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A B S T R A C T

Coastal zones are vulnerable to both erosion and flood risk, which can be assessed using coupled hydro-
morphodynamic models. However, the use of such models as decision support tools suffers from a high degree
of uncertainty, due to both incomplete knowledge and natural variability in the system. In this work, we show
for the first time how the multilevel Monte Carlo method (MLMC) can be applied in hydro-morphodynamic
coastal ocean modelling, here using the popular model XBeach, to quantify uncertainty by computing statistics
of key output variables given uncertain input parameters. MLMC accelerates the Monte Carlo approach through
the use of a hierarchy of models with different levels of resolution. Several theoretical and real-world coastal
zone case studies are considered here, for which output variables that are key to the assessment of flood and
erosion risk, such as wave run-up height and total eroded volume, are estimated. We show that MLMC can
significantly reduce computational cost, resulting in speed up factors of 40 or greater compared to a standard
Monte Carlo approach, whilst keeping the same level of accuracy. Furthermore, a sophisticated ensemble
generating technique is used to estimate the cumulative distribution of output variables from the MLMC output.
This allows for the probability of a variable exceeding a certain value to be estimated, such as the probability
of a wave run-up height exceeding the height of a seawall. This is a valuable capability that can be used to
inform decision-making under uncertainty.
1. Introduction

The world’s coastal zones have been at risk from erosion and
flooding for millennia. There has been a growing awareness of these
risks in recent decades with various international projects, such as
FRMRC (Zurich Flood Resilience Alliance, 2019) and FLOODsite
FLOODsite, 2009), created in an attempt to investigate and mitigate
he impacts. Nevertheless estimates suggest that the economic cost of
amage due to coastal flooding in Europe will be two to three orders of
agnitude greater than current levels by the end of the century (Vous-
oukas et al., 2018). To assess the risk from these events, we must
onsider a combination of the probability of the events occurring and
he consequences when they do (Garvey and Lansdowne, 1998). In this
ork, we focus on the former, but note that the modelling of coastal

ones is a vital endeavour for the understanding of both of these factors.
For several decades, complex hydro-morphodynamic models have

een used to simulate flooding and erosion in coastal zones. Whilst
hese models may produce accurate results for a given idealised sce-
ario, there is a large degree of uncertainty associated with them when
pplied to the real world, originating from both the input data and the

∗ Corresponding author.
E-mail address: m.clare17@imperial.ac.uk (M.C.A. Clare).

models themselves (see for example Unguendoli, 2018; Villaret et al.,
2016). This uncertainty can be due to either incomplete knowledge
or natural variability (Apel et al., 2004), and can be quantified by
combining numerical hydro-morphodynamic models with statistical
frameworks. A flexible but computationally intensive approach is to
perform Monte Carlo simulations, translating the uncertainty in the
inputs (say in the roughness parameterisations or random wave input)
into uncertainty in the outputs. This can then be used to describe the
uncertainty in the model output statistically. This method also has
some limitations however, such as requiring a good estimate for the
distribution of the uncertain input parameters (Reeve et al., 2014), but
expert judgement can be used to place upper and lower bounds on this
distribution. Moreover, this can be turned into an advantage, as the
input distribution can be selected to focus on extreme values or another
region of parameter space of particular interest. A greater limitation is
that typically very large numbers of samples are needed for accurate
Monte Carlo estimation, each sample requiring a separate model run.
This is because of the 1∕

√

𝑁 error estimate for Monte Carlo, where 𝑁
is the number of samples. Although these samples can be performed in
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parallel, this can often represent a substantial computational resource
commitment.

In this work, we explore uncertainty quantification techniques using
the depth-averaged finite-volume based hydro-morphodynamic coastal
ocean model XBeach (Roelvink et al., 2009) because it has been suc-
cessfully applied and validated numerous times to simulate wave prop-
agation, flow, sediment transport, and morphodynamic changes (see
for example McCall et al., 2010; Riesenkamp, 2011; Callaghan et al.,
2013; Roelvink et al., 2018; de Beer et al., 2020). XBeach has been used
within a Monte Carlo framework before, for example in Riesenkamp
(2011), Callaghan et al. (2013), Pender and Karunarathna (2013),
Simmons et al. (2017) and Harris et al. (2018). However, like all
complex hydro-morphodynamic models, it is relatively computationally
expensive and, therefore, does not lend itself well to Monte Carlo
simulations and hazard assessments, which necessitate a large number
of individual model runs. For example, in Harris et al. (2018), a Monte
Carlo simulation with 240,000 individual runs of the 1D version of
XBeach was required to perform the desired study. This computational
cost has limited the scenarios in which Monte Carlo based studies
can be applied not just with XBeach but with other coastal models.
Hence for more complex and long-term test cases, researchers have
been forced to use simplified models, severely limiting the accuracy and
scope of the results (Apel et al., 2004; Callaghan et al., 2013; Li et al.,
2016; Toimil et al., 2017; Harris et al., 2018). A stark example of this
is in Callaghan et al. (2013), where the much simpler semi-empirical
model SBeach is used in the Monte Carlo simulation because even using
the 1D version of XBeach would have taken an estimated four and a half
millennia.

Rather than using simpler, less costly and less accurate models,
we opt instead for using a more advanced statistical method with the
original complex model. The multilevel Monte Carlo method (MLMC),
first presented in Giles (2008), quantifies uncertainty by computing
estimators for the expectation of discretised random variables for uncer-
tain parameters. It seeks to reduce computational cost by accelerating
the Monte Carlo approach through the use of a hierarchy of model con-
figurations, each with a different level of resolution. It has been used in
areas as diverse as mathematical finance (Giles, 2008), data assimila-
tion (Gregory and Cotter, 2017a), tsunami generation (Sánchez-Linares
et al., 2016) and seismic wave propagation (Ballesio et al., 2019).
The aim of this work is to explore how MLMC can be applied to
a complex hydro-morphodynamic coastal ocean model to investigate
within a reasonable timeframe the impact of a variety of uncertain
input parameters, such as wave height and bed slope angle, in both
theoretical and real-world test cases. To the best of our knowledge this
is the first application of MLMC with a hydro-morphodynamic model.
A major advantage of Monte Carlo type methods over other more
numerical methods such as adjoint methods or tangent linear models is
that we can apply them as a wrapper around the model meaning that
the underlying model does not have to be altered. This makes them easy
to implement and means that the wrapper developed in our work could
be applied to any other coastal ocean model. Whilst investigating the
accuracy of the specific model we have used is beyond the scope of this
work, this wrapper approach means that the numerous verification and
validation studies conducted with XBeach still hold for our work (for
example McCall et al., 2010; Riesenkamp, 2011; Roelvink et al., 2018).

A potential limitation when applying MLMC successfully to coastal
problems is that decision makers are not only interested in the expected
value of a variable, but also in the probability of a variable exceeding
a certain value. This exceedance probability can then be used to not
only determine which locations are at risk but also to determine the
reliability of coastal structures such as sea walls, through structural
reliability analysis (Melchers and Beck, 2018; Malliouri et al., 2021).
Like any probability, the exceedance probability can be expressed as
an expectation: here E[1𝑋≥𝑥], where, for example, 𝑋 is the maximum
horizontal inundation distance, 𝑥 the location of a physical structure,
2

nd 1 represents the indicator function. As discussed in Giles (2015), w
LMC struggles with binary output variables, because a large num-
er of samples are required to ensure accurate variance estimates. A
umber of different methods have been proposed to deal with this
ssue, including smoothing (Giles et al., 2015) and selective refine-
ent (Elfverson et al., 2016). In this work, the ensemble generating
ethod from Gregory and Cotter (2017b) is used (see Section 4), which

s simple and computationally efficient. Unlike other approaches, this
ethod generates the entire cumulative distribution function (CDF) for

he output variable, which is of much greater value when assessing risk
han a single statistic. Furthermore, generating the entire CDF using
LMC is a useful measure of the success of the method: if both the CDfs

nd expectations generated by the Monte Carlo method and MLMC are
onsistent, then this strongly suggests MLMC is able to recreate Monte
arlo results consistently over the whole parameter space of interest.

To summarise, the main novel contribution of this work is that it
resents the first successful application of MLMC to a coupled hydro-
orphodynamic model, demonstrating and quantifying the significant

omputational cost savings MLMC has over a standard Monte Carlo
pproach. This has been shown to be the case both for the calculation
f the expected value of key variables of interest as well as their
umulative distribution function.

The remainder of this paper is structured as follows: in Section 2,
e briefly outline the relevant MLMC theory; in Section 3, we integrate
LMC with XBeach and run a series of test cases; in Section 4, we

stimate the cumulative distribution function of the output variable
sing MLMC and finally in Section 5, we present conclusions from this
ork.

. Multilevel Monte Carlo method

The simplest method to estimate the expectation of a random vari-
ble 𝑋(𝜔) (where 𝜔 is a single sample from the sample space 𝛺) is

to use a Monte Carlo method and take the average of 𝑋(𝜔) for 𝑁
independent samples from 𝛺. However, the Monte Carlo method has
an order of convergence of 𝑁−1∕2 (Caflisch, 1998) meaning to achieve
an accuracy of 𝜖 requires 𝑂(𝜖−2) samples. This makes the simulation
very computationally expensive. The multilevel Monte Carlo method
(MLMC) was first introduced in Giles (2008). In this section, follow-
ing Giles (2008, 2015), we discuss MLMC and its use in computing
estimators for the expectation of discretised random variables given
uncertain input parameters. We refer the reader to Giles (2008, 2015)
for more details.

Whereas the Monte Carlo method considers the model at just one
resolution, MLMC accelerates the Monte Carlo method by using a
hierarchy of models at different levels of resolution. The fundamental
idea underlying MLMC comes from the linearity of expectations: for
two variables 𝑋𝑙 and 𝑋𝑙−1,

[𝑋𝑙] = E[𝑋𝑙−1] + E[𝑋𝑙 −𝑋𝑙−1], (1)

here E(⋅) denotes the expectation. Extending this idea

[𝑋𝐿] = E[𝑋0] +
𝐿
∑

𝑙=1
E[𝑋𝑙 −𝑋𝑙−1]. (2)

n the MLMC framework, 𝑋𝑙 denotes the numerical approximation to
on level 𝑙 of the multilevel environment and thus 𝑋0 and 𝑋𝐿 denote

he approximation on the coarsest and finest level respectively. Within
he framework, each level 𝑙 is defined by its numeric mesh element size

𝑙 = 𝑀−𝑙𝑇 , (3)

here 𝑇 is the total length of the domain and 𝑀 the integer factor
he mesh element size is refined by at each level (following standard
ractice, we use 𝑀 = 2 throughout). Thus as 𝑙 increases, the mesh
ecomes more refined. Note the domain can be multi-dimensional in

hich case there will be an ℎ𝑙 for every dimension of 𝑇 .
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In MLMC, the expectation estimator is defined as

𝑌 =
𝐿
∑

𝑙=0
𝑌𝑙 , (4)

where 𝑌𝑙 is the difference estimator for E[𝑋𝑙 −𝑋𝑙−1] defined as

𝑌𝑙 =

⎧

⎪

⎨

⎪

⎩

𝑁−1
0

∑𝑁0
𝑖=1 𝑋

(𝑖)
0 𝑙 = 0,

𝑁−1
𝑙

∑𝑁𝑙
𝑖=1

(

𝑋(𝑖)
𝑙 −𝑋(𝑖)

𝑙−1

)

𝑙 > 0,
(5)

where 𝑁𝑙 is the number of samples at each level (𝑙, 𝑙 − 1) pair. Here
the same random numbers are used to construct the variables 𝑋𝑙 and

𝑙−1 in order to minimise the variance of the difference estimator and
ence the overall error. To ensure independence, different independent
amples are used at each level, meaning Cov(𝑌𝑖, 𝑌𝑗 ) = 0 if 𝑖 ≠ 𝑗 and thus

(𝑌 ) = V

( 𝐿
∑

𝑙=0
𝑌𝑙

)

=
𝐿
∑

𝑙=0
𝑁−1

𝑙 𝑉𝑙 , (6)

here V(⋅) denotes the variance and 𝑉𝑙 is the variance of the sample
(𝑖)
𝑙 − 𝑋(𝑖)

𝑙−1. The overall cost of calculating the expectation estimator
4) is given by ∑𝐿

𝑙=0 𝑁𝑙𝐶𝑙 where 𝐶𝑙 is the cost per level 𝑙.
To calculate the error of the estimator (4), we note that root mean

quare error (RMSE) is defined as

MSE =
√

E[(𝑌 − E[𝑋])2]. (7)

This is simplified by noting 𝑌 is an unbiased estimator of E[𝑋𝐿] and so

RMSE =
√

E[(𝑌 − E[𝑋𝐿])2] + (E[𝑋𝐿] − E[𝑋])2. (8)

Here E[(𝑌 −E[𝑋𝐿])2] is equivalent to (6) and is the Monte Carlo error;
and (E[𝑋𝐿] − E[𝑋])2 is the square of the bias and is the numerical
discretisation error.

A bound on the RMSE (8) is provided by the key complexity theorem
for MLMC. We outline it briefly here — the full details can be found
in Giles (2015) with a proof given in detail in Cliffe et al. (2011). Briefly
the theorem states that if the following conditions are met

E[𝑋𝑙 −𝑋] ≤ 𝑐12−𝛼𝑙 , (9a)

E[𝑌𝑙] =

{

E[𝑋0], 𝑙 = 0,
E[𝑋𝑙 −𝑋𝑙−1], 𝑙 > 0,

(9b)

𝑉𝑙 ≤ 𝑐22−𝛽𝑙 , (9c)

𝐶𝑙 ≤ 𝑐32𝛾𝑙 , (9d)

here 𝛼 ≥ 1∕2min(𝛽, 𝛾), and 𝛼, 𝛽, 𝛾, 𝑐1, 𝑐2, 𝑐3 are positive constants, then
there exists a finest level resolution 𝐿 and a finite number of samples
𝑁𝑙 such that for any 𝜖 < 𝑒−1, the estimator 𝑌 =

∑𝐿
𝑙=0 𝑌𝑙 has

RMSE ≤ 𝜖. (10)

Furthermore, the total computational cost of calculating this estimator
with this RMSE is

𝐶 ≤
⎧

⎪

⎨

⎪

⎩

𝑐4𝜖−2, 𝛽 > 𝛾,
𝑐4𝜖−2(log 𝜖)2, 𝛽 = 𝛾,
𝑐4𝜖−2−(𝛾−𝛽)∕𝛼 , 0 < 𝛽 < 𝛾.

(11)

where 𝑐4 is a positive constant.
Note (9a), (9c) and (9d) represent a bound on the bias, variance and

ost respectively at each level and (9b) follows from the definition in
5). As the mesh is refined, 𝛽 controls the decay in the variance and 𝛾

the growth of the cost. Thus if 𝛽 > 𝛾, most of the computational cost is
at the coarser levels and if 𝛽 < 𝛾 it is mostly at the finest levels. This

eans if 𝛽 < 𝛾, the order of convergence is better than the standard
onte Carlo method and if 𝛽 > 𝛾, it is equivalent to the Monte Carlo
ethod. The values of 𝛼, 𝛽 and 𝛾 are found using convergence tests: the
3

p

gradient of the line of best fit of E(𝑋𝑙−𝑋𝑙−1) against 𝑙 is 𝛼, V(𝑋𝑙−𝑋𝑙−1)
against 𝑙 is 𝛽 and timed cost against 𝑙 is 𝛾.

A key part of MLMC is determining the optimum 𝑁𝑙 to achieve
the convergence stated in (10). Following standard practice (for exam-
ple Giles, 2008), the optimum value of 𝑁𝑙 is determined by using the
Euler–Lagrange method to minimise the overall cost with respect to the
fixed overall variance 𝜖2∕2. It can be shown that the optimum number
of samples at each level is

𝑁𝑙 =

⌈

2𝜖−2
√

𝑉𝑙
𝐶𝑙

( 𝐿
∑

𝑙=0

√

𝑉𝑙𝐶𝑙

)⌉

. (12)

This formula requires a knowledge of the variance and cost at level 𝑙.
Following the proof in Cliffe et al. (2011), we instead use the conditions
in (9) to create an upper bound on 𝑁𝑙 (for example (9c) and (9d)
mean that 𝑉𝑙𝐶𝑙 < 𝑐2𝑐32(𝛾−𝛽)𝑙) and set this to be the optimum number
of samples. Thus

• if 𝛽 > 𝛾:

𝑁𝑙 = ⌈2𝜖−2𝑐2
(

1 − 2−(𝛽−𝛾)∕2
)−1 2−(𝛽+𝛾)𝑙∕2⌉, (13)

• if 𝛽 < 𝛾:

𝑁𝑙 = ⌈2𝜖−2𝑐22(𝛾−𝛽)𝐿∕2
(

1 − 2−(𝛾−𝛽)∕2
)−1 2−(𝛽+𝛾)𝑙∕2⌉, (14)

• if 𝛽 = 𝛾:

𝑁𝑙 = ⌈2𝜖−2(𝐿 + 1)𝑐22−𝛽𝐿⌉. (15)

.1. MLMC verification checks

Accompanying MLMC are the following checks, detailed in Giles
2015), to ensure the method implementation is both correct and
ppropriate.

• Convergence check: The convergence condition (9a) states that
E[𝑋𝑙 −𝑋𝑙−1] ∝ 2−𝛼𝑙 and thus it follows that the bias E[𝑋 −𝑋𝐿] =E[𝑋𝐿−𝑋𝐿−1]

2𝛼−1 . Therefore we use the following as a convergence test

|

|

E[𝑋𝐿 −𝑋𝐿−1]||
2𝛼 − 1

< 𝜖
√

2
, (16)

where 𝛼 is determined by calculating the gradient of the line of
best fit of E(𝑋𝑙 − 𝑋𝑙−1) against 𝑙. If this check fails, this means
MLMC has not converged to within the specified tolerance —
this may mean there is a mathematical or programming error or
simply that the value of 𝜖 chosen is too small for the number of
levels in the MLMC algorithm.

• Consistency check: Suppose 𝑎, 𝑏 and 𝑐 are estimates for E[𝑋𝑙−1],
E[𝑋𝑙] and E[𝑌𝑙] respectively. Then 𝑎−𝑏+𝑐 ≈ 0 up to the expected
error from Monte Carlo sampling. Furthermore,

√

V[𝑎 − 𝑏 + 𝑐] ≤
√

V(𝑎) +
√

V(𝑏) +
√

V(𝑐). Therefore if calculated correctly the
following ratio

|E[𝑋𝑙 −𝑋𝑙−1] − E[𝑋𝑙] + E[𝑋𝑙−1]|

3
(

√

V(𝑋𝑙 −𝑋𝑙−1) +
√

V(𝑋𝑙) +
√

V(𝑋𝑙−1)
) , (17)

has a probability of 0.3% of being greater than 1 (see Giles,
2015). If this ratio is greater than 1, this indicates that there is
a difference between how 𝑋𝑙 and 𝑋𝑙−1 are computed and not just
that they are on a different mesh.

• Kurtosis check: The kurtosis, 𝜅, of 𝑋𝑙 − 𝑋𝑙−1 determines the
number of samples required for a good variance estimate. If 𝜅
is very large this indicates that the variance estimate is poor
and that either the number of samples used is insufficient or the
method chosen for sampling is incorrect. Thus following standard
practice, if the kurtosis is greater than 100, an error is raised.

e use these checks to evaluate the coding and mathematical imple-
entation of the test cases in this work, and to identify any inherent

roblems with applying MLMC to these test cases.
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2.2. MLMC algorithm

We have now outlined the basic MLMC method and conclude this
section with a statement of the MLMC algorithm used in this work,
modified from Giles (2008):

Algorithm 1 Multilevel Monte Carlo Method
1: Start with 𝐿 = 0
2: Estimate the variance 𝑉𝐿 using an initial estimate for the number

of samples 𝑁𝐿
3: Define optimal 𝑁𝑙 for 𝑙 = 0, ..., 𝐿 using (12)
4: If the optimal 𝑁𝑙 is greater than the number of samples you already

have, evaluate the extra samples needed
5: If 𝐿 ≥ 2 test for convergence i.e. check if (16) is satisfied
6: If 𝐿 < 2 or the algorithm has not converged set 𝐿 ∶= 𝐿 + 1 and

return to Step 2

3. Applying MLMC to XBeach

In this section, we apply MLMC to the XBeach model in order to
estimate the expectation of random variables in test cases given uncer-
tain input data. We apply MLMC through a Python wrapper around
the XBeach model. We have also parallelised the wrapper meaning
that, within the same level, multiple XBeach runs can be performed at
the same time, thus increasing the efficiency of the application of the
algorithm. Thus throughout, when time is referred to, this is the total
time the simulation took to run multiplied by the number of cores used
(40). Note our MLMC wrapper is written so that it can easily be applied
to other models in further work. We begin this section by giving a brief
overview of the XBeach model.

3.1. XBeach model

XBeach is a depth-averaged finite-volume coastal ocean model
which simulates near-shore hydrodynamics and morphodynamics
(Roelvink et al., 2015). It has been used successfully numerous times
to simulate wave propagation, flow, sediment transport and morpho-
dynamic changes in the coastal zone including for example in Roelvink
et al. (2018) and de Beer et al. (2020). Within XBeach, surface ele-
vation and flow are modelled using the Generalised Lagrangian Mean
formulation of the depth-averaged shallow water equations (Andrews
and McIntyre, 1978), enabling the modelling of short wave-induced
mass fluxes and return flows. These equations are:

𝜕𝐮𝐿
𝜕𝑡

+ 𝐮𝐿 ⋅ ∇𝐮𝐿 + 𝐟 ∧ 𝐮𝐿 − 𝜈∇2𝐮𝐿 =
𝝉𝑠
𝜌ℎ

−
𝝉𝐸𝑏
𝜌ℎ

− 𝑔∇𝜂 + 𝐅
𝜌ℎ

, (18)

𝜕𝜂
𝜕𝑡

+ ∇ ⋅ (ℎ𝐮𝐿) = 0, (19)

where 𝐮𝐿 is the Lagrangian velocity defined in Roelvink et al. (2015)
s the distance travelled by an individual water particle during one
ave period divided by the wave period, 𝑓 the Coriolis vector, 𝜈

he viscosity, 𝜏𝑠 and 𝜏𝐸𝑏 the wind and bed shear stresses respectively
here 𝐸 denotes Eulerian velocity defined in Roelvink et al. (2015)

as the fixed point short-wave-averaged velocity, 𝜂 the elevation, F the
wave-induced stresses, 𝜌 the density and ℎ the water depth.

Waves can be modelled using several different options in XBeach.
In this work, the stationary wave model is used in Section 3.2 and the
surfbeat model in Section 3.3. Both methods solve the following wave
action equation for short wave energy

𝜕𝐴
𝜕𝑡

+
𝜕𝑐𝑥𝐴
𝜕𝑥

+
𝜕𝑐𝑦𝐴
𝜕𝑦

+
𝜕𝑐𝜃𝐴
𝜕𝜃

= −
𝐷𝑤 +𝐷𝑓 +𝐷𝑣

𝜎
, (20)

but in the stationary mode, 𝜕𝐴
𝜕𝑡 = 0. Here 𝑐𝑥 is the group velocity in the

𝑥-direction, 𝑐 the group velocity in the 𝑦-direction, 𝑐 the refraction
4

𝑦 𝜃 i
Fig. 1. Schematic of 2D bed with uncertain bed slope angles 𝜃 for 2D bed slope test
case.

speed, 𝐷𝑤 the dissipation by wave breaking, 𝐷𝑓 , the dissipation by
bottom friction, 𝐷𝑣 the dissipation by vegetation and 𝐴 is the wave
nergy. Note the formulations of 𝐷𝑤 and 𝐷𝑓 are different in the
tationary and surfbeat mode (see Bart, 2017 for further details).

Finally, to model morphological changes in Section 3.3.1, XBeach
uses the following standard depth-averaged advection–diffusion equa-
tion to model sediment transport

𝜕ℎ𝐶
𝜕𝑡

+ ∇ ⋅ (ℎ𝐶𝐮𝐄) + ∇ ⋅ (𝐷ℎℎ∇𝐶) =
ℎ𝐶eq − ℎ𝐶

𝑇𝑠
, (21)

where 𝐶 is the depth-averaged sediment concentration, 𝐮𝐄 the Eulerian
velocity, 𝐷ℎ the diffusivity coefficient, 𝐶eq the equilibrium sediment
oncentration and 𝑇𝑠 the adaptation time; and the Exner equation to
odel bed changes

1 − 𝑝)
𝜕𝑧𝑏
𝜕𝑡

+ 𝑓mor∇ ⋅ 𝐪 = 0, (22)

here 𝑧𝑏 is the bed, 𝑝 the bed porosity, 𝑓mor the morphological ac-
eleration factor used to artificially increase the rate at which the
ed changes compared with the underlying hydrodynamics and 𝐪 the
ediment transport rates.

In this work, we use version 1.23.5526 of the XBeachX release and
nless explicitly stated, parameter values are left at the default for this
ersion.

.2. Uncertainty in bed slope angle

We now apply the MLMC framework from Section 2 to the XBeach
model described above. In the following test case, we evaluate the
uncertainty associated with the beach bed profile by considering the
bed slope angle 𝜃 to be uncertain. This represents a significant source
of uncertainty, as discussed in Unguendoli (2018).

.2.1. Two-dimensional (2D) bed slope test case
For the first test case in this work, we consider a simple 2D

ydrodynamics-only problem of a stationary wave approaching the
each with a wave period of 10 s and a maximum wave amplitude of
.5m and each simulation is run for 200 s. The beach slope is modified
n both the 𝑥 and 𝑦-directions by the same angle 𝜃 as depicted in Fig. 1.

The distribution of 𝜃 is set to be 𝜃 ∼  (arctan(0.035), arctan(0.5)).
he lower bound is chosen to ensure that there is always an area of the
ed which is above the initial water level. We seek the expected value
f the maximum horizontal inundation distance during the simulation.
n order to satisfy the constraints on 𝜖 required to achieve the conver-
ence stated in (10), the inundation distance is normalised by dividing
t by the total 𝑥-length of the domain (1250m).
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Fig. 2. Variance of difference, 𝑋𝑙 −𝑋𝑙−1, compared to variance of single variable, 𝑋𝑙 ,
t each level for 2D bed slope test case showing the use of MLMC is justified.

Before running the full MLMC algorithm (Algorithm 1), we first run
teps 1 and 2, in order to check that the MLMC approach is appropriate
or this test case. Recalling (3), the grid size is 𝛥𝑥 = 1250∕2𝑙 and
𝑦 = 1000∕2𝑙 and we use 7 levels (𝑙 = 2 to 8) and 500 samples
t each level. Fig. 2, a log plot of V(𝑋𝑙 − 𝑋𝑙−1) against level, shows

that the variance decreases as the level number 𝑙 increases, i.e. as
the mesh gets finer. This observation is important because, recalling
(6), this means fewer samples are needed on the finer meshes. The
figure also shows that V(𝑋𝑙 − 𝑋𝑙−1) is lower than V(𝑋𝑙) for all 𝑙.
This is also important because otherwise a lower variance could be
achieved by using the same number of samples with a simple Monte
Carlo simulation. Thus, we expect the MLMC simulation to be less
computationally expensive than a Monte Carlo simulation meaning the
choice of the MLMC approach for this test case is justified.

Using this figure, as well as the log plots of cost against level 𝑙 and
E(𝑋𝑙−𝑋𝑙−1) against level 𝑙, convergence tests estimate the convergence
values defined in (9) as 𝛼 = 1.18; 𝛽 = 1.69; 𝛾 = 2.93 for this test case.
Thus the numerical discretisation is approximately first order accurate
(based upon the value of 𝛼). As 𝛾 > 𝛽 most of the computational cost
in the MLMC algorithm will come from the finer levels and we expect
the order of convergence to be better than the standard Monte Carlo
method.

These observations from the preliminary study, as well as the fact
that the consistency and kurtosis checks from Section 2.1 passed, means
we can conclude that MLMC can be used successfully with XBeach and
we can run the full algorithm. For this test case, the chosen range
of tolerance values are 𝜖 = [0.001, 0.0017, 0.0025, 0.0035, 0.005, 0.006]
recalling that 𝜖 controls the bound on the convergence test (16). As
𝛽 > 𝛾, we use these 𝜖 values in the formula (13) to derive the optimum
number of samples required at each level, 𝑁𝑙. We also set a maximum
limit on the finest level that 𝑙 can reach of 𝐿max = 8 (see Step 6 of
Algorithm 1). As 𝛾 > 𝛽, the optimum 𝑁𝑙 are calculated using (14) and
shown in Fig. 3. Most importantly as the level number increases (i.e. as
the grid becomes finer), fewer samples are needed, which makes MLMC
more efficient than a simple Monte Carlo method.

To test the accuracy of the MLMC estimator, we also estimate the
real solution E [𝑋] using a Monte Carlo simulation with 𝛥𝑥 = 1250∕29 =
2.44m and 𝛥𝑦 = 1000∕29 = 1.95m, which is the same as the finest
mesh in the MLMC simulation. According to Monte Carlo the maximum
expected horizontal inundation distance along the 𝑥-axis over all time
and all 𝑦 divided by the total 𝑥-length of the domain is 0.6934 (to four
significant figures). As the total domain length is 1250m, this in fact
means the water inundates a horizontal distance of 866.8m. This agrees
up to four significant figures with the value found using the MLMC
simulation using 𝜖 = 0.001. We can calculate the root mean square error
of the MLMC simulation compared to the Monte Carlo simulation using

√

(

E[𝑋 ] − E[𝑋 ]
)2. (23)
5

RMSE of MLMC = 𝐿 𝑀𝐶 a
Fig. 3. Optimum number of samples required at each 𝑙 for given tolerance value, 𝜖
or 2D bed slope test case.

Table 1
Computational cost improvement from using MLMC instead of
Monte Carlo to achieve the same RMSE for the 2D slope test
case.

MLMC MC

RMSE (3sf) 0.000175 0.000175
Time to achieve RMSE (h) 160 250,973

MLMC speed-up factor 1569

Fig. 4(a) shows that as the mesh becomes finer, the RMSE decreases for
all 𝜖 values considered. In addition, Fig. 4(b) shows that as 𝜖 decreases,
n general the final expected value becomes closer to the real solution
howing that the convergence condition (16) has worked as expected.

Finally Fig. 5 compares the total cost and accuracy of the MLMC
nd Monte Carlo methods. Most significantly, the figure shows that
LMC achieves the same accuracy as Monte Carlo for 0.06% of the

omputational cost, as summarised in Table 1. We have thus signif-
cantly reduced the computational time by using MLMC rather than
onte Carlo.

Additionally, Fig. 5 shows that MLMC converges uniformly to the
inal value due to the use of the convergence test in Section 2.1 and
ptimum number of samples calculation. This is not true for the Monte
arlo simulation where further samples are required to check whether
he algorithm has converged, thus increasing the overall computational
ost of the Monte Carlo simulation.

As this is our first test case using MLMC with XBeach, we also con-
uct some further analysis to ensure that MLMC and the Monte Carlo
ethod are consistent. So far in this section we have confirmed that

he MLMC estimator for E[𝑋] is consistent with that from the Monte
arlo method. We repeat the MLMC methodology in this section, this
ime estimating E[𝑋2], and only using the lowest tolerance considered
= 0.001. Note that in future MLMC can be used to calculate E[𝑋] and
[𝑋2] as it can easily be extended to computing multiple outputs (Clare
t al., 2022). Using V[𝑋] = E[𝑋2]−E[𝑋]2, we obtain an MLMC estimate
or the variance of 0.00617 and a Monte Carlo estimate for the variance
f 0.00618, where the latter is estimated using the same number of
amples as for the Monte Carlo expectation. Therefore, we conclude
hat MLMC is able to accurately estimate both the expected value
nd the variance of the output variable in a computationally efficient
anner.

Although this test case is somewhat abstract, the consistent esti-
ates for both expectation and variance demonstrate that MLMC can be
sed with XBeach for a wave with known properties approaching a 2D
each with unknown slope. We have shown that the key advantage of
LMC is that it can achieve results considerably faster when compared

o using a simple Monte Carlo approach. This means we can confidently

pply our method to more realistic problems.
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Fig. 5. Comparison of total cost and accuracy when using MLMC and Monte Carlo
MC) for 2D bed slope test case.

.3. Uncertainty in wave height

In the previous section, we considered the uncertainty associated
ith a simple beach bed profile. Another significant source of uncer-

ainty is the structure of the waves approaching the beach. Whilst the
revious test case is purely theoretical, in this section we consider a
ab test case and a test case using real world data. In real-world ocean
nvironments, no two waves are alike, and they have varying heights,
requencies and directions. A common technique to deal with this is to
se wave spectra (see Scheffner and Borgman, 1992; McCabe, 2011).
hese can be for specific time-periods and/or locations, such as in Cai
t al. (2008), or generic. For the purposes of generality, here we use
he generic JONSWAP wave spectrum, which has the advantage it is
nbuilt in XBeach and suitable for oceans in which the unobstructed
istance over which the wind blows is limited, i.e. fetch-limited oceans
ike the ones in our test cases (Hasselmann et al., 1973). The uncertain
arameter is then the wave height in the JONSWAP wave spectrum, ℎ
see Hasselmann et al., 1973 for more details on this spectrum).

A vital condition of MLMC theory is that for each 𝑋𝑖
𝑙 , 𝑋𝑖

𝑙−1 pair
alculation, the only difference in the model must be the mesh element
ize. Thus, when calculating 𝑋𝑖

𝑙 , we use the XBeach option random =
which means that the same random seed is used to initialise the wave

oundary conditions for both 𝑋𝑖
𝑙−1 and 𝑋𝑖

𝑙 . Both test cases below pass
he consistency check in Section 2.1 indicating that the formulation is

both mathematically correct and implemented correctly.

3.3.1. Morphology test case
An important variable to consider when assessing the risk to coastal

areas is the volume of material eroded. To do this we consider the
6

e

Fig. 6. Schematic showing the initial and final bed profiles after a simulation. If the
volume change in the morphology test case is positive, this means that the erosion
volume is greater than the accretion volume and vice versa.
Source: Adapted from Van Gent et al. (2007).

tandard DelflandStorm test case, available as part of the XBeach
ocumentation (Roelvink et al., 2015). Note this is a 1D test case so
e only alter the mesh element size in the 𝑥-direction.

In this test case, we seek the expected total volume change over
he simulation, found by using the trapezium rule to approximate the
ntegral of the difference between the initial bed profile and the final
ed profile, as shown in Fig. 6. Thus if the number is positive, the
rosion volume is greater than the accretion volume and the beach
as lost material and been net eroded, and if the inverse is true the
each has accumulated material and grown. Note that as this is a test
ase in one horizontal dimension this volume is in fact an area but to
void confusion with surface area we shall continue referring to it as a
olume. We normalise the volume change using the total initial volume
f the beach, i.e. the volume underneath the slope with the minimum
alue of 𝑧 being the lower vertical limit. The distribution of the wave
eight is set to be ℎ ∼  (0 m, 5 m).

To check whether MLMC can be used for this test case, we run steps
and 2 of Algorithm 1. Fig. 7 shows that V

(

𝑋𝑙 −𝑋𝑙−1
)

decreases as
he mesh becomes finer and that for all 𝑙 it is lower than V

(

𝑋𝑙
)

. Using
onvergence tests, the convergence values in (9) are 𝛼 = 0.921, 𝛽 =
.77, 𝛾 = 2.40. Thus the numerical discretisation is approximately first
rder accurate and as 𝛾 > 𝛽, we expect the order of convergence to be
etter than the standard Monte Carlo method. In addition, the test case
lso passes the standard checks in Section 2.1.

Given the success of the preliminary study, we run the full algorithm
nd consider tolerance values of 𝜖 = [1.5 × 10−5, 2 × 10−5, 5 × 10−5, 10−4]
ith a maximum limit for the finest level of 𝐿max = 12. As 𝛾 < 𝛽,

he optimum 𝑁𝑙 are calculated using (14) and are shown in Fig. 8.
mportantly the number of samples required decreases as the mesh
ecomes finer.

In order to calculate the RMSE of MLMC for this test case, we

stimate the real solution E[𝑋] through a Monte Carlo simulation using
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Fig. 7. Variance of difference, 𝑋𝑙 −𝑋𝑙−1, compared to variance of single variable, 𝑋𝑙 ,
t each level for morphology test case showing the use of MLMC is justified.

Fig. 8. Optimum number of samples required at each 𝑙 for given tolerance value 𝜖 for
the morphology test case.

𝛥𝑥 = 1421.562∕212 = 0.347m, which is the same as the finest mesh
utilised in the MLMC simulation. The expected volume change as a
proportion of the total initial volume is 0.0006150 (to four significant
figures). This is positive and thus means that the beach has been net
eroded during the simulation. As the total volume is 16 333m2, this in
fact means that 10m2 of beach material is eroded during the simulation
(recall here that the test case is in one horizontal dimension so the
volume is in fact an area). Figs. 9(a) and 9(b) confirm that the RMSE
decreases as the level number increases and as 𝜖 decreases respectively,
thus confirming MLMC is working as expected. Unlike with the other
test cases considered, Fig. 9(b) shows that the relationship between the
RMSE and 𝜖 is not uniform and there is a clear elbow in the plot at
𝜖 = 5×10−5. This is a discrete effect caused by the fact that for 𝜖 = 10−4,
the convergence test (16) passes without requiring any samples on the
finest level (𝑙 = 12) (see Fig. 8).

Finally Fig. 10 shows that MLMC with 𝜖 = 1.5 × 10−5 achieves the
same accuracy as Monte Carlo for 2% of the computational cost, as
summarised in Table 2. In addition, the figure shows that in this test
case the convergence of the Monte Carlo simulation is notably less
uniform than that from MLMC, meaning the Monte Carlo simulation
must be run for a long time to ensure convergence. (Note that the
elbow present in Fig. 9(b) is again present in the MLMC convergence
for the same reason). Thus we have shown that MLMC can significantly
decrease computational costs without compromising on accuracy and
improve result stability for a full hydro-morphodynamic model with
uncertainties in the wave height.

3.3.2. Boscombe beach test case
For the final test case, we consider the real world case of Boscombe

Beach in Dorset, UK, which is a standard 2D test case provided in the
XBeach documentation (Roelvink et al., 2015). The distribution of the
wave height is set to be ℎ ∼  0 m, 3 m . To make the problem simpler,
7

( )
Table 2
Computational cost improvement from using MLMC instead of
Monte Carlo to achieve the same RMSE for the morphology test
case.

MLMC MC

RMSE (3sf) 3.51 × 10−6 3.51 × 10−6

Time to achieve RMSE (h) 10,911 465,310

MLMC speed-up factor 43

the morphological and tidal component present in the standard test case
are switched off, but all remaining values are kept the same as those in
the standard test case.

When assessing flood risk, an important quantity not yet considered
in this work is the wave run-up height. Hunt (1959) conclude that the
wave run-up height is dependent on the structure of the wave and the
angle of the beach bedslope. Traditionally, the value calculated is the
wave run-up height exceeded by 2% of incoming waves, 𝑅𝑢2% (shown
in Fig. 11), also known as the extreme run-up. This value was first
mentioned in Asbeck (1953), but has since been calculated in many
works (for example Stockdon et al., 2006; Suanez et al., 2015; Cohn
nd Ruggiero, 2016). According to Van der Meer et al. (2018), it is not

entirely clear why the choice of 2% was made, although one possible
explanation may be that soft engineering measures such as clay and
grass are considered sufficient to withstand the 2% of waves that exceed
this height.

Although 𝑅𝑢2% is by definition a probabilistic measure, there exist a
variety of standard empirical formulae that can be used to estimate this
value deterministically for an individual simulation (see Melby et al.,
2012). One such formula is derived in Holman (1986) using field data
from natural beaches with slopes, tan 𝛼, between 0.07 and 0.2:

𝑅𝑢2% = 0.83𝜉0𝐻𝑚0 + 0.2𝐻𝑚0, (24)

where 𝐻𝑚0 is the significant wave height at the beach-toe (i.e. where
the water level (𝑧𝑠) and the bed (𝑧𝑏) are equal to each other) and 𝜉0
the Iribarren parameter defined by

𝜉0 =
tan 𝛼

√

𝐻𝑚0∕𝐿0
, (25)

where 𝛼 is the beach slope angle at the beach-toe, 𝐿0 the wavelength
calculated by

𝐿0 =
𝑔𝑇 2

𝑝

2𝜋
, (26)

nd 𝑇𝑝 the peak wave period.
Although relatively simple, this formula is a standard one for calcu-

ating extreme wave run-up on natural beaches (see for example Rug-
iero et al., 2001; Stockdon et al., 2006; Melby, 2012; Díaz-Sánchez

et al., 2014; Suanez et al., 2015; Park and Cox, 2016). Furthermore, the
shallow slope of Boscombe Beach makes (24) an appropriate formula
for our test case and thus we use it in our test case to find the
expected value of the maximum run-up height 𝑅𝑢2% attained during
the simulation over all values of 𝑦.

Convolution filter
To define the Boscombe Beach profile, we use the bed data provided

in the XBeach documentation (Roelvink et al., 2015). Clearly in real
world environments, the beach approach is not smooth as has been the
case in the test cases considered so far in this work. Instead there may
be sandbars or other similar physical features present, either natural
or anthropogenic. This could potentially cause issues especially if a
feature is not represented in coarser meshes and suddenly appears in
finer meshes. However, with MLMC it is not necessary that the coarsest
mesh is a good approximation to the finest mesh, merely that each mesh
𝑙 is a good enough approximation to the next finest mesh 𝑙 + 1.
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Fig. 10. Comparison of total cost and accuracy when using MLMC and Monte Carlo
MC) for morphology test case.

Fig. 11. Schematic showing wave run-up height at a beach (the quantity of interest
n the Boscombe Beach test case) and key quantities needed to calculate it.

In order to mitigate the issue of features suddenly appearing, we use
convolution matrix filter which has the general expression

𝑓 ∗ 𝑔)(𝑖) =
𝜆
∑

𝑘=−𝜆
𝑔(𝑘)𝑓 (𝑖 − 𝑘), (27)

where 𝜆 = ⌊

𝑚
2 ⌋ and 𝑚 is the length of 𝑔. An appropriate filter kernel to

use in this case is the normalised arithmetic mean

𝑔(𝑗) = 1
∑𝑚

𝑖=1 𝑔(𝑖)
. (28)

t the edges, we use the ‘nearest’ method meaning that the edge value
s repeated outwards as many times as necessary for the multiplication
f the weights.

For this test case, 𝑓 is the underlying bed and the convolution
ilter is applied in the direction perpendicular to the coastline. The
onvolution filter length, 𝑚𝑙 at each level 𝑙 follows 𝑚𝑙 = max((𝐿max−𝑙), 1)
here 𝐿max is the finest mesh level considered. At level 𝐿max, 𝑚 = 1
hich is the identity filter and thus the bed is unchanged. Hence, as

he mesh becomes finer, the convolved bed slowly converges to the
8

riginal bed and thus there are no extra errors associated with using
convolved bed.

To check whether it is valid to use MLMC for this test case, we
un steps 1 and 2 of Algorithm 1. Fig. 12(a) shows that V

(

𝑋𝑙 −𝑋𝑙−1
)

ecreases as the mesh gets finer and for all 𝑙 is lower than V
(

𝑋𝑙
)

.
etween the last two levels the decrease is only slight, probably due to
he fact that, even with the convolution, there are still some features
hich increase in prominence at the finest mesh meaning 𝑙 = 7 does
ot give the best approximation to 𝑙 = 8, thus creating a relatively
arge variance. This effect is also seen in Fig. 12(b) which shows how
(

𝑋𝑙 −𝑋𝑙−1
)

varies as the mesh becomes finer. This plateau effect jus-
ifies the use of convolutions because without them, the approximation
etween 𝑙 = 7 and 𝑙 = 8 would be even worse.

Fig. 12(b) also shows that the numerical discretisation is approx-
mately first order accurate, as with the test case in Section 3.3.1.
n addition, the simulation passes the consistency and kurtosis checks
rom Section 2.1 and thus we can be confident that the MLMC algo-
ithm is appropriate. Using convergence tests, the convergence values
n (9) are 𝛼 = 1.58, 𝛽 = 1.46 and 𝛾 = 2.97. As 𝛾 > 𝛽, we expect the order
f convergence to be better than the standard Monte Carlo method.

Proceeding, we consider tolerance values of 𝜖 = [0.001, 0.0025,
.005, 0.0075] and set a maximum limit of the finest mesh of 𝐿max = 8
ecause this corresponds to the mesh that the Boscombe Beach bed data
s defined on. As 𝛾 > 𝛽, the optimum 𝑁𝑙 are calculated using (14) and
re shown in Fig. 13. Importantly the number of samples decreases as
he mesh becomes finer.

As before we calculate the RMSE of the MLMC simulation by
stimating the real solution E[𝑋] through an Monte Carlo simulation
ith 𝛥𝑥 = 1123.8461∕28 = 4.39m and 𝛥𝑦 = 1604∕28 = 6.27m which

s the same as the finest mesh in the MLMC simulation. The expected
aximum value of 𝑅𝑢2% is found to be 0.1568m (to four significant

igures). Using this value, Figs. 14(a) and 14(b) confirm that the RMSE
ecreases as the level number increases and as 𝜖 decreases respectively,
eaning the MLMC algorithm is working as expected. Interestingly,

ig. 14(a) shows that 𝜖 only has a notable effect on the error when the
inest level is included. This makes sense because at previous levels, the
onvolved version of the bed is being used rather than the real data.

Finally Fig. 15 compares the total cost and accuracy of the MLMC
ersus Monte Carlo for this test case. It shows that MLMC with 𝜖 = 0.001
chieves the same accuracy as the Monte Carlo simulation for 1.6% of
he computational cost (as summarised in Table 3). We also note that,
s has been the case for all the test cases considered in this work, the
onvergence with Monte Carlo is notably less uniform than that with
LMC and that with Monte Carlo the simulation must be run for longer

han strictly necessary to ensure convergence, which is not the case
or MLMC. Thus we have shown that for a real world test case with
ncertain waveheight, MLMC can significantly decrease computational
ost and increase result stability without compromising on accuracy.
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Fig. 12. Preliminary MLMC results for Boscombe Beach test case showing the use of MLMC is justified.
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Fig. 13. Optimum number of samples required at each 𝑙 for given tolerance value 𝜖
for Boscombe Beach test case.

Table 3
Computational cost improvement from using MLMC instead of
Monte Carlo to achieve the same RMSE for the Boscombe Beach
test case.

MLMC MC

RMSE (3sf) 1.38 × 10−4 1.38 × 10−4

Time to achieve RMSE (h) 5662 347294

MLMC speed-up factor 61.3

4. Cumulative distribution functions

In an MLMC framework, the objective is normally to find the
expectation of an output variable. However, to analyse risk in coastal
problems, a key quantity of interest is the probability of an output vari-
able exceeding a certain value, for example, a wave height exceeding
a sea wall. As discussed in Section 1, this is a complicated output to
compute because MLMC provides very few values on the same level
from which to build that distribution.

To resolve this issue, we follow Gregory and Cotter (2017b) and
use the inverse transform sampling method to evaluate the inverse
cumulative distribution function (CDF), 𝐹−1(𝑢), where 𝑢 ∼  [0, 1]. If
𝐹 is strictly increasing and absolutely continuous then 𝑥 ≡ 𝐹−1(𝑢)
9

is unique. A simple consistent estimate for 𝑥 is found by sorting the b
samples 𝑋𝑖
𝑖=1,…,𝑁 ∼ 𝐹 such that 𝑋1 < 𝑋2 < ⋯ < 𝑋𝑁 and then

𝐹−1(𝑢) = 𝑋⌈𝑁×𝑢⌉, (29)

which, as argued in Gregory and Cotter (2017b), is consistent because it
converges in probability to 𝑥 as 𝑁 → ∞. For an MLMC approximation,
the inverse CDF is then given by

𝐹−1
𝐿 (𝑢) = 𝑅(𝑋)⌈𝑁0×𝑢⌉

0 +
𝐿
∑

𝑙=1

(

𝑅(𝑋)⌈𝑁𝑙×𝑢⌉
𝑙 − 𝑅(𝑋)⌈𝑁𝑙−1×𝑢⌉

𝑙−1

)

, (30)

where 𝑅(𝑋)𝑖𝑙 represents the 𝑖th ordered statistic of 𝑋𝑙 on each level 𝑙.
Unlike with (2) there is no exact cancellation here as the approxima-
tions on each level are not unbiased.

Thus an ensemble of 𝑋𝑖
𝐹 can be generated, which are not samples

from 𝑋𝐿, but consistent approximations to 𝐹−1
𝐿 (𝑢). Thus, as 𝑁𝑙 → ∞,

then 𝑥
𝑝
→ 𝐹−1

𝐿 (𝑢) and the CDF of the MLMC approximation is given by

𝐹 (𝑥) = 1
𝑁

𝑁
∑

𝑖=1
1𝑋𝑖

𝐹≤𝑥
. (31)

or more details on this method we refer the reader to Gregory and
otter (2017b).

.1. Applying inverse transform sampling to test cases

In this section, we apply the inverse transform sampling method to
ach of the four test cases discussed in Section 3. This method provides

a CDF from which the probability that the output variable exceeds a
certain value can be predicted. This is particularly useful for predicting
the probability of extreme flooding/erosion events occurring, a useful
tool in coastal risk assessment. To apply the method, we select the
lowest 𝜖 value considered in each test case. The output is recorded
at each level separately, ordered and then (30) is used to generate
seudo-samples on the finest level.

The results of applying this method to all four test cases are shown
n Fig. 16, which also compares the MLMC results with those ob-
ained by the Monte Carlo method. From these cumulative distribution
unctions, we can easily assess exceedance probability, for example,
ig. 16(a) shows that the probability that the maximum inundation
istance will exceed 1090m (recalling that the output is normalised
nd thus this is 0.87 × 1250m) is 5% and thus, from a town planner’s
erspective allowing a permanent structure to be built in this area
ould be inadvisable. In all cases the MLMC results predict a similar
DF to the Monte Carlo method. The good approximation between
LMC and Monte Carlo is further shown by the small error norms
etween the two methods, shown in Table 4. Note each error norms has
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Fig. 14. RMSE of MLMC (23) for Boscombe Beach test case for varying tolerance value 𝜖.
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Fig. 15. Comparison of total cost and accuracy when using MLMC and Monte Carlo
MC) for Boscombe Beach test case.

Table 4
Error norms between MLMC and Monte Carlo cumulative
distribution functions for each test case.

Test case Normalised L2 error norm (3sf)

2D bed slope 0.00127
Morphology 0.00519
Boscombe Beach 0.00862

been normalised by dividing by the L2 norm of the respective MLMC
CDF. Thus we conclude that we can use MLMC not only to find the
expected value of output variables but also to determine the probability
of extreme flooding and erosion events occurring and assess whether
certain areas are at risk. Furthermore, we have shown that MLMC is
able to generate accurate estimates of both the CDF and expected values
for all test cases considered, in a much more computationally efficient
manner. This strongly indicates that MLMC is able to consistently
recreate Monte Carlo results over the whole parameter space and shows
the quality of this method.

5. Conclusion

In this work, MLMC is applied for the first time to a complex hydro-
morphodynamic model to evaluate risk in the coastal zone. We show
that MLMC can be used successfully to estimate both the expected
10

w

value of a hydro-morphodynamic output variable and its distribution
for both 1D and 2D test cases and for both experimental and real-world
test cases. We also show that the key advantage of MLMC over Monte
Carlo is that it is a considerably faster approach whilst maintaining the
same level of accuracy in the results. Another significant advantage is
that the MLMC solution is stable, unlike the Monte Carlo one — in
all test cases considered, decreasing 𝜖 (i.e., the accuracy tolerance) in
MLMC results in a more accurate solution. Therefore, there is no need
to run the simulation for longer to ensure the solution has converged,
again providing a computational cost advantage. These advantages
mean that MLMC enables uncertainty analysis to be performed on
previously unfeasible cases. For example, in Section 1 we discuss the
est case in Callaghan et al. (2013). This test case is similar to both the
orphology and Boscombe Beach test cases considered in our work,

or which using MLMC resulted in a speed up of 43 and 61 times
espectively. Given that the authors of Callaghan et al. (2013) estimate
hat it would take 4.5 millennia to run their test case using XBeach
ith Monte Carlo on a single processor, this suggests that using MLMC
ould ‘only’ take 90,000 years on the same processor. Whilst this is

till a large cost, this test case would now not be outside the realm of
ertain supercomputers given our MLMC approach and the fact that our
lgorithm is parallelised.

For all test cases considered in this work, MLMC has no difficulties
n dealing with the complex nature of the XBeach model. This is mainly
ue to the fact that MLMC only requires that the result from one mesh
s a good approximation to the result from the next finest mesh, which
akes it very flexible. This is an encouraging sign for more complex

est cases, but even this loose restriction could become a limitation to
he types of test cases where MLMC can be applied. However, a further
dvantage of Monte Carlo type methods is that they are very flexible
nd can be easily implemented using a wrapper approach without
ltering the underlying model. Therefore if this limitation becomes an
ssue with XBeach, it would be very simple to switch to a different
oastal ocean model where this may not be an issue. In future work,
e will consider more complex examples and take advantage of the

lexibility of Monte Carlo type methods to consider multiple uncertain
utputs at the same time.

This work has thus shown the first successful application of MLMC
n the coastal engineering field and shown that it has the advantages
f the Monte Carlo method when calculating both the expected value
nd the cumulative distribution function of key variables of interest,

ithout the prohibitive computational cost.
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Fig. 16. Cumulative distribution functions generated using inverse transform sampling method.
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