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A B S T R A C T

The development of reliable, sophisticated hydro-morphodynamic models is essential for protecting the coastal
environment against hazards such as flooding and erosion. There exists a high degree of uncertainty associated
with the application of these models, in part due to incomplete knowledge of various physical, empirical and
numerical closure related parameters in both the hydrodynamic and morphodynamic solvers. This uncertainty
can be addressed through the application of adjoint methods. These have the notable advantage that the
number and/or dimension of the uncertain parameters has almost no effect on the computational cost
associated with calculating the model sensitivities.

Here, we develop the first freely available and fully flexible adjoint hydro-morphodynamic model
framework. This flexibility is achieved through using the pyadjoint library, which allows us to assess the
uncertainty of any parameter with respect to any model functional, without further code implementation. The
model is developed within the coastal ocean model Thetis constructed using the finite element code-generation
library Firedrake. We present examples of how this framework can perform sensitivity analysis, inversion and
calibration for a range of uncertain parameters based on the final bedlevel. These results are verified using
so-called dual-twin experiments, where the ‘correct’ parameter value is used in the generation of synthetic
model test data, but is unknown to the model in subsequent testing. Moreover, we show that inversion and
calibration with experimental data using our framework produces physically sensible optimum parameters
and that these parameters always lead to more accurate results. In particular, we demonstrate how our adjoint
framework can be applied to a tsunami-like event to invert for the tsunami wave from sediment deposits.
1. Introduction

Hydro-morphodynamic models are highly complex coupled models
used to simulate hydrodynamics, sediment transport and bed morphol-
ogy in both fluvial and coastal environments. They are often associated
with a high degree of uncertainty in part due to incomplete knowledge
of various physical, empirical and numerical closure related parameters
in both the hydrodynamic and morphodynamic solvers.

Research on methods to assess this uncertainty is ongoing. A range
of statistical methods has been applied to hydro-morphodynamic mod-
els, including Monte Carlo methods (e.g. Villaret et al., 2016; Hieu
et al., 2015; Kopmann et al., 2012) and ensemble methods (e.g.

nguendoli, 2018; Tang et al., 2018). Both of these require multiple
runs of very computationally expensive models to produce statistically
robust results, e.g. Harris et al. (2018) require 240,000 runs of the com-
lex hydro-morphodynamic model XBeach. This makes these methods
ften computationally unfeasible, particularly when simulating the long
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time periods required in many hydro-morphodynamic problems, and
means that simplified models must be used: e.g. in Dissanayake et al.
(2014), a 1D rather than 2D model is used.

Other advanced numerical methods can be used to manage uncer-
tainty. For example, a tangent linear approach has been implemented
with the hydro-morphodynamic model Telemac-Mascaret (Hervouet,
1999). This implementation is presented in Naumann and Riehme
(2008) and examples of its application in morphodynamic test cases
are given in Kopmann et al. (2012), Villaret et al. (2016), Hieu et al.
(2015), Dalledonne et al. (2017) and Riehme et al. (2010). This first
order method is computationally cheaper than statistical methods, but
must be run at least once for each uncertain parameter of interest.
This can become computationally expensive because Villaret et al.
(2016) state that each tangent linear model run in their implementation
takes approximately three times more than a forward model run (i.e. a
standard hydro-morphodynamic model run).
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098-3004/© 2022 The Authors. Published by Elsevier Ltd. This is an open access ar

ttps://doi.org/10.1016/j.cageo.2022.105104
eceived 22 July 2021; Received in revised form 25 March 2022; Accepted 28 Mar
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ch 2022

http://www.elsevier.com/locate/cageo
http://www.elsevier.com/locate/cageo
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
https://github.com/mc4117/adjoint_hydro_morphodynamic
mailto:m.clare17@imperial.ac.uk
https://doi.org/10.1016/j.cageo.2022.105104
https://doi.org/10.1016/j.cageo.2022.105104
http://creativecommons.org/licenses/by/4.0/


Computers and Geosciences 163 (2022) 105104M.C.A. Clare et al.

e
h
e
i
m
a
t
d
(
s

s
m

m
a
t
S

2

w
i
b
a

t
i
g
f

𝐽

T

𝜆

𝜇

In this work, we use adjoint methods to manage model uncertainty
to great advantage. We emphasise here that by managing model un-
certainty, we mean dealing with the issues posed by having uncertain
parameters including, but not limited to, making the value of uncer-
tain parameters more certain. Adjoint methods are used in numerical
modelling to compute gradients of model outputs with respect to input
parameters and are thus a useful tool for local sensitivity analysis
and for the calibration and inversion of uncertain parameter values.
Their main advantage is that only one adjoint evaluation is required
to compute the sensitivity of an output quantity irrespective of the
number of uncertain parameters, or their dimension (e.g. a scalar or a
field of values). Therefore, any number of multi-dimensional uncertain
parameters can be considered at the same time with almost no effect
on the computational cost (see e.g. Funke et al., 2017; Chen et al.,
2014; Heemink et al., 2002 where adjoint methods are applied to
hydrodynamic models).

Adjoint methods have already been successfully applied to hydro-
morphodynamic models for non-cohesive sediments, although not to
a fully coupled 2D hydro-morphodynamic model. For example, they
are applied to a simple 1D hydro-morphodynamic model for turbidity
currents in Parkinson et al. (2017) and to the morphodynamic com-
ponent Sisyphe of Telemac-Mascaret in Kopmann et al. (2012), Merkel
et al. (2013) and Merkel et al. (2016). However, only three published
test cases use the adjoint method with Sisyphe and recent research
appears to be limited. Additionally, to the best of our knowledge,
adjoint methods have never been applied to the fully coupled hydro-
morphodynamic model in Telemac-Mascaret. This is significant because
many parameters influence both the hydrodynamic and morphody-
namic components and there are many feedback effects between these
two components. Thus, only calculating the adjoint on the morphody-
namic component reduces the accuracy of the results of the adjoint
methods and limits the cases where they can be applied. Further-
more, the implementation of the adjoint method within the Telemac-
Mascaret model is financially expensive because it requires the use of
a commercial NAG FORTRAN compiler (see Merkel et al., 2016).

There is thus a clear need for the fully flexible, free-to-use, and
relatively computationally cheap adjoint framework that we present in
this work. This flexibility is achieved by using the pyadjoint (Farrell
et al., 2013) library, which works with the code-generation framework
Firedrake (Rathgeber et al., 2017) to automatically derive adjoint equa-
tions using the high level abstraction of the finite element equations
available within all Firedrake based models. Thus, we can assess the
uncertainty of any parameter in the model with respect to any model
functional, without further code implementation. A further advantage
of using pyadjoint is that, for all test cases considered in this work,
an adjoint run takes at most three times more than a forward model
run. This can be contrasted with Telemac-Mascaret, where for the
test case in Merkel et al. (2016), the adjoint run is 135 times more
computationally expensive than the forward model run.

In this work, in order to benefit fully from this Firedrake - pyadjoint
framework, we use the 2D depth-averaged non-cohesive coupled hydro-
morphodynamic model presented in Clare et al. (2021), which has been
developed using Firedrake within the finite element coastal ocean mod-
lling system Thetis (Kärnä et al., 2018). Although the adjoint method
as previously been used with the hydrodynamic component of Thetis,
.g. in Warder et al. (2021), this work is the first time pyadjoint is used
n a coupled model. A further advantage of this hydro-morphodynamic
odel is that it is more accurate than industry-standard models such

s Telemac-Mascaret, as shown in Clare et al. (2021), partly because of
he relatively novel use of a discontinuous Galerkin based finite element
iscretisation. This has several advantages, as discussed in Clare et al.
2021), including being well-suited for advection-dominated problems
uch as those considered in this work (Kärnä et al., 2018).

The remainder of this paper is structured as follows: Section 2 de-
cribes the adjoint method; Section 3 outlines the hydro-morphodynamic
2

odel; Sections 4 and 5 uses simple test cases to show how adjoint
ethods can be used for sensitivity analysis and to perform inversion
nd calibration; Section 6 shows how adjoint methods can be used
o invert for tsunami-like waves from sediment deposits and, finally,
ection 7 presents some concluding remarks.

. Adjoint methods

Adjoint methods can compute the gradient of a model functional
ith respect to a set of parameters and are thus useful for manag-

ng uncertainty (Farrell et al., 2013). To establish notation, we first
riefly present a derivation of these methods, following Plessix (2006)
nd Funke et al. (2017).

The hydro-morphodynamic forward model to be presented in Sec-
ion 3 can be written in the abstract form 𝐹 (𝑢(𝑚), 𝑚) = 0 where 𝑚
s a set of uncertain parameters and 𝑢(𝑚) is the model solution. Any
iven model functional, 𝐽 , depends only on 𝑚 and 𝑢, and the reduced
unctional 𝐽 can be defined as

(𝑚) = 𝐽 (𝑢(𝑚), 𝑚). (1)

hen
𝑑𝐽
𝑑𝑚

= 𝜕𝐽
𝜕𝑢

𝜕𝑢
𝜕𝑚

+ 𝜕𝐽
𝜕𝑚

. (2)

Computing the derivatives of 𝐽 in this equation is simple because
the reduced functional is usually provided via an analytic formula.
However, computing and deriving 𝜕𝑢∕𝜕𝑚 is complex because it is only
given implicitly by the model (Funke, 2012). Therefore, we derive a
formula for it by differentiating the forward model with respect to 𝑚,
which yields

𝜕𝑢
𝜕𝑚

= −
( 𝜕𝐹
𝜕𝑢

)−1 𝜕𝐹
𝜕𝑚

, (3)

and hence
𝑑𝐽
𝑑𝑚

= − 𝜕𝐽
𝜕𝑢

( 𝜕𝐹
𝜕𝑢

)−1 𝜕𝐹
𝜕𝑚

+ 𝜕𝐽
𝜕𝑚

, (4)

which can be evaluated using either the adjoint or the tangent linear
approach. If adjoint methods are used, we evaluate 𝜆 in

= 𝜕𝐽
𝜕𝑢

( 𝜕𝐹
𝜕𝑢

)−1
, (5)

and substitute it into
𝑑𝐽
𝑑𝑚

= −𝜆𝜕𝐹
𝜕𝑚

+ 𝜕𝐽
𝜕𝑚

, (6)

to find the derivative. Note, the adjoint has the advantage that only
one linear solve is ever necessary to evaluate (5), independent of the
number of uncertain parameters 𝑚 or their dimension. The adjoint
is not well suited though to computing the sensitivity with respect
to uncertain input parameters of a large number of model outputs,
multiple scalar values or entire spatially-varying fields, because an
adjoint evaluation is required for each scalar output. However, the
symbolic language employed in the Firedrake and pyadjoint framework
(discussed later in this section) means that we can easily express any
scalar functional, including ones which are dependent on multiple
outputs, and can aggregate spatially or time-varying output fields in
the form of integrals (see (10) and (12) for example). The automated
adjoint then allows us to efficiently compute the sensitivity of that
specified functional with respect to an arbitrary number of uncertain
input parameters.

If the tangent linear approach is used, we evaluate 𝜇 in

𝑇 = −
( 𝜕𝐹
𝜕𝑢

)−1 𝜕𝐹
𝜕𝑚

. (7)

and substitute it into
𝑑𝐽
𝑑𝑚

= 𝜕𝐽
𝜕𝑢

𝜇𝑇 + 𝜕𝐽
𝜕𝑚

, (8)

to find the derivative. Note this is equivalent to (3), meaning that the
tangent linear approach is solving for 𝑑𝑢∕𝑑𝑚. The expression for 𝜇
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can be solved using a variety of different methods including explicitly
inverting the linearised PDE operator 𝜕𝐹∕𝜕𝑢 or performing an iterative
solve for each dimension of 𝑚 (see Funke, 2012). For all methods, the
computational cost of solving this expression scales linearly with the
dimension of 𝑚. By contrast, once 𝜇 is computed, then the derivative
of the reduced functional 𝐽 can be efficiently computed for multiple
different outputs. This makes the tangent linear approach well-suited to
problems with a relatively small number of uncertain one-dimensional
input parameters but a large number of uncertain outputs and/or a
functional which is a spatially-varying field. Conversely, the adjoint so-
lution is ideally suited to problems where there are multiple uncertain
input parameters (both scalar and multi-dimensional), which is the case
for hydro-morphodynamic problems.

Adjoint methods can be difficult to derive and implement, but
we overcome this problem by using the hydro-morphodynamic model
from Clare et al. (2021), which is built within Thetis, a Firedrake-based
model. This means we can use the pyadjoint library (Farrell et al.,
013), which is constructed to work within the Firedrake environment.
his library automatically derives the adjoint equations by first ‘taping’
recording the sequence of numerical operations) a forward model run
nd then using this tape to construct the discretised adjoint equations.
his means that the actual derivative of the discrete model is used (up
o numerical truncation errors and solver tolerances), rather than a
iscrete approximation of a continuous derivative (see Funke et al.,
017). A similar methodology can also be used to implement the
angent linear approach in pyadjoint. Although taping the model does
ean that pyadjoint requires more memory than a hard-coded user

mplementation, this disadvantage is far outweighed by the fact that
yadjoint significantly simplifies both the calculation and the imple-
entation of the adjoint model. In this work memory has not been an

ssue, but for very large problems there are intelligent checkpointing
echniques that can be used to reduce memory requirements (see for
xample Griewank and Walther, 2000; Kukreja et al., 2018).

The adjoint method has already been used successfully with the
ydrodynamic component of Thetis (e.g. Warder et al., 2021), but we
xpand upon this here by using the adjoint method with a coupled
odel which requires extending the pyadjoint code to ensure that the

oupling is correctly captured. In particular, the coupling between
he components of the hydro-morphodynamic model relies on a split
echanism, which extracts the velocity and elevation from the hydro-
ynamic component so that both can be passed to the morphodynamic
omponent. The new pyadjoint code tapes and calculates the adjoint
f this operation, thus facilitating the use of pyadjoint for all Fire-
rake-based coupled models (full details of the code change are given
n Firedrake Project, 2021). In this work, we do not show the adjoint
quations since using pyadjoint means we do not have to manually
erive them. However, for the interested reader, Funke (2012) shows
he derivation of the adjoint form of the shallow water equations, and
he adjoint of the sediment concentration equation and Exner equation
an be derived following a similar methodology.

The Taylor remainder convergence test (explained in more detail
n Funke, 2012) can be used to verify the adjoint implementation
erived by pyadjoint and in particular the new adjoint implementation
f our coupled model. This test checks whether the gradient 𝑑𝐽

𝑑𝑚 derived
sing the adjoint solution is correct by verifying that the Taylor residual
onverges at second order

𝐽 (𝑚 + ℎ𝛿𝑚) − 𝐽 (𝑚) − ℎ𝛿𝑚 𝑑𝐽
𝑑𝑚

|

|

|

|

= (ℎ2) as ℎ → 0, (9)

where 𝛿𝑚 is a random perturbation. This second-order convergence is
very sensitive to implementation errors (see Funke, 2012) and thus
represents a strict code verification check. All test cases outlined in
this work pass the Taylor remainder convergence test. Additionally,
using the Trench test case in Section 5, we also verified that the
adjoint derivative of 𝐽 is consistent with that obtained via the direct
finite difference approach applied to 𝐽 when each model parameter
is perturbed independently. These two tests confirm that the adjoint
3

implementation of our coupled hydro-morphodynamic model is correct. m
2.1. Using adjoint methods to manage uncertainty

Adjoint methods can be used to manage the uncertainty of hydro-
morphodynamic models with respect to particular parameters, through
sensitivity analysis and calibration and inversion. We perform calibra-
tion by inverting our model for the uncertain parameters and using an
optimisation algorithm to minimise the error between the model output
and the desired output to improve model accuracy. Thus calibration can
be seen as a sub-type of inversion and we use the same methodology
for both. Note that adjoint methods can also be used in a Bayesian
framework, for example, through performing inversion on an ensemble
of prior realisations generated using the Randomized Maximum Like-
lihood (RML) technique (see Alpak and Jennings, 2020), but such an
exercise is beyond the scope of this work. To analyse the sensitivity
of model outputs to particular uncertain parameters, we use adjoint
methods to compute the derivative 𝑑𝐽∕𝑑𝑚. This reduced functional, 𝐽 ,
can take many forms and we denote the reduced functional used for
sensitivity analysis as 𝐽sen and define it as follows

sen(𝑢model, 𝑚) ∶= 1
2

𝑁out
∑

𝑗=1
∫

𝑇

0 ∫𝛺

√

|

|

|

𝑢model
𝑗

|

|

|

2
+ 𝜖 𝑑𝑥 𝑑𝑡, (10)

hich analyses the local sensitivity of an integrated output to uncertain
arameters (in Section 4.2, this output is chosen to be the bedlevel).
ere 𝛺 is the domain of the model, 𝑁out the number of output variables
sed and 𝜖 is a parameter set to 10−6 which we have added to smooth
ur results if 𝑢model

𝑗 = 0 anywhere in the domain. It is important to note
hat this is a local sensitivity analysis rather than a global one and is
ependent on the trajectory on which 𝑑𝐽∕𝑑𝑚 is evaluated.

For inversion and calibration, we minimise the following prob-
em using the default L-BFGS-B algorithm available via the SciPy li-
rary (Jones et al., 2001)

inimize𝑢, 𝑚 𝐽inv(𝑢, 𝑚)

ubject to 𝐹 (𝑢, 𝑚) = 0.
(11)

ere we use 𝐽inv to denote the reduced functional used for inversion
nd calibration; its general form is defined as

inv(𝑢model, 𝑚) ∶=
𝑁out
∑

𝑗=1
𝛼𝑗 ∫

𝑇

0 ∫𝛺
|

|

|

𝑢true
𝑗 − 𝑢model

𝑗
|

|

|

2
𝑑𝑥 𝑑𝑡

+
𝑁in
∑

𝑖=1
𝛽𝑖 ∫

𝑇

0 ∫𝛺
|

|

𝑚𝑖
|

|

2 𝑑𝑥 𝑑𝑡,

(12)

here 𝑁in is the number of uncertain parameters and 𝛼𝑗 is a user-
pecified scaling factor. The first integral term in (12) is the difference
etween the model output and the true value, either experimental/real-
orld data or, in the case of a dual twin experiment, synthetic data
enerated using a previous run of the model with known parameter
alues. Unlike with (10), we do not use a square root in the term,
o as to more severely penalise large differences between the model
nd true values. The second integral term is a Tikhonov regularisation
erm, which aids in the solution of ill-posed problems and can be used
o prevent the magnitude of the parameters becoming unphysical (see
ngl et al., 1996). The amount of regularisation is controlled by the
calar 𝛽𝑖 and can be different for each uncertain parameter (see for
xample Section 5.2). Recall that our use of pyadjoint means we can
tilise its symbolic language to express any functional which suits the
roblem. This makes it possible to, for example, set 𝛽𝑖 as a correlation
atrix to account for correlations between parameters or to include

patially-varying weights in the functional to account for expected
easurement noise.

. Hydro-morphodynamic model

We now briefly describe the 2D depth-averaged coupled hydro-
orphodynamic model presented in Clare et al. (2021) and used in



Computers and Geosciences 163 (2022) 105104M.C.A. Clare et al.

w
𝜂
v

N

o
𝑑

d
e

𝐻

F

t
(
b
f
e
b
u

Fig. 1. Diagram of sediment transport.
Source: Clare et al. (2022).

this work. It is able to update the bed morphology as a result of both
suspended sediment and bedload transport, while taking into account
gravitational and helical flow effects. Fig. 1 shows a diagrammatic
representation of what our hydro-morphodynamic model simulates.

For reasons of stability, the time derivatives in the model equations
are approximated using a fully-implicit backward Euler timestepping
scheme. Clare et al. (2021) give full details on the original development
of this model for a fully wet domain which is used in the test cases in
Sections 4 and 5 and the equations are summarised below:

Shallow water equations

𝜕ℎ
𝜕𝑡

+ ∇ ⋅ (ℎ𝐔) = 0, (13)

𝜕𝐔
𝜕𝑡

+ 𝐔 ⋅ ∇𝐔 + 𝐠∇𝜂 = 𝜈∇2𝐔 −
𝐶ℎ
ℎ

||𝐔||𝐔, (14)

here ℎ(𝐱, 𝑡) is the total depth, 𝐔(𝐱, 𝑡) the depth-averaged velocity,
(𝐱, 𝑡) the free surface elevation, 𝐠 the gravitational constant, 𝜈 the
iscosity parameter and 𝐶ℎ the quadratic drag coefficient;

on-conservative sediment concentration equation

𝜕𝐶
𝜕𝑡

+ 𝐹corr𝐔 ⋅ ∇𝐶 = 𝜖𝑠∇2𝐶 +
𝐸𝑏 −𝐷𝑏

ℎ
, (15)

where 𝐶(𝐱, 𝑡) is the depth-averaged sediment concentration, 𝜖𝑠 the
diffusivity coefficient, 𝐸𝑏 the erosion flux, 𝐷𝑏 the deposition flux, and
𝐹corr a correction factor;

Exner equation

(1 − 𝑝′)
𝑚𝑓

𝜕𝑧𝑏
𝜕𝑡

+ ∇ ⋅𝐐𝐛 = 𝐷𝑏 − 𝐸𝑏, (16)

where 𝑚𝑓 is a morphological acceleration factor, 𝑝′ the porosity, 𝐐𝐛
the bedload transport and 𝑧𝑏(𝐱, 𝑡) the bedlevel (also known as the
bathymetry). Note, throughout 𝑧𝑏 is defined such that the water depth,
ℎ = 𝜂 − 𝑧𝑏.

Here, 𝐹corr in (15) accounts for the fact that depth-averaging the
product of two variables is not equivalent to multiplying two depth-
averaged variables; and the morphological acceleration factor, 𝑚𝑓 , in
(16) artificially increases the rate of bedlevel changes compared with
the underlying hydrodynamics, thus decreasing computational cost.

In Table 1, we summarise the properties of the variables and param-
eters in Eq. (13)–(16), and the dependencies of the empirical variables
4

on the model variables. Furthermore, in Sections 4 and 5, we assess the v
Table 1
Properties of the variables and parameters in Eqs. (13)–(16), including their dependency
n model variables and the parameters bed reference height 𝑘𝑠, average sediment size
50 and sediment density 𝜌𝑠.

Name Type Dependencies

Key parameters Model variables

𝐔(𝐱, 𝑡) Model variable – –
ℎ(𝐱, 𝑡) Model variable – –
𝜂(𝐱, 𝑡) Model variable – –
𝐶 Model variable – –
𝑧𝑏 Model variable – –
𝐶ℎ Empirical formula 𝑘𝑠 h
𝐹corr Empirical formula 𝑑50 , 𝑘𝑠 , 𝜌𝑠 ℎ,𝐔
𝐸𝑏 Empirical formula 𝑑50 , 𝑘𝑠 , 𝜌𝑠 ℎ,𝐔
𝐷𝑏 Empirical formula 𝑑50 , 𝜌𝑠 𝐶, ℎ,𝐔
𝐐𝑏 Empirical formula 𝑑50 , 𝑘𝑠 , 𝜌𝑠 ℎ,𝐔
𝜈 Model parameter – –
𝜖𝑠 Model parameter – –
𝐠 Fixed physical parameter – –
𝑝′ Physical parameter – –
𝑚𝑓 User-defined parameter – –

uncertainty in the average sediment grain size, 𝑑50, the bed reference
height 𝑘𝑠 and the sediment density 𝜌𝑠, and thus Table 1 also shows
which quantities directly depend on these parameters. Full details on
the parameters and the empirical formulae used in our model can be
found in Clare et al. (2021).

3.1. Wetting-and-drying

Coastal zone test cases (like that considered in Section 6) often have
a wetting-and-drying interface. Thus, Clare et al. (2022) extends the
hydro-morphodynamic model in Clare et al. (2021) to deal with wet-
ry domains by using the wetting-and-drying scheme detailed in Kärnä
t al. (2011), where the depth, ℎ, is replaced by

̃ ∶= 𝜂 − 𝑧𝑏 +
1
2

(√

ℎ2 + 𝛿2 − ℎ
)

, (17)

where 𝛿 is a user-defined parameter set to be approximately equal to
𝑑||∇ℎ|| with 𝑑 the mesh length scale. To avoid the sediment leakage
that is observed when applying (15) in combination with wetting-
and-drying, in the wetting-and-drying model we use the following
conservative sediment concentration equation

𝜕
𝜕𝑡
(𝐻̃𝐶) + ∇ ⋅ (𝐹corr𝐔𝐻̃𝐶) = 𝜖𝑠∇2(𝐻̃𝐶) + 𝐸𝑏 −𝐷𝑏. (18)

inally, the Exner Eq. (16) is unchanged because it is not explicitly
dependent on depth. Full details on the wetting-and-drying hydro-
morphodynamic model are given in Clare et al. (2022).

4. Local sensitivity analysis for a meander

As an initial test case, we consider flow around the curved channel
of a meander and use the configuration from experiment 4 of Yen and
Lee (1995). This test case has already been validated for our hydro-
morphodynamic model in Clare et al. (2021). Fig. 2 is taken from
he latter and shows that our model causes erosion at the outer bend
negative bedlevel evolution) and deposition at the inner bed (positive
edlevel evolution), as expected from physical intuition. Moreover, the
igure shows good agreement between our Thetis model results and the
xperimental data. Note that in all meander figures the flow is from the
ottom left to the bottom right. For this test case, we use the same set-
p as in Clare et al. (2021) and refer the reader there for the parameter
alues used.
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Fig. 2. Normalised bedlevel evolution from hydro-morphodynamic model in Thetis with experimental data from Yen and Lee (1995) for the Meander test case.
Source: Clare et al. (2021).
4.1. Tangent linear approach to local sensitivity analysis

This meander test case is also studied in Riehme et al. (2010), where
hey analyse the local sensitivity of the bedlevel evolution to uncer-
ain parameters in the hydrodynamic Telemac-2D and morphodynamic
isyphe components of the Telemac-Mascaret model, hereafter Sisyphe.
hey use the First Order Reliability Method (FORM) to calculate the
uantity 𝜎𝐽sen, which is referred to in Riehme et al. (2010) as the
tandard deviation but we refer to as the scaled gradient to avoid
onfusion with the standard deviation of the parameter. The scaled
radient is defined as

𝐽sen = 𝜎𝑚
𝜕𝐽sen
𝜕𝑚

|

|

|

|𝑚=⟨𝑚⟩
, (19)

where 𝐽sen is the bedlevel evolution, a spatially-varying field (i.e. 𝐽sen =
𝑧final
𝑏 − 𝑧initial

𝑏 ). The derivative is calculated using the tangent linear
pproach and ⟨𝑚⟩ and 𝜎𝑚 represent the mean and standard deviation of
he uncertain parameter, respectively, which must be estimated. Note
hat in Riehme et al. (2010), the standard deviation 𝜎𝑚 is assumed con-

stant and thus multiplying by 𝜎𝑚 merely scales the sensitivity without
altering its spatial pattern.

Therefore, as a first verification step of our Thetis-pyadjoint frame-
work, we compare the FORM analysis (19) using our model with that
from using Sisyphe for the two scalar parameters of average sediment
grain size, 𝑑50 and bed reference height 𝑘𝑠. Uncertainty quantification
for these parameters is important because both are challenging to
determine, particularly 𝑑50 which is difficult to measure in offshore
environments and may change seasonally (see Jaffe et al., 2016).
In addition, 𝑘𝑠 determines the bed friction, to which hydrodynamic
models are highly sensitive (see e.g. Merkel et al., 2013; Warder et al.,
2021). Following Riehme et al. (2010), we assume a mean of 1 × 10−3 m
for 𝑑50 and 3 × 10−3 m for 𝑘𝑠, and a standard deviation of 1 × 10−4 m for
both.

Fig. 3 shows the scaled gradient 𝜎𝐽sen of the bed evolution for
the scalar parameters 𝑑50 and 𝑘𝑠 computed using our model, whilst
Fig. 4 shows the same for Sisyphe taken from Riehme et al. (2010).
Their comparison reveals that the distribution of the scaled gradient
is consistent for both parameters. Furthermore, at the outer bend, the
magnitude of the scaled gradient determined by our model is very
similar to that determined by Sisyphe for both 𝑑50 and 𝑘𝑠. At the inner
bend, however, the Sisyphe model predicts a greater scaled gradient
magnitude for both 𝑑50 and 𝑘𝑠. These magnitude differences are to be
expected because the models are constructed slightly differently and
the Thetis final bedlevel results are more accurate than Sisyphe’s when
compared against experimental data (see Figure 11 in Clare et al.,
2021). Moreover, the FORM analysis with Sisyphe is limited because
5

the tangent linear approach is only applied to the morphodynamic
component of the model (see Riehme et al., 2010 for more details).
In contrast, our Thetis model computes the gradient for the fully cou-
pled hydro-morphodynamic model, hence arguably producing more
accurate results.

Addressing the uncertainty of the fully coupled model to 𝑘𝑠 is espe-
cially important because this parameter is key in determining both the
sediment transport rate in the morphodynamic component and the bed
friction in the hydrodynamic component. To investigate this further,
we experimented with keeping 𝑘𝑠 constant in the hydrodynamic com-
ponent of our Thetis framework. Note this still does not make the two
models set-ups identical because the 𝑘𝑠 in the morphodynamics causes
changes in the hydrodynamics not accurately captured by Sisyphewhich
then causes changes in the morphodynamics and so forth. However, this
Thetis result agrees more closely with that from Sisyphe, although these
results are not included here for brevity.

In summary, the spatial patterns of the scaled gradients are similar
between Thetis and Sisyphe providing confidence in our Thetis-pyadjoint
framework implementation.

4.2. Adjoint approach to local sensitivity analysis

The tangent linear analysis above calculates the local sensitivity
of the bed everywhere to a single scalar parameter 𝑚 evaluated at
a specific point. In contrast, a key advantage of using the adjoint
approach is that we can determine the local bed sensitivity to more than
one scalar and/or to a spatially-varying parameter using a single run. In
this section, we choose the latter option and analyse the sensitivity of
the meander bed to the now assumed to be spatially-varying parameters
𝑑50 and 𝑘𝑠, using (10) as the integrated functional where 𝑢model is the
final bedlevel.

Figs. 5(a) and 5(b) show the local sensitivity of the bedlevel to the
spatially-varying parameters 𝑑50 and 𝑘𝑠, respectively, where we have
evaluated the derivative of the functional (10) at 𝑑50 = 1 × 10−3 m
everywhere and at 𝑘𝑠 = 3 × 10−3 m everywhere, since these are the
values used in the test case (see Clare et al., 2021). Given (10) and that
the meander bedlevel is centred around zero, positive sensitivity means
altering the uncertain value here causes more overall bed movement
compared to the unperturbed final bedlevel, and vice versa. The figures
show that the most positive sensitivity region for 𝑘𝑠 is at the centre of
the channel, whereas for 𝑑50 it is on the left, at the flow input.

To better understand the computed local sensitivities, we perturb
both uncertain spatially-varying parameters from their original value in
the direction of the derivative by adding their respective gradient fields
(depicted in Figs. 5(a) and 5(b)) multiplied by 10−6. We then calculate
the difference between the original and perturbed final bathymetries
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Fig. 3. Scaled gradient of bed evolution (19) as a result of different scalar parameters using a tangent linear approach in the Thetis-pyadjoint framework for the Meander test case.
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Fig. 4. Scaled gradient of bed evolution (19) as a result of different scalar parameters
sing a tangent linear approach in Sisyphe for the Meander test case. Left: 𝑑50; Right:
𝑠.
ource: Riehme et al. (2010).

s spatially varying fields. Note that a positive value indicates that per-
urbing the uncertain value results in more deposition and a negative
alue that it results in more erosion.

Fig. 6(a) shows that perturbing 𝑑50 causes increased deposition at
he outer bend of the inflow. This can be explained physically: from
ig. 5(a), the perturbation results in a larger sediment grain size at
he inflow, which only the faster velocity at the outer bend can erode.
his sediment also gets deposited quickly because of its mass, meaning
he overall effect is increased deposition in this area. In the rest of
he domain, the perturbation in 𝑑50 accentuates the sediment transport
atterns already present in the original final bedlevel (see Fig. 2), which
s a sensible result.

Perturbing 𝑘𝑠 causes increased deposition at the inflow and in-
reased erosion at the outflow and within this trend more deposition
t the inner bend and more erosion at the outer bend, as shown in
ig. 6(b). This has a physical explanation, as increasing the friction in
region decreases the velocity there, leading to increased deposition,
ith the inverse also true. The different behaviour at the inner and
uter bend can be explained by two reasons: (i) from Fig. 5(b), the
riction perturbation is lower at the outer bend, meaning flow is pushed
owards this region which leads to increased erosion; (ii) the velocity
s naturally faster at the outer bend due to the helical flow effect, and
hus is less affected by the friction increase.

Thus, the results in this section demonstrate that our Thetis-
yadjoint framework can accurately analyse the sensitivity of our
odel to uncertain spatially-varying parameters for a complex test case.
6

t

. Optimum parameter calibration for a migrating trench

As discussed in Section 2.1, adjoint methods can also be used to
alibrate for uncertain parameters. We illustrate this by considering
migrating trench which has already been verified and validated for

ur hydro-morphodynamic model in Clare et al. (2021) and for which
xperimental data exists in Van Rijn (1980). Throughout this section,
nless otherwise stated, we use the set-up of Clare et al. (2021) with a
esh of 𝛥𝑥 = 0.25m and 𝛥𝑦 = 0.2m and a morphological acceleration

actor, 𝑚𝑓 , of 100.

.1. Dual twin experiment

We first conduct a dual-twin experiment, where the ‘true’ output is
enerated by a previous model run. Thus, we know the value of the ‘un-
ertain’ parameter and can verify that our framework can reconstruct
t. Given we are not trying to match with experimental data and for
easons of time, the simulation is only run for 5 h instead of the full
xperimental time of 15 h.

To be consistent between the dual twin experiment and the calibra-
ion in Section 5.2, we assume here that the 𝑧true

𝑏 profile is only known
t certain locations, as is the case with real world data. Following Saito
t al. (2011), we extract the bedlevel at these locations by multiplying
he model bedlevel and the ‘true’ 𝑧𝑏 by a Gaussian function centred at
he experimental data locations, 𝑥𝑖

̂𝑏(𝑥; 𝑥𝑖) = 𝑧𝑏 ×
(

exp−50(𝑥−𝑥𝑖)
2
)

, (20)

here the exponent is scaled by 50 to ensure the base of the Gaussian
unction is narrow around 𝑥𝑖 and we use our knowledge of the test case
o assume no variation in the 𝑦−direction. Thus, the general functional
12) from Section 2.1 becomes

inv(𝑧𝑏, 𝑚) =
1
2

𝑘
∑

𝑖=1
𝛼𝑖

∫𝛺
|

|

|

𝑧̂model
𝑏 (𝑥; 𝑥𝑖) − 𝑧̂true

𝑏 (𝑥; 𝑥𝑖)
|

|

|

2
𝑑𝑥

∫𝛺
|

|

|

exp−50(𝑥−𝑥𝑖)2 ||
|

2
𝑑𝑥

, (21)

here 𝑘 is the number of experimental data points and the Gaussian
unction has been normalised. Recall that 𝛼𝑖 is a user-defined scaling
actor which here we set equal to 1000 for all 𝑖. The integral over time
n (12) is unnecessary because the experimental data only exists at one
oint in time.

One of the advantages of adjoint methods is that the number of un-
ertain parameters has almost no effect on the computational cost and
herefore here we choose to reconstruct multiple uncertain reference
arameters at once. Note that unlike in the previous section, we con-
ider them to be spatially-constant. For our uncertain parameters, we
hoose 𝑑50 and 𝑘𝑠 because they are both key in determining sediment
ransport rate (see Section 4), the sediment density 𝜌𝑠 because it follows

hat if sediment size is uncertain then sediment density may also be
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Fig. 5. Sensitivity of integrated bedlevel to different spatially-varying parameters for the Meander test case using the Thetis-pyadjoint framework. A positive value indicates
increasing the uncertain values at this location increases the bedlevel change and vice versa for a negative value.
Fig. 6. Difference between the original and the perturbed final bathymetries as a spatially varying field simulated using Thetis, where the perturbed bedlevel is obtained by
perturbing the uncertain spatially-varying parameters from their original value in the direction of their derivative, for the Meander test case. Note a positive value indicates more
deposition and a negative value more erosion.
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uncertain, and the diffusivity parameter 𝜖𝑠 because Clare et al. (2021)
show this test case is very sensitive to it. To generate the ‘true’ output,
we use the values 𝜌𝑠 = 2000 kgm−3, 𝑑50 = 2 × 10−4 m, 𝑘𝑠 = 0.01m and
𝜖𝑠 = 0.01m2 s−1. We then use 𝜌𝑠 = 2650 kgm−3, 𝑑50 = 1.6 × 10−4 m,
𝑘𝑠 = 0.025m and 𝜖𝑠 = 0.15m2 s−1 as the initial guesses to start
the optimisation algorithm. Note, because these four parameters have
different orders of magnitude, to ensure the optimisation algorithm
works, we scale them by multiplying them by one over their order of
magnitude so that the scaled parameters all have order of magnitude
of 1. Naturally, within the forward model, these are then re-scaled to
ensure physically correct results.

Fig. 7(a) shows that the reduced functional (21) decreases at each
teration of the optimisation algorithm . This results in a general error
eduction in the scaled 𝜌𝑠, 𝑑50, 𝑘𝑠 and 𝜖𝑠 shown in Fig. 7(b). However,
his reduction is not always smooth, as is common in similar non-
inear multi-parameter problems. A better metric to look at is the total
rror (i.e. the sum of the error from the four individual parameters)
hich does decrease more uniformly. Furthermore, at the final iter-
tion, the error between the reconstructed and actual scaled values
as an approximate order of magnitude of 10−3 or better for all four
arameters, corresponding to an unscaled order of magnitude error
f approximately 1 × 10−2 kgm−3 for 𝜌𝑠, 1 × 10−9 m for 𝑑50, 1 × 10−5 m
or 𝑘𝑠 and 1 × 10−5 m2s−1 for 𝜖𝑠. A smaller error could be achieved
y reducing the tolerance in the optimisation algorithm, but these
rrors are already much smaller than mesh or model error. Thus, they
emonstrate that adjoint methods can be used to calibrate for multiple
7

h

patially-constant parameters in the hydro-morphodynamic model in
ne simulation.

.2. Calibration of parameters for a laboratory test case

Following the verification of our adjoint framework, we can now
se the same method to perform uncertain parameter calibration with
xperimental data, for the four uncertain parameters 𝜌𝑠, 𝑑50, 𝑘𝑠 and 𝜖𝑠.
e use the same migrating trench test case set-up as in Section 5.1

ut now run the simulation for the full experimental time (15 h) and
et the true values in (21) to be the experimental data in Van Rijn

(1980). As in Section 5.1, we scale the parameters so that they all have
an approximate order of magnitude of 1. Furthermore, to ensure the
optimum values obtained are physical and do not blow up during the
optimisation, we add Tikhonov regularisation to (21):

𝐽inv(𝑧𝑏, 𝑚) =
𝑘
∑

𝑖=1
𝛼𝑖

∫𝛺
|

|

|

𝑧̂model
𝑏 (𝑥; 𝑥𝑖) − 𝑧̂true

𝑏 (𝑥; 𝑥𝑖)
|

|

|

2
𝑑𝑥

∫𝛺
|

|

|

exp−50(𝑥−𝑥𝑖)2 ||
|

2
𝑑𝑥

+
𝑁in
∑

𝑖=1
𝛽𝑖 ∫𝛺

|

|

𝑚𝑖
|

|

2 𝑑𝑥,

(22)

here the ‘true’ value is taken to be the experimental data in Van Rijn
1980), 𝛼𝑖 is equal to 1000, and 𝛽𝑖 is equal to 10−7 for 𝜌𝑠, 𝑑50 and
𝑠, and equal to 5 × 10−8 for 𝜖𝑠, because Clare et al. (2021) shows 𝜖𝑠

as a large impact on the final result. For the initial guesses for the
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Fig. 7. Using adjoint methods to find reference sediment parameters 𝑑50, 𝜌𝑠, 𝑘𝑠 and 𝜖𝑠 for the Trench test case.
Fig. 8. Using adjoint methods to find optimum diffusivity parameter, 𝜖𝑠, for the Trench test case.
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optimisation algorithm, we use the original parameter values for this
test case from Clare et al. (2021).

Clare et al. (2021) conduct parameter calibration for this test case
for 𝜖𝑠 using trial-and-error, and estimate an optimum value of 𝜖𝑠 =
0.15m2 s−1. Therefore, as a first test, 𝜖𝑠 is considered uncertain. Fig. 8(a)
hows the functional decreases with each iteration, and Fig. 8(b)

shows how this leads to the convergence of 𝜖𝑠 to an optimal value of
0.183m2 s−1, which is close to the value estimated in Clare et al. (2021),
giving further confidence in our adjoint framework.

Given this result, we now calibrate for the optimum values of all
four parameters. Fig. 9(a) shows that the functional value decreases
with each iteration due to the error term value in the functional
decreasing. Note that the regularisation term increases in value with
each iteration but remains substantially lower than the error term
throughout. Fig. 9(b) shows that the decrease in the overall functional
value leads to the convergence of all four parameters to optimal values.
The parameters shown in the figure are the scaled ones and therefore
the actual optimum value of 𝜌𝑠 is 2511 kgm−3; of 𝑑50 is 1.99 × 10−4 m;
of 𝑘𝑠 is 0.0341m and of 𝜖𝑠 is 0.321m2 s−1. Note the optimum 𝜖𝑠 value
here is much greater than its value when we optimised for 𝜖𝑠 on its
own, showing a clear difference in results if parameters are optimised
individually or in a group. To summarise, the optimum sediment is
less dense, larger, erodes less easily and diffuses at a greater rate than
assumed in the original simulation.
8

e

Fig. 10(a) compares the final bedlevel obtained using either all four
optimum parameters, just the optimum diffusivity parameter, or the
original values from Villaret et al. (2016). It shows that 𝜖𝑠 has the
largest impact on accuracy, but that using optimum choices for all four
parameters improves the accuracy further, in particular the gradient of
the slope. In order to test the robustness of these optimum parameters
we re-run the test case using a coarser mesh of 𝛥𝑥 = 1m (compared
to the 𝛥𝑥 = 0.25m mesh used originally), although the initial trench
profile is not well defined for this coarser mesh. Fig. 10(b) shows the
ccuracy improvements with the coarser mesh are similar to before,
ncluding the improved gradient from using four optimal parameters.
his suggests these optimum parameters are not resolution dependent
nd thus that our adjoint framework can accurately calibrate multiple
ncertain scalar parameters in this test case.

. Tsunami inversion

As our final test case, we consider a tsunami-like event. Tsunami
vents are often difficult to simulate due to the large array of uncertain
arameters, especially for historical scenarios where the only record
s in the form of sediment deposits (e.g. Tang et al., 2018; Dourado
t al., 2021). These uncertain parameters are often estimated by using
ducated guesses in a forward model and adjusting their value accord-
ngly by comparing the model results with the data (see e.g. Dourado

t al., 2021). A more sophisticated approach is to use tsunami inversion
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Fig. 9. Using adjoint methods to find optimum sediment density, 𝜌𝑠; sediment size 𝑑50; bed reference height, 𝑘𝑠; and diffusivity parameter 𝜖𝑠 for the Trench test case.
Fig. 10. Final bedlevel on both a fine and coarse mesh as a result of using the original parameters from Villaret et al. (2016); the optimum 𝜖𝑠 parameter; and the optimum 𝜌𝑠,
𝑑50, 𝑘𝑠 and 𝜖𝑠 parameters for the Trench test case. For comparison the experimental data is also shown demonstrating the accuracy improvements from using the values obtained
using the adjoint method.
models such as TSUNFLIND (see Tang and Weiss, 2015) which has
been coupled with statistical methods in Tang et al. (2018). However,
these inversion models do not have the full capabilities of standard
forward models, for example TSUNFLIND cannot model bedload trans-
port. Tsunami events are therefore an ideal scenario on which to apply
our hydro-morphodynamic adjoint framework. For our test case, we
consider the experiment in Kobayashi and Lawrence (2004), where a
series of tsunami-like solitary waves break over a sloping beach.

6.1. Forward model set-up and results

For this test case not all of the domain is wet, hence we use
the wetting-and-drying version of the hydro-morphodynamic model
detailed in Section 3.1. The beach slope also requires the use of the
sediment slide mechanism (detailed in Clare et al., 2022).

Following Kobayashi and Lawrence (2004), the wave is simulated
by imposing the following free surface elevation boundary condition at
the open boundary

𝜂(𝑡) = 𝐻wave sech
2

(
√

3𝐻wave
4ℎ

√

𝑔(𝐻wave + ℎ)
ℎ

(𝑡 − 𝑡max)

)

+ 𝜂down, (23)

which causes a tsunami-like solitary wave to travel into the domain.
Here 𝐻wave is the average wave height, ℎ the still water depth, 𝑡max the
arrival time of the wave crest at the open boundary and 𝜂down the initial
decrease of the elevation at the beginning of the simulation (also the
initial elevation in the domain). Our model cannot currently simulate
9

shoaling and breaking waves and thus a relatively high viscosity value
of 0.8m2s−1 is used in the hydrodynamics to dissipate energy. This is
standard practice, for example Li and Huang (2013) view viscosity as
a model calibration parameter for energy dissipation, rather than a
physical parameter.

The remaining parameters, taken from Kobayashi and Lawrence
(2004) and Li and Huang (2013), are summarised in Table 2. Note Li
and Huang (2013) run the simulation for 40 s with 𝑡max = 23.9 s for each
solitary wave, but the system is stationary for the first 20 s. Therefore
we only run our model simulation for 20 s with 𝑡max = 3.9 s for each
solitary wave. Furthermore, we found that our final model results are
fairly insensitive to the morphological acceleration factor, 𝑚𝑓 . Hence,
here we set 𝑚𝑓 equal to four, meaning we only need to model two
solitary waves to simulate the bed changes caused by the eight waves
in the experiment.

Fig. 11 shows there is good agreement between our forward model
results and the experimental data obtained in Kobayashi and Lawrence
(2004). For comparison, this agreement is more than competitive with
that shown between the results and the experimental data for a similar
test case in Kazhyken et al. (2021) which uses a dispersive wave model.
Thus, our forward model is validated for this test case and we proceed
to using the adjoint framework.

6.2. Reconstructing reference wave from sediment deposits

As discussed in Section 1, the adjoint method is ideally suited to
cases where there are multiple uncertain parameters. In this section,
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Table 2
Parameter values for the Tsunami test case.

Variable name Variable value

Length in 𝑥-direction 30m
Length in 𝑦-direction 4m
Bed slope 1/12
𝛥x = 𝛥𝑦 0.2m
dt 0.05 s
Morphological simulation time 20 s × 2
Morphological acceleration factor 4 (thus 2 waves only)
Median particle size (𝑑50) 1.8 × 10−4 m
Sediment density (𝜌𝑠) 2650 kgm−3

Water density (𝜌𝑓 ) 1000 kgm−3

Bed sediment porosity (𝑝′) 0.4
Diffusivity (𝜖𝑠) 1m2 s−1

Chezy friction coefficient (𝑛) 65m1∕2s−1

Angle of repose 22◦

Wetting-and-drying parameter 1∕30m
Norm smoother parameter (𝛽) 1∕60m s−1

𝐻wave 0.216m
h 0.18m
𝜂down −0.0025m
𝑡max 3.9 s

Fig. 11. Final bedlevel simulated by Thetis compared to experimental data
rom Kobayashi and Lawrence (2004) after eight solitary waves for the Tsunami test

case.

we consider the inflow tsunami-like wave boundary condition to be
the uncertain time-varying spatially-constant parameter, and use a dual
twin experiment to verify our adjoint framework’s ability to reconstruct
it. For the dual twin, the ‘true’ data is the bedlevel generated by the
reference wave (23) at every timestep. Given we are not matching with
experimental data and for reasons of time, here we only run one wave
in our simulation but still use a morphological acceleration factor of
four, meaning this is equivalent to simulating four waves. For our initial
guess for the optimisation algorithm, we assume the wave was caused
by a sudden rupture in the Earth’s crust causing a discontinuous wave
profile

𝜂initial(𝑡) =

{

0.05m 𝑡 < 7.5 s,
0m otherwise,

(24)

as shown in Fig. 13. Note, only the first 10 s of the wave are considered
to be uncertain because we know the ‘true’ free surface perturbation is
only non-zero at the boundary between 2 s and 6 s, so considering the
whole time region is unnecessary.

For the reduced functional, we use (22) with a time integral and
𝛽𝑖 = 10−4 in the regularisation term, and centre the Gaussian functions
(20) at the experimental data locations in Kobayashi and Lawrence
(2004). Fig. 12(a) shows that the reduced functional, and the error
and regularisation terms within it, decrease as the number of iterations
10

of the optimisation algorithm increases. Notably, even when the value
of the regularisation term is larger than that of the error term, the
latter is still decreasing. This minimisation of the functional results
in the convergence of the L1 error norm between the reference input
and model input waves, as shown in Fig. 12(b). The effect of the
minimisation on the model wave itself is shown in Fig. 13, revealing
the model wave has the correct general shape already by iteration 50.
Finally, the figure shows the final iteration approximates the reference
wave very well, with the only discrepancy being that our adjoint frame-
work slightly under-predicts the waveheight. This is because as the
waveheight approaches the right range, the impact of the waveheight
on the underlying bed decreases. This can be seen in Fig. 12(a) which
shows that the difference between the error term value at iteration
50 and the value at the final iteration is small, despite the fact that
Fig. 13 shows that the difference in the waveheight of the two waves
at these iterations is relatively large. To summarise, this test case has
shown that our adjoint framework is capable of reconstructing an input
solitary wave from sediment deposits, illustrating that we can apply our
framework to real data.

6.3. Finding the optimum wave from sediment deposits

We now consider the inversion of the wave from the experimen-
tal sediment deposit data in Kobayashi and Lawrence (2004). This
data only exists for the final bedlevel and thus the problem would
be ill-posed without regularisation terms in our reduced functional.
Moreover, we add a regularisation term to enforce continuity in the
wave because using the same reduced functional as in Section 6.2 was
observed to result in large jumps in waveheight. Therefore, the reduced
functional is

𝐽inv(𝑧𝑏, 𝑚) =
𝑘
∑

𝑖=1
𝛼𝑖

∫𝛺
|

|

|

𝑧̂model
𝑏 (𝑥; 𝑥𝑖) − 𝑧̂true

𝑏 (𝑥; 𝑥𝑖)
|

|

|

2
𝑑𝑥

∫𝛺
|

|

|

exp−50(𝑥−𝑥𝑖)2 ||
|

2
𝑑𝑥

+
𝑁in
∑

𝑖=1
𝛽𝑖 ∫𝛺

|

|

𝑚𝑖
|

|

2 𝑑𝑥 +
𝑁in
∑

𝑖=2
𝛾𝑖 ∫𝛺

|

|

𝑚𝑖 − 𝑚𝑖−1
|

|

2 𝑑𝑥,

(25)

here 𝑚𝑖 represents the input wave at time 𝑡𝑖, the scalar parameters are
𝑖 = 1, 𝛽𝑖 = 5 × 10−6 and 𝛾𝑖 = 5 × 10−2, and the Gaussian functions are
entred at the experimental data locations.

To ensure stability, we enforce the wave elevation to be 0m at both
he start and end of the simulation, and only consider the wave to
e uncertain during the middle of the simulation, where we initialise
he optimisation algorithm using an initial elevation of 0.05m (see
ig. 15(a)). This replicates the initial guess of a discontinuous wave
rofile from Section 6.2. All model parameters are as described in
ection 6.1 and we simulate two solitary waves with a morphological
cceleration factor of four because we are comparing against real data.

Fig. 14 shows the reduced functional (25) decreases as the number
of iterations of the optimisation algorithm increases, causing the value
of the error term in (25) to decrease. The trend in the magnitude
and continuity regularisation terms is less uniform, but can be loosely
interpreted as follows: for the first 20 iterations the optimisation al-
gorithm minimises the continuity term, from 20 to 30 iterations it
minimises the error term at the expense of the magnitude term and after
iteration 30 it again minimises the continuity term. This interpretation
is confirmed by the differences between iterations 20, 30 and the final
one in Fig. 15(a).

Fig. 15(a) compares the optimum wave found in this section with
the theoretical solitary wave (23) that Kobayashi and Lawrence (2004)
used to describe the incoming wave observed in their experiment. It
shows our optimum wave has a wider base and a smaller amplitude
than (23). Consequently, Fig. 15(b) shows the simulated bedlevel from
the optimum wave has very good agreement with the experimental data
and this agreement is much better than that with the theoretical wave,
particularly in the area of deposition between 5m and 10m. Therefore,
our adjoint framework can be used to invert accurately for tsunami-like
waves from final bedlevel sediment deposits, which is a very promising

result.
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Fig. 12. Using adjoint methods to reconstruct the reference wave for the dual-twin experiment of the Tsunami test case.
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Fig. 13. Comparing the model wave at a series of different iterations of the optimisa-
tion algorithm (including the final iteration) with the reference wave for the dual-twin
experiment in the tsunami test case.

7. Conclusion

In this work, we have developed the first freely available and fully
flexible adjoint hydro-morphodynamic framework. By fully flexible we
mean that the use of pyadjoint allows us to assess any parameter
ncertainty in the hydro-morphodynamic model with respect to any
unctional. Hence, we have shown that our framework can perform
alibration, inversion or sensitivity analysis of multiple uncertain pa-
ameters in a single model run and have verified these capabilities
sing dual-twin experiments. Moreover, we showed that these inversion
nd calibration capabilities can produce physically-sensible results with
xperimental data and that the optimum parameters obtained using
hese methods result in more accurate final bedlevels. Notably, we
howed that our approach is capable of reconstructing the shape and
agnitude of incoming waves from the resulting sediment deposits.
he next stage of our work will be to apply our approach to historical
sunami sediment deposits to invert for the tsunami wave. This will
ontribute to a better understanding of historical tsunami events and
elp mitigate the impacts of future events.

Moreover, as the dimension of the uncertain parameters has little
ffect on the computational cost, our framework is capable of managing
he uncertainty of spatially-varying parameters. Thus, we showed that
single run of our adjoint framework can determine where changing
11

he friction and sediment size causes the greatest bed level change, for E
example. Obtaining this type of information using other methods, such
as Monte Carlo or via the tangent linear approach, is either impractical
or much more computationally expensive. Therefore, the knowledge
gained through our adjoint framework can be invaluable to a variety
of users and stakeholders in understanding and mitigating the impacts
of coastal and fluvial hazards.
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Fig. 14. Minimisation of the reduced functional as the number of iterations increases for the optimum wave for the Tsunami test case. The convergence of the error term and
the change in the magnitude and continuity regularisation terms in (25) are also shown separately.
Fig. 15. Comparing the optimum wave found by our adjoint framework with the theoretical solitary wave (23) that Kobayashi and Lawrence (2004) used to describe the incoming
wave observed in their experiment, for the Tsunami test case.
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