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Abstract— Recent advances in the design of head-mounted
augmented reality (AR) interfaces for assistive human-robot
interaction (HRI) have allowed untrained users to rapidly
and fluently control single-robot platforms. In this paper, we
investigate how such interfaces transfer onto multirobot ar-
chitectures, as several assistive robotics applications need to be
distributed among robots that are different both physically and
in terms of software. As part of this investigation, we introduce a
novel head-mounted AR interface for heterogeneous multirobot
control. This interface generates and displays dynamic joint-
affordance signifiers, i.e. signifiers that combine and show
multiple actions from different robots that can be applied
simultaneously to an object. We present a user study with
15 participants analysing the effects of our approach on their
perceived fluency. Participants were given the task of filling-
out a cup with water making use of a multirobot platform.
Our results show a clear improvement in standard HRI fluency
metrics when users applied dynamic joint-affordance signifiers,
as opposed to a sequence of independent actions.

I. INTRODUCTION
AR user interfaces (UI) for assistive robotics have recently

shown great potential towards achieving fluid single-robot
control, where additional information, control instructions
and affordance sets can be overlaid in the environment using
a head-mounted display (HMD) [1], [2], [3]. Benefits of such
approaches include more rapid robot instruction [1], [2], or
better explanations regarding the internal states or intentions
of the robot [3]. Those benefits have motivated us to study the
application of AR HMD UI in assistive multirobot platforms.

The diverse capabilities required for assistive robotics
applications such as mobility assistance (e.g. with smart
wheelchairs), household maintenance and meal preparation
are difficult, if not impossible to build into a single robot.
Therefore, these capabilities can be distributed among differ-
ent robot types, each type of which specialises in different
areas [4]. A suitable AR HMD UI must thus be capable of
handling heterogeneous multirobot platforms, i.e. platforms
made up of robots that are not physically uniform and differ
at the software level [5].

In this paper, we investigate how to most effectively
signify the information needed to control such a multi-
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Fig. 1: An assistive multirobot platform composed by a smart
wheelchair and a dual arm robot helping a user grasp an object
originally out of his reach. The user controls the robots using an
augmented reality head-mounted display user interface based on the
notion of affordances and signifiers.

robot platform through an AR HMD UI. As part of this
investigation, we introduce a novel AR affordance-based UI
for controlling multiple heterogeneous robots through the
use of our proposed dynamic joint-affordance signifiers, i.e.
AR signifiers that combine actions from multiple robots
whenever these actions can be applied simultaneously to
an object. These signifiers are overlaid in the environment
while considering physical limitations such as the relative
positions of the user, objects and assistive robots. Further-
more, we demonstrate how these signifiers can be updated
dynamically, reflecting changes in environmental conditions
and corresponding multirobot states.

We present a user study with 15 participants to analyse
the effects of our approach on standard fluency metrics for
HRI [6]. Participants were given with the task of filling-
out a cup with water making use of a multirobot platform
(Figure 1). Our results show a clear improvement in their
perceived fluency when users applied our proposed dynamic
joint-affordance signifiers, as opposed to a sequence of
independent actions.

II. RELATED WORK

A. Affordance-based robot control

Affordances represent the interaction possibilities in the
world; they are relationships between the agent and the
object, and not stand-alone properties of the object [7].
Signifiers are defined as signals (signs, symbols, static or
dynamic icons, or any perceivable indicator) that signify
meaningful information to explain what actions are possible,
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Fig. 2: The HMD handles the interaction with the robots. A real-
time multi-user cloud platform is used to update a runtime list of
observer affordances based on all available agent affordances re-
ported by the robots. AR signifiers with environmental affordances
are shown to the user based on the detected objects in the scene.

how they should be done and where an interaction should
take place [8]. Ideas related to affordances have influenced
the design of intelligent robots [9], resulting in applications
that can be divided in two main approaches: affordance
learning from interaction and geometric information and
visual affordance detection [10].

In the former approach, affordances are learned through
direct interaction with the environment. Applications in this
domain include learning affordances either from interaction
[11] or human demonstration [12]. In visual affordance de-
tection, colour & depth images are used to learn affordances
without interaction. Applications in this domain include
affordances for HRI [13] and object manipulation [14].

However, most of the previous work associates affordances
to single robot platforms, or in the case of multirobot
platforms, has been applied to discrete simulated environ-
ments [11]. In this paper, we present an affordance-mediated
multirobot control platform where affordance sets, i.e. a
representation of the ways in which a robot can interact with
the object, are signified using an AR HMD UI. We tested our
approach in a real environment by conducting a user study
where participants filled-out a cup with water making use of
our proposed heterogeneous multi-robot platform.

B. User interfaces for multirobot control

Several UI for controlling multirobot platforms have been
introduced in the literature. Most of the early works in
this domain focused on practical challenges for designing,
programming and deploying multirobot platforms [15], [16],
[17]. However, little attention was given to how the user
was engaged with the interaction. In [18], [19], the authors
proposed task specific methods for HRI that successfully
allowed the user to control the robots. More general con-
trol algorithms are presented in [20], [21], where either
the robots were treated as a unique entity or each robot
was engaged independently. However, their methods used
traditional graphical UI to interact with the user and were
tailored to work on groups of identical robots.

AR UI have also demonstrated potential as a mode of
communication during HRI in multirobot platforms. In [22]
the authors implemented an AR hand-held UI to control a
group of identical robots. While AR HMD UI have also been

Fig. 3: A real size 3D model of YuMi is overlaid to the robot. With
this, the relative positions of the AR signifiers and the real objects
have a 1:1 correspondence relative to the robot’s frame.

proposed [23], they have only been used to provide visual
aids to the user. In this paper, we expand the state of the
art in this domain by introducing an AR HMD UI for the
control of heterogeneous multirobot platforms based on the
notion of affordances and signifiers.

III. SYSTEM DESCRIPTION

Our proposed platform is composed of a smart wheelchair,
a dual arm collaborative robot (YuMi) from ABB, and the
Microsoft HoloLens. The software modules running on the
HoloLens are listed in Figure 2 and are used to display
AR signifiers based on a transformation from image pixel
coordinates to 3D points in the HMD’s frame of reference.
A complete description of these modules is presented in [2].

If the robots are to act on the signified objects, the
positions of these objects first need to be converted into
the robots’ own frame of reference. For this, the Frame
Alignment module determines a correspondence between the
HMD and robot reference frames. The strategy followed
remains as described in [3] for the smart wheelchair. For
YuMi, whose position does not change over time, a 3D
model matching its real dimensions is overlaid onto the robot.
With this, the relative positions of the AR signifiers and
the real objects have a 1:1 correspondence relative to the
robot’s frame (Figure 3). To obtain the actual position of the
objects in the robot’s frame, we apply a transformation from
the coordinates of the AR signifiers in the HMD’s frame to
coordinates local to the robot. Furthermore, a spatial anchor
is added to the 3D model to make it stay precisely in place
and persist that way across multiple app deployments.

A. Agent, environmental and observer affordances

In [24], the authors proposed a formalisation of affor-
dances from three different perspectives with implications for
autonomous robot control. These perspectives relate to that
of the agent, the environment and an observer. In an agent’s
perspective (effect, (entity, behaviour)), the affordances
reside within the agent that interacts with the environment. In
an environmental perspective (effect, (agent, behaviour)),
the affordances are attached to the objects as extended
properties perceived by the agent. Finally, an observer’s
perspective (effect, (agent, (entity, behaviour))) is used
when the interaction between the primary agent and the en-
vironment is observed by a third party [24]. In this paper, the
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Fig. 4: AR signifiers dynamically update affordance labels based on
the surrounding robots. a) only YuMi is present, b) both YuMi and
the smart wheelchair are present, and c) the two individual robot
actions can be jointly-executed.

term entity is used to represent the objects perceived by an
agent, behaviour is used to denote actions that can be applied
to these objects, and effect represents the consequences of
applying such actions.

We applied this formalisation to similarly represent affor-
dances in our platform (Figure 2). To illustrate our approach,
for YuMi (agent) we developed two different behaviours
applicable to cups (entity): Give and Throw. Give allows
YuMi to hand-over (effect) cups to the user as shown in
Figure 1. Throw will discard (effect) cups from the table.
YuMi’s agent affordances are then represented as (Hand−
Over, (Cup,Give)) and (Discard, (Cup, Throw)).

For the smart wheelchair (agent) we developed Approach,
a behaviour applicable to cups, bottles, screens and key-
boards (entities) that allows the wheelchair to get closer
(effect) to the positions where these objects are located.
These agent affordances are then represented as (Get-Closer,
(Cup, Approach)), (Get-Closer, (Bottle, Approach)), and so
forth for the ’Screen’ and ’Keyboard’ entities.

All previous agent affordances are reported to the HMD
through a real-time multi-user cloud platform using a stand-
alone application we developed for this purpose (represented
with the dataset symbols in Figure 2). With this application
we can also include, edit and delete agent affordances
separately for each robot. When the agent affordances are
reported by the application, it adds a unique agent identifier.
This information is used by the HMD to build a real-time-
updated observer affordances run-time list.

This run-time list of observer affordances allows the 3D
UI module to dynamically add or remove AR signifiers
if the conditions of the environment change. For example,
behaviours currently being performed by a robot will not be
shown to the user, or if more robots are added to the platform,
their behaviours will be shown when applicable. Affordances
selected by the user broadcast a message that includes the
selected behaviour, the object class (entity), the position of
the associated object in the robot’s frame, and the agent
identifier of the robot who reported the agent affordance. This
way, only the robot with this agent identifier will execute the
behaviour that matches the (entity, behaviour) tuple from
its set of agent affordances.

B. Dynamic joint-affordance signifiers
In several cases an object affords multiple actions to the

user of an assistive multirobot platform, e.g. when multiple
behaviours that originate from one or more robots apply to
the same object. Additionally, it is often desirable or even
necessary to apply some of these actions simultaneously to
the object, i.e. they are sub-actions of another action. For
example, a drinking action is composed of a sequence of
grasp, pour and drink sub-actions. A suitable AR signifier
must thus be capable of simultaneously signifying all of
these possible actions. To this end, we developed an AR
signifier that dynamically shows multiple behaviours coming
from one or more robots while considering if these actions
can be jointly applied to an object. We term these novel AR
signifiers as dynamic joint-affordance signifiers (Figure 4).

Our proposed dynamic joint-affordance signifiers are com-
posed of a core 3D shape (the purple diamond in Figure 4),
a salient object class label and a set of affordance labels to
separately signify each applicable action. The object class
labels are added by the 3D UI module when the dynamic
joint-affordance signifiers are created. These signifiers then
compare the object class to the entity information of all
entries in the observer affordances run-time list. All matching
entries are added to a list of potential affordances using an
environmental perspective representation. This list is handled
separately for each dynamic joint-affordance signifier.

A behaviour tree is used to add affordance labels to these
proposed signifiers. For every entry in the list of potential
affordances (if any), this behaviour tree first tests if there
is any environmental restriction that makes the behaviour
not affordable and therefore should not be shown. If this
test is successful, an affordance label is shown to signify
the corresponding behaviour and the affordance is added to
an environmental affordances list. This test is based on the
position of the robot relative to the signifier. In the case
of YuMi, the test is successful if the signifier is within
its workspace for the right arm. The workspace dimensions
were empirically determined by running YuMi’s behaviours
multiple times while changing the object’s position. In the
case of the wheelchair, the test succeeds if the signifier is less
than 5 metres away from the robot, which was experimentally
found to be suitable for the wheelchair’s local planner.

Based on the entries in the environmental affordances list,
the behaviour tree runs a second test responsible for creating
affordance labels that combine multiple behaviours that can
be applied simultaneously to an object. For example, if they
are associated with different robots or relies on different
actuators from the same robot. In Figure 4 we illustrate how
affordance labels are added to a dynamic joint-affordance
signifier when a) only YuMi is present, b) both YuMi and
the smart wheelchair are present, and c) the two individual
robot actions can be simultaneously applied to the cup.

IV. METHODOLOGY

A. Survey
To represent the dynamic joint-affordance signifiers in our

platform, we propose the use of AR signifiers such as the
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Fig. 5: Survey. (a)-(d) were used to ask participants about their
preferred option to represent an affordance set and (e)-(g) to ask
participants about their preferred option to represent the joint-
execution of two actions over an object.

ones shown in Figure 5a-d. Yet, we wanted affordance labels
combining multiple behaviours to be distinct from the ones
used to signify individual behaviours. We turn to the users
for identifying the features needed to make this distinction
evident and present the results from an online survey aimed
at investigating which components of the signifier are more
effective towards this goal.

Participants first answered some demographic questions.
Then, they chose their preferred representation for an affor-
dance set among four different options. They also had the
possibility to choose none of these options and propose an
alternative instead. Finally, participants had to choose their
preferred representation for the joint-execution of two actions
over the same object. Figure 5 shows the representations
used in the survey. Table I shows the demographics of the
participants and a summary of the results.

The results obtained suggest that an AR signifier rep-
resenting the overlaid object, e.g. a 3D model of a mug
to represent a real mug, is important for participants as
Figure 5b and Figure 5c were the two options accumulating
more selections. Furthermore, a label describing the object
class was important for most participants. In regards to
the joint-action representation, most participants chose to
explicitly show the two given actions in a single icon whilst
this icon is also of a different colour. These results, except
for the inclusion of a 3D model for each overlaid object,
influenced the design of the AR signifiers presented in this
paper as described in subsection III-B and shown in Figure 4.

B. Experimental procedure

We performed a user study to analyse the effects of our
proposed dynamic joint-affordance signifiers on standard
objective and subjective fluency metrics for HRI [6]. We
gave participants the task of filling-out a cup with water
making use of our multirobot platform. Participants were
only allowed to use signified actions to complete the task.
They were not allowed to make use of the smart wheelchair’s
joystick or get-off from it. They were also not allowed to
cross the line marked on the desk of the experimental set-up
with their hands (Figure 6).

To start, participants gave written consent and filled-out
demographics and baseline questionnaires. Then, participants

Fig. 6: A bottle (1), two cups (2 and 5), a keyboard (3), and a
screen (4) were part of the experimental setup. Participants were
not allowed to cross the white line (6) with their hands.

started the experiment using the voice command Start ex-
periment. AR signifiers were not visible before this time.
Participants then needed to decide their strategy to complete
the task based on the provided AR signifiers. When the task
was completed, participants finished the experiment using
the voice command Stop experiment.

1) Experimental setup: To avoid variations in the execu-
tion time of each robot behaviour between participants, the
start position was always the same, approximately 2m from
the desk. The smart wheelchair’s Approach was available
for all objects from this point. The positions of the objects
shown in Figure 6 were also kept constant. Cup number 2
was behind the line marked on the desk but within YuMi’s
workspace and therefore YuMi’s Give was also signified
for this cup. Furthermore, an affordance label combining
Approach and Give was also available for this object. Cup
number 5 was outside YuMi’s workspace and behind the line,
it could not be used to complete the task. The bottle was in
front of the line, participants could use it immediately after
approaching it. The keyboard and the screen were not useful
for the task.

2) Evaluation: The objectives metrics used to compare
between groups were: the percentage of the total task time
that the user is not active (H-IDLE), the percentage of the
total task time that the robot is not perceivably active (R-
IDLE), and the accumulated time, as a ratio of the total task
time, between the completion of one agent’s action and the
beginning of the other agent’s action (F-DEL) [6]. Subjective
indicators were rated on a seven-point Likert scale from Very
strongly disagree to Very Strongly Agree using the following
statements:

1) The platform and I worked fluently together.
2) The platform contributed to the fluency in the task

accomplishment.
3) The platform was committed to the success of the task.
4) The platform had an important contribution to the

success of the task.
3) Hypotheses: We hypothesise that the ability of dy-

namic joint-affordance signifiers to provide affordance labels
combining multiple actions that can be jointly-applied to
an object will increase the median score of subjective and
objective indicators of fluency in HRI.
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TABLE I: Demographics of the survey participants and the number
of times each representation was selected (N = 37).

Factor n %

Gender
Female 12 32.4
Male 25 67.6

Age (years)
18–24 2 5.4
25–34 24 64.9
35–44 8 21.6
45–54 3 8.1

Signifier n %

Affordance set
Fig. 5a 1 2.7
Fig. 5b 13 35.1
Fig. 5c 15 40.5
Fig. 5d 6 16.2
Other 2 5.4

Joint-action
Fig. 5e 3 8.1
Fig. 5f 20 54.1
Fig. 5g 14 37.8

V. RESULTS

Participants were classified in two groups based on the
strategy they followed to complete the task. Participants
in Group 1 triggered Approach and Give simultaneously.
Participants in Group 2 triggered both behaviours separately
instead. Either way, participants were then able to proceed
filling-out the cup with water using the bottle. A total of 15
participants completed the experiment. Five of these were
classified as part of Group 1 (33%) and 10 as part of Group
2 (66%). Group 2 was further divided depending on whether
participants first triggered Approach (Group 2 A) or Give
(Group 2 B). In Table II we show the demographics and a
summary of participants’ reported experience with VR, AR,
computer games and smart wheelchair technologies.

In Figure 7, we show a time diagram representation of
the strategies followed by participants to complete the task.
Therein, TA = 9.61s and TG = 26.01s represents the
execution times of Approach and Give respectively, tTT is
the total task time, tFD is the time between the completion of
the first and second behaviour, and TR = 21.26s is the time
in which YuMi releases the cup. TR is considered separately
as the cup can be used immediately after being released by
YuMi, even though Give has not finished by this time. From
these diagrams, we derived the equations used to calculate
the objective indicators described in Section IV-B.2:

H − IDLEG1 = H − IDLEG2A = TR/tTT (1)

H − IDLEG2B = TA/tTT (2)

R− IDLESW = (tTT − TA)/tTT (3)

R−IDLEYM = R−IDLEN−G1 = (tTT −TG)/tTT (4)

R− IDLEN−G2 = (tTT − (TA + TG))/tTT (5)

F −DELG1 = (TA − TG)/tTT (6)

F −DELG2 = tBS/tTT (7)

For Group 2, Equation 1 and Equation 2 treat participants
as active (whether scanning the scene or selecting a be-
haviour) up to the point of second action selection. In regards
to R-IDLE, there are two possible ways of measuring it in our
experiment, one approach is to measure it separately for each
robot (Equation 3 and Equation 4), the second possibility is
to measure it as the time when none of the robots were
active (Equation 4 and Equation 5). Equation 5 assumes

TABLE II: Demographics of the experiment participants and their
reported experience with other technologies (N = 15).

Factor n %

Gender
Female 4 26.7
Male 11 73.3

Age (years)
18–24 2 13.3
25–34 13 86.7

Baseline n %

VR 8 53.3
AR 8 53.3
Computer games 12 80

SW visual feedback 2 13.3
None 13 86.7

Fig. 7: Timing diagram representation of the strategies followed by
participants to complete the task.

no overlapping during the execution of the behaviours. The
values obtained with Equation 6 will be negative as the
behaviours overlap during their execution.

Subjective metrics (Figure 9) were rated higher in all
questions by participants in Group 1, giving a mean score
of 6.7, higher than the 5.98 reported by Group 2. We do
not see an effect of the dynamic joint-affordance signifiers
over H-IDLE but note a tendency towards higher values in
Figure 8a where results positively correlate with fluency [6].
Figure 8b-c show the results of R-IDLE separate for each
robot. The mean scores obtained are lower for Group 1 in
both cases, R-IDLE is reported to be consistently inversely
correlated with fluency [6]. The outliers shown in these two
plots helps to reinforce this last argument as they are both
from participant 2, who rated all subjective metrics as 7.

If R-IDLE is measured when both robots are inactive, the
mean value obtained for each group is similar. However,
the upper outlier shown in Figure 8d corresponds to par-
ticipant 6, which was the slowest amongst the participants.
Interestingly, contrary to what was expected, this participant
rated their subjective metrics highly (average score of 6.75).
Finally, Figure 8e shows the results for F-DEL. The mean
values obtained are higher for Group 2, suggesting a clear
improvement. Furthermore, the outliers shown in this plot
are associated with participants who on average rated 6.25
(below Group 1’s average) and 5.25 (lowest score obtained)
their subjective metrics. This means that our results are in
line with [6], who demonstrated a link between subjective
and objective indicators of fluency in HRI.
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Fig. 8: Objective fluency metrics results. (a) H-IDLE. (b) R −
IDLESW . (c) R− IDLEY uMi. (d) R− IDLEN . (e) F-DEL.

Fig. 9: Likert chart summarising the answers of the participants for
each question in the post-experiment survey.

VI. CONCLUSIONS

In this paper we presented a novel AR HMD affordance-
mediated UI for controlling a heterogeneous multirobot plat-
form, and detailed our architecture for creating, updating,
displaying and selecting affordances. Our novel approach
allowed novice users to fluently control a combination of
a smart wheelchair and a dual arm robot, dynamically
displaying affordances available to the user. We presented
the results of a user study, demonstrating that our interface
is well received. In particular we showed how subjective and
objective metrics of fluency in HRI were improved. Future
work will further probe visualisation methodologies for pre-
senting multirobot affordances to users, towards reaching the
full potential of AR technologies for fluid robot control.
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