in Fig. 2 for point (O), and their 

derivatives. Two cross-sectional reference systems are defined in the deflected configuration; 

the first (y ,z )  represents the cross-section axes in the absence of twist imperfection (g
i
) , 

whereas the second (y,z) is the material reference system following the deflected and 

imperfect shape. A direct mapping exists between the two systems, which can be expressed 

for small twist imperfection by the following: 

y  y  v
i
 (1.a) 
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z  z w
i
 (1.b) 

in which, 

v
i
 zg

i
 (2.a) 

w
i
 yg

i
 (2.b) 

Whilst accurate nonlinear analysis usually requires higher order terms in nonlinear strain-

displacement relationships, the Eulerian approach allows terms involving the transverse 

displacements (vg,w g)  and their first derivatives with respect to (x) ( v g, w g)  to be ignored 

when several elements are used to represent one member. As illustrated in Fig. 3 for uniform 

curvature, the maximum transverse displacement is inversely proportional to square of the 

number of elements, whereas the maximum value of the first derivative is inversely 

proportional to the number of elements. Therefore, as the number of elements increases, the 

values of transverse displacements and their first derivatives become so small that terms 

involving these variables can be ignored. In addition, the use of a number of elements allows 

transverse imperfections to be readily modelled by offsetting initial nodal coordinates from the 

member chord; this information, however, is not sufficient to prescribe the twist imperfection 

which is specified for each element by a separate function (g
i
) . 

The three assumptions stated previously can be used to express the cross-sectional 

displacements (u,v,w) of point (P) in terms of the four reference line displacements 

(ug, vg ,wg,g ) , as shown in Fig. 2. For small transverse displacements (vg,w g) , the axial 

displacement (u) and the transverse displacements (v,w) in the direction of the cross-sectional 

axes 
  
(y

1
c, z

1
c )  at node (1) are  given by: 

u  ug  y v g  z w g   g  (3.a) 

v  vg  (z  wg )g  (3.b) 

w  wg  (y  vg )g  (3.c) 
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where () is a warping function of (y,z) which can be readily established for any thin-walled 

open cross-section (Izzuddin, 1995). The normal strain (x )  can be related to the cross-

sectional displacements by the second order expression: 

x 
u

x


1

2

v

x

vi

x











2


v i

x











2


w

x

wi

x











2


w i

x











2














 (4) 

in which (v
i
, w

i
)  are the transverse cross-sectional displacements due to twist imperfection 

given by (2). Considering (2)-(4), the normal strain can be expressed as a nonlinear function of 

the reference line displacements (ug, vg ,wg,g )  and their derivatives. If all terms of 

(vg,wg, v g, w g )  are ignored, as allowed by the Eulerian approach, and terms of other 

displacement derivatives up to the second order are included, the following simplified 

expression for (x )  is obtained: 

x  u g  y v g  g
i

w g





 z w g  g

i
v g






  g  (y

2
 z

2
)

g
2

2
 g

i
g










 (5) 

where the last quadratic term is necessary for modelling the Wagner effect (Goto and Chen, 

1989). Other forms of geometric nonlinearity, including the beam-column effect and flexural-

torsional coupling, are modelled effectively by subdividing each member into several elements. 

The only other strain required by this formulation is the in-plane shear strain, which can be 

shown to vary linearly through the thickness of component plates with a zero mid-plane value 

(Izzuddin, 1995): 



 x

y 

u



y 



v 

x






y 


z 









 g   


 x


y  2


z g  (6) 

where (

y ,

z )  is the local reference system for a component plate, as shown in Fig. 4. 



 
8 

CUBIC FORMULATION 

The proposed formulation employs eight local degrees of freedom, including two warping 

freedoms, with the deflected centroidal axis chosen as the element reference line, as shown in 

Fig. 5: 

  
cu  1y ,1z ,2 y,2z ,,T , 1, 2

T

 (7) 

Cubic shape functions are used for the transverse reference line displacements (vg,w g)  and 

angle of twist (g ) , whereas a linear shape function is employed for the axial displacement 

(ug ): 

ug (x)  
x

L









 (8.a) 

vg(x)  L 1y  2y


















x

L











3

 L 21y  2y


















x

L











2

 1yx  (8.b) 

wg (x)  L 1z  2z 



 


 x

L











3

 L 21z  2z 



 


 x

L











2

 1zx (8.c) 

g (x)  L 1  2  2T




 


 x

L











3

 L 2 1  2  3T




 


 x

L











2

 1x  (8.d) 

where (L) is the element length. 

Any imperfection (g
i
)  in the angle of twist is assumed to vary according to a cubic function, 

the terms of which are determined from values of twist imperfection (1
i
,2

i
)  and the rates of 

twist imperfection ( 1
i
, 2

i
) at the two element nodes: 

g
i
(x)  L 1

i
 2

i






 2 2

i
 1

i

















x

L











3

 L 2 1
i
 2

i






 3 2

i
 1

i

















x

L











2

  

1
i
x  1

i
 (9) 
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For the numerical integration of the virtual work equation, two Gauss points are used; their 

location is given by : 

  

gx 
L

6
3 3






,
L

6
3 3






T

 (10) 

Although more Gauss points could be employed for more accurate numerical integration over 

the element length, the use of two integration points for an element is more computationally 

efficient. Furthermore, since several elements are required to model sufficiently accurately the 

nonlinear response of one member, the numerical integration over the member length is 

undertaken with the benefit of a considerable number of Gauss points, and hence accuracy is 

not compromised. At each Gauss point, the general open cross-section is discretised into 

monitoring areas where material strains and stresses are evaluated and used to determine the 

element end forces, as discussed hereafter. 

Cross-Sectional Response 

With the shape functions for the reference line displacements defined, the distribution of 

normal and shear strains over the cross-section can be determined according to (5) and (6). 

For this purpose, a (62) matrix of generalised strains   (su ) at the two Gauss points is defined: 

  

su 

u g (g x1) u g(gx 2 )

v g(gx1)  g
i (gx1) w g(gx1) v g(gx 2 )  g

i (gx 2 ) w g (g x2 )

w g (g x1)  g
i (g x1) v g(gx1) w g (g x2 )  g

i (gx 2 ) v g (g x2 )

g (gx1) g (g x2 )

g
2 (g x1) / 2  g

i (gx1) g(gx1) g
2 (g x2 ) / 2  g

i (g x2 ) g (g x2 )

g (gx1) g (g x2 )









































 (11) 

which can be readily established in terms of the local displacements and twist imperfections 

using (8) and (9). 
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The integration of the virtual work equation is performed numerically using the two 

aforementioned Gauss points over the element length and a number of monitoring areas over 

the cross-section, as shown in Fig. 6 for a channel section. The values of the normal strain 

(x )  and shear strain 

(x


y )  can be determined at the centre of each monitoring area once the 

generalised strains   (su ) are calculated. However, since the shear strain is simply related to the 

rate of twist according to (6), the shear state within a monitoring area can be better 

represented by a rate of twist generalised strain () , identical to ( g )  evaluated at the Gauss 

point. This approach has a considerable computational advantage in that the integration of the 

virtual work equation does not require a fine discretisation over the thickness of component 

plates, even allowing for only one monitoring area to be used over the plate thickness, albeit 

at a slight loss in accuracy. Therefore, the strain state 
  
(e g,m)  of monitoring area (m) at Gauss 

point (g) is defined by the normal strain (x )  at the centre of the area and the rate of twist 

() ; it is obtained from the generalised strain matrix   (su ) as follows: 

  

e g,m 
x















 (12.a) 

  

e g,m,i  d m,i,j su j,g
j1

6

 (i  1,2) (12.b) 

where, 

  

dm 
1 y m z m m ym

2  z m
2 0

0 0 0 0 0 1

















 (13) 

in which, 

  (ym ,z m)  : cross-sectional coordinates of monitoring area (m) (Fig. 6) 

(m ) : value of warping function (y,z)  for monitoring area (m). 

The stress state 
  
(s g,m)  of monitoring area (m) at Gauss point (g) is defined by a normal stress 

(x ) at the centre of the area and a twisting moment per unit area ( ): 
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sg,m 
x















 (14) 

The determination of the stress state 
  
(s g,m)  corresponding to the strain state 

  
(e g,m)  is 

performed in accordance with the material law, as discussed in a later section. 

The cross-sectional generalised stresses   (sf )  corresponding to the generalised strains   (su ) at 

the two Gauss points can now be obtained from the stress states of all the monitoring areas: 

  
sf j,g  Am d m,i, j s g,m,i

i1

2


m1

n

 ( j  1,6),(g  1,2)  (15) 

where, 

  Am  : area of monitoring area (m) 

n : total number of monitoring areas over a cross-section. 

Local Element Response 

The proposed cubic formulation has eight local forces   (cf ) corresponding to the local 

freedoms   (cu ), with the last two terms corresponding to bimoments at the two element 

nodes: 

  
cf  M1y ,M1z ,M2y ,M2z ,F,M T,B1, B2

T

 (16) 

The local forces can be determined from the virtual work equation, which is integrated 

numerically over the two Gauss points and the cross-sectional monitoring areas: 

  

cf k cu k  x x  x

y  x


y 







dA

A




 dx

0

L









L

2
Am s g,m,i e g,m,i

i1

2


m1

n


g1

2

  (17) 

Considering (12) and (15) in conjunction with (17), the virtual work equation can be 

expressed in terms of generalised stresses and strains: 
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cf k cu k 

L

2
sf j,g su j,g

j1

6


g1

2

  (18) 

Therefore, the local forces can be obtained from the generalised cross-sectional stresses: 

  
cf k 

L

2

su j,g

cu k
sf j,g

j1

6


g1

2

  (19.a) 

or, 

  
cf k  cTj,g,k sf j,g

j1

6


g1

2

 (k  1,8)  (19.b) 

where   (c T) is a (628) array, obtained from (8), (9) and (11) and given in Appendix A, 

representing the weighted first derivatives of generalised strains with respect to local 

displacements. 

The proposed formulation is implemented within an iterative procedure for the solution of the 

nonlinear system of governing equations; these require the determination of a local tangent 

stiffness matrix   (ck ), defined as: 

  
ck k,q 

cf k

cu q

(k  1,8), (q  1,8) (20) 

With reference to (19), the local tangent stiffness matrix can be expressed as a transformation 

of the generalised cross-sectional tangent stiffness at the two Gauss points: 

  

ck k,q  cTj,g,k

sf j,g

cuq


cTj,g,k

cu q
sf j,g












j1

6


g1

2

  

  

ck k,q 
2

L









 cTj,g,k sk j,h,g cTh,g,q

h1

6

 
cTj,g,k

cu q
sf j,g












j1

6


g1

2

  (21.a) 

where, 

  
sk j,h,g 

sf j,g

 su h,g

(j  1,6), (h  1,6)  (21.b) 
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The generalised tangent stiffness matrix   (sk ) can be related to the values of the material 

tangent modulus matrix   (t E)  over the cross-sectional monitoring areas by: 

  
sk j,h,g  Am d m,i,j tEg,m,i,p d m,p,h

p1

2


i1

2


m1

n

  (22) 

where, 

  

tEg,m 

x

x

x





x

























 (23.a) 

or, 

  
tEg,m,i,p 

s g,m,i

e g,m,p

(i  1,2), (p  1,2)  (23.b) 

The determination of the material tangent modulus matrix   (t E)  is performed in accordance 

with the material constitutive law, as detailed in the following section. 

In equation (21.a), the second term may be further developed by noting that: 

  

 cTj,g,k

 cu q


L

2

2
su j,g

 cu k  cu q

 (24) 

It will be found from (11) that only the 
  
(su 5,g )  terms possess non-zero values of the desired 

second order derivatives. Evaluating these derivatives and substituting into (21.a) produces 

the result: 

  

ck k,q 
2

L









 cTj,g,k sk j,h,g cTh,g,q

h1

6


j1

6


g1

2

  cT6,g,k sf 5,g cT6,g,q
g1

2











 (22) 

The second term provides the geometric stiffness associated with the Wagner effect, where 

  
(sf 5,g )  is the Wagner stress resultant at Gauss point (g). 

ELASTO-PLASTICITY 
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The determination of the local element response in the previous section necessitates the 

calculation, for each of the monitoring areas, of stress components (x ,) from given strain 

components (x ,) . Within each monitoring area, the ensemble of fibres is assumed to be 

either elastic or, corporately, fully plastic; therefore, the elastic response, as well as the plastic 

interaction between the two stress components, must be specified. Since ( )  is a generalised 

stress representing a twisting moment per unit area, the elastic modulus relating ( )  to () , 

as well as the plastic interaction between (x ) and ( ) , must be established from the 

distribution of shear stresses and strains over the monitoring area. 

In the elastic range, the shear stress 

(x


y )  is assumed to vary linearly over a monitoring area,  

as shown in Figs. 7.a-b, with the shear strain 

(x


y )  also varying linearly according to (6). 

Therefore, the elastic modulus relating ( )  to ()  can be established from the equivalence of 

virtual work: 

  

 Am  x

y x


y dA

Am




 G(2


z )(2


z ) dA

Am




 

  4

z e

2
G   (26.a) 

where, 

  


z e

2



z 

2
dA

Am




Am

 (26.b) 

Therefore, the response of a monitoring area is governed by the following relationship 

between the increment of stress and the increment of elastic strain: 

  

x


















 E

x
e

e

















 (27.a) 

in which, 
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  

E
E 0

0 4

z e

2 G















 (27.b) 

where, (E) is Young's elastic modulus, and (G) is the elastic shear modulus. 

In the fully plastic range, the shear stress 

(x


y ) is assumed to be constant over the monitoring 

area, as shown in Fig. 7.a. Therefore, applying the equivalence of virtual work, ( )  can be 

related to 

(x


y ) as follows: 

  

 Am  x

y x


y dA

Am




 x


y (2


z ) dA

Am




  


x


y  



2

z p

 (28.a) 

where, 

  


z p 


z dA

Am




Am

 (28.b) 

If the plate mid-plane passes through the monitoring area (Fig. 7.b), it may be shown that 

(

z p )  becomes: 

  


z p 

|

z | dA

Am




Am

 (28.c) 

The plastic interaction between material stresses 

(x ,x


y )  can now be expressed as one 

between (x ,), given the relationships in (28). 

It is worth noting that the proposed replacement of shear stresses and strains by twist 

generalised stresses and strains allows as few as one monitoring area to be used over the plate 

thickness. In fact, such a coarse discretisation of the plate thickness leads to the exact elastic 

torsional stiffness, and results in only slight inaccuracies in the evaluation of plasticity effects. 
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The stress state (x,)  corresponding to a strain state (x ,)  is established incrementally 

from the values at the last equilibrium step. Denoting these previous strain and stress states by 

(x
o

,
o

)  and (x
o

,
o

) , respectively, the current stress state (x ,) corresponding to a strain 

increment (x,)  can be determined from the material stress-strain law. 

Residual stresses are modelled by introducing non-zero values of (x
o

,
o

)  for which the 

strains (x
o

,
o

)  are zero at the start of analysis; i.e. the initial equilibrium state. In this work, 

only normal residual stresses are included, and a piecewise parabolic variation can be assumed 

over the plate width. 

In the following sections, implementation details of the von Mises yield condition are 

presented; and, for comparison purposes, both isotropic and kinematic strain-hardening effects 

are considered. While the two models generally differ in the prediction of biaxial response and 

cyclic plasticity, they are both based on the same trilinear curve for the uniaxial monotonic 

response, as shown in Fig. 8. 

Isotropic Strain-Hardening 

The von Mises yield condition, involving interaction between (x ) and ( ) , can be expressed 

for the isotropic strain-hardening case by the following equation: 



f(x,,ps )  x
2


3

4

z p

2 
2
 o  0  (29) 

where, 

o  : current value of uniaxial yield stress, dependent on accumulated equivalent 

plastic strain (ps ) . 

If the elastic application of the current increment of strain (x,)  should lead to a stress 

state (x
e

,
e

)  which traverses the yield surface, then plastic strains (x
p
,

p
)  must be 

introduced in accordance with the associated flow rule to bring the stress state back to the 

yield surface. The one-step backward Euler procedure (Crisfield, 1991), illustrated in Fig. 9, is 
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adopted in virtue of its efficiency and the fact that it results in a symmetric consistent tangent 

modulus matrix   (t E) . Accordingly, the current stress state (x ,) must satisfy (29) where: 

  

x
















x

o


o
















 E

x
















x

p

p


































x
o


o
















 E

x















 N














  

  

x
















x

e


e
















 EN  (30.a) 

in which, 

  

x
e


e


















x
o


o
















 E

x















 (30.b) 

  

N 

f

x

f

























x

o

3

4

z p

2 o





















 (30.c) 

and, 

  : positive multiplier for incremental plastic strain 

E : matrix of elastic properties given by (27). 

It can also be shown that the increment of equivalent plastic strain (ps)  is identical to ()  

(e.g. Crisfield, 1991), and hence the current yield stress (o )  appearing in (29) and (30) is 

determined, according to Fig. 8, from the following: 

o 

y , if 
o
   h

o
o
 H  , if 

o
 h

y  H (
o
   h ) , if h    

o
 h











 (31) 
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Equations (29) and (30) provide a nonlinear system of three simultaneous equations from 

which the current stress state (x ,) and the multiplier ()  can be obtained. This nonlinear 

system of equations can be solved using a Newton-Raphson iterative strategy, where the 

values of (x ,), (o )  and ()  are initialised to (x
e

,
e

) , (o
o
)  and zero, respectively. It is 

noted that if (x
e

,
e

)  lies within the yield surface then the actual response is elastic, and 

(x ,) is identical to (x
e

,
e

) , with (o )  remaining unchanged and ()  taken as zero. 

Once structural equilibrium for the current step is achieved, the values of (x
o

,
o

) , (o
o
)  and 

(
o

) are updated to (x ,), (o )  and (
o
 ) . 

The consistent tangent modulus matrix   (t E) , needed in (22), is identical to   (E)  if the current 

stress increment is elastic; otherwise,   (t E)  can be obtained from the following expression: 

  

tE  R
1

E I 
N NT R1E

NT R1 E N  a









 (32.a) 

where, 

  

R 

1
E

o

0

0 1 
3

z e

2 G

z p

2 o





















 (32.b) 

 
o

o

o

 (32.c) 

a 
0 , if 

o
   h

H , if 
o
   h









 (32.d) 

and   ( I )  is a (22) identity matrix. 

Kinematic Strain-Hardening 

Kinematic strain-hardening, which provides a more realistic representation of the hardening of 

steel than isotropic hardening, is associated with translation, rather than expansion, of the 
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yield surface. Denoting the current centre of this surface by (xc ,c) , as shown in Fig. 10, 

the von Mises yield criterion can be expressed as: 



f(x,,ps )  (x  xc)
2


3

4

z p

2 (  c)
2
 y  0 (33) 

where, 

y  : initial uniaxial yield stress 

xc ,c  : current centre of yield surface, dependent on accumulated equivalent 

plastic strain (ps ) . 

As for isotropic hardening, if the elastic application of the current increment of strain 

(x,)  leads to a stress state (x
e

,
e

)  which traverses the yield surface, plastic strains 

(x
p
,

p
) are introduced using the one-step backward Euler procedure, as illustrated in Fig. 

10. The centre of the yield surface translates in the radial direction (Ziegler, 1959) defined by 

the current stress state, as given by: 

xc  xc
o

c  c
o

















r

y

x  xc

 c
















  

xc

c


















1

1 
r

y

xc
o

 c
o

















r

y

x






























 (34) 

where, 

r 

0 , if ps  h

H (ps  h ) , if ps  h









 (35) 

Substituting (34) in (33), the dependence on the equivalent plastic strain becomes restricted to 

the translation factor (r), resulting in a simplified yield condition: 
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

f(x,,ps )  (x  xc
o

)
2


3

4

z p

2 (  c
o

)
2
 (y  r)  0  (36) 

The current stress state (x ,) can be related to the elastic stress state (x
e

,
e

)  and the 

multiplier for plastic strains ()  in an identical manner to isotropic hardening, with a 

different normal vector   (N) : 

  

x
















x

e


e
















 EN  (37.a) 

in which, 

  

x
e


e


















x
o


o
















 E

x















 (37.b) 

  

N 

f

x
f





















x  xc
o

y  r

3( c
o
)

4

z p

2 (y  r)























 (37.c) 

Again, considering that the increment of equivalent plastic strain (ps)  is identical to () , 

the incremental translation coefficient (r) appearing in (36) and (37) is determined according 

to the following: 

r 

0 , if 
o
   h

H  , if 
o
 h

H (
o
   h ) , if h    

o
 h











 (38) 

The nonlinear system of three simultaneous equations given by (36) and (37) can be solved 

iteratively using a Newton-Raphson strategy, through which (x ,), () , (r) and hence 

(xc ,c)  can be established. Once structural equilibrium for the current step is achieved, the 

values of (x
o

,
o

) , (xc
o

,c
o
) and (

o
)  are updated to (x ,), (xc ,c)  and (

o
 ) . 
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The consistent tangent modulus matrix   (t E)  is identical to that obtained for the isotropic 

strain-hardening case in (32), but with different ()  and   (R) : 

  

R

1
E

y  r
0

0 1
3

z e

2 G

z p

2 (y  r)





















 (39.a) 

 
y

y  r
 (39.b) 

It is worth noting that for both cases of isotropic and kinematic hardening, the consistent 

tangent modulus matrix   (t E)  is symmetric. 

GLOBAL ANALYSIS 

The derivation of the proposed elasto-plastic cubic element in a local Eulerian system provides 

considerable formulation advantages. However, the use of this formulation within a global 

analysis capability requires transformations between the local Eulerian system and a global 

reference system common to all elements of the structure. In this regard, the proposed 

formulation is implemented within a large displacement Eulerian approach for thin-walled 

frames (Izzuddin, 1995), where three transformations are required between the Eulerian and 

global systems (Izzuddin, 1991; Izzuddin and Elnashai, 1993-a). The first is a transformation 

of global displacements to local Eulerian displacements   (cu ) . The second is a transformation 

of local Eulerian forces   (cf ) to global forces. Finally, the  third is a transformation of local 

Eulerian tangent stiffness   (ck ) to global tangent stiffness. 

The above transformations enable the calculation of global element forces, given a set of 

global element displacements, and allow the determination of a global element tangent 

stiffness matrix. Therefore, using standard assembly procedures, the overall structural 

resistance can be established from the structural displacements, and a structural tangent 

stiffness matrix can be obtained. Hence, the solution of the nonlinear governing equations for 
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the structural system can be performed for the current increment using iterative solution 

strategies, such as the Newton-Raphson procedure. In this context, it should be noted that the 

evaluation of the current stress state for the various monitoring areas must be undertaken with 

reference to the stress state at the end of the last equilibrium step, and not that corresponding 

to the previous iteration. 

CONCLUSION 

This paper presents a new one-dimensional formulation for the large displacement analysis of 

elasto-plastic frames with thin-walled open member cross-sections. It accounts for initial 

imperfections, residual stresses, the Wagner effect and yielding governed by interacting shear 

and normal stresses. The proposed formulation is derived in a local Eulerian system. This 

allows the use of simplified strain-displacement relationships in the local system without 

compromising the accuracy of modelling nonlinearities in the global response due to axial-

flexural-torsional coupling. Consequently, the formulation can be used to model the elasto-

plastic response of thin-walled frames subject to flexural and lateral torsional instability. 

In the local system, the formulation employs eight freedoms with the centroidal axis chosen as 

the element reference line. Four reference line displacements define the strain state over the 

element, cubic shape functions being used for the transverse displacements and angle of twist, 

and a linear shape function for the axial displacement. The local element response is obtained 

through the virtual work method, where the integration of the governing equations is 

performed numerically with the aid of two Gauss points along the element length and a 

number of monitoring areas over the cross-section. Whilst the formulation allows a variable 

number of monitoring areas to be used over the cross-section, only two Gauss points are 

employed along the element length. Although more Gauss points could be used over the 

element, this would demand excessive computational requirements without a commensurate 

improvement in accuracy, especially since several elements are required to model the nonlinear 

response of one member.  
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Over each cross-sectional monitoring area, the strain state is defined by a normal strain at the 

centre of the area and a rate of twist generalised strain, which allows a coarse discretisation 

over the thickness of cross-section component plates. The stress state, defined by the normal 

stress at the centre of the monitoring area and a generalised twisting moment per unit area, is 

obtained from the strain state using an elastic fully-plastic material law based on the von Mises 

criterion for interactive yielding between the two stress components. Implementation details 

for isotropic and kinematic strain-hardening are provided, where the backward Euler return to 

the interaction curve is employed. 

The incorporation of the proposed formulation within an Eulerian large displacement 

approach is outlined, and the three necessary transformations between the Eulerian and global 

systems are described. The companion paper aims at verifying the accuracy of the new 

formulation, identifying the significance of the various assumptions made in its derivation, and 

providing some examples of its application to the elasto-plastic analysis of thin-walled 

members and frames. 
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APPENDIX A: ARRAY   cT  

Array   (c T) required in (19) and (21) is a (628) array representing the weighted first 

derivatives of generalised strains with respect to local displacements, and is given by: 

  

cTj,g,k 
L

2










su j,g

cu k









 (40.a) 

  

cT1 
1

2

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0











 (40.b) 

  

cT2 
1

2

c1 1
i
c1 c2 1

i
c2 0 0 0 0

c2 2
i

c2 c1 2
i

c1 0 0 0 0

















 (40.c) 

  

cT3 
1

2

1
i
c1 c1 1

i
c2 c2 0 0 0 0

2
i
c2 c2 2

i
c1 c1 0 0 0 0

















 (40.d) 

  

cT4 
1

2

0 0 0 0 0 c3 c1 c2

0 0 0 0 0 c3 c2 c1















 (40.e) 

  

cT5 
1
i
 1 0

0 2
i
 2
















cT6  (40.f) 

  

cT6 
1

2

0 0 0 0 0 1 1 c3 1 c3

0 0 0 0 0 1 1 c3 1 c3















 (40.g) 

where, 

c1  3 1 (41.a) 

c2  3 1 (41.b) 

c3 
2 3

L
 (41.c) 
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1

i
 g

i
(gx1 )  (41.d) 

  
2

i
 g

i
(gx 2)  (41.e) 

  
1
i
 g

i
(gx1) (41.f) 

  
2
i
 g

i
(gx 2 )  (41.g) 

  
1  g (gx1 )  (41.h) 

  
2  g(gx 2)  (41.i) 
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APPENDIX B: NOTATION 

- Generic symbols of arrays, matrices and vectors are represented by bold font-type and can 

include left side subscripts and superscripts (e.g.   cu ,   sf ).
 

- Subscripts and superscripts to the right side of the generic symbol indicate the term of the 

array, matrix or vector under consideration (e.g.   cu i , 
  s
f 5,1 ). 

Operators 

f (x)  : first derivative of f(x) with respect to (x). 

f (x) : second derivative of f(x) with respect to (x). 

   : right-side superscript, transpose sign. 

   : partial differentiation. 

  : infinitesimal increment. 

  : finite increment. 

o
 : right side superscript indicating values at end of previous incremental step. 

    : encloses terms of a matrix. 

  : encloses terms of a row vector. 

  : encloses terms of a column vector. 

Symbols 

A : cross-sectional area. 

A : vector of monitoring areas. 

d : array of distances and warping function values for monitoring areas. 

E : elastic Young's modulus. 

e : array of monitoring area strains. 
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E : elastic modulus matrix. 

  tE : tangent modulus matrix. 

  cf  : local element forces 

  M1y ,M1z ,M2y ,M2z , F, MT, B1,B2

T

. 

  sf  : cross-sectional generalised forces. 

G : elastic shear modulus. 

H  : strain-hardening parameter. 

  ck  : local element tangent stiffness matrix. 

  sk  : cross-sectional generalised tangent stiffness. 

L : element length. 

n : number of monitoring areas. 

N : normal vector to interaction curve. 

s : array of monitoring area stresses. 

  c T : transformation matrix given in Appendix A. 

u : cross-sectional axial displacement. 

u g  : reference line displacement in x-direction. 

  cu  : local element freedoms 

  1y,1z ,2y,2z ,,T , 1, 2

T

. 

  su  : cross-sectional generalised strains. 

v : transverse displacement over cross-section. 

v g  : reference line displacement in y -direction. 

v
i
 : cross-sectional transverse displacement due to twist imperfection. 



v  : transverse in-plane displacement over component plate. 
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w : transverse displacement over cross-section. 

wg  : reference line displacement in z -direction. 

w
i
 : cross-sectional transverse displacement due to twist imperfection. 

x : reference coordinate along element length. 

  g
x  : vector of coordinates of two Gauss points. 

y : reference coordinate over cross-section. 

y  : reference coordinate over cross-section subject to twist imperfection. 



y  : local reference coordinate along component plate. 

y : array of coordinates (y) for monitoring areas. 

z : reference coordinate over cross-section. 

z  : reference coordinate over cross-section subject to twist imperfection. 



z  : local reference coordinate across component plate. 



z e  : equivalent elastic twist arm of monitoring area. 



z p  : equivalent plastic twist arm of monitoring area. 

z : array of coordinates (z) for monitoring areas. 

g  : reference line angle of twist. 

g
i
 : reference line twist imperfection. 

r  : factor for interaction curve translation. 

h  : limit equivalent plastic strain for strain-hardening. 

ps  : equivalent plastic strain. 

x  : normal strain. 

  : warping function of (y,z). 

  : array of warping function values ( ) for monitoring areas. 
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
 x


y  : in-plane shear strain over component plate. 

  : positive multiplier for plastic strains. 

1
i
,2

i
 : twist imperfections at nodes (1) and (2). 

1
i
, 2

i
 : rates of twist imperfection at nodes (1) and (2). 

o  : uniaxial yield stress. 

x  : normal stress. 

xc  : interaction curve centre abscissa. 

x
e
 : normal stress assuming elastic strain increment. 

y  : initial yield stress. 


x


y  : in-plane shear stress over component plate. 

  : rate of twist generalised strain. 

  : rate of twist generalised stress. 

 c  : interaction curve centre ordinate. 


e
 : rate of twist generalised stress assuming elastic strain increment. 
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Fig. 1 Local Eulerian (convected) system 
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Fig. 2 Reference line displacements at position (x) 
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Fig. 3 Reduction of transverse displacement and its first derivative with elements 
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Fig. 4 Local reference system of a component plate 
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Fig. 5 Local freedoms of cubic formulation 
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Fig. 6 Discretisation of a channel section into monitoring areas 
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Fig. 7.a Distribution of stresses over monitoring area: Mid-plane outside monitoring 

area 
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Fig. 7.b Distribution of stresses over monitoring area: Mid-plane crosses monitoring 

area 
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Fig. 8 Trilinear uniaxial stress-strain curve 
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Fig. 9 Backward Euler return with isotropic hardening 
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Fig. 10 Backward Euler return with kinematic hardening 

 


