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ABSTRACT 

This paper presents a new beam-column formulation which can be used for the accurate, yet 

efficient, modelling of 3D reinforced concrete (R/C) frames. The formulation is intended for 

modelling the nonlinear elastic behaviour of a whole R/C beam-column with only one element, 

which is an essential ingredient of adaptive elasto-plastic analysis. On the longitudinal axis 

level, quartic shape functions are used to represent the two transverse displacements. A 

constant axial force criterion is employed instead of shape functions for the axial displacement, 

which is largely responsible for the accuracy of the proposed formulation. For concrete, the 

formulation assumes a nonlinear compressive stress-strain relationship and no tensile 

resistance; whereas for steel, a linear stress-strain relationship is utilised. On the cross-

sectional level, the formulation is capable of modelling the interaction between the axial force 

and the biaxial moments for a general R/C cross-section, with explicit expressions obtained 

using a novel approach based on integration over triangular subdomains. The paper provides 

the details of the proposed formulation, and presents several verification examples to 

demonstrate the accuracy of this formulation and its ability to model the nonlinear elastic 

response of reinforced concrete beam-columns with only one element per member. 
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1. INTRODUCTION 

The need to predict the nonlinear response of structures, up to and beyond failure of individual 

components, has been the main motivation behind the development of new nonlinear structural 

analysis methods over the past few decades. For reinforced concrete (R/C) structures, the 

emergence of geometrically nonlinear finite element formulations has been accompanied by the 

development of advanced constitutive models for concrete and its interaction with steel 

reinforcement (Vidosa et al., 1991; Chen and Saleeb, 1994). However, although two- and 

three-dimensional finite element formulations can provide an accurate representation of the 

nonlinear response of R/C members, they pose excessive computational demands which 

prevent their application to realistic structural assemblages. Consequently, one-dimensional 

formulations have been widely recognised as the most realistic alternative approach for the 

nonlinear response prediction of R/C framed structures, combining modelling benefits, 

computational efficiency and reasonable accuracy. 

The conventional one-dimensional modelling approach is based on using a considerable 

number of elasto-plastic elements for each member of the structure, so that the nonlinear 

response of the member is represented adequately. This approach can be prohibitively 

expensive, since it requires the use of computationally expensive elasto-plastic elements in all 

parts of the structure and from the start of analysis. Adaptive nonlinear analysis has recently 

emerged as the most effective approach for dealing with such computational inefficiencies, 

achieving computational savings of at least 75% in comparison with conventional nonlinear 

analysis of 3D steel frames (Izzuddin & Elnashai, 1993-a) and 2D R/C frames (Karayannis et 

al., 1994). This superiority is attained by adaptive analysis through employing one elastic 

element per member at the start of analysis, and applying automatic mesh refinement into 

elasto-plastic elements only when and where necessary, during analysis and within the 
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structure, respectively. Central to this concept of adaptive analysis is the availability of an 

accurate and simultaneously efficient elastic formulation which is capable of modelling the 

geometrically nonlinear elastic response of a whole member using only one element. 

In formulating a nonlinear one-dimensional element, the two main considerations are i) the 

determination of the cross-section response and ii) the integration of the cross-section 

response over the element length to obtain the element response in terms of available element 

freedoms. 

With regard to the first consideration, three main approaches have been widely adopted to 

determine the influence of concrete nonlinearity on the cross-section response. The first 

approach provides explicit expressions for the cross-section response parameters but has been 

restricted mainly to 2D frame analysis. Furthermore, most expressions have been provided for 

rectangular cross-sections (Rasheed & Dinno, 1994), although a superposition technique 

applicable to general nonlinear elastic cross-sections was proposed by Izzuddin et al. (1994). 

The second approach employs interaction relationships on the cross-sectional level, based 

mainly on principles of plasticity (Sfakianakis & Fardis, 1991), but has also been restricted to 

rectangular cross-sections. The third approach, commonly known as the fibre approach, is 

applicable to cross-sections of various shapes and materials, and is based on discretising the 

cross-section into a large number of small areas (Izzuddin & Elnashai, 1993-a; Spacone & 

Fillipou, 1994; El-Metwally et al., 1990) over which material stresses and strains are 

monitored. The latter approach is clearly more general; it is directly applicable to 3D frames, 

general cross-sections and elasto-plastic analysis. However, its computational requirements 

are evidently excessive in comparison with the former explicit approach, and cannot be 

justified for cross-sections which remain elastic. One aim of this work is to extend the explicit 

approach of Izzuddin et al. (1994) to model general elastic R/C cross-sections for 3D frame 

analysis. 

With regard to the second consideration, displacement based finite element concepts are 

widely utilised, where polynomial shape functions are assumed for the transverse and axial 
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centroidal displacements along the element length. Depending on the order of polynomials 

used, the resulting formulations can exhibit an over-stiff response, particularly for R/C 

members which are subject to tensile cracking. This is mainly attributed to the violation of 

equilibrium along the element length when the displacement fields are prescribed to vary 

according to low order shape functions. Spacone et al. (1996) proposed a flexibility-based 

approach which enforces equilibrium along the element, but which satisfies displacement 

compatibility and the constitutive section response approximately to within a specified 

tolerance. However, this approach cannot readily incorporate geometric nonlinearities in the 

local element system; it requires a flexibility formulation for the cross-section response which 

may not be available if the cross-section is on a failure surface; and it poses considerable 

computational demands associated with the calculation and storage of the flexibility matrices 

of the various cross-sections. A hybrid elastic beam-column element for 2D R/C frames was 

proposed by Izzuddin et al. (1994), where quartic shape functions are used for the transverse 

displacements, and axial equilibrium is enforced over the element length, thus avoiding the use 

of shape functions for the axial displacement. This formulation was shown to provide accurate 

and efficient geometrically nonlinear elastic analysis of 2D R/C frames (Izzuddin et al., 1994; 

Karayannis et al., 1994), thus asserting its suitability for nonlinear adaptive analysis. 

Therefore, another aim of this work is to extend the aforementioned formulation to elastic 

beam-columns featuring in 3D R/C frames. 

As mentioned above, this paper aims at extending a previous elastic R/C beam-column 

formulation for 2D frames (Izzuddin et al., 1994) to 3D frame analysis. The paper proceeds 

with providing the details of nonlinear cross-section modelling, where general R/C cross-

sections are discretised into coarse rectangular areas, and a novel approach based on 

integration over triangular subdomains is employed. This enables the interaction between the 

biaxial bending moments and the axial force to be represented explicitly and accurately for a 

general elastic R/C cross-section. Subsequently, the paper presents the element formulation in 

a local Eulerian system (Izzuddin & Elnashai, 1993-b), where the cross-section response over 

the element length is transformed into local element forces and tangent stiffness. This 
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transformation is established through utilising the constant axial force criterion, and assuming 

quartic shape functions for the transverse displacements. Furthermore, the use of the proposed 

elastic element as an essential component within adaptive elasto-plastic analysis of 3D R/C 

frames is discussed, where the considerable modelling and computational benefits of the 

overall adaptive method are highlighted. Finally, several verification examples, using the 

nonlinear analysis program ADAPTIC (1991), are presented to demonstrate the accuracy and 

efficiency of the proposed beam-column formulation in the elastic analysis of 3D R/C frames. 

2. PURPOSE AND ASSUMPTIONS 

The proposed one-dimensional formulation is intended for modelling the elastic response of 

3D R/C beam-columns using only one element per member, thus providing an essential  

ingredient for adaptive elasto-plastic analysis of 3D R/C frames (Izzuddin & Lloyd Smith, 

2000). Accordingly, this formulation does not in itself cater for such inelastic phenomena as 

the yielding of steel, compressive softening of concrete and the general hysteretic response of 

the two materials, all of which are instead considered on the level of the overall adaptive 

elasto-plastic analysis method, as discussed in Section 5. 

The following assumptions are made in the new formulation: 

1. Plane sections remain plane and normal to the longitudinal axis after flexural 

deformation; i.e. shear deformation is ignored. 

2. Full strain compatibility exists between the steel reinforcement and the surrounding 

concrete; i.e. bond-slip between concrete and reinforcement is not considered. 

3. The effect of concrete cracking on the torsional stiffness is ignored. Warping strains 

due to non-uniform torsion are neglected. 

4. Concrete is homogeneous in nature. Its uniaxial compressive response is parabolic in 

the elastic range. It cannot sustain tensile stresses, which is consistent with 
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conventional R/C section analysis (Morgan, 1971), where only the steel 

reinforcement provides tensile resistance. This simplified treatment of the tensile 

concrete response is justified by the fact that the proposed formulation, while elastic, 

is intended for use in adaptive elasto-plastic analysis of 3D R/C frames, principally in 

connection with the assessment of the ultimate limit state. 

5. Steel reinforcement can vary over the element length. The response of steel in the 

elastic range is linear, and the reinforcement does not buckle under compression. 

3. CROSS-SECTION RESPONSE 

With the previous assumptions, the response characteristics of a R/C cross-section can be fully 

defined in terms of four generalised strains (two biaxial curvatures, axial strain and twist) and 

four corresponding generalised stresses (two biaxial moments, axial force and torque). The 

relationship between the cross-sectional twist and torque is linear utilising the St. Venant‟s 

torsion constant. The relationship between the remaining three generalised stresses and strains 

depend on the chosen uniaxial material models for concrete and steel and the geometric 

representation of the cross-section, as discussed hereafter. 

3.1 Material Models 

For the steel reinforcement, a linear uniaxial stress-strain relationship is adopted in the elastic 

range: 

s  Es s  (1) 

where, sE  = Young‟s modulus of steel. 

For concrete, tensile stresses are ignored, and a piecewise parabolic-constant stress-strain 

relationship is assumed in the compressive range, as illustrated in Fig. 1. Although it is well 

established that the resistance of concrete reduces considerably beyond the crushing strain 
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(co ), the proposed elastic formulation is not applicable for this range of strains, since the 

response of concrete becomes elasto-plastic for strains approaching co . Consequently, a 

constant resistance is assumed beyond co  merely to provide numerical stability for the 

proposed formulation. In an elasto-plastic analysis utilising the proposed elastic formulation, 

the adaptive analysis technique would automatically replace an elastic element with fibre type 

elasto-plastic elements (Izzuddin & Elnashai, 1993-a) when it becomes inapplicable during 

analysis (Karayannis et al., 1994). 

The stress-strain relationship for concrete is conveniently expressed as the sum of two 

piecewise zero-parabolic functions: 

c   c1(c )    c2(c  co ) (2.a) 

where, 

c1(c)  k fc 2
c

co


c

co











2












       for   c  0.0  

c1(c)  0.0                                  for   c  0.0









 (2.b) 

and, 

c2( p)  k fc

p

co











2

     for  p  0.0 

c2( p)  0.0                    for  p  0.0









 (2.c) 

in which, k = confinement factor, fc  = concrete compressive strength, and co  = crushing 

strain of concrete. 

3.2 Geometric Representation 

In the proposed R/C formulation, the overall cross-section response is obtained from 

evaluating the contributions of the concrete material and the steel reinforcement. To establish 

the contribution of the concrete for a general R/C cross-section, the cross-section is divided 
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into a minimum number of rectangular areas over each of which the confinement factor can be 

assumed to be constant. This process is illustrated in Fig. 2 for a R/C T-section with different 

confinement factors ki for the inner core and ko for the outer cover. The overall cross-section 

response can be represented as the sum of the individual contributions of four rectangular 

concrete blocks, the first two having a confinement factor ko and the last two having a 

confinement factor (ki-ko), and the contribution of the steel reinforcement. The problem of 

determining the overall response of a R/C cross-section is reduced to establishing the response 

of a rectangular concrete block with a specific eccentricity from the origin of reference as well 

as the response of steel reinforcement, as discussed in detail hereafter. 

3.3 Generalised Response 

Taking the geometric centroid of a R/C cross-section as the origin of reference, the strain state 

of the cross-section, associated with normal uniaxial strains, can be fully defined by three 

independent generalised strains: the centroidal axial strain a  and the biaxial curvatures  y  

and  z. The constant axial force criterion is used to determine a , as discussed in a later 

section on the element level, whereas  y  and  z  are simply the second derivatives of the 

transverse displacements v(x) and w(x) of the element longitudinal reference line: 

y  v (x)  (3.a) 

z  w (x) (3.b) 

The three corresponding generalised stresses for the overall cross-section are determined from 

the contributions of the steel reinforcement and the rectangular concrete blocks: 

fa  fas  fac,i
i1

nc

  (4.a) 

my  mys  myc,i
i1

nc

  (4.b) 

mz  mzs  mzc,i
i1

nc

  (4.c) 
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where, 

fa , my,mz  = axial force and biaxial moments about centroid, 

fas, mys, mzs  = axial force and biaxial bending moments of the steel reinforcement, 

fac,i,myc,i ,mzc,i  = axial force and biaxial bending moments of concrete block (i), and 

n c  = number of rectangular concrete blocks. 

fas, mys, mzs  and fac,i,myc,i, mzc,i  are determined from the generalised strains a ,y, z , 

as discussed in the next two sections. 

The generalised tangent stiffness matrix t k  reflects the infinitesimal variation of the 

generalised stresses with the generalised strains on the overall cross-section level: 

t k 

fa

a

fa

y

fa

z

my

a

my

y

my

z

mz

a

mz

y

mz

z

























 (5.a) 

Again, t k  is obtained from the contributions of the steel reinforcement and the concrete 

rectangular blocks: 

 t k  tks  t kc ,i
i1

nc

 

fas

a

fas

y

fas

z

mys

a

mys

y

mys

z

mzs

a

mzs

y

mzs

z



























fac,i

a

fac,i

 y

fac,i

z

myc,i

a

myc,i

 y

myc,i

z

mzc,i

a

mzc,i

 y

mzc,i

z

























i1

nc

  (5.b) 

which are obtained explicitly in the following two sections. 

3.4 Response of Steel Reinforcement 



 10 

Given a set of generalised strains a ,y, z , the contribution of steel reinforcement to the 

generalised stresses is obtained from: 

s,i  a  y ys,i   z zs,i i  1,ns  (6.a) 

fas  Es As,i  s,i
i1

ns

  (6.b) 

mys  Es As,i s,i ys,i
i1

ns

  (6.c) 

mzs  Es As,i s,i zs,i
i1

ns

  (6.d) 

where, As,i , y s, i  and zs,i  are the area and distances from the cross-section origin of steel bar 

(i), respectively, and n s  is the number of reinforcement bars in the R/C cross-section. 

The contribution of steel reinforcement to the generalised tangent stiffness can be established 

from (6), and is expressed as: 

t ks  Es As,i

1 ys,i zs,i

ys,i ys,i
2

ys,i zs,i

zs,i ys,i zs,i zs,i
2



















i1

ns

  (7) 

3.5 Response of Concrete Block 

Consider a typical rectangular concrete block, as shown in Fig. 3. Considerable simplification 

in the explicit expressions for generalised stresses can be achieved through determining first 

the strains at the four block corners from the generalised strains: 

c,i  a  y yc
o
 i

a

2









  z zc

o
 i

b

2









      i = 1,4  (8.a) 

where, 
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1

1


















1

1
















;       

2

2


















1

1
















;      

3

3


















1

1
















;      

4

4


















1

1

















 (8.b) 

The contribution of the block to the generalised cross-section stresses can be conveniently 

determined with reference to the block maximal corner (m), defined as the corner having the 

largest compressive strain. This process involves weighted integrals of c  in (2.a) over the 

block area, each of which can be conveniently expressed as the sum of two weighted integrals 

of the piecewise zero-parabolic functions c1  and c2 , as detailed hereafter. The 

transformation of the local block response about (m) to generalised stresses and stiffness 

about the cross-section origin (O) is considered in a subsequent section. 

3.5.1 Contribution of c1 

In order to achieve simplified expressions for the generalised stresses, three convenient 

parameters  ccm,c s,r,  are first introduced in terms of the block corner strains: 

c,m  min c,i i = 1,4  (9.a) 

rc 
c,n

c,m

 (9.b) 

sc 
c,q

c ,m

 (9.c) 

where, c,m  is the maximum corner compressive strain (minimum algebraic value), the 

corresponding corner identified as the maximal corner (m). The remaining two terms rc  and 

sc  are ratios relative to c,m  of strains at the two corners n and q adjacent to m, in the y and z 

directions, respectively. 

The above three parameters can be used to define 6 different cases of integration domain over 

the rectangular block where the function c1  is non-zero, as illustrated in Fig. 4 for a maximal 

bottom left corner: 



 12 

Case 1 :  c,m  0                                                         (Nil domain)

Case 2 :  c,m  0,   rc  0,    sc  0                             (Triangular domain)

Case 3 :  c,m  0,   rc  0,   sc  0                             (Trapezoidal domain)

Case 4 :  c,m  0,   rc  0,    sc  0                             (Trapezoidal domain)

Case 5 :  c,m  0,    rc  0,   sc  0,   rc  sc 1  0    (Hexagonal domain)

Case 6 :  c,m  0,    rc  0,    sc  0,   rc  sc 1  0    (Full domain)
















 (10) 

The intersection of the domain boundary with the block edges meeting at the maximal corner 

is identified by two dimensions, obtained as: 

ac 
a

1 rc
 (11.a) 

bc 
b

1 sc

 (11.b) 

Case 1 is trivial corresponding to a zero contribution of function c1  to the generalised 

stresses and stiffness. 

Case 2 involves integration over a triangular domain, and leads to the following contribution 

of c1 to generalised stresses about the block maximal corner (m): 

fac1
m


kfc c,m(4co  c,m)ac bc

12 co
2  (12.a) 

myc1
m


kfc c,m(5co  c,m)ac

2
bc

60 co
2  (12.b) 

mzc1
m


k fc c,m(5co  c,m )ac bc

2

60 co
2  (12.c) 

The local block generalised tangent stiffness reflects the change in the generalised stresses 

with respect to generalised strains about (m). Noting the following relationship between the 

three parameters c,m , rc, sc  and the three generalised strains about (m): 

c,m  a
m

 (13.a) 

rc 
a

m  y
m a

a
m  (13.b) 
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sc 
a

m
  z

m
b

a
m  (13.c) 

and considering (9), (11) and (12), the generalised stiffness and can be established for Case 2 

as: 

fac1
m

a
m 

kfc (3co  c,m )ac bc

3 co
2  (14.a) 

fac1
m

y
m 

myc1
m

a
m 

k fc (4co  c ,m )ac
2

bc

12 co
2

 (14.b) 

fac1
m

z
m 

mzc1
m

a
m 

k fc (4co  c,m)ac bc
2

12 co
2  (14.c) 

myc1
m

y
m 

k fc (5co  c,m )ac
3
bc

30 co
2  (14.d) 

myc1
m

z
m 

mzc1
m

y
m 

k fc (5co  c,m)ac
2

bc
2

60 co
2  (14.e) 

mzc1
m

z
m 

k fc (5co  c,m)ac bc
3

30 co
2  (14.f) 

The generalised stresses for the remaining 4 cases of integration domain can be established 

through various combination of integrals over triangular domains. For example, cases (3) and 

(4) involve the integration over a trapezoidal domain, each of which can be expressed as the 

difference between two integrals over triangular domains, as illustrated for case (3) in Fig. 5. 

Similarly, the integral for case (5) can be expressed as the difference between an integral over 

a large triangular domain and two integrals over smaller triangular domains. Finally, the 

integral for case (6) can be obtained from a combination of integrals over four triangular 

domains. With the generalised stresses about (m) established explicitly, the generalised 

stiffness can be derived employing (9), (11), (12) and (13), as for case (2). 
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3.5.2 Contribution of c2  

Since the function c2  in (2.a) is non-zero only for a compressive concrete strain exceeding 

co , the three parameters of the previous section are modified to account for this 

consideration: 

p,m  min p,i i = 1,4  (15.a) 

rp 
 p,n

p,m

 (15.b) 

sp 
p,q

p,n

 (15.c) 

where, 

p,i  c,i  co i  1,4  (15.d) 

Again, 6 cases of integration domain can be identified according to conditions identical to 

(10), but using the modified parameters p,m,rp,sp . Similarly, expressions for ap  and bp  

identical to (11), but in terms of parameters rp  and sp , can be used to establish the 

intersection of the domain boundary with the edges meeting at the maximal corner. 

As previously for function c1, case 1 corresponds to a zero contribution for function c2  to 

the generalised stresses and stiffness about (m). 

For case 2, the contribution to the generalised stresses about (m) can be obtained as: 

fac2
m


k fc p,m

2 ap bp

12 co
2  (16.a) 

myc2
m


k fc p,m

2 a p
2 bp

60 co
2  (16.b) 

mzc2
m


k fc p,m

2 ap bp
2

60 co
2  (16.c) 
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with the generalised stiffness about (m) given by: 

fac2
m

a
m 

kfc p,m ap bp

3 co
2  (17.a) 

fac2
m

y
m 

myc2
m

a
m 

k fc p,m ap
2 bp

12 co
2

 (17.b) 

fac2
m

z
m 

mzc2
m

a
m 

k fc p,m a p bp
2

12 co
2  (17.c) 

myc2
m

 y
m 

k fc p,m a p
3 bp

30 co
2

 (17.d) 

myc2
m

 z
m 

mzc2
m

y
m 

k fc p,m a p
2 bp

2

60 co
2

 (17.e) 

mzc2
m

z
m 

k fc p,m ap bp
3

30 co
2  (17.f) 

The contribution of function c2  for the remaining 4 cases of integration domain can be 

determined in a similar manner to that of function c1 outlined in the previous section. 

3.5.3 Transformation to cross-section origin 

The contribution of a concrete block to generalised stresses and stiffness about the maximal 

corner (m) is the sum of the contributions from functions c1 and c2  established in the 

previous two sections: 

fac
m
 fac1

m
 fac2

m
 (18.a) 

myc
m
 myc1

m
myc2

m
 (18.b) 

mzc
m
 mzc1

m
 mzc2

m
 (18.c) 
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t kc
m


fac1
m

a
m

fac1
m

 y
m

fac1
m

z
m

myc1
m

a
m

myc1
m

 y
m

myc1
m

z
m

mzc1
m

a
m

mzc1
m

 y
m

mzc1
m

z
m





























fac2
m

a
m

fac2
m

y
m

fac2
m

z
m

myc2
m

a
m

myc2
m

y
m

myc2
m

z
m

mzc2
m

a
m

mzc2
m

y
m

mzc2
m

z
m



























 (18.d) 

Noting the following relationship between the generalised strains about the cross-section 

origin (O) and the maximal corner (m): 

a
m

y
m

 z
m























 Tm

a

y

 z





















1 yc
o
 m

a

2
zc

o
 m

b

2

0 m 0

0 0 m





















a

y

z



















 (19) 

it can be shown that the contribution of a concrete block to generalised stresses and stiffness 

about (O) can be determined from: 

fac

myc

mzc



















 Tm
T

fac
m

myc
m

mzc
m























 (20.a) 

t kc  Tm
T

tkc
m

Tm  (20.b) 

where, m  and m  appearing in the transformation matrix Tm  can be established from (8.b) 

for maximal corner (m). 

4. FORMULATION ON THE ELEMENT LEVEL 

The proposed formulation is aimed at representing a whole elastic R/C member with one 

element, which is partly accomplished through the adoption of higher-order quartic shape 

functions for the transverse displacements. In addition to redressing the inaccuracies of 

common cubic formulations, the proposed formulation departs from the conventional finite-

element approach in that the axial displacement is not represented by shape functions. Instead, 



 17 

the constant axial force criterion is adopted, which enforces axial equilibrium along the 

element length, the violation of which usually leads to an over-stiff element incapable of 

accurately representing a whole member. 

4.1 Kinematics 

The quartic formulation is derived in a local Eulerian system (Izzuddin & Elnashai, 1993-b), 

and it utilises 8 local freedoms, as shown in Fig. 6. The element freedoms and corresponding 

forces are represented by the following vectors: 

c u  y1,y2 ,ty ,z1,z2,t z,,T

T
 (21.a) 

c f  My1,My2,Ty,Mz1,Mz2, Tz,F,MT

T
 (21.b) 

Quartic shape functions are adopted for the two transverse displacements, given by: 

v(x)  ty 
L

4
(y1  y2 )







x

L











L

2
(y1  y2 ) 8t y







x

L











2

           L(y1  y2 ) 
x

L











3

 2L(y2  y1)16ty 
x

L











4
 (22.a) 

w(x)  tz 
L

4
(z1  z2)







x

L











L

2
(z1  z2 ) 8tz







x

L











2

           L(z1 z2) 
x

L











3

 2L(z2  z1) 16tz 
x

L











4
 (22.b) 

where, L is the element length. 

As noted previously, the generalised curvature strains y  and  z are the second derivatives of 

the transverse displacements: 

 y  v (x) 
1

L
y1  y2 16

ty

L









 6(y1  y2 )

x

L









 24 y2  y1  8

ty

L





















x

L











2







 (23.a) 
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 z  w (x) 
1

L
z1  z2 16

tz

L









 6(z1  z2 )

x

L









  24 z2  z1 8

tz

L

















x

L











2







 (23.b) 

The generalised axial strain a  includes the nonlinear effect of bending on axial stretching, as 

given by: 

a  u 
1

2
v 
2
 w 

2  (24) 

Since the axial displacement u(x) is not prescribed by means of shape functions, only an 

average generalised axial strain (m ) can be evaluated in terms of the element freedoms: 

 a dx

L / 2

L / 2




  m L  u dx

L / 2

L / 2




 

1

2
v 
2
 w 

2 dx

L / 2

L / 2




   

1

2
v 
2
 w 

2 dx

L / 2

L / 2




  (25.a) 

which in combination with (22) leads to: 

m 


L


1

210
8 y1

2  y2
2  z1

2  z2
2 16 y2  y1 

ty

L















                       16(z2  z1 )
t z

L









 5(y1y2  z1z2 )  512

ty
2  tz

2

L
2

















 (25.b) 

The variation of a  along the element length is determined from the constant axial force 

criterion in combination with the average axial strain m , as discussed in the following section. 

4.2 Axial Equilibrium 

Since a general analytical solution for a  satisfying axial equilibrium is extremely difficult, the 

conditions of axial equilibrium will be considered for discrete positions over the element 

length. Conveniently, these are chosen to be the same as the Gauss stations used for numerical 

integration of the governing virtual work equations presented in the following section. 

The procedure for determining the variation of a  is iterative, which is started by initialising 

a,g  for all Gauss points (g) to the corresponding values established at the end of the previous 
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load step. Since the curvature generalised strains y,g  and z,g  are available from (23), the 

generalised axial forces fa,g  can be determined for all Gauss points according to Section 5. If 

these axial forces are not in equilibrium, a,g  is modified by iterative increments a,g  

determined from the following equations: 

fa,g  tk1,1,ga,g  fa,g1  tk1,1,g1a,g1 g  1,ng 1 (26.a) 

wg a,g  a,g 
g1

ng

  m L  (26.b) 

where, ng  is the number of Gauss points and wg  is the weighting factor for Gauss point (g). 

 The first expression (26.a) provides (ng 1) equations of axial equilibrium between adjacent 

Gauss stations, whereas expression (26.b) provides a numerical integration equivalent to 

(25.a). With the availability of t k1,1,g  according to Section 5, these equations can be used to 

solve for the ng  iterative increments a,g : 

a,1 

m L  wg a,g 
fa,1  fa,g

t k1,1,g







g1

ng



wg
t k1,1,1

t k1,1,g







g1

n g























 (27.a) 

a,g 
fa,1  fa,g  t k1,1,1a,1

t k1,1,g

 (27.b) 

The iterative procedure is continued until the sum of the ng  iterative increments a,g  in 

absolute value becomes very small relative to the average axial strain m . After convergence, 

axial equilibrium is considered to be satisfied, and the element axial force F is set equal to fa,1 . 

The iterative strategy for enforcing the constant axial force criterion is illustrated in Fig. 7. 

4.3 Local Forces 

The proposed quartic formulation can be employed with an Eulerian large displacement 

approach (Izzuddin & Elnashai, 1993-b), which requires the calculation of the basic local 
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forces My1,My2 ,Mz1,Mz2,F,MT  corresponding to given values for the basic local 

freedoms y1,y2,z1,z2,,T . Since the quartic formulation utilises two additional 

internal freedoms ty ,tz  to provide quartic shape functions for the transverse displacements, 

these internal freedoms are established using a process of static condensation. This involves an 

iterative procedure such that the corresponding resistance forces Ty ,Tz  are in equilibrium 

with equivalent loads Tyeq, Tzeq  arising from internal element loading (Izzuddin, 1996). The 

iterative process is started with initialising ty ,tz  to values determined for the last load step, 

and then determining the iterative corrections ty ,tz  according to: 

ty

tz














bk3,3 bk3,6

bk6,3 bk6,6















1 Tyeq  Ty

Tzeq  Tz












 (28) 

where, bk  is the local tangent stiffness matrix discussed in the following section. 

The resistance forces Ty ,Tz  in (28) are obtained from the virtual work equation, which is 

integrated numerically: 

Ty  wg my,g

 y,g

t y

+ mz,g

z,g

ty

+ fa,g

a,g

ty











g1

ng

  (29.a) 

Tz  wg my,g

y,g

tz

+ mz,g

z,g

tz

+ fa,g

a,g

tz











g1

n g

  (29.b) 

Since axial equilibrium is satisfied according to the previous section, fa,g  is constant and equal 

to F. Furthermore, since the integration of a,g  is equal to m L , as can be verified from 

(25), and considering the curvature relationships in (23), the above expressions for Ty ,Tz  

can be simplified to: 

Ty  wg my,g

y,g

t y











g1

ng
















+ FL
m

ty

 (30.a) 

Tz  wg mz,g

z,g

tz











g1

n g










+ FL

m

tz

 (30.b) 
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where, (my,g, mz,g)  are established according to Section 5, the derivatives of (y,g, z,g,m ) 

are determined from (23) and (25), and the element axial force F is calculated according to the 

previous section. 

The iterative procedure for calculating ty ,tz  is continued until the relative magnitude of the 

increments ty ,tz  becomes very small, as illustrated in Fig. 8. 

Upon completion of the iterative procedure, the remaining basic element resistance forces are 

established from the virtual work equation in  a similar manner to Ty ,Tz : 

My1  wg my,g

y,g

y1











g1

n g
















+ FL
m

y1

 (31.a) 

My2  wg my,g

y,g

y2











g1

ng
















+ FL
m

y2

 (31.b) 

Mz1  wg mz,g

 z,g

z1











g1

ng










+ F L

m

z1

 (31.c) 

Mz2  wg mz,g

z,g

z2











g1

ng










+ FL

m

z2

 (31.d) 

MT 
GJ

L
T  (31.e) 

The presence of an F term in the expressions for the element end moments reflects the ability 

of the proposed formulation to model the geometrically nonlinear beam-column effect. It is 

also noted the torsional resistance of the element is based on the linear elastic St. Venant‟s 

torsion theory, which does not account for the effect of concrete cracking. 

4.4 Local Tangent Stiffness 

The local tangent stiffness matrix bk  of the quartic formulation is given by: 

bk i, j 
cfi

cu j

      i = 1,8  &  j = 1,8 (32) 
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where cu  and cf  are the local freedoms and corresponding resistance forces defined in (21).  

Considering (30), (31) and (32), the terms of bk  can be shown to have the following form: 

b ki,j  wg

y,g

cui
tk2,2,g

y,g

cu j











g1

n g















 fki,j        for 

i

j










[1, 2,3]

[1, 2,3]









 (33.a) 

b ki,j  wg

y,g

cui
tk2,3,g

z,g

cu j











g1

n g















 fki,j        for 

i

j










[1, 2,3]

[4, 5,6]









 (33.b) 

b ki,j  wg

z,g

cui
tk3,3,g

z,g

cu j











g1

n g















 fki,j        for 

i

j










[4, 5,6]

[4, 5,6]









 (33.c) 

b ki, j  bkj,i         for 
i

j










[4, 5,6]

[1, 2,3]









 (33.d) 

b ki, j  bkj,i 
F

cui

        for 
i

j










[1, 2,3,4,5,6, 7]

7









 (33.e) 

b k8,8 
GJ

L
 (33.f) 

All other terms of bk are zero  (33.g) 

where t k  is defined in (5) and, 

f k i, j  L
F

cui










m

cu j











F

cu j










m

cui









 F


2
m

cui cu j

























           wg

a,g

cui
tk1,1,g

a,g

cu j











g1

n g















            for 

i

j










[1, 2,3, 4,5,6]

[1, 2,3, 4,5,6]









 (34) 

All the terms of (33) and (34) can be readily determined from previous expressions, except 

a,g

cui

 and 
F

 cui

 which can be derived from the following conditions of incremental axial 

equilibrium and compatibility: 
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F

cui


fa,g

cui


fa,g1

cui

      g = 1, ng 1       (35.a) 

t k1,1,g

a,g

cui

 tk1,2,g

 y,g

cui

 tk1,3,g

 z,g

cui



t k1,1,g1

a,g1

cui

 tk1,2,g1

 y,g1

cui

 tk1,3,g1

z,g1

cu i

      g = 1, ng 1

 (35.b) 

wg

a,g

cuig1

ng

 
m

cui

L  (35.c) 

leading to: 

a,1

cui



m

cu i

L  w g
g1

ng


t k1,2,1

 y,1

cui

 tk1,2,g

 y,g

cui

t k1,1,g



















w g
t k1,1,1

t k1,1,gg1

ng



      for i = [1, 2,3]  (36.a) 

a,1

cui



m

cu i

L  w g
g1

ng


t k1,3,1

z,1

cui

 tk1,3,g

 z,g

cui

t k1,1,g



















wg
t k1,1,1

t k1,1,gg1

n g



      for i = [4, 5,6]  (36.b) 

F

cui

 tk1,1,1

a,1

cui

 tk1,2,1

y,1

cui

      for i = [1, 2,3] (36.c) 

F

cui

 tk1,1,1

a,1

cui

 tk1,3,1

z,1

cui

      for i = [4,5,6]  (36.d) 

F

cu7

 t k1,1,1

m

cui

L

w g
t k1,1,1

t k1,1,gg1

ng



 (36.e) 

a,g

cui



F

cui

 t k1,2,g

y,g

cui

t k1,1,g

      for i = [1, 2,3]  (36.f) 
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a,g

cui



F

cui

 t k1,3,g

 z,g

cui

t k1,1,g

      for i = [4, 5,6]  (36.g) 

The 8 8  tangent stiffness matrix bk  established above must be condensed to the basic 6 6  

matrix ck  to be directly applicable to large displacement incremental analysis using the 

Eulerian approach (Izzuddin & Elnashai, 1993-b). The condensation of the two internal 

freedoms can be performed in accordance with a procedure outlined by Izzuddin (1996). 

4.5 Global Analysis 

The proposed R/C quartic formulation can be utilised in large displacement analysis based on 

the Eulerian approach (Izzuddin & Elnashai, 1993-b). This requires three transformations 

between the element local Eulerian (convected) system and the global reference system 

common to all elements: (1) transformation of global to local displacements, (2) 

transformation of local to global resistance forces, and (3) transformation of local to global 

tangent stiffness matrix for guiding the nonlinear iterative solution procedure. These 

transformations are presented in detail in (Izzuddin & Elnashai, 1993-b). 

5. ADAPTIVE NONLINEAR ANALYSIS 

An adaptive nonlinear analysis method was previously developed by Izzuddin (1991) for 

framed structures, which is based on practical considerations rather than error estimation 

(Izzuddin, 2000). This method accounts accurately for the effects of geometric and material 

nonlinearities in static and dynamic analysis, and achieves considerable computational savings, 

often exceeding 90%, in comparison with the conventional method. The elastic R/C beam-

column formulation, proposed in this paper, forms one of three main components of the 

adaptive nonlinear analysis method as applied to 3D R/C frames. The remaining two 

components are 1) an accurate elasto-plastic formulation of the fibre-type (Izzuddin, 1991; 

Izzuddin & Elnashai, 1993-a) capable of modelling the effects of material inelasticity, 

including steel yielding, concrete compressive softening and general hysteretic behaviour, and 
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2) an automatic refinement procedure (Izzuddin & Lloyd Smith, 2000) governing the 

transition between the elastic and elasto-plastic elements. 

As an overview, adaptive nonlinear analysis of 3D R/C frames is started with one elastic 

element per member, where each elastic element is checked at the end of an equilibrium step 

for exceeding its limit of applicability (Izzuddin & Lloyd Smith, 2000). This limit is generally 

based on steel yielding and concrete compressive crushing, although a stricter limit can be 

imposed on concrete compression to control any inaccuracies of the elastic element associated 

with compressive strain reversal. If an elastic element exceeds its applicability limit in 

predefined zones over its length, it is refined into a number of elasto-plastic elements in these 

affected zones, before the nonlinear analysis is resumed from the current equilibrium step. 

Through the use of adaptive refinement, this procedure enables accurate modelling of the 

effects of material plasticity, including concrete softening (Zeris & Mahin, 1988), on the 

overall member and structural response. 

In view of the above, the computational efficiency of adaptive 3D R/C frame analysis is 

maximised on two accounts: (a) on the cross-sectional level, the proposed elastic element is 

more economical than the elasto-plastic element which involves cross-sectional discretisation 

into numerous monitoring areas, (b) on the longitudinal element level, one elastic quartic 

element is capable of accurately modelling a whole R/C member in the elastic range, whereas 

several elasto-plastic elements are required to represent an elasto-plastic member. Thus, by 

maximising the use of elastic elements and minimising the use of elasto-plastic elements within 

the structure and during the analysis, considerable computational benefits are achieved without 

compromising the solution accuracy (Izzuddin & Lloyd Smith, 2000). 

6. VERIFICATION EXAMPLES 

The proposed quartic formulation has been implemented in the nonlinear analysis program 

ADAPTIC v2.6.2 (Izzuddin, 1991), which is used herein to verify the formulation accuracy 

and efficiency. In the two examples presented hereafter, comparison is made between the 
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results obtained from one quartic element per member and solutions obtained using ten cubic 

elements per member. The cubic elements, which are elasto-plastic of the fibre type, have been 

developed and verified elsewhere (Izzuddin, 1991; Izzuddin & Elnashai, 1993-a), and results 

obtained from ten cubic elements per member are considered of sufficient accuracy to provide 

reference solutions for the validation of the proposed quartic element. However, it should be 

noted that elastic material properties are assumed for the cubic elements in accordance with 

Section 3.1, so as to enable the validation of the proposed elastic quartic element. 

Furthermore, no consideration is given to whether the displacements achieved in the example 

problems exceed the elastic limit, since one of the aims is to demonstrate the accuracy of the 

quartic element in accounting for geometric nonlinearities. Of course, the inclusion of the 

elastic formulation within adaptive elasto-plastic analysis, as discussed in the previous Section, 

would ensure that the elastic elements do not exceed their elastic limit (Izzuddin & Lloyd 

Smith, 2000), although this form of analysis is not considered here. 

In all the following example cases, the material properties assumed for the steel reinforcement 

and concrete are Es  200 10
3

N/ mm
2
, fc  20 N/ mm

2
,co  0.002 . Furthermore, six 

Gauss integration points are used for each quartic element, unless otherwise stated. 

6.1 Cantilever 

The R/C cantilever, shown in Fig. 9, has a varying reinforcement scheme and is subjected at its 

tip to concentrated loading applied at the geometric centroid of the rectangular cross-section. 

The loading consists of an initial axial load N and a varying transverse load P making an angle 

 with the vertical plane. The response of the cantilever to a varying P at a constant angle  is 

studied for three values of the initial axial load (N = {0, 500, 1000} kN). Corresponding to 

these values, the results obtained using one quartic element are identified by (QN0, QN1, 

QN2), respectively, whereas the results obtained using ten cubic elements are identified by 

(CN0, CN1, CN2), respectively. 
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For the case of a vertical transverse loading (), the response of the cantilever at the 

three levels of axial loading N to varying P is shown in Fig. 10. Excellent agreement is 

observed between the results of one quartic element and ten cubic elements for the three levels 

of N. The results show that the response at zero N is virtually linear, corresponding to the 

cracked response of the cantilever. At the intermediate level of axial load (N = 500 kN), there 

is an initial vertical displacement due to the asymmetry of the cantilever sections about the 

horizontal loading plane; the initial response is stiff and corresponds to the uncracked 

behaviour; and the cracked response is delayed, as expected, until P is close to the maximum 

applied value of 50 kN. For the highest level of axial load (N = 1000 kN), the initial vertical 

displacement is even greater, the initial uncracked response is maintained, and the cracked 

response is delayed even further. 

For the case of a horizontal transverse loading (), the response of the cantilever at the 

three levels of axial loading N to varying P is shown in Fig. 11. Excellent agreement is 

observed between the results of one quartic element and ten cubic elements for the three levels 

of N, with slight discrepancies at the maximum applied load (P = 50 kN). This discrepancy is 

attributed to the difference between the concrete models adopted for the quartic and cubic 

elements in the post-crushing range - the cubic elements accounting for compressive softening 

- which is evidenced by the increase in the discrepancy at (P = 50 kN) with an increase in the 

level of the axial load N. Since the proposed quartic element is only intended to model the 

elastic response of R/C members, these discrepancies are therefore considered irrelevant. It is 

worth noting that for this case (), the cracked response for non-zero N is achieved at 

lower values of P in comparison with the previous case (), which is related to the lower 

flexural modulus in the horizontal direction. Furthermore, the response becomes even more 

flexible than the cracked response when P exceeds 30 kN for (N = 500 kN) or P exceeds 40 

kN for (N =1000 kN); this is attributed to the geometric nonlinearity introduced by a 

compressive axial force N, commonly known as the beam-column effect. 

The response of the cantilever to a varying transverse load P applied at different angles  is 

obtained for an initial axial load (N = 500 kN), with P varied in five equal steps up to a value 
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of 50 kN. The results, shown in Fig. 12, depict the variation of the vertical tip displacement 

with the horizontal tip displacement determined for the five values of load P applied at angles 

( = {0, 30, 45, 60, 90}). These results demonstrate very good agreement between one 

quartic element and ten cubic elements, with minor discrepancies at (P = 50 kN) attributed to 

the same effect discussed previously for the case of horizontal loading (). It is also 

observed that while the load-displacement response is nonlinear for all angles , the variation 

of vertical displacement with horizontal displacement is almost linear for small values of , 

becoming considerably nonlinear at large values of . As expected, the horizontal 

displacement for a vertical load () remains zero due to symmetry of the cantilever 

sections about the vertical plane, even after concrete cracking. However, for a horizontal load 

(), the symmetry of the elastic modulus about the vertical plane is destroyed, 

particularly after concrete cracking, which leads to coupling between bending about the 

vertical and horizontal axes and, consequently, to considerable vertical upwards 

displacements. 

6.2 Square Frame 

The 3D R/C frame, shown in Fig. 13, has a square plan geometry, with the beams and columns 

utilising varying and uniform reinforcement schemes, respectively. The frame is considered 

under the action of varying horizontal concentrated loads (Px, Py) - assumed to be components 

of a horizontal load P making an angle  with the global X-axis - in the absence/presence of 

initial vertical loading applied on the columns (Q) and distributed on the beams (w). The 

response of the frame to a varying P at a constant angle  is studied with and without initial 

vertical loading, where the corresponding results from one quartic element per member are 

identified by (Q0, Q1), respectively, and the corresponding results from ten cubic elements per 

member are identified by (C0, C1), respectively. It is noted that 10 Gauss points are used for 

the quartic elements representing the frame beams, due to the considerable variation in the 

reinforcement scheme. 



 29 

The response of the frame to a varying P for (), that is (Px = P) and (Py = 0), is shown in 

Figs. 14.a-b for displacements at corner (A) in the global X and Z directions, respectively. 

Excellent agreement is observed between the results of one quartic element and ten cubic 

elements up to (P = 140 kN) for the case of no vertical loading, and up to (P = 100 kN) for 

the case of full vertical loading. The slight discrepancy outside these two ranges is again due 

to differences in the post-crushing response of the concrete models used for the two types of 

element, which occurs after considerable displacements of 100 mm in the X direction. As 

mentioned previously, since the proposed quartic formulation is only intended to represent the 

elastic behaviour of R/C members, this discrepancy is considered irrelevant to the stated aim. 

It is observed from Fig. 14.a that, in the absence of vertical loading, the response of the frame 

response in the X direction is slightly nonlinear, which can be attributed to the varying 

compressive and tensile axial forces in the beams and columns affecting their flexural stiffness. 

In the presence of vertical loading, the initial frame response in the X direction is stiffer than 

for the case of no vertical loading, since cracking in the columns is delayed; however, after 

considerable cracking, the frame response becomes more flexible, since geometric 

nonlinearities due to vertical loading become relatively important. The frame response in the Z 

direction, shown in Fig. 14.b, indicates, for the case of no vertical loading, an initial upwards 

movement due to column cracking which is reversed at around (P = 80 kN) due to large X-

displacements. For the case of full vertical loading, the upwards movement is delayed until the 

columns start cracking, with the reversal occurring at around (P = 60 kN). 

The response of the frame to a varying P for (), that is (Px  Py  P 2 ), is shown in 

Figs. 15.a-b for displacements at corner (A) in the global X and Z directions, respectively. 

Similar observations and comments can be made here as for the previous case (  ), 

demonstrating the ability of the quartic formulation to represent accurately the elastic frame 

response under general orientation of the loading. 

The last point above is further illustrated by considering the variation of the X-displacement 

with the Y-displacement at corner (A) for four angles ( = {0, 15, 30, 45}), with P varied up 

to 200 kN in five equal steps. The results, shown in Figs. 16 and 17 for the two cases of zero 
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and full vertical loading, respectively, demonstrate the ability of the quartic formulation to 

model the elastic frame response up to considerable displacements of around 100 mm, beyond 

which concrete crushing is initiated. It is noted that while the load-displacement response for 

the frame is evidently nonlinear, the variation of the X displacement with the Y displacement is 

almost linear for all angles , indicating the constraining nature of the square frame geometry. 

The modelling efficiency of the proposed quartic formulation is evident, since only one 

element per member is required to model the geometrically nonlinear behaviour of R/C beam-

columns in the elastic range. More significantly, the computational superiority of the quartic 

element can be illustrated in terms of CPU demand; on a Silicon Graphics Indy workstation 

with 32 Mb of memory, the average CPU demand of the frame analyses using the quartic 

formulation is 6.4 sec, whereas the average CPU demand using the cubic formulation is 76 

sec. This represents a computational saving by the proposed quartic formulation of more than 

90% for this type of problem. 

7. CONCLUSIONS 

This paper presents a new elastic beam-column formulation for R/C members of 3D framed 

structures. The proposed formulation is intended to model the geometrically nonlinear elastic 

response of R/C beam-columns using only one element per member. This is an essential 

requirement for nonlinear adaptive analysis, where analysis is always started with one elastic 

element per member, and automatic mesh refinement into more computationally demanding 

elasto-plastic elements is performed when and where necessary, during analysis and within the 

structure, respectively. 

The new formulation is derived in a local Eulerian system, where quartic shape functions are 

used for the two transverse displacements, hence the name „quartic formulation‟. No shape 

functions are employed for the axial displacement; instead, the more effective constant axial 

force criterion is utilised, which is deemed responsible for the accuracy of the quartic 

formulation, avoiding the overstiff response associated with conventional displacement-based 
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finite element formulations. A linear elastic model is adopted for steel, whereas a piecewise 

relationship is adopted for concrete which neglects tensile stresses and assumes a parabolic-

constant response in the compressive range. While compressive concrete softening is not 

accounted for, a constant response being assumed in the post-crushing range to ensure 

stability of the internal element iterative procedures, this is deemed irrelevant to the present 

formulation which is intended to represent only the nonlinear elastic response. The generalised 

cross-sectional response is established for general R/C cross-sections through decomposition 

into coarse rectangular areas, and a novel approach, based on integration over triangular 

subdomains, is proposed for determining the contribution of rectangular areas to the overall 

cross-section response. The paper presents details of transforming the generalised response of 

cross-sections  to an overall response of the element, covering the satisfaction of the constant 

axial force criterion and the static condensation of internal element freedoms. 

Two examples demonstrate the accuracy of the quartic formulation in modelling the nonlinear 

elastic response of a whole R/C member with a varying reinforcement scheme using only one 

element. Slight discrepancies from the results of ten cubic elements at high levels of loading 

are attributed to the post-crushing softening response of concrete modelled by the cubic 

formulation, which is outside the scope of the present elastic formulation. The modelling 

advantages of the quartic element are pointed out, and, more significantly, its ability to achieve 

computational savings of more than 90% in comparison with an adequate mesh of cubic 

elements is highlighted. 

Finally, it is worth reiterating that the proposed elastic quartic formulation provides one of 

three main components of nonlinear adaptive elasto-plastic analysis of 3D R/C frames. The 

remaining components, which have already been developed, are an elasto-plastic cubic 

formulation (Izzuddin & Elnashai, 1993-a) and applicability criteria which establish whether 

the elastic limit is exceeded in the concrete or the steel reinforcement of a R/C member 

represented by an elastic quartic element (Izzuddin & Lloyd Smith, 2000). These criteria are 

used to guide the automatic mesh refinement process of an elastic quartic element into the 

more computationally demanding elasto-plastic cubic elements, when and where necessary. 
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Recent work by the authors (Izzuddin & Lloyd Smith, 2000) has shown that the overall 

adaptive elasto-plastic method for 3D R/C frames is capable of achieving computational 

savings exceeding 90% in comparison with conventional nonlinear analysis without a 

consequential loss of accuracy, an important advantage which is made possible by the 

accuracy and efficiency of the elastic quartic formulation presented in this paper. 
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NOTATION 

a, b: dimensions of rectangular concrete block in local y and z directions. 

ac, bc: integration boundaries for concrete block defined in (11). 

ap , b p : integration boundaries for concrete block. 

As,i : cross-sectional area of steel bar (i). 

Es : elastic Young‟s modulus of steel reinforcement. 

fa ,fac,i, fas : axial forces of overall section, concrete block (i), and steel reinforcement. 

fa,g : fa  at Gauss point (g). 

fac
m

, fac1
m

, fac2
m

: axial force of concrete block and contributions from integrating c1 and 

c2  with reference to maximal corner (m). 

fc : compressive strength of concrete. 

c f : local forces of quartic element My1,My2 ,Ty,Mz1,Mz2,Tz,F,MT

T
. 

GJ : St. Venant‟s torsional rigidity. 

k: confinement factor for concrete. 

bk : local element tangent stiffness matrix before static condensation of 

internal freedoms. 

f k : local element tangent stiffness associated with axial force. 

t k, t kc,i, tks : generalised tangent stiffness matrices of overall section, concrete block 

(i), and steel reinforcement. 
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t kc
m

: generalised tangent stiffness matrix of concrete block with reference to 

maximal corner (m). 

L: element length. 

m, n, q: identifiers for a concrete block of the maximal corner, adjacent corner in 

the local y direction, and adjacent corner in the local z direction. 

my ,myc,i,mys : bending moments in local y direction of overall section, concrete block 

(i), and steel reinforcement. 

my,g : my  at Gauss point (g). 

myc
m

, myc1
m

, myc2
m

: bending moments in local y direction of concrete block and contributions 

from integrating c1 and c2 , referred to maximal corner (m). 

mz ,mzc,i ,mzs : bending moments in local z direction of overall section, concrete block 

(i), and steel reinforcement. 

mz,g : mz  at Gauss point (g). 

mzc
m

, mzc1
m

, mzc2
m

: bending moments in local z direction of concrete block and contributions 

from integrating c1 and c2 , referred to maximal corner (m). 

n c , n s , n g : number of rectangular concrete blocks and steel bars over cross-section, 

and number of Gauss points over element length. 

rc , sc : concrete block ratios defined in (9). 

rp, sp : concrete block ratios defined in (15). 

Tm : transformation matrix for concrete block from maximal corner (m) to 

cross-section reference origin. 

Tyeq,Tzeq : equivalent internal element loads due to distributed loading. 
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c u : local freedoms of quartic element y1,y2,t y,z1,z2, tz,,T

T
. 

v(x): displacement of reference line in local y direction. 

w(x): displacement of reference line in local z direction. 

wg : integration weighting factor for Gauss point (g). 

x, y, z: local coordinates for quartic element. 

yc
o
, zc

o
: local y and z coordinates of a concrete block centre. 

y s, i , zs,i : local y and z coordinates of steel bar (i). 

a ,  y ,  z: centroidal axial strain and curvatures in local y and z directions. 

a,g,  y,g , z,g : relevant terms for Gauss point (g). 

a
m

, y
m

, z
m

: centroidal axial strain and curvatures in local y and z directions, referred 

to maximal concrete block corner (m). 

c ,c,i : strain in concrete, and strain at corner (i) of a concrete block. 

co : compressive crushing strain of concrete. 

m : average centroidal axial strain over element length. 

p , p,i : compressive strain increment of concrete beyond co  at any point and at 

corner (i) of concrete block. 

s,s,i : strain in steel, and strain in steel bar (i). 

c : stress in concrete. 

c1, c2: piecewise stress functions for concrete, defined in (2). 

s : stress in steel reinforcement. 
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 i, i : natural coordinates of corner (i) of concrete block, defined in (8.b). 
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Figure 1. Concrete stress-strain model 
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Figure 2. Representation of R/C T-section by rectangular areas 
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Figure 3. Typical rectangular concrete block 
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Figure 4. Integration domains over concrete block 
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Figure 5. Decomposition of case (3) domain into two triangular domains 
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Figure 6. Local freedoms of quartic formulation 
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Figure 7. Iterative procedure for axial equilibrium 
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Figure 8. Iterative procedure for internal freedoms 
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Figure 9. Geometric configuration and loading of R/C cantilever 
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Figure 10. Response of cantilever to vertical load (α=0°) 
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Figure 11. Response of cantilever to horizontal load (α=90°) 
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Figure 12. Response of cantilever to inclined transverse load for (N = 500 kN) 
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Figure 13. Geometric configuration and loading of R/C square frame 
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Figure 14.a. Response of square frame at (A) in X direction for (α=0°) 
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Figure 14.b. Response of square frame at (A) in Z direction for (α=0°) 
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Figure 15.a. Response of square frame at (A) in X direction for (α=45°) 
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Figure 15.b. Response of square frame at (A) in Z direction for (α=45°) 
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Figure 16. Response of square frame at (A): no vertical loading 
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Figure 17. Response of square frame at (A): full vertical loading 
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