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Interest in the use of mechanical circulatory support for patients presenting with cardiogenic shock is growing rapidly. The

Impella (Abiomed Inc), a microaxial, continuous-flow, short-term, ventricular assist device (VAD), requires meticulous

postimplantation management. Because systemic anticoagulation is needed to prevent pump thrombosis, patients are

exposed to increased bleeding risk, further aggravated by sepsis, thrombocytopenia, and high shear stress–induced acquired

von Willebrand syndrome. The precarious balance between bleeding and thrombosis in percutaneous VAD–supported

cardiogenic shock patients is often the main reason that patient outcomes are jeopardized, and there is a lack of data

addressing optimal anticoagulation management strategies during percutaneous VAD support. Here, we present a parallel

anti-Factor Xa/activated partial thromboplastin time-guided anticoagulation algorithm and discuss pitfalls of heparin

monitoring in critically ill patients. This review will guide physicians toward a more standardized (anti)coagulation approach

to tackle device-related morbidity and mortality in this critically ill patient group. (J Am Coll Cardiol 2022;79:1949–1962)
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HIGHLIGHTS

� Bleeding and thrombotic complications
jeopardize outcomes in patients with
cardiogenic shock supported with pVADs.

� A standardized anticoagulation manage-
ment protocol guided by parallel
measurements of anti-Xa activity and
APTT can reduce the risks of these
complications.

� Randomized trials are needed to confirm
the optimum anticoagulation regimen in
patients with cardiogenic shock requiring
mechanical circulatory support.

ABBR EV I A T I ON S

AND ACRONYMS

ACS = acute coronary

syndrome

APTT = activated partial

thromboplastin time

AVWS = acquired von

Willebrand syndrome

CS = cardiogenic shock

DAPT = dual antiplatelet

therapy

ECMO = extracorporeal

membrane oxygenation

HIT = heparin-induced

thrombocytopenia

IV = intravenous

MCS = mechanical circulatory

support

PCI = percutaneous coronary

intervention

pfHb = plasma-free

hemoglobin

pVAD = percutaneous

ventricular assist device

UFH = unfractionated heparin

VAD = ventricular assist device
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T he Impella (Abiomed Inc) is a form of
short-term percutaneous ventricular
assist device (pVAD)1 approved for

high-risk percutaneous coronary interven-
tions (PCI)2 and cardiogenic shock (CS).3 It is
intended to restore hemodynamics, unload
the ventricle, and protect the myocardium
from further ischemia.4 pVADs are increas-
ingly used as a bridge to a permanent ventric-
ular assist device (VAD) or heart transplant
and, by 2019, had been used in >50,000
patients in the United States alone.5,6

The Impella is a catheter-based continuous
microaxial flow pump7 comprising an impella
(a rotating screw within a covered miniatur-
ized housing) that drains blood from the
left ventricle or inferior vena cava and expels
it into the ascending aorta or pulmonary ar-
tery. Here, the use of anticoagulation is
mandatory to counteract activation of the
coagulation system caused by shear force
stress and the foreign body surfaces of the
pump. This is further compounded because
CS causes a systemic inflammatory response
syndrome, leading to disruption of the
normal coagulation system.8 Moreover, acute
coronary syndrome (ACS), multiorgan dysfunction,
and infection (and mostly a combination) further
contribute to a procoagulant acute-phase response.
Additionally, factors related to the device’s mechani-
cal functioning, optimal positioning, and hydrody-
namics may further negatively alter the equilibrium
between bleeding and thrombosis.

Bleeding complications are a major challenge in
pVAD-supported patients, as recently shown in 2 large
retrospective U.S. studies, both including >25,000
patients supported by microaxial flow pumps.6,9 Mor-
tality was even higher in the microaxial flow pump
group than in the group supported by more conven-
tional intra-aortic balloon pumps, mainly because of a
higher rate of major bleeding complications in the
microaxial flow group.6,9 Disappointingly, neither of
these studies discussed the anticoagulation manage-
ment strategy (which anticoagulant agent, monitoring
strategies, management of bleeding complications,
guiding anticoagulation protocols, prevention of he-
molysis). The precarious balance between bleeding
and thrombosis in patients supported by microaxial
s attest they are in compliance with human studies committe

and Food and Drug Administration guidelines, including patien

thor Center.

received September 22, 2021; revised manuscript received Febru
flow pumps is often the main reason that patient out-
comes are jeopardized (Central Illustration), and there
is a lack of data addressing optimal anticoagulation
management strategies during pVAD support in criti-
cally ill patients. Therefore, we aim to provide a prac-
tical and rational approach to this key topic.

BLEEDING AND THROMBOTIC

COMPLICATIONS ON SHORT-TERM

MECHANICAL CIRCULATORY SUPPORT

Bleeding and vascular complications are frequent
with short-term mechanical circulatory support
(MCS) and increase mortality.10 These complications
also vary with different pVAD devices. Anti-
coagulation, usually with intravenous (IV) unfractio-
nated heparin (UFH), is required during MCS to avoid
clotting of the circuit and to reduce the risk of device-
related thrombus formation and embolization.11

Over-anticoagulation, the effects of dual antiplatelet
therapy (DAPT) in patients with ACS and/or PCI, as
well as the frequent development of acquired von
Willebrand syndrome (AVWS) all increase the risk of
bleeding. The high shear and continuous flow in MCS,
particularly with extracorporeal membrane oxygena-
tion (ECMO) and microaxial flow pumps, leads to
proteolysis of high molecular weight von Willebrand
factor. This results in reduced platelet-binding affin-
ity and the development of AVWS in the majority of
patients within 24 hours of starting MCS, which re-
solves rapidly after discontinuation (Figure 1).12 The
only treatment to date for MCS-induced AVWS
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CENTRAL ILLUSTRATION Precarious Balance Between Bleeding and Thrombosis in Critically Ill Patients Supported
by Microaxial Flow Devices

Vandenbriele C, et al. J Am Coll Cardiol. 2022;79(19):1949–1962.

Hemostasis/unfractionated heparin is monitored via parallel measurements of anti-Factor Xa/activated partial prothromboplastin time. Thrombosis is measured

indirectly via D-dimer levels (product of fibrinolysis). Shear-stress–induced acquired von Willebrand factor is measured via von Willebrand factor antigen and

functional von Willebrand testing. Hemolysis is measured via plasma-free hemoglobin levels.
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FIGURE 1 Shear Stress-Induced AVWS
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(A) Mechanically-induced shear stress causes uncoiling of large von Willebrand factor (vWF) multimers and subsequently cleaving by ADAMTS13. (B) Electrophoresis,

loss of high-molecular-weight vWF multimers in 2 patients (1 hour after pump initiation), and regain 1 hour after pump explantation. (C) 8 microaxial flow pump-

supported cardiogenic shock patients; a significant drop in the ristocetin (Rco) to von Willebrand factor antigen (vWFAg) ratio on-pump as compared with on-pump,

compatible with acquired von Willebrand syndrome (AVWS). Paired Student’s t-test. Error bars indicate mean � SD.
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is removal of the pump, although novel techniques
(eg, ADAMTS13-blocking agents) are under
investigation.13,14

Bleeding is more common with nonpulsatile,
continuous-flow devices, is greater at lower flow
rates,15 and also varies with different pVAD devices.
Among ACS patients with CS, bleeding complications
occur in w20% of those treated with intra-aortic
balloon pumps16 and in 40%-70% with ECMO.17

Most data pertaining to the frequency of bleeding
and thrombotic complications come from retrospec-
tive analyses of large national databases. Evaluation
of PCI registry data from the United States indicates
that the microaxial flow pump brings an increased
risk of major bleeding requiring transfusion, but
highlight wide variation between hospitals in the
reported incidence of bleeding (>2.5-fold variation)
and stroke (w1.5-fold variation).6 A meta-analysis of
17 studies involving 3,933 patients with CS supported
by microaxial flow pumps reported vascular compli-
cations and major bleeding in 7.4% and 15.2% of pa-
tients, respectively.18

A recent prospective evaluation of MCS in the ACS
setting comes from a subanalysis of the CULPRIT-
SHOCK (PCI Strategies in Patients with Acute
Myocardial Infarction and Cardiogenic Shock) ran-
domized trial. Among 684 patients, of whom 193
received MCS, bleeding complications occurred in
21.5%, mainly within the first 2 days of hospitaliza-
tion, and treatment with ECMO or a microaxial flow
pump emerged as the major risk factor for bleeding
(ORs: 1.84 and 3.31, respectively). Bleeding was



FIGURE 2 The Unique Heparinized Purge System
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The microaxial flow pump is equipped with an integrated purge system using heparinized dextrose in water (purge flow), designed to protect

blood from entering the motor compartment by creating a pressure barrier against the blood flow to which the device is exposed.

TABLE 1 APTT vs Anti-Xa for Monitoring UFH

APTT Heparin Anti-Xa

� Cheap, easily available. � Expensive.

� Frequent measurements are needed. � Less frequent measurements needed.

� Various confounding factors (pre-
analytical and analytical) and reagents
from different batches can vary.

� Not affected by confounding factors.

� Required for DTI monitoring. � Not useful in case of DTI anticoagulation.

� Inflammatory response of the patient,
coagulation activation with artificial sur-
faces, pre-existing coagulation factor
deficiency (especially factor XII
deficiency; both congenital and acquired),
presence of lupus anticoagulant, liver
failure or nonspecific inhibitors can affect
APTT.

� Measures the amount of UFH available to
produce an anticoagulant effect within
the patient.

� Presence/absence of exogenous AT in the
assays needs to be known to interpret the
results accurately in patients with AT
deficiency.

� May be more useful in assessing the
overall bleeding tendency because APTT
is affected by coagulation factor
deficiency.

� May be more useful for predicting
thrombosis because the anti-Xa level is a
marker of the overall anticoagulant effect
of UFH.

Anti-Xa ¼ anti–factor Xa; APTT ¼ activated partial thromboplastin time; AT ¼ antithrombin; DTI ¼ direct
thrombin inhibitor; UFH ¼ unfractionated heparin.
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associated with an increased risk of death (HR: 2.11;
P < 0.0001) and with prolonged inotropic and venti-
latory requirement.19

Risk factors associated with pVAD-related vascular
complications and major bleeding include older age,
female sex, obesity, prior hypertension, and periph-
eral arterial disease.18,20 In addition, optimizing the
sheath to femoral artery ratio,18 use of Doppler ul-
trasound and fluoroscopic guidance, and use of a
micropuncture technique and low stick angle can
help reduce access-site complications. With
increasing operator experience, the rate of bleeding
complications with MCS implantation is reduced.

WHICH ANTICOAGULANT STRATEGY?

Anticoagulation in pVAD-supported CS patients is
often challenging because of pre-existing coagulop-
athy, access-site vascular complications, and the



TABLE 2 Case Vignettes Illustrating the Importance of Parallel Anti-Xa and APTT Monitoring in CS Patientsa

Case Presentation Heparin Dosage (U/h) APTT (s) Anti-Xa (U/mL) AT-III (%) Fibrinogen (g/L) FVIII (%)

1. A 58-year-old man (weight: 75 kg) was supported on VA-
ECMO and Impella CP for cardiogenic shock (SCAI stage D)
after acute myocardial infarction. On day 3, he developed
high APTT, with anti-Xa levels in the anticoagulation range.
Oozing from the cannula insertion sites was observed
(Figure 3A).

1,350 136.1 0.41 55 0.66 —

Targets: APTT: 60-80 s, anti-Xa: 0.3-0.5 U/ml
What is the first laboratory test you want to know?

2. A 20-year-old female patient (weight: 71 kg) with a recent
diagnosis of dilated cardiomyopathy was hospitalized with
overwhelming pneumonia. After intubation, she developed
asystole and was resuscitated with VA-ECMO. An Impella CP
was inserted on day 2 for left ventricular venting. At that
moment, levels of APTT were high, with undetectable anti-
Xa levels (Figure 3B).

1,900 103.5 <0.15 17 0.71 —

Targets: APTT: 60-80 s, anti-Xa: 0.3-0.5 U/mL
Which would be your next laboratory tests?

3. A 66-year-old male patient (weight: 83 kg) was supported
with BiPella (CP þ RP) for cardiogenic shock (SCAI stage C)
in an acute decompensated toxic cardiomyopathy. APTT
levels remained high on day 2, with anti-Xa levels in
anticoagulation range (Figure 3C).

1,000 140 0.31 65 2.71 120.7

Targets: APTT: 60-80 s, anti-Xa: 0.3-0.5 U/mL
If fibrinogen is normal, which laboratory tests would

give you the answer?

4. A 56-year-old female patient (weight: 88 kg) was admitted
to the hospital with late presentation of anterior myocardial
infarction. Shortly after admission, she developed CS (SCAI
stage D) and was supported with Impella 5.0. On day 4,
laboratory results showed extremely high aminotransferase
levels and signs of poor hepatic synthesis function
(Figure 3D).

850 110.2 0.26 55 1.22 44.4

Targets: APTT 40-60 s, anti-Xa: 0.2-0.3 U/mL
What is the most likely reason for this coagulation

profile?

Relative frequencies of the described cases in patients on mechanical circulatory support are currently unknown. The answers to the questions are indicated in bold. Normal range of laboratory tests: APTT:
25.1-36.5 s; anti-Xa: <0.15 U/mL; AT-III (antithrombin III): 80%-130%; fibrinogen: 2.00-3.93 g/L; FVIII: 50-150%; FIX: 70%-130%; FXI: 70%-130%; FXII: 70%-130%. aIn addition to Figure 4. bLupus
anticoagulant activity may prolong phospholipid-dependent coagulation tests such as APTT.

CS ¼ cardiogenic shock; DIC ¼ disseminated intravascular coagulation; FIX ¼ factor IX; FVIII ¼ factor VIII; fXI ¼ Factor XI; FXII ¼ factor XII; SCAI ¼ Society for Cardiovascular Angiography and Intervention;
VA-ECMO ¼ veno-arterial extracorporeal membrane oxygenation; other abbreviations as in Table 1.

Continued on the next page
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concomitant use of antithrombotic therapies or UFH
allergies. UFH is the anticoagulant agent of choice in
patients on pVAD support,21 although some centers
prefer the use of direct thrombin inhibitors (DTIs) (eg,
bivalirudin or argatroban) because of its shorter half-
life and safety in case of heparin-induced thrombo-
cytopenia (HIT).22 Given that some of heparin’s
protection is related to its specific ionic charge
resulting in decreased protein adsorption to the sur-
face, an alternative agent should ideally have a
similar charge. Recent publications suggested that
using sodium bicarbonate (25 mEq/L; similar ionic
charge to UFH) in the purge solution may provide
more sustainable support in patients who are unable
to tolerate anticoagulation/UFH.23

DAPT IN pVAD-SUPPORTED CS PATIENTS

DAPT with aspirin and a P2Y12-receptor inhibitor
constitutes the mainstay of treatment in patients with
ACS and those undergoing PCI.24 Patients with ACS
complicated by CS are at higher risk of periprocedural
thrombotic complications.25 The more potent oral
P2Y12-receptor inhibitors ticagrelor and prasugrel
have both been shown to be more effective than clo-
pidogrel in the setting of ACS.26,27 However, prasugrel
cannot be used as an upfront antiplatelet strategy in
patients with unknown coronary anatomy.24 The an-
tiplatelet effects of oral P2Y12-receptor inhibitors are
delayed in CS patients because of slower absorption
and metabolism and inadequate enteral access in
intubated patients. Crushing ticagrelor or prasugrel
tablets may lead to faster drug absorption and more
prompt and potent antiplatelet effects compared with
whole-tablet ingestion.28 Cangrelor is an IV ATP
analogue that directly, potently, and reversibly in-
hibits ADP binding to the P2Y12 receptor in a dose-
dependent manner after an IV bolus followed by
continuous infusion.29 In addition, cangrelor has a
very short half-life (3-6 minutes) and allows fast re-
covery of platelet function (z60 minutes) after infu-
sion. Therefore, use of an IV antiplatelet agent—when
available locally—offers multiple advantages,
including rapid onset of action, rapid return of
platelet function after cessation, and ease of admin-
istration in intubated patients. After the acute phase
of acute myocardial infarction/CS, cangrelor can be
transitioned to ticagrelor to maintain adequate levels
of platelet inhibition because ticagrelor reversibly
binds the P2Y12 receptor at a site distinct from the
ADP-binding site of cangrelor. Whether DAPT on top
of UFH in MCS-supported patients significantly



TABLE 2 Continued

FIX (%) FXI (%) FXII (%) Extra Treatment Rationale

— — — Mild DIC Supplementation of fibrinogen,
watch for signs of hemorrhage.

High APTT and anti-Xa in range: fibrinogen depletion,
caused by liver failure and DIC.

— — — Negative lupus anticoagulantb Supplementation of recombinant
antithrombin and fibrinogen.

Alternatively, replace
anticoagulant (eg, bivalirudin).

High APTT and immeasurable anti-Xa: heparin
resistance caused by antithrombin deficiency, in

combination with hypofibrinogenemia, common in
critical illness. High APTT with immeasurable anti-Xa

in this setting should raise suspicion of isolated
antithrombin deficiency.

66.5 20.2 29.0 DIC excluded Continue heparin based on anti-Xa
levels.

High APTT and anti-Xa in range:
FXI and FXII deficiency (contact factors) caused by
foreign surface-induced consumption coagulopathy.
Anti-Xa reflects the antithrombotic effect of UFH,

while prolonged APTT in these cases is not associated
with increased bleeding risk.52

38.5 67.0 59.0 Liver failure, no overt DIC Continue heparin based on APTT
measurements, consider

viscoelastic hemostatic assays,
watch for signs of hemorrhage.

High APTT and anti-Xa in range:
FVIII and FIX deficiency, caused by liver failure. In this
setting, frequently associated with AT deficiency,
where anti-Xa assay is less useful to monitor AT-

dependent anticoagulant drugs (UFH).
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increases the already high bleeding rate remains to be
elucidated.

ANTICOAGULATION IN PATIENTS

SUPPORTED BY MICROAXIAL FLOW PUMPS:

THE UNIQUE HEPARINIZED PURGE SYSTEM

The microaxial flow pump is equipped with an inte-
grated dextrose in water purged seal system designed
to prevent blood from entering the motor compart-
ment by creating a pressure barrier (Figure 2).1 This
purge solution enhances device protection against
ingress, adsorption, deposition, and coagulation of
blood components and therefore improves the dura-
tion of the pump.30,31 The purge solution (25,000 or
12,500 U/500 mL UFH) is in addition to systemic
heparinization, with a starting dose of 11-12 U/kg
bodyweight (Formula 1). In case of HIT, alternative
systemic anticoagulation (eg, bivalirudin or arga-
troban) systemically or via the purge solution is rec-
ommended.30 In a survey of 182 centers in the United
States, 25% reported using an anticoagulant-free (ie,
dextrose-only) purge solution for HIT and more than
one-half reported using a purge solution containing
argatroban, bivalirudin, or either in this scenario.32

The dextrose concentration (5% D5 or 20% D20)
determines the viscosity and flow rate of the purge
fluid. The D5 concentration is less viscous and flows
quickly through the purge system, thereby increasing
the amount of UFH delivered.31 D20 is more viscous,
resulting in a slower purge flow rate and less UFH
infusion but increased risk of purge obstruction. D20
concentrations may be used in patients with higher
anti-Xa levels (even after cessation of systemic UFH)
or those anticipated to have lower anticoagulation
needs (ie, patients with a lower body surface
area).30,31 A change from D20 to D5 results in an in-
crease in purge flow rates of approximately 30%-40%
with consequent greater systemic exposure to UFH.
UFH exposure may also change over time, as flow
rates of the purge solution are automatically regu-
lated by the device to maintain a pressure range (300-
1,100 mm Hg).33 To maintain an appropriate purge
pressure of 300 mm Hg, flow rates may therefore
range from 2-30 mL/h.

FORMULA: CALCULATE THE INITIAL UFH

INFUSION RATE

Purge rate calculation assumes pump use of 50 U/mL
UFH for a patient weighing, eg, 85 kg and a purge rate
of, eg, 10 mL/h:

n Total UFH (purge plus systemic) to reach thera-
peutic anticoagulation levels:

12 U/kg bodyweight (in kg)/h ¼ 1,020 U/h (do NOT
exceed the maximum of 1,800 U/h).

n Microaxial flow pump purge rate: 10 mL/h �
50 U/mL ¼ 500 U/h

n Systemic heparin infusion rate ¼ total UFH – purge
UFH ¼ 1,020 U/h � 500 U/h ¼ 520 U/h of UFH ¼
6 IU/kg/h of UFH



FIGURE 3 Clinical Scenarios of the APTT/Anti-Xa Effect in Critically ill Patients on UFH

(A) Low levels of fibrinogen prolong contact pathway activation (APTT) and do not affect anti-Xa. (B) Low levels of both fibrinogen and AT result in prolonged APTT

and the absence of the heparin effect (no anti-Xa effect). (C) Low levels of FXII and FXI prolong APTT with preserved anti-Xa levels. (D) Deficiency of FVIII and/or FIX

(eg, liver failure) prolong APTT and preserve anti-Xa levels. Anti-Xa ¼ anti–factor Xa; APTT ¼ activated partial thromboplastin time; AT ¼ antithrombin; FIIa ¼ factor IIa

(thrombin); FIX/a ¼ factor IX/a; FX/a ¼ factor X/a; FXI ¼ factor XI/a; fXII/a ¼ factor XII/a; FXIII ¼ factor XIII; UFH ¼ unfractionated heparin.
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The purge rate should be checked at least daily
because significant changes in flow rate can often be
found.
MONITORING UFH IN CRITICALLY ILL

PATIENTS: A PRACTICAL APPROACH

ACTIVATED PARTIAL THROMBOPLASTIN TIME VS

ACTIVATED CLOTTING TIME VS ANTI–FACTOR-XA.UFH
exhibits marked variability in anticoagulant response
among individual patients. The variability is espe-
cially high in those who are critically ill, because UFH
is a highly negatively charged molecule that binds to
positively charged plasma proteins, proteins released
from platelets, and endothelial cell proteins/sur-
faces.34 Standard practice is to measure the heparin
anti-factor Xa level (anti-Xa), activated partial
thromboplastin time (APTT) or, when very high doses
UFH are used, the activated clotting time. The ideal
test to monitor UFH should have the
following characteristics:
� A well-defined and preferably linear relationship
with clinical outcome in terms of recurrent
thrombosis and bleeding;

� Good precision;
� Well standardized among laboratories and assay

reagents;
� Readily available and inexpensive.

Thus, to assess the local APTT/anti-Xa correlation,
the range of APTT corresponding with therapeutic
anti-Xa levels of 0.3-0.7 IU/mL should be assessed
from control samples obtained from (noncritically ill)
patients on stable UFH infusion without confounding
factors that affect APTT.35 Although APTT is widely
available and inexpensive, it does not have linear
relationship with bleeding or thrombosis, and stan-
dardization is challenging and affected by various
confounding factors (Table 1). Currently, there are no
prospective randomized controlled trials directly
comparing APTT vs anti-Xa levels available in patients
on microaxial flow pump support. Various factors (eg,
fibrinogen or antithrombin depletion caused by acute



FIGURE 4 Algorithm for UFH Monitoring in Critically Ill Patients Supported by Microaxial Flow Pumps

anti-Xa based heparin titration (every 4-6 hours*)
monitor APTT in parallel2.

-    Increase heparin dose

NO

anti-Xa on target*

Anti-Xa on
target

APTT <40 s

Ignore

Correct fibrinogen level (if <1 g/dL), exclude DIC
CONTINUE Heparin infusion

AT ≥35% : Heparin resistance
→ consider switch (eg, bivalirudin)

Measure APTT-guiding coagulation factors
(FXII, FXI, FIX and FVIII)

If fibrinogen >1 g/dL, no DIC:

Anti-Xa on
target

APTT >80 s

3.

1.
pfHb ≤60 mg/dL and
bilirubin ≤6 mg/dL and
triglycerides ≤400 mg/dL

YES

YES

NO

If heparin dose >150% of predicted dose,
and anti-Xa still not on target: measure AT

APTT and anti-Xa should
be interpreted with care

No validated tests
          Sample dilution?

-

Algorithm for Unfractionated Heparin
Monitoring in ImpellaTM Supported Patients

FVIII-FIX deficiency
(sepsis, liver failure, ...)

FXI-FXII deficiency
(MCS-induced)

AT <35% : AT - deficiency

Heparin based on APTT
consider ROTEM

Ignore APTT
Heparin based on anti-Xa

→ consider switch (eg, bivalirudin)
→ Provide AT substitution (FFP, recomb.)

This flowchart provides an overview of 3 important steps in assessing anticoagulation management in critically ill patients on microaxial flow

pump support. Anti-Xa (standard target 0.3-0.5 IU/mL, unless otherwise defined by the treating physician) and APTT should be assessed in

parallel every 4-6 hours. *Frequency of monitoring and anti-Xa targets should be reconsidered case by case and on a daily basis.

DIC ¼ disseminated intravascular coagulation; FFP ¼ fresh frozen plasma; pfHb ¼ plasma-free hemoglobin; ROTEM ¼ rotational throm-

boelastometry; other abbreviations as in Figure 3.
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TABLE 3 Routine Daily Anticoagulation Monitoring in a

Cardiac ICU

Measurement Time Frame

ACT (Initial phase, only for short-term
monitoring)

APTT Every 4-6 h (in parallel)

Anti-Xa levels

Prothrombin time (INR)

D-dimer At least daily (more often on
indication)

pfHb

Fibrinogen levels

Platelet counts At least daily (more often if
indicated)

vWFAg, functional vWF testing Situationally (mainly for research
purposes)

Other coagulation factors (FVIII,
FIX, FXI, FXII)

Situationally, based on APTT/anti-
Xa mismatch

Proposed daily assessment of anticoagulation parameters in critically ill patients
on pVAD-support.

ACT ¼ activated clotting time; ICU ¼ intensive care unit; INR ¼ international
normalized ratio; pfHb ¼ plasma-free hemoglobin; vWF ¼ von Willebrand factor;
vWFAg ¼ von Willebrand factor antigen; other abbreviations as in Tables 1 and 2.
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inflammation/following surgery, factor VIII depletion
caused by AVWS or liver failure, or factor XI/XII
depletion caused by plastic surface adherence) all
contribute to APTT fluctuation in patients on pVADs.
Because anti-Xa levels are not affected by those fac-
tors, monitoring UFH in these critically ill patients is
preferably undertaken using heparin anti-Xa levels
(with APTT in parallel to rule out any coagulation fac-
tor deficiency, as further discussed). Various reports
have shown increased 30-day mortality in critically ill
UFH-treated patients when APTT is prolonged relative
to the corresponding anti-Xa level.36

Target anti-Xa levels in patients supported by
microaxial flow pumps should be between
0.3-0.5 IU/mL in the absence of acute thrombosis;
otherwise, escalation to 0.5-0.7 IU/mL should be
considered. In case of DTIs, APTT is the preferred way
of monitoring (target range 40-60 seconds). There are
currently no studies in pVAD-supported patients
evaluating the ideal UFH anti-Xa anticoagulation
level.37

THE IMPORTANCE OF PARALLEL ANTI-Xa/APTT

MONITORING: 4 CLINICAL VIGNETTES. To illustrate
APTT fluctuations and the important added value of
parallel anti-Xa/APTT level assessment during
UHF therapy, we provide 4 clinical vignettes (Table 2,
Figure 3) describing the effects of fibrinogen and/or
antithrombin depletion, FVIII deficiency (eg,
AVWS or liver failure), or factor XII/XI deficiency, as
is often seen in critically ill patients supported
by pVADs.
A PRACTICAL ALGORITHM FOR MONITORING

pVAD-SUPPORTED CS PATIENTS. A 3-step algorithm
to monitor UFH anticoagulation in a microaxial flow
pump–supported patient is shown in Figure 4. First,
one needs to exclude high levels of plasma-free he-
moglobin (pfHb), bilirubin, and/or triglycerides,
because this disturbs the correct analysis of both
APTT and anti-Xa. Next, the UFH dose is titrated
based on anti-Xa with APTT measured in parallel; the
ideal sampling frequency is every 4-6 hours but
should be reconsidered based on local resources
and case by case. When anti-Xa reaches its target
(0.3-0.5 IU/mL, unless decided differently) but
APTT is disproportionally prolonged, further in-
vestigations should be performed to assess the cause
of this discrepancy (Figure 4). In patients not
achieving therapeutic anti-Xa despite an adequate
dose of UFH, the antithrombin level should be
tested. If the antithrombin level is low, anti-
thrombin supplementation or a switch to alternative,
nonheparin anticoagulant agents (eg, DTIs) could
be considered.

DAILY COAGULATION MONITORING OF THE

pVAD-SUPPORTED CS PATIENT: PRACTICAL SCHEME. An
overview of routine daily anticoagulation monitoring
in a cardiac intensive care unit is shown in Table 3.
ACT only roughly reflects the anticoagulative state,
and should therefore only be used after the UFH
bolus. If anti-Xa is not available 24/7, it should be
performed at least once daily. D-dimers reflect the
thrombotic state of the patient’s coagulation and
pfHb/lactate dehydrogenase (LDH) levels (as a marker
for hemolysis) should be performed at least once
daily, more often when hemolysis is present. Pro-
thrombin time reflects the tissue factor pathway
(vitamin K-dependent coagulation factors) and espe-
cially reflects liver function.

HEMOLYSIS

Patients supported with pVADs are at high risk of
shear-induced hemolysis as erythrocytes pass
through the device. The extent of shear stress, the
pVAD device used, and the duration of MCS increase
the risk of hemolysis.38 The reported incidence of
hemolysis with the microaxial flow pump varies
widely, from 5%-63%, at least in part based on
the definition used.39 Regular inspection of the urine
for increasing red discoloration is a good initial indi-
cator. The recognized definition of hemolysis in pa-
tients on MCS is not uniform, and its extent can be
quantified by pfHb, LDH, and haptoglobin. A recent
consensus document providing definitions for
adverse events in patients on percutaneous MCS



FIGURE 5 3 Different Scenarios Causing Pump-Related Hemolysis
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(A) Hemolysis after pump implant, spontaneous resolution. (B) Hemolysis caused by deep pump position in the left ventricle, resolution after repositioning.

(C) Hemolysis caused by kink and/or thrombus in the microaxial flow pump device, resolution after pump exchange. pfHb ¼ plasma-free hemoglobin.
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defines hemolysis as a pfHb concentration >20 mg/dL
or a serum LDH level >2.5 times the upper normal
range (more than 72 hours postimplantation).40 Iso-
lated LDH elevations may be attributable to labora-
tory error or hepatic or pulmonary dysfunction. Here,
parallel monitoring of indirect bilirubinemia can be
helpful in differentiating between hemolysis and
alternative causes of LDH rise. As LDH is more widely
available and is an easier assay to perform,41 LDH
measurement should be performed daily and with
complementary use of pfHb according to local
availability.

The main consequence of hemolysis is a drop in
hemoglobin, but additionally, released hemoglobin
scavenges nitric oxide,42 which can result in
enhanced vascular tone, platelet activation,
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aggregation, and arterial thrombosis.43,44 Further-
more, pfHb can precipitate and aggravate kidney
injury.45 However, whether hemolysis contributes to
excess mortality in pVAD patients is unclear.38

The optimal ways of managing pVAD-associated
hemolysis are not clear. Suboptimal pump posi-
tioning or a change in position during patient transit
(particularly outlet obstruction by the aortic valve)
importantly contribute to hemolysis.46 If hemolysis is
present, positioning should immediately be checked
with bedside echocardiography, and stringent pfHb/
LDH follow-up is mandatory. A recent case series
indicated that an aortic/mitral annulus angle <126.5�

on echocardiography was associated with a 7.8-fold
increased risk of hemolysis.47 Another important
determinant is pump performance, with flow rate
directly correlating with erythrocyte damage. In pa-
tients with hemolysis, one should rapidly intervene
by the following: 1) optimizing pump position; 2)
reducing pump speed; or 3) exchanging the pump.
Figure 5 illustrates 3 cases of microaxial flow pump–
related hemolysis by describing the problem, cause,
and possible solution. Basic principles should addi-
tionally be followed, including blood transfusion,
hemodiafiltration, stringent anticoagulation man-
agement and/or plasmapheresis, as needed.48

HOW TO MANAGE pVAD-SUPPORTED CS

PATIENTS WITH BLEEDING COMPLICATIONS

Most microaxial flow pump–related bleeding is access
site-related, caused by the need for large-bore access
as well as continuous anticoagulation, with a lower
incidence of major bleeding compared with venoar-
terial ECMO therapy.18,49 Meticulous cannulation
techniques are required, based on best clinical prac-
tice. In patients with CS, protamine sulfate can inhibit
the coagulation process or induce thrombocytopenia
in rare cases.50 Therefore, it should not be used to
reverse UFH-based anticoagulation without device
removal, and local source control is the best way to
control access site-related bleeding.

Adapting the device skin level with an underlying
gauze is often effective in stopping as well as pre-
venting bleeding from the access site, combined with
proper stitching of the sheath to the patient’s skin.
This is because of reduced force from the microaxial
flow pump sheath directly into the artery and better
closing of the arteriotomy by the sheath. It should be
combined with local pressure applied manually or
preferably by compression devices (ie, FemoStop, St.
Jude Medical). However, control of distal perfusion is
mandatory during prolonged compression and can be
a limiting factor in controlling blood loss. Oozing at
the access site can be controlled by tranexamic acid–
or adrenalin-soaked gauze (1:100 concentration, only
20 minutes to avoid skin necrosis) in conjunction
with pressure. Ear-nose-throat bleeds are common in
patients on MCS, and bleeding prevention and source
control are key to success (eg, orogastric instead of
nasogastric tubes, mouth packing with tranexamic
acid–soaked gauze, ear-nose-throat interventions,
intranasal balloon compression). Only when no
proper hemostasis is obtained after optimal source
control should lowering the UFH target (and thus
increasing the thrombotic risk) be a next reasonable
step. Cessation of UFH treatment in combination with
(surgical or endovascular) source control should only
be considered for severe bleeding events (eg, retro-
peritoneal or intracerebral bleeding) and should be
kept as short as possible to prevent pump thrombosis
and/or systemic embolism. If possible, only systemic
UFH treatment should be stopped, and the purge
system solution might be changed to bicarbonate so-
lutions, as discussed previously. Pump speed should
be maximized. Ultimately, if long-term cessation of
UFH treatment is required, one should consider
explanting the pVAD device.

CONCLUSIONS

pVAD support is associated with a complex process of
activation of both thrombosis and bleeding. Here, we
present a practical approach for optimal anti-
coagulation management in pVAD-supported criti-
cally ill patients. UFH remains the anticoagulant
therapy of choice in the critically ill CS patient
(parenteral administration, short-acting, readily
reversible, low cost, low renal excretion). Other,
possibly safer antithrombotic/anticoagulation strate-
gies (eg, DTIs, anticoagulant device coatings, factor
XI inhibitors), however, deserve further investigation
because of the ongoing challenges with the high risk
of bleeding/thrombosis complications in these criti-
cally ill patients.37 Monitoring UFH levels using par-
allel assessment of APTT/anti-Xa is the preferred
strategy in critically ill MCS patients, supported by
rising evidence that mortality increases when APTT
and anti-Xa start to diverge.36 Concerning optimal
UFH levels, anticoagulation is mostly based on
experience, rather than on evidence; prospective tri-
als comparing different target levels (eg, intermediate
vs therapeutic levels) of UFH are lacking but urgently
needed.51

There is clearly a need for research toward identi-
fying new, individualized anticoagulant strategies,
tailored to the specific needs of an ICU patient and on
the device itself. Optimization of coagulation
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strategies would help us to tackle an important hur-
dle in optimizing safety, outcomes, and efficacy in
critically ill pVAD patients.
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