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Gaussian boson sampling (GBS) is a quantum sampling task in which one has to draw samples from the
photon-number distribution of a large-dimensional nonclassical squeezed state of light. In an effort to make
this task intractable for a classical computer, experiments building GBS machines have mainly focused on
increasing the dimensionality and squeezing strength of the nonclassical light. However, no experiment
has yet demonstrated the ability to displace the squeezed state in phase space, which is generally required
for practical applications of GBS. In this work, we build a GBS machine that achieves the displacement
by injecting a laser beam alongside a two-mode squeezed vacuum state into a 15-mode interferometer.
We focus on two new capabilities. Firstly, we use the displacement to reconstruct the multimode Gaussian
state at the output of the interferometer. Our reconstruction technique is in situ and requires only three
measurement settings regardless of the state dimension. Secondly, we study how the addition of classical
laser light in our GBS machine affects the complexity of sampling its output photon statistics. We intro-
duce and validate approximate semiclassical models that reduce the computational cost when a significant
fraction of the detected light is classical.
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I. INTRODUCTION

Several recent experiments employing large-scale quan-
tum systems entered a complexity regime where they can-
not currently be simulated on a classical computer [1–4].
These experiments reached a milestone on the path to using
quantum systems for solving computational tasks of prac-
tical importance that are intractable for classical computers
[5]. One of the approaches used to reach this milestone
is called Gaussian boson sampling (GBS) and consists in
injecting a large number of nonclassical squeezed states
of light into a multiport interferometer [6]. Light at the
output of the interferometer is generally in a complex
entangled state owing to quantum interference. This out-
put state is then measured using an array of single-photon
detectors. The complexity of calculating the output light
photon statistics scales with the number of interferometer
modes and the number of detected photons [7]. Over the
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years, these numbers have been increasing in part thanks to
improvements in the quality and brightness of the squeezed
light sources [8–10], the efficiency and energy resolution
of the detectors [11,12], as well as the development of
scalable chip-based experiments [13–15]. The largest GBS
experiment performed thus far employed 25 squeezed light
sources and measured over 100 photons at the output of a
144-mode interferometer [3].

Although a GBS machine is not a universal quan-
tum computer, drawing samples from the output photon
distribution has several potential applications, including
calculating the vibronic spectra of molecules [16] and
characterizing features of graphs [17–20]. These appli-
cations require the ability to control the squeezing and
displacement of the input light as well as program the
interferometer transformation. Experiments have already
demonstrated the ability to implement arbitrary transfor-
mations by using reconfigurable multiport interferometers
[15,21–23]. In fact, updating such transformations in a
feedback loop based on measurement outcomes has been
used for machine learning [24] and variational quantum
algorithms [25]. However, no experiment has yet demon-
strated the ability to displace the squeezed light in a GBS
machine. Displacements can improve the graph classi-
fication accuracy of GBS [19] and are needed for cal-
culating the vibronic spectra of real molecules [16,26,
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27]. Moreover, a GBS machine equipped with displace-
ments provides a powerful quantum state engineering tool
that can conditionally prepare arbitrary single-mode states
[28–31].

The displacement can be achieved by interfering the
nonclassical squeezed light with laser light, i.e., a coher-
ent state. Afek et al. [32] experimentally demonstrated
that the interference between these two states can be
used for quantum-enhanced interferometry. Other experi-
ments observed nonclassical features of displaced quantum
states, such as oscillations in the photon-number distribu-
tion [33,34] and micro-macro entanglement [35]. In the
context of GBS, the addition of laser light provides an easy
way to increase the photon detection rate and thus reduce
statistical errors when sampling the output photon-number
distribution. However, it also raises questions regarding
the complexity of the GBS problem. If the laser is much
brighter than the squeezed light then one might be able
to find a classical approximation for the output photon
distribution that can be efficiently sampled using classi-
cal algorithms [36–38]. Thus, the GBS machine would no
longer provide a quantum computational advantage. It is
not well understood where this transition in complexity
occurs in practice.

In this work, we build a GBS machine that samples from
a 15-dimensional displaced Gaussian state. Our experi-
ment employs a single source of squeezed vacuum and
thus it can be readily simulated on a classical computer.
Rather than aiming to achieve a quantum computational
advantage, we explore two new capabilities enabled by
the displacement. Firstly, we show that it can be used
to determine the multimode Gaussian state at the output
of the circuit, i.e., perform a high-dimensional quantum
state reconstruction. Secondly, we study the complexity
of simulating GBS machines in the presence of displace-
ments. We introduce approximate semiclassical models
that reduce the computational cost of simulations. Similar
to a quantum-to-classical transition, we find that the valid-
ity of these models generally improves as we increase the
displacement strength.

II. THEORY

Consider injecting squeezed vacua states |ζi〉 and a
single-mode coherent state |α〉 (α = |α|eiφ) into separate
ports of a d-mode lossy interferometer, as shown in Fig. 1.
Light at the output of the interferometer is in a Gaussian
state that can be fully described by a 2d × 2d covariance
matrix � and a displacement vector δ of length 2d:

�j ,k = 1
2 (〈νj ν

†
k 〉 + 〈ν†

k νj 〉) − δj δ
∗
k , (1a)

δj = 〈νj 〉 . (1b)

T
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FIG. 1. Gaussian boson sampling problem considered.
Squeezed vacua |ζi〉 and a single coherent state |α〉 are injected
into a d-mode lossy interferometer described by a transfer matrix
T. The coherent state displaces the phase-space distribution of
the output state.

Here ν = (â1, . . . , âd, â†
1, . . . , â†

d) is a vector of boson
annihilation and creation operators. The former quantity
describes the squeezing and thermal occupation of each
mode (and their correlations) after propagating the input
squeezed light through the interferometer. The latter quan-
tity provides the displacement amplitude of each mode and
is determined by the evolution of the coherent state. We
consider all losses to be part of the interferometer circuit,
i.e., � and δ define the state just before being measured
by ideal detectors. We use the convention that uppercase
(lowercase) bold symbols are matrices (vectors).

GBS experiments performed thus far have not employed
displacements, i.e., δ = 0. In this case, the probability
to obtain the detection pattern n = (n1, . . . , nd) is given
by [6]

pr(n) = pvac
∏

i ni!
× haf(An), (2)

where pvac is the probability to measure vacuum in all
output modes. We introduced the A matrix

A =
(

0 Id
Id 0

)

(I2d − �−1
Q ) (3)

with Id being the identity matrix of dimension d and
�Q = � + I2d/2 the covariance matrix of the state’s Q
function. The submatrix An is determined by repeating ni
times the ith and (i + d)th row and column of A and thus
its size (2N × 2N ) grows with the total number of pho-
tons detected, N = ∑

i ni. The quantity haf(An) is called
the hafnian. It sums over the product of pairs of elements
in An chosen from the set of perfect matching permuta-
tions of 2N , which involves summing (2N − 1)!! terms.
This exponential scaling is at the heart of the complexity
of GBS.

In contrast, when δ �= 0, the probability to obtain a
particular detection pattern is given by the loop hafnian
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[39]

pr(n) = pvac
∏

i ni!
× lhaf(Ãn), (4)

which contains additional terms compared to Eq. (2) as
it now includes the different possible ways that the pho-
tons could have originated from both the squeezers and
the coherent state. The submatrix Ãn is determined the
same way as An but its diagonal entries are replaced by
γ̃ whose elements are given by repeating ni times the ith
and (i + d)th elements of

γ = δ†�−1
Q . (5)

Expanding the loop hafnian, we find that [40]

pr(n) = pvac
∏

i ni!

(

haf(An)

+
2N−1∑

j1=1

2N∑

j2=j1+1

γ̃j1 γ̃j2haf(An−{j1,j2}) + · · · +
2N∏

j =1

γ̃j

)

.

(6)

The submatrix An−{j1,j2} is obtained by removing rows
and columns numbered j1 and j2 from An. The first term
in Eq. (6) is the same as Eq. (2) and accounts for the
probability that all N photons originated from the squeez-
ers. In contrast, the last term contains no hafnians and
accounts for the probability that all photons originated
from the coherent state. The remaining terms account for
the different possible ways that the N photons could have
originated from both sources and the interference between
these possibilities.

A. Reconstructing the multimode Gaussian state

In continuous-variable quantum state tomography [41],
one can reconstruct the quantum state of an unknown sig-
nal by interfering it with a coherent state and measuring the
output photon statistics. To extend this idea to multimode
signals, one should interfere the coherent state with every
signal mode and measure the joint photon statistics across
all modes [42–45]. This is precisely what the GBS circuit
in Fig. 1 achieves, which raises the question of whether it is
possible to reconstruct the state at the output of the circuit
directly from the measured photon statistics in this config-
uration. This reconstruction would provide a way to verify
that the GBS machine has been properly programmed for
a desired calculation.

We find that the ability to control the coherent state’s
phase φ can be used to determine the matrix A and the
vector γ . The former quantity determines the covariance
matrix [Eq. (3)] and the latter determines the displacement

vector [Eq. (5)], thereby fully characterizing the multi-
mode Gaussian state just before detection. The A matrix
can be written in terms of four d × d blocks, B and C:

A =
(

B C
CT B∗

)

. (7)

Here B (C) is a symmetric (Hermitian) matrix describ-
ing the squeezed (thermal) part of the state, e.g., C = 0
for a pure state [6]. It suffices to measure single-photon
outcomes, pj ≡ pr(01, . . . , 1j , . . . , 0d)/pvac, as well as two-
photon outcomes, pj ,k ≡ pr(01, . . . , 1j , . . . , 1k, . . . , 0d)/

pvac, to determine γ , B, and C, as follows.
The single-photon probabilities measured with and

without the coherent state blocked are (respectively)
obtained by expanding Eq. (4):

pj = Cj ,j , (8a)

p ′
j = Cj ,j + |γj |2. (8b)

Equation (8a) directly determines Cj ,j . These can then be

used in Eq. (8b) to determine γj , i.e., γj =
√

p ′
j − Cj ,j . We

assume that γj is a real number and thus neglect the phase
difference between output modes in the displacement vec-
tor. These phases do not affect the output photon statistics
since photon counters are phase insensitive.

Next, the two-photon probabilities measured with and
without the coherent state blocked are (respectively) given
by

pj ,k = pj pk + |Bj ,k|2 + |Cj ,k|2, (9a)

p ′
j ,k = p ′

j p ′
k + |Bj ,k|2 + |Cj ,k|2 + 2γj γk(Re[Cj ,k]

+ Re[B∗
j ,kei2φ]). (9b)

By scanning the phase φ of the coherent state, one can
determine |Bj ,k| from the amplitude and arg(Bj ,k) from the
offset of the observed fringe in p ′

j ,k [i.e., the last term in
Eq. (9b)]. Once Bj ,k is determined, one can solve for |Cj ,k|
using Eq. (9a) and subsequently Re(Cj ,k) using Eq. (9b),
thus only leaving an ambiguity in the sign of the imagi-
nary part of Cj ,k. The threefold statistics can be measured
to determine this sign, e.g., by employing an algorithm like
maximum likelihood to minimize the distance between the
measured threefold statistics and those calculated via Eq.
(4). Alternatively, we show in Appendix C that one can
inject the coherent state into a different input mode of the
interferometer in order to determine the imaginary part of
Cj ,k. Thus, a total of three measurement settings and the
ability to scan the phase φ is required to fully determine
the multimode Gaussian state in situ. These measurement
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settings are (i) |α〉 blocked, (ii) |α〉 injected into a first
input mode, and (iii) |α〉 injected into a second input mode.
Since pj ,k = pk,j , the reconstructed B (C) matrix is con-
strained to be symmetric (Hermitian), as required for a
physical state. Uncertainties in the measured probabilities
(e.g., from counting statistics and fitting) can be propa-
gated in Eqs. (8) and (9) to determine the uncertainty on
each matrix element.

The efficiency of our reconstruction technique is partly
due to the strong constraint imposed by assuming that the
output state is Gaussian. While this is a natural assumption
to make in the context of GBS, in practice, imperfections
such as phase drifts in the displacement field can render
the experimentally generated state non-Gaussian [46,47].
Provided that these imperfections are minor, the recon-
structed Gaussian state provides a good approximation
of the experimentally generated state in that it accurately
reproduces its photon statistics, as we demonstrate further
below.

B. The k-order classical approximation

The complexity of calculating pr(n) is determined by
the largest hafnian in Eq. (6), whose size is determined by
the number of detected photons, N [39,40,48,49]. Inject-
ing bright coherent light into a GBS circuit is an easy
way to increase the likelihood of detecting a large number
of photons and thus effectively increase the N achievable
in an experiment. At first glance, this does increase the
difficulty of simulating the experiment because one can-
not rule out the possibility that the N photons originated
from the squeezers. Of course, the likelihood of this occur-
ring depends on the relative amount of photons originating
from the squeezed and coherent light, which is reflected in
the weights of the different terms in Eq. (6). This leads us
to considering an approximate model that ignores terms
that are small when the coherent light is bright relative
to the squeezers. The “k-order approximation” only keeps
terms in Eq. (6) for which γ̃j appears at least 2N − 2k
times. Roughly speaking, this assumes that at most k pho-
tons originated from the squeezers. For example, if k = 0,
we assume that all the photons came from the coherent
state and only calculate

∏2N
j γ̃j that contains no hafnians,

whereas for k = N , we calculate all the terms in Eq. (6).
Intermediate k values reduce calculation times by ignor-
ing terms containing the larger hafnians (see Appendix G).
We test the validity of this k-order approximation on our
experimental results below.

III. EXPERIMENT

Our experimental setup is shown in Fig. 2(a). A
mode-locked fiber laser produces pulses of 100 fs dura-
tion at a repetition rate of 10 MHz and with a center
wavelength of 1550 nm. The pulses are split into two
paths. In the top path, we frequency double the pulses

15x15 interferometer

BPLaser

SHG

ND

PBS

HWP

off
on

PM

PPKTP(a)

(b)

(c) 0.02
0.01

FIG. 2. (a) Experimental setup. SHG, second-harmonic gen-
eration; PBS, polarizing beam splitter; BP, bandpass filter; ND,
neutral-density filter; HWP, half-wave plate; PM, phase mod-
ulator. (b) Measurement of the phase φ between the squeezer
and coherent state. The standard deviation of the locked curve
is 	φ ∼ π/50. (c) Reconstructed transfer matrix. Top (bottom)
shows |Tij |2 (θij in radians).

in a periodically poled lithium niobate crystal and sub-
sequently pump a periodically poled potassium titanyl
phosphate (PPKTP) waveguide that produces degenerate
two-mode squeezed vacuum through type-II spontaneous
parametric down-conversion. In the bottom path, we pre-
pare the coherent state. The three beams are coupled
into polarization-maintaining single-mode fibers with effi-
ciency ηc ∼ 50%, which are then coupled into a chip using
grating couplers with efficiency ηg ∼ 70%. The chip is
made using silicon-on-insulator and contains a 15 × 15
network of directional couplers that comprise the interfer-
ometer. We discuss its characterization below. The propa-
gation efficiency inside the 2-mm-long chip is ηp ∼ 70%.
Finally, the 15 output modes are detected using super-
conducting nanowire single-photon detectors. Since these
are not photon-number-resolving detectors, we can only
determine “collision-free” outcomes where nj ≤ 1 (see
Appendix D). We adjust the output light’s polarization
using fiber polarization controllers in every mode to max-
imize the detection efficiency (ηd ∼ 80%). The total end-
to-end efficiency of the experiment is ηtot = ηcη

2
gηpηd ∼

10%.
The interference quality between the three beams

depends on their modal purity and indistinguishability.
We engineer the PPKTP source to be spectrally uncorre-
lated and find that the modal purity of the down-converted
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photons is 0.85(2) via a second-order autocorrelation mea-
surement. Bandpass spectral filters are used to block the
sinc sidelobes from the down-converted spectra and to fil-
ter the classical beam. The temporal overlap between the
three beams is controlled by two delay stages. The single-
mode nature of the on-chip directional couplers ensured
spatial and polarization overlap. Since the three beams
are indistinguishable, one cannot discern whether photons
detected at the output of the interferometer originated from
the squeezer or the coherent state. Thus, the probability
of detecting two or more photons depends on the relative
phase between these two sources, φ. We observe φ drifting
on timescales of a few seconds [orange dashed line, Fig.
2(b)] due to various instabilities in the lab. By monitoring
the twofold detection rates in real time, we construct an
error signal that we then use to control the voltage applied
to a phase modulator in the coherent state path and lock
φ to π/4 [blue line, Fig. 2(b)]. More details on the phase
locking can be found in Appendix B. We measure a fringe
visibility of 82(2)% for the two-photon interference signal
obtained by combining pairs of photons from the squeezer
and the coherent state on a balanced beam splitter (see
Appendix A). This visibility provides a benchmark of the
overall indistinguishability and modal purity of the three
beams.

The on-chip interferometer is described by a complex
15 × 15 transfer matrix T. Each element |Tij |eiθij gives the
probability amplitude |Tij | that a photon entering port i
exits through port j, while θij is the corresponding phase.
Both quantities depend on the reflectivities and phases of
the directional couplers. The reflectivities are chosen to
follow a Haar-random distribution while the phases are
randomised due to the fabrication tolerance [14]. Since we
fix the three input modes in our experiment, we only char-
acterize the relevant 3 × 15 submatrix. The probabilities
|Tij |2 [Fig. 2(c), top] are determined by injecting light into
each input mode i, one at a time, and measuring the single-
photon detection rates Rij at every output j . We then
normalize the rates for each input and multiply the normal-
ized rates by the overall efficiency of the experiment, i.e.,
|Tij |2 = ηtotRij /

∑
j Rij . The phases θij [Fig. 2(c), bottom]

are determined from the visibility of two-photon inter-
ference signals obtained by injecting two photons from
the squeezer into each possible pair of inputs and record-
ing the twofold rates. By scanning the temporal delay
between the photons, we observe Hong-Ou-Mandel-type
dips whose visibilities can be related to θij [50].

IV. RESULTS

We begin by demonstrating the characterization of the
A matrix using two methods. The first “direct” method is
outlined in Sec. II A and determines A directly from the
measured photon statistics. The second “indirect” method
calculates A by propagating a two-mode squeezed vacuum
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FIG. 3. Measuring the 15-dimensional output Gaussian state.
(a) Elements |Aj ,k| and (b) arg(Aj ,k) in radians of the recon-
structed A matrix using the direct method described in Sec. II A.
We cannot determine diagonal elements (white line) because our
detectors are not photon-number resolving. (c) Absolute values
and phases of the unique elements of A along with the associ-
ated error bars (1σ uncertainty) obtained from the fits and Monte
Carlo simulations, as explained in Appendix C.

and coherent state through the measured transfer matrix
T using the PYTHON libraries Strawberryfields [51] and
TheWalrus [52]. For this second method, the squeezing
parameter r and coherent state intensity |α|2 are deter-
mined by estimating the average photon numbers before
losses. Throughout the experiment, we fix the pump power
at 1 mW and measure 〈nPDC〉 = 0.01 photons per pulse
from the squeezer; thus, r = arcsinh(

√〈nPDC〉 /ηtot) ∼ 0.3.
In Fig. 3, we show the A matrix reconstructed using the
direct method with |α|2 = 1.9. The diagonal elements are
undetermined because we do not have number-resolving
detectors and thus cannot measure pj ,j [Eq. (9a)] or p ′

j ,j
[Eq. (9b)]. Details on the state reconstruction technique
are provided in Appendix C. Since the quantum state con-
tains mostly vacuum, metrics such as the fidelity do not
provide a sensitive comparison between the A matrices
obtained from both methods. Instead, we calculate the out-
put photon statistics of the two matrices using Eq. (4)
and compare these to the experimentally measured statis-
tics. We calculate pr(ni) for all 455 N = 3 collision-free
detection patterns ni and normalize the resulting distribu-
tions,

∑
i pr(ni) = 1. The distance between the experimen-

tal and theory distributions can be computed using the total
variation distance

D =
∑

i

|prexp(ni) − prth(ni)|/2, (10)

which varies between 0 and 1. We find that D = 0.033(1)

[D = 0.0477(7)] for the direct (indirect) method, thus
showing that both methods correctly characterized A. The
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main advantages of the direct method are that it requires
only three measurement settings and it is in situ, i.e., it
directly determines each element of A from the output
statistics of the GBS machine. In contrast, the indirect
method requires injecting single photons or coherent states
into every pair of input modes to determine T, resulting
in at least 2d − 1 measurement settings [50,53]. Then, one
still has to measure the squeezing parameter of each input
squeezed state and calculate how these transform under T
in order to determine A.

Next, with 〈nPDC〉 = 0.01 fixed, we increase the coher-
ent state intensity such that its measured value 〈nα〉 =
ηtot|α|2 varies from 0 to 2.2. We record the photon statis-
tics for each value for one hour. In Figs. 4(a) and 4(b),
we show all 1365 measured collision-free fourfold prob-
abilities for 〈nα〉 = 0 and 〈nα〉 = 0.15, respectively. As
before, we quantify the discrepancy between experiment
and theory by calculating D. We plot D [red triangles, Fig.
4(c)] as a function of 〈nα〉 and find a mean of 0.04(3)
with a maximum value of 0.123(4) occurring at 〈nα〉 = 0.
The trend of increasing D for small 〈nα〉 is likely due
to slight distinguishability between the down-converted
modes that has a more pronounced effect when it is more
probable that the photons originated from the squeezer.

(a) (b)

(c)
Detection outcome

= 0.15= 0

FIG. 4. Probability distribution for all 1365 fourfold detection
events when (a) 〈nα〉 = 0 and (b) 〈nα〉 = 0.15. Theory distribu-
tions are calculated using the full quantum model (i.e., without
approximations). (c) Total variation distance D between experi-
ment and theory as a function of 〈nα〉. Each line corresponds to a
different theory model that is further discussed in the main text.
Error bars from Poisson counting statistics are smaller than the
marker size.

We observe a similar trend for the distances obtained with
the twofold and threefold distributions. We find an aver-
age D of 0.030(6) and 0.030(10) with a maximum value of
0.0421(1) and 0.0477(7) (also occurring at 〈nα〉 = 0) for
the twofold and threefold distributions, respectively.

We also use the data collected above to study the valid-
ity of various approximate models. We first consider the
“classical” model devised in Ref. [38]. Its strategy is to
determine the displaced squeezed thermal state having a
classical quasiprobability distribution that best approxi-
mates the experimentally prepared state (see Appendix E).
The resulting photon-number distribution can be efficiently
sampled using classical algorithms [37]. For low 〈nα〉, the
classical model has a large D (black squares) and per-
forms far worse than the quantum model. However, for
large 〈nα〉, we find that D for the classical model is nearly
equal to the quantum model, thus showing that the classi-
cal model is a valid approximation in this regime. This is
expected because it is more likely to detect photons orig-
inating from the coherent state than the squeezer at large
〈nα〉. The kink at α = 0 is likely an artifact of not including
distinguishability in the model and thus not sampling from
the optimal classical state, i.e., D can be further reduced
for α > 0 (see Appendix E). Between the classical and
quantum models, we can make use of semiclassical k-order
approximations discussed in Sec. II B. As we increase 〈nα〉,
these approximations become better at modeling the data,
as expected.

Increasing 〈nα〉 also increases the rate at which we
obtain larger N detection events [Fig. 5(a)]. With 〈nα〉 = 0,
we measure fivefold events at a rate of roughly 10−2 Hz,
whereas this increases to 104 Hz with 〈nα〉 = 2.2. When
gauging the ability of models to predict large N samples,
it is more practical to use a method that does not require
calculating the distance between the entire distributions as
in Eq. (10). To this end, we perform a likelihood test that
compares two models A and B via the likelihood ratio

L =
P∏

i=1

pr(ni|A)

pr(ni|B)
. (11)

Suppose that S = {n1, . . . , nP} is a set of P measured sam-
ples. It follows from Bayes theorem that L < 1 occurs
if pr(B|S) > pr(A|S), meaning that it is more likely the
samples came from the probability distribution of model
B. We fix model B to be the full quantum model without
approximations and calculate L for various approximate
models A. In Fig. 5(b), we plot L for a sample set S
of P = 500 randomly chosen samples from the exper-
imentally collected data containing at least four-photon
detection events. We find that L of the k = 3, 4 models
increases with 〈nα〉, and thus, as before, the validity of
these models is improving as it becomes more likely that
the detected photons originated from the coherent state.
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N = 5
N = 6

N = 7

N = 8N

N = 9

(a) (b)
= 2.2

N = 7, = 0.6(c) N = 7, = 2.2(d)

= 0.6

100 100

FIG. 5. (a) Probability to measure an N -fold sample per pulse
as a function of 〈nα〉. Error bars show 1σ uncertainty due to
Poisson counting statistics. (b)–(d) Likelihood ratio L [Eq. (11)]
compares the approximate model to the full quantum model.
Here L = 1 means that both are equally likely. In (b), L is
calculated using N ≥ 4 samples drawn randomly from our mea-
surement results. In (c) and (d), we show L being updated with
each new randomly drawn N = 7 sample for 〈nα〉 = 0.7 and 2.2,
respectively. The lines follow the same color legend as in (b).
Error bars in (b) and shaded regions in (c) and (d) show 1σ

uncertainty obtained by repeating the calculation 10 times.

We also show the trend of L with each new N = 7 sample
[Figs. 5(c) and 5(d)]. Despite the larger number of photons
detected, the k = 4 approximation still appears to be valid.
However, unlike in Fig. 4(c), the k ≤ 2 approximations
appear to be inadequate to model the N ≥ 4 data regard-
less of 〈nα〉. This suggests that these approximate models
cannot accurately predict higher-order correlations even at
high 〈nα〉.

V. CONCLUSIONS

We experimentally implemented a GBS machine that
samples from a displaced nonclassical Gaussian state. We
introduced and tested the validity of approximate semi-
classical models that exploit the classical nature of the
displacement to speed up calculations when this quan-
tity is large relative to the squeezer strength. Moreover,
we showed that the displacement field enables the recon-
struction of the Gaussian state at the output of a GBS
machine using only three measurement settings. The tech-
niques introduced here will be useful for characterizing
and validating large-scale GBS experiments. In particular,
the ability to efficiently reconstruct the output Gaussian
state can be used to verify that the degree of squeezing

and displacement as well as the interferometer transfor-
mation has been correctly set for a desired calculation.
Moreover, as with approximate models that exploit exper-
imental imperfections in sources and detectors to speed up
GBS calculations [38,54–56], the k-order models we intro-
duced exploit the classical contribution of the displacement
field. These various models can be used together to better
gauge the computational difficulty of sampling the output
light distribution of a GBS machine.

We briefly comment on the prospect of using GBS with
displacement for simulating molecular vibronic spectra.
The required displacement energy varies widely depend-
ing on the molecule, and can even be significantly larger
than the squeezed vacuum energy. For example, simulat-
ing the vibronic spectra of formic acid [16] (sulfur dioxide
[26]) uses roughly 0.07 (0.014) photons from squeezers
and a displacement of about 1.5 (1.6) photons, whereas
certain transitions in tropoline requires only squeezing
and no displacement [57]. Although these numbers were
achievable in our setup, the covariance matrix and dis-
placement of the output Gaussian state was fixed by the
static interferometer. We provide a recipe to implement
arbitrary transformations using a reconfigurable multiport
interferometer in Appendix F, which could simulate many
molecules in a single GBS machine. Moreover, losses will
reduce the fidelity of the simulated spectra, but this can
be partially mitigated by optimizing the displacement and
squeezing [20,57]. Finally, we also note that GBS can
inspire more efficient classical algorithms for calculating
vibronic spectra [58,59]. In particular, our k-order approx-
imations could be useful to simulate systems having a large
displacement energy relative to the squeezing.

ACKNOWLEDGMENTS

We thank Renyou Ge and Xinlun Cai for fabricat-
ing the silicon chip. We also thank Jacob Bulmer and
Gabriele Bressanini for their comments on the manuscript.
This work is supported by the Engineering and Physi-
cal Sciences Research Council (P510257 and T001062),
H2020 Marie Sklodowska-Curie Actions (846073), Sam-
sung GRC, and the KIST Open Research Program.

APPENDIX A: SOURCE CHARACTERIZATION

We use two-photon interference between the squeezer
and coherent state to obtain a benchmark of the over-
all quality of the indistinguishability and modal purity of
the three modes [Figs. 6(a) and 6(b)]. We first combine
the two down-converted modes on a balanced beam split-
ter (BS1). Because of Hong-Ou-Mandel interference, the
down-converted photons bunch and thus we observe a dip
in coincidences at the BS1 output of visibility V = 94(4)%
[Fig. 6(c)]. Consequently, light in the bottom output port
of BS1 is approximately in a single-mode squeezed vac-
uum state |ζ 〉. On BS2, we combine |ζ 〉 with a coherent
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FIG. 6. (a) Setup for measuring interference between the
squeezer and coherent state. (b) Spectrum of three interfer-
ing modes. (c) Hong-Ou-Mandel dip between down-converted
modes. Here V = 94(4)%. (d) Interference signal between |ζ 〉
and |α〉. Here V = 82(2)%. The phase φ between the two drifts
randomly for this measurement.

state |α〉 whose amplitude is set such that the two-photon
probability is roughly equal to that of the squeezed vacuum
state, i.e., |〈2|ζ 〉|2 ≈ |〈2|α〉|2. By measuring coincidence
events at the output of BS2, we observe a two-photon
interference signal with V = 82(2)% [Fig. 6(d)]. For our
experimental parameters (r ∼ 0.3, |α|2 ∼ 0.3, η ∼ 0.4),
we numerically calculated that the upper limit on this vis-
ibility is 94%. The ratio of our measured visibility to the
ideal one is consistent with the modal purity 0.85(2) of
the down-converted light determined via a second-order
autocorrelation measurement.

APPENDIX B: PHASE LOCKING

We use twofold photon statistics to lock the phase φ

between the squeezer and the coherent state. The proba-
bility to measure a photon in output mode j and k is given
by Eq. (9b). The last term in this equation is an interference
term that depends on φ. The visibility of this interference
depends on the relative likelihood that the coherent state
and squeezer each produced two photons and that these
photons exit the circuit in output modes j and k. We con-
struct an error signal by heuristically choosing (i.e., those
with a high interference visibility) pairs of j , k and add
their respective twofold rates pj ,k(φ). A subset of these
rates is shown in Fig. 7(a). The rates are either correlated
or anticorrelated with respect to one another depending
on whether Hong-Ou-Mandel bunching or antibunching
occurs, which depends on the internal phases of the inter-
ferometer. The error signal shown in Fig. 7(b) is obtained
by summing these rates with the anticorrelated ones mul-
tiplied by −1. We use this error signal in a feedback loop

x ±1

T
w

of
ol

d 
de

te
ct

io
n 

ra
te

s (a) (b)

FIG. 7. (a) A subset of the twofold detection rates pj ,k(φ)

used in the error signal to lock the phase φ. (b) The error sig-
nal obtained by adding the twofold detection rates with the
appropriate sign. Here n is a nonzero integer while m is any
integer.

in order to control the voltage of the phase modulator and
lock φ to π/4. The voltage is updated every 0.1 s.

APPENDIX C: GAUSSIAN STATE
CHARACTERIZATION

In Sec. II A, we showed that by controlling the phase of
a coherent state injected in one input mode of the inter-
ferometer and measuring single-photon and two-photon
detection probabilities, we can nearly fully characterize the
output Gaussian state. The only missing quantity is the sign
of the imaginary part of Cj ,k. Here we show how to deter-
mine this sign by injecting the coherent state into a second
input mode.

With the coherent state injected in a first input mode,
Eqs. (8b) and (9b) provide the single-photon and two-
photon probabilities. In these equations, we assumed the
elements of γ to be real valued, thus fixing a phase ref-
erence in the output of the interferometer. Injecting the
coherent state into a different input mode, we obtain the
analogous equations

p ′′
j = Cj ,j + |μj |2, (C1a)

p ′′
j ,k = p ′′

j p ′′
k + |Bj ,k|2 + |Cj ,k|2 + 2(Re[μj μ

∗
kCj ,k]

+ Re[μj μkB∗
j ,kei2φ]), (C1b)

where the elements of μ are now complex valued. We
can determine the absolute value |μj | via Eq. (C1a) by
using the already known Cj ,j . As before, the last term in
Eq. (C1b) is an interference term leading to a fringe that
can be observed by scanning the phase φ of the coherent
state [Fig. 8]. The phase offset of this fringe can be used
to determine arg(μk) since arg(Bj ,k) is already known and
we are free to choose one of the output phases of μ, e.g.,
arg(μ1) = 0. This assumes that the coherent state injected
in the second input mode has the same phase φ as when
injected in the first input. If instead there is an unknown
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FIG. 8. (a) Probability of a twofold detection between modes
5 and 6 while sweeping the phase φ. Orange curve shows the
fit of Eq. (9b) in a 2π region where the fitting error is mini-
mized. Green line indicates the phase modulator voltage value.
The twofold rate for this example is approximately 750 per sec-
ond. (b) Twofold probabilities as a function of φ. Error bars and
shaded region show 1σ uncertainty, obtained from Poissonian
counting statistics and variances in the fitting, respectively.

offset between the two phases, one can set arg(μ1) = φ̃ and
solve for this single unknown parameter by minimizing the
distance for the threefold photon statistics [Eq. (10)]. The
imaginary part of Cj ,k is then determined by

Im[Cj ,k] = εj ,kRe(Cj ,k)[Re(μj )Re(μk) + Im(μj )Im(μk)]

− εj ,kRe[μj μ
∗
kCj ,k], (C2)

where εj ,k = [Im(μj )Re(μk) − Re(μj )Im(μk)]−1 and
Re[μj μ

∗
kCj ,k] is obtained from Eq. (C1b).

Figure 8 shows an example of this procedure for a par-
ticular pair of modes, ( j , k) = (5, 6). We first collect data
while sweeping the phase modulator voltage [Fig. 8(a)].
We then fit Eq. (9b) in 2π regions of the phase scan. The
final fit is obtained by averaging over the five regions with
the smallest fitting errors to minimize the effect of phase
fluctuations and reduce Poissonian counting statistic errors
[Fig. 8(b)]. Fitting errors are propagated through Eqs. (8b)
and (9b) to determine the uncertainty on the recovered
matrix elements Bj ,k and Cj ,k.

In theory, the optimal displacement value maximizes the
amplitude of the oscillating term in Eq. (9b). In practice,
since we are using non-number-resolving detectors, we
employ a weaker displacement of 〈nα〉 = 0.19 to reduce
the effect of collisions (see Appendix D). Four output mode
pairs produced near-zero twofold detection rates (i.e.,
about 1 per second) due to very low transmission proba-
bilities through the interferometer. Fitting these rates with
Eq. (9b) leads to near zero |Bj ,k| and |Cj ,k|, as expected,
but also leaves the phase of these matrix elements undeter-
mined. Other effects such as instabilities in the phase φ or
counting statistics errors can also hinder the fitting when

the twofold rates are low. A detailed study of the robust-
ness and limitations of our reconstruction method will be
presented in a future work.

To resolve these issues here, we determine the phases
that minimize the distance [Eq. (10)] for the threefold dis-
tribution using a numerical optimization algorithm. The
error on the resulting phases is determined via a Monte
Carlo approach: we run the optimization ten times using
a different set of initial values for the phases on each run.
The initial values are obtained by sampling from a Gaus-
sian distribution of mean arg(Aj ,k) and standard deviation
given by the corresponding uncertainty. For the phases
of the four elements that could not be retrieved with the
direct inversion, we sampled from a uniform distribution
between [−π , π).

APPENDIX D: COLLISIONS

Our experiment employs “click” detectors that cannot
resolve photon numbers. As such, events in which an out-
put mode contained more than one photon, nj > 1, are
convolved in the measured probabilities of the collision-
free events. This leads to an error in the estimate of the
collision-free probabilities.

To estimate the relative size of errors caused by colli-
sions, we calculate the probability of a collision-free event
n using the loop Torontonian [60]:

pr(n) = pvac × ltor(Ãn). (D1)

Unlike the loop hafnian [Eq. (4)], the loop Torontonian
determines the photon statistics measured by click detec-
tors, i.e., it convolves the probabilities of collision events
with nj > 1. An implementation of Eqs. (D1) and (4) can
be found in the PYTHON package TheWalrus [52]. We com-
pute the distance D between the distributions obtained
using the two equations for all collision-free N = 4 detec-
tion outcomes. We find that D increases with 〈nα〉 with a
maximum of D = 0.024 occurring at 〈nα〉 = 2.2. Thus, the
error caused by collisions is relatively small.

APPENDIX E: CLASSICAL MODEL

The classical model, devised in Ref. [38], determines
the displaced squeezed thermal state having a classical
quasiprobability distribution with the highest fidelity (i.e.,
state overlap) to the experimentally prepared GBS state.
One can then calculate its photon statistics using classi-
cal algorithms such as those presented in Ref. [37]. To
determine this classical state, we follow Algorithm 1 given
in the Supplementary Material of Ref. [38], which we
reproduce here.

We begin by finding the classical squeezed thermal
state that approximates the down-converted light given
the total end-to-end efficiency of our experiment, η. After
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FIG. 9. Distances D of fourfold distributions obtained using
different theory models. In contrast to Fig. 4(c), here the param-
eters of the classical model are optimized to minimize D.

losses, a squeezed vacuum state with squeezing param-
eter r is transformed to a squeezed thermal state whose
covariance matrix is given by V = diag(a+, a−), where
a± = ηe±2r + (1 − η). Using our experimental parameters
(η ∼ 0.1, r ∼ 0.28), this covariance matrix is nonclassi-
cal since V − I2 is not positive semidefinite. The closest
classical state is a squeezed thermal state with squeezing
parameter s and thermal occupation number n [61]:

n = − 1
2 + 1

2

√

1 + 2 sinh(2sc)
√

a+/a−, (E1a)

s = 1
2 ln(2n + 1), (E1b)

with sc = ln(
√

a+a−). We propagate two such squeezed
thermal states and a coherent state of intensity |α|2 through
the interferometer using Strawberryfields [51]. Since our
down-conversion source produces two-mode squeezed
vacuum, we interfere both squeezed thermal states on a
fictitious balanced beam splitter before the interferometer.

For the sake of comparing different models in Fig. 4(c),
we do not optimize the measured parameters |α|2, η, r to
minimize the distance of the classical model, i.e., we use
the same parameters for all models. To gauge the best pos-
sible performance of the classical model, we perform this
optimization in Fig. 9. The distance is further reduced com-
pared to Fig. 4(c) likely because distinguishability is not
included in the model.

APPENDIX F: ARBITRARY TRANSFORMATION

In our experiment, the output state’s displacement
and squeezing is fixed by the static interferometer. If
one instead uses a reconfigurable multiport interferome-
ter capable of implementing any d-dimensional unitary
transformation, then a more general (d − 1)-dimensional
Gaussian state can be prepared using the recipe shown in
Fig. 10. Such a multiport interferometer contains at least
d(d − 1)/2 tunable beam splitters [62]. The displacement
operation D̂(δj ) is achieved by combining each output
mode j with the coherent state on a beam splitter of low

T

FIG. 10. Recipe for arbitrary displacements using a single
input coherent state.

reflectivity Rj  1 and phase shift φj [63]. This leaves
(d − 1)(d − 2)/2 beam splitters for the squeezers, which
can be used for an arbitrary (d − 1)-dimensional unitary.
We also note that setting T to the identity and measur-
ing coincidences between detector Dd and each Dj can be
used to lock the phases of every squeezed vacuum to the
coherent state using a procedure similar to that presented
in Appendix B.

APPENDIX G: k-ORDER RUN TIME

In Fig. 11, we plot the run time of a typical calculation
of the loop hafnian [Eq. (2)] and the k-order approximation
that truncates this quantity at a certain k (see Sec. II B).
The calculations are performed on a desktop machine with
a 16-core 2.9 GHz CPU and 16 GB of memory. The loop
hafnian is calculated using the TheWalrus [52], whereas
the k-order approximation uses our own code (available
upon request). While the former code has been well opti-
mized [56], our k-order approximation implementation is
likely not optimal and we anticipate that its run time can
be further improved.

FIG. 11. Run time of the exact loop hafnian [Eq. (2)], i.e.,
“full quantum” model, and the approximate k-order models, as
a function of the number of detected photons N .
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