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Abstract. We consider a rough differential equation with a non-linear damping drift
term:

dY (t) = −|Y |m−1Y (t)dt+ σ(Y (t))dX(t),

where m > 1, X is a (branched) rough path of arbitrary regularity α > 0, and where σ is
smooth and satisfies an m and α-dependent growth property. We show a strong a priori
bound for Y , which includes the "coming down from infinity" property, i.e. the bound
on Y (t) for a fixed t > 0 holds uniformly over all choices of initial datum Y (0).

The method of proof builds on recent work on a priori bounds for the φ4 SPDE in
arbitrary subcritical dimension [CMW19]. A key new ingredient is an extension of the
algebraic framework which permits to derive an estimate on higher order conditions of a
coherent controlled rough path in terms of the regularity condition at lowest level.

1. Introduction

Rough path theory [Lyo94, Lyo98, Gub03, Gub06] was developed from the late 90s as a
solution theory for differential equations of the form

dY (t) = σ(Y (t))dX(t)(1.1)

for irregular drivers X(t), typically of Hölder regularity α < 1
2 . The principal example to

have in mind is the case of random drivers. In particular, when X is a Brownian motion,
rough path theory provides an alternative approach to the classical theory of Itô stochastic
differential equations (SDEs). Since its inception in the late 90s the theory has been highly
successful; early applications included the treatment of SDEs for correlated signals, such
as fractional Brownian motion, streamlined proofs for several classical results including
large deviations, support theorems and the construction of stochastic flows for SDEs, see
e.g. the monographs [LQ02, FV10b, FH14]. More recent results include the proof that
certain deterministic fast-slow dynamical systems are well-approximated by systems of SDEs
[KM16] or the development of a Malliavin calculus for stochastic Navier Stokes equations
with multiplicative noise [GH19].

In this article we are concerned with deriving a priori bounds and the related issue of non-
explosion for (1.1). Rough path theory primarily addresses the small scale roughness of so-
lutions and the associated problem to define and control the rough integrals

∫
σ(Y (t))dX(t).

There are relatively few results on the control of the global behaviour of solutions: in mono-
graphs, global existence for (1.1) is typically shown under the restrictive assumptions that
σ and all of its derivatives up to order N are bounded (see e.g. [FV10b, Theorem 10.14],
[FH14, Theorem 8.4]). Here and throughout the paper we denote by N the unique natural
number satisfying

Nα ≤ 1 < (N + 1)α.

Relaxing these growth conditions turns out to be intricate, and in fact global existence
may fail, e.g. for bounded σ with unbounded derivative [LS11]. There are however some
results which relax the boundedness assumptions on the full tensors Dβσ, |β| ≤ N , by
showing that a control on certain combinations of these derivatives is sufficient [Dav08,
Lej12, Wei18].

We are interested in rough differential equations with drift

dY (t) = b(Y (t))dt+ σ(Y (t))dX(t) .
1
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The striking counter-example [CHJ13, Section 3.3] suggests that even in the case σ = 1
(additive noise) a standard Lyapunov condition b(y) · y ≤ C(|y|2 + 1) alone may not suffice
to exclude finite-time explosion. This issue was addressed in [RS17], where it was shown
that if σ and its derivatives up to order N are bounded, then the more restrictive Lyapunov
condition

(1.2) b(y) · y ≤ C(|y|2 + 1) and
∣∣∣b(y)− (b(y) · y)y

|y|2
∣∣∣ ≤ C(1 + |y|) ,

suffices to rule out finite-time explosion. In this article we treat the case of super-linear
inward drift b. For simplicity, we restrict to b of polynomial form, i.e. we deal with

dY (t) = −|Y (t)|m−1Y (t)dt+ σ(Y (t))dX(t) t ∈ (0, 1]

Y (0) = y0 ∈ Rk ,(1.3)

where m > 1, X is an Rd valued (branched) rough path of regularity α ∈ (0, 1) in the
sense of [Gub06, HK15, BCFP19] and σ is assumed to be a CN map Rk → Rk×d, where
Rk×d denotes the space of k × d matrices. This drift does satisfy (1.2) and therefore the
results of [RS17] imply non-explosion if σ and its derivatives are bounded. In this article,
we use the damping effect of the drift to get stronger estimates on solutions and to relax
the boundedness conditions on σ. More specifically, we treat coefficients σ satisfying either
one of the following two growth assumptions:

Assumption 1.1 (Bounded coefficients). There exists a constant Cσ < ∞ such that for
each multi-index β = (β1, . . . , βk) ∈ Nk of length |β| :=

∑k
j=1 βj ≤ N we have

sup
x∈Rd

|∂βσ(x)| ≤ Cσ.

Assumption 1.2 (Coefficients of polynomial growth). There exists a γ > 0 and a constant
Cσ <∞ such that for each multi-index β ∈ Nk of length |β| ≤ N and for all x ∈ Rk we have

|∂βσ(x)| ≤ Cσ〈x〉γ−|β| ,

where above and below, 〈x〉 = (1 + |x|2)
1
2 .

Remark 1.3. Assumption 1.2 is satisfied, for example, in the scalar case d = k = 1 and
for

σ(x) = 〈x〉γ .

Our first main result is the following estimate:

Theorem 1.4 (Coming down from infinity). Let X be an α-rough path for some α ∈ (0, 1)
and let Y solve (1.3).

(1) If σ satisfies the growth Assumption 1.1 we have for t ∈ (0, 1]

|Y (t)| ≤ C max
{
t−

1
m−1 , max

h∈T̊≤N
[X : h]

1
mα|h|

}
.(1.4)

(2) If σ satisfies the growth Assumption 1.2 for

1 ≤ γ < (m− 1)α+ 1 ,(1.5)

then we have for t ∈ (0, 1]

|Y (t)| ≤ C max
{
t−

1
m−1 , max

h∈T̊≤N
[X : h]

1
((m−1)α−γ+1)|h|

}
.(1.6)

In both statements, C <∞ denotes a constant that depends on d, k,m, α and Cσ.

The definition of a (branched) rough path is recalled in Definition 2.5, while the precise
notion of solution to a rough differential equation is given in Definition 2.12. We mention
right away that the solution Y of a rough differential equation as in Definition 2.12 has to
be viewed as taking values in a larger space than Rk (a space spanned by decorated forests).
Here Y (t) ∈ Rk is the "observable solution" which corresponds to the coefficient of 1. We
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write |h| for the order of a tree, that is the number of its vertices, and T̊≤N is the set of
trees of order ≤ N , see Section 2.4. The seminorm [X : h] controls the order bound for X
at level h - it can be thought of as a Hölder type bound on a (postulated) |h|-fold iterated
integral of X - see (2.3).

Theorem 1.5 (Small times). Let Y solve (1.3), for an α-rough path X.
(1) Let σ satisfy the growth Assumption 1.1 and for ε1 = ε1(m) and ε2 = ε2(α, d, k, Cσ)

small enough set

(1.7) T1 = ε1
1

〈y0〉m−1
, T2 = ε2 min

{
1

[X : h]
1
|h|α

: h ∈ T̊≤N
}
.

Then for t ≤ min{T1, T2} we have

〈Y (t)〉 ≤ 2〈y0〉 .(1.8)

(2) Let σ satisfy the growth Assumption 1.2 for an exponent γ satisfying (1.5), let T1

be as in (1.7) and for ε2 = ε2(α, d, k, Cσ) small enough set

(1.9) T2 = ε2

( 1

〈y0〉

) γ−1
α

min

{
1

[X : h]
1
|h|α

: h ∈ T̊≤N
}
.

Then for t ≤ min{T1, T2} we have

〈Y (t)〉 ≤ 2〈y0〉 .(1.10)

Theorems 1.4 and 1.5 can be combined into a single bound.

Corollary 1.6. Let Y solve (1.3), for an α-rough path X for an α ∈ (0, 1).
(1) If σ satisfies the growth Assumption 1.1 we have for t ∈ [0, 1]

|Y (t)| ≤ C max
{

min{t−
1

m−1 , |y0|} , max
h∈T̊≤N

[X : h]
1

(m−1)α|h| , 1
}
.(1.11)

(2) If σ satisfies the growth Assumption 1.2 for γ satisfying (1.5), then we have for
t ∈ [0, 1]

|Y (t)| ≤ C max
{

min{t−
1

m−1 , |y0|} , max
h∈T̊≤N

[X : h]
1

((m−1)α−γ+1)|h| , 1
}
.(1.12)

In both statements, C <∞ denotes a constant that depends on d, k,m, α and Cσ.

Remark 1.7. Consider the case σ = 0, where (1.3) reduces to the ordinary differential
equation

Ẏ = −|Y |m−1Y t ∈ (0, 1)

Y (0) = y0 .

The explicit solution of this equation is given by

Y (t) =
y0

|y0|

( 1

(m− 1)t+ |y0|1−m
) 1
m−1

,(1.13)

and the elementary estimate

1

C(m)
min{|y0|, t−

1
m−1 } ≤ |RHS of (1.13) | ≤ C(m) min{|y0|, t−

1
m−1 }(1.14)

shows that the first term on the RHS of (1.11) and (1.12) is optimal up to constants.

Remark 1.8 (On the optimality of the growth condition (1.5) on σ). We compare our result
to the case of the Itô stochastic differential equation

dY (t) = −|Y (t)|m−1Y (t)dt+ σ(Y (t))dW (t) t ∈ (0, 1] ,
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for a Brownian motion W , for simplicity in the scalar case k = n = 1. Itô’s formula yields
for any p ≥ 2

d
1

p
|Y (t)|p = −|Y (t)|p−1+mdt+ dMt +

(p− 1)

2
|Y (t)|p−2σ(Y (t))2dt ,(1.15)

for a (local) martingale Mt. Under Assumption 1.2 the Itô correction term on the RHS of
(1.15) satisfies

(p− 1)

2
|Y (t)|p−2σ(Y (t))2 ≤ (p− 1)

2
Cσ|Y (t)|p−2+2γ .

If the coefficient σ satisfies the upper bound in (1.5) for an α < 1
2 , then the exponent on the

RHS satisfies
p− 2 + 2γ < p− 1 +m ,

which is precisely enough to control this term by the damping term −|Y (t)|p−1+m. This
calculation suggests the optimality of Assumption 1.2, at least in this case.

Remark 1.9 (More on the growth condition (1.5) on σ). The reason for the limitation
γ ≥ 1 in (1.5) is that in several points in the proof (see e.g. (4.27), (4.29)) the estimate

sup
s∈I
|Y (s)|(γ−1)|h| ≤ ‖Y ‖(γ−1)|h|

[t?,1] ,

is used crucially. Here I is some (short) interval contained in the (possibly much larger)
[t?, 1] and |h| is a positive number. Clearly, this estimate only holds for γ ≥ 1. For γ ≤ 1
our proof could be modified slightly to get the estimate

|Y (t)| ≤ C max
{
t−

1
m−1 , max

h∈T̊≤N
[X : h]

1
((m−1)α)|h|

}
.

Unfortunately, this bound does not reflect the behaviour of σ and its derivatives at infinity
in the exponents of [X : h].

Remark 1.10 (On optimality of exponents). A particularly important example, where our
result applies is the rough path X built on top of a fractional Brownian motion X of Hurst
parameter H > 1

4 . It is well-known, see e.g. [FV10a], that in this case X is an α-rough path
for α < H and for h ∈ T̊≤N we have the Gaussian tail estimate

(1.16) E
[

exp
(
ε[X : h]

2
|h|
)]
<∞,

for ε > 0 small enough. In this case, the estimates (1.4) and (1.6) imply stretched exponential
tails for the solution Y of the random rough differential equation (1.3). More precisely, (1.4)
combined with (1.16) implies that under Assumption 1.1 we have that for ε′ > 0 small
enough

E
[

exp
(
ε′ sup
t∈[ 1

2 ,1]

|Y (t)|2αm)
)]

<∞ ,

while (1.6) combined with (1.16) implies that under Assumption 1.2 and (1.5) we have

E
[

exp
(
ε′ sup
t∈[ 1

2 ,1]

|Y (t)|2(α(m−1)−γ+1)
)]

<∞ .

We do not know if these stretched exponential tails are optimal. The additive noise case,
σ = 1 was considered in [MW20a, Section 2], and there the improved stochastic integrability

E
[

exp
(
ε′ sup
t∈[ 1

2 ,1]

|Y (t)|2+2α(m−1)
)]

<∞,

was obtained. Additionally, in this case comparison with an Itô SDE shows the optimality of
exponent, at least in the case of Brownian motion. Martingale estimates suggest that in the
case of a Brownian motion W and in the case of bounded σ the stochastic integrability in
the multiplicative noise case should coincide with the additive noise case, but our argument
does not imply this. The main technical reason is, that in the proof we need to impose the
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condition (4.4) on the parameters and this condition does not have a counterpart in the
simpler argument for the additive noise case.

Our argument follows the philosophy developed in [MW20a, MW20b, CMW19] in the
context of the dynamic φ4 model. These articles deal primarily with singular stochastic
partial differential equations, but as already mentioned above in [MW20a, Section 2] the
case of an ordinary differential equation with irregular driver is discussed. More precisely,
an estimate for the equation

(1.17) Y (t) = Y (0)−
∫ t

0

|Y (s)|m−1Y (s)ds+ Z(t)

for Z of Hölder regularity α ∈ (0, 1) is derived. The argument roughly goes as follows: first
the equation is regularised by convolution with a mollification kernel at scale L, resulting in
a non-closed equation for the regularised function YL,

ẎL = −|YL|m−1YL + ZL + EL

which involves an error term EL accounting for the fact that non-linearity and smoothing
do not commute. Afterwards, a standard ODE estimate (see e.g. [TW18, Lemma 3.8]) is
applied to the regularised equation, and finally, the commutator error EL is controlled by
a simple regularity estimate for Y . The following lemma is an intermediate step in this
analysis and the starting point for our argument:

Lemma 1.11 ([MW20a, Lemma 2.1, Intermediate result in Step 4]). Let m > 1 and let
Y ∈ C([0, 1],Rd) satisfy equation (1.17) for some Z ∈ C([0, 1],Rd) with Z(0) = 0. Then for
α ∈ (0, 1), t ∈ (0, 1] and L ∈ (0, t) we have

|Y (t)| ≤ C max
{

(t− L)−
1

m−1 ;
(

sup
s∈[L,t]

[Z]α,[s−L,s]L
α−1

) 1
m

;

(
Lα‖Y ‖m−1

[0,t] sup
s∈[L,t]

[Y ]α,[s−L,s]

) 1
m

;
(
Lα[Y ]α,[t−L,t]

)}
.(1.18)

Here C = C(m) and

‖Y ‖[0,t] = sup
s∈[0,t]

|Y (s)| and [Z]α,[s−L,s] = sup
s−L≤s1<s2≤s

|Z(t)− Z(s)|
|s2 − s1|α

.

In order to apply this Lemma to the rough differential equation (1.3) it thus remains to
control α-Hölder norms of Y and of the rough integral

Z(t) =

∫ t

0

σ(Y (s))dX(s) .

Gubinelli’s Sewing Lemma, see Proposition 2.11 below, yields a control Z in terms of the
order bounds [X : f ] as well as the appropriate semi-norms [σ(Y) : f ] that control the
regularity of the controlled path σ(Y) at various levels f (f takes values in a set of decorated
forests, see below). A key step of our argument is the development of an algebraic framework
which yields an explicit expression, Corollary 3.9, for the remainder expressions (we note
that a similar formula appeared earlier in [Gub06, Theorem 5.2]).

This expression can then be combined with a Taylor remainder formula yielding a control
on [σ(Y) : f ] in terms of [Y : 1], the supremum norm of Y as well as the various [X : h]. This
bound furthermore depends linearly on [Y : 1]. The argument can then be closed, because
the output of the Sewing Lemma gives a control on [Y : 1] permitting to absorb this term,
provided one works on an interval of small enough size. Summarising, this argument can
then be used to control the terms [Y ]α and [Z]α on the right hand side of (1.18) resulting
in an estimate that can be iterated.

We finally point out some connections with past and recent work. We first point out that
in the setting of stochastic differential equations estimates that show "coming down from
infinity" akin to our Theorem 1.4 are known. See, for example, [Cer01, Proposition 1.2.7]
for a such a statement, which seems however to impose a slightly more restrictive growth
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condition on σ than our (1.5). Turning to the RDEs literature, it was already noticed in
[HK15, Proposition 3.8 and Lemma 3.10] that for controlled rough paths which solve RDEs
one can control regularity at higher levels via control at the lowest level, but our use of
grafting operations allows us to do this more explicitly and in a way that we expect will
generalise from branched rough paths to the theory of regularity structures. As this work
was nearing completion we also learned of the preprint [BFT20] which develops combinato-
rial/algebraic methods for comparing remainders quite close to what we use here based on
brace algebras [Foi10], [OG08].

1.1. Outline of paper. Section 2 starts by reviewing the key elements of the theory of
branched rough paths [Gub06, HK15] before closing with a discussion of coherence/elementary
differentials - these allow us to describe what the expansions that solve fixed point problems
need to look like. Section 3 starts by introducing grafting operations. We then show that
this grafting operation behaves well with co-products (Theorem 3.5) and with coherence
(Corollary 3.9) - we then finally use these relations to obtain the remainder estimate Corol-
lary 3.12. Finally, Section 4 finishes the proof of our main result, Theorem 1.4, and also
proves Theorem 1.5 and Corollary 1.6.

1.2. Notation. Given a natural number m ≥ 1, we write [m] = {1, . . . ,m}. For any set A,
we write Span(A) for the free vector space over R generated by A, that is all finite linear
combinations of elements of A with real coefficients. Given p ∈ N and a p-times differentiable
functionable σ : Rk → Rk, we write Dpσ for the p-th derivative which is a p-linear form on
Rk taking values in Rk. We also use standard notation for multi-indices. Given some finite
set A, a multi-index ` = (`a : a ∈ A) ∈ NA, and sufficiently regular function f : RA → Rm,
we write

∂`f =
( ∏
a∈A

∂`aa
)
f .

where ∂a is the partial derivative in the a-component. We also write `! =
∏
a∈A(`a!).

For any n ≥ 1, α ∈ (0, 1), interval I ⊆ [0, 1], and function X : I → Rn we write

〈X〉I = sup
s∈I
〈X(s)〉 , ‖X‖I = sup

s∈I
|X(s)| , and [X]α,I = sup

s1<s2∈I

|X(t)−X(s)|
|s2 − s1|α

.

Throughout the paper we write . for ≤ C, where the implicit constant C may depend
on d, k,m, α and Cσ. and similarly for any interval I ⊂ [0, 1] and function Y : I → Rn we
set 〈Y 〉I = sups∈I〈Ys〉

2. Branched Rough paths

2.1. Trees and forests. We start by inductively defining a set of rooted, decorated trees
T̊all along with an associated set of forests Fall.

A forest is a possibly empty, but finite, collection of rooted trees where we allow for
multiple instances of the same tree. It is customary to write forests as (commutative)
products, that is

(2.1) f =
∏
i∈I

hi

for some index set I and hi ∈ T̊all. The empty forest will play a special role for us and
we represent it with the symbol 1 ∈ Fall. The set T̊all is generated by taking a forest of
trees f ∈ Fall and joining them all to a new root with a decoration µ ∈ [d], we write the
corresponding tree as [f ]µ. Note that we have a natural identification T̊all ⊂ Fall. We also
remark that a forest f ∈ Fall is also completely specified by a multi-index f = (fh : h ∈
T̊all) ∈ NT̊all .

We also inductively define a notion of "order" | · | for forests by setting, for f ∈ Fall =∑
h∈f |h| and for h = [f ]µ ∈ T̊all, |h| = |f | + 1. Here and in what follows, when we write∑
h∈f or

∏
h∈f , we are taking the product or sum over all the trees appearing on the right

side of (2.1) with multiplicity.
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The order of a forest is then simply the number of nodes in that forest. The trees with a
single node are just of the form [1]j for some j ∈ [d], below we draw such a tree by writing

•j . We would then have [•j ]i =
i

j . We can draw forests by putting trees next to each

other, with the order being unimportant, for instance

•k
i

j
=

i

j •k ∈ Fall and
[
•k

i

j
]
l

= l

i

j

k
= l

i

j

k ∈ T̊all .

We write #f =
∑
h∈f 1 for the number of trees in f . Given two forests f, f̄ we write f · f̄

for the forest defined by concatenating the two products of trees. Note that 1 plays the
role of the unit for the forest product and that both | · | and # are additive over forest
products. By extending the forest product to linear combinations of forests via linearity,
Span(Fall) becomes a unital commutative algebra with unit 1. By applying the product
component-wise the same is true of Span(Fall) ⊗ Span(Fall). We write 〈•, •〉 for the inner
product on Span(Fall) with 〈f, f ′〉 = 1{f = f ′} for all f, f ′ ∈ Fall. We also denote by
〈•, •〉 the corresponding inner product on Span(Fall) ⊗ Span(Fall). Finally, we write, for
any n ∈ N, the linear projection P≤n : Span(Fall) → Span(Fall) that simply annihilate any
forest f ∈ Fall with |f | > n.

2.2. Coproducts.

Definition 2.1. The coproduct ∆ is the map

∆ : Span(Fall)→ Span(Fall)⊗ Span(Fall) ,

defined inductively:

• ∆1 = 1⊗ 1.
• For [f ]µ ∈ T̊all we set ∆[f ]µ = [f ]µ ⊗ 1+ (id⊗ [•]µ)∆f .
• For f ∈ Fall, ∆f =

∏
h∈f ∆h .

Note that this is just the Connes-Kreimer coproduct [CK98]. We note that the co-product
preserves the number of nodes in the sense that, for f̄ , f̃ , f ∈ Fall, we have 〈∆f̄ , f̃ ⊗ f〉 6=
0⇒ |f̄ | = |f̃ |+ |f |.

2.3. Iterated integrals. The set of trees T̊all will be used to index postulated values of
iterated integrals of X = (Xi)di=1, for instance if X is a smooth path, then all these iterated
integrals can be canonically and the natural way to formalise our “canonical” assignment of
iterated integrals is to define for µ ∈ [d] and h = [f ]µ,

〈Xs,t, h〉 =

∫ t

s

〈Xs,r, f〉dXµ
r .

In this case we have

〈Xs,t, •j〉 =

∫ t

s

dXj
r = Xj

t −Xj
s , 〈Xs,t,

i

j 〉 =

∫ t

s

∫ r

s

dXj
udX

j
r ,

〈Xs,t,
i

l
j n 〉 =

∫ t

s

( ∫ r

s

dXj
u1

)( ∫ r

s

dX l
u2

)( ∫ r

s

dXn
u3

)
dXi

r .

(2.2)

Expansions indexed by such trees/iterated integrals naturally appear when solving dif-
ferential equations by writing them as integral equations and iterating, for instance, in the



8 TIMOTHEE BONNEFOI, AJAY CHANDRA, AUGUSTIN MOINAT, AND HENDRIK WEBER

case k = d = 1 we can generate a formal expansion for the solution for (1.1) as
Yt − Ys

=

∫ t

s

σ(Yr)dXr

= σ(Ys)

∫ t

s

dXr +Dσ(Ys)

∫ t

s

(Yr − Ys)dXr +
D2σ(Ys)

2

∫ t

s

(Yr − Ys)2dXr + · · ·

= σ(Ys)

∫ t

s

dXr +Dσ(Ys)

∫ t

s

∫ r

s

σ(Yu)dXudXr +
D2σ(Ys)

2

∫ t

s

( ∫ r

s

σ(Yu)dXu

)2
dXr + · · ·

= σ(Ys)

∫ t

s

dXr +
(
Dσ(Ys)

)
σ(Ys)

∫ t

s

∫ r

s

dXudXr +
D2σ(Ys)

2

(
σ(Ys)

)2 ∫ t

s

( ∫ r

s

dXu

)2
dXr + · · ·

= σ(Ys)〈Xs,t, •〉+
(
Dσ(Ys)

)
σ(Ys)〈Xs,t, 〉+

D2σ(Ys)

2

(
σ(Ys)

)2〈Xs,t, 〉+ · · · ,

where we suppress the labels here in the one dimensional case - a similar expansion can be
generated in the multi-dimensional case. Forests keep track of products of iterated integrals,
for instance if f is given as above then 〈Xs,t, f〉 =

∏
h∈f 〈Xs,t, h〉.

Note that if X is a smooth function, then the Leibniz rule imposes relations on iterated
integrals which would allow one to restrict to trees that are given by chains putting one
in the setting of geometric rough paths. However, the framework of branched rough paths
allows us to make sense of this differential equation even when X is too irregular for the
right hand sides of (2.2) to be well-defined, the cost is that quantities like those on the left
hand sides of (2.2) need to be postulated as part of the well-posedness problem. In practice
such data is constructed via stochastic techniques. In particular, the natural choice of values
for these iterated integrals may not satisfy Leibniz rule, which is why we allow for trees that
branch instead of just chains.

2.4. Important sets of trees and forests. We define, for j ∈ {N − 2, N − 1, N},

T̊≤j = {h ∈ T̊all : |h| ≤ j} , T≤j = T̊≤j ∪ {1}

F = {f ∈ Fall : h ∈ f ⇒ h ∈ T̊≤N} ⊂ Fall , F≤j = {f ∈ F : |f | ≤ j} .

Note that Span(F) is a sub-algebra of Span(Fall). We write Span(F)∗ for all linear func-
tionals from Span(F) to R. Given u ∈ Span(F)∗ and a ∈ Span(F) we overload notation and
write 〈u, a〉 for the corresponding duality pairing. We define Char ⊂ Span(F)∗ to be the set
of real characters on Span(F), that is the set of all algebra homomorphisms from Span(F)
to R.

2.5. Character paths.

Definition 2.2. A character path X is a function X•,• : [0, T ]2 → Char, written (s, t) 7→
Xs,t.

Remark 2.3. We can now motivate some of the definitions of sets of trees and forests we
introduced earlier.

The set T≤N−1 is used as index set for local expansions of the solution Y to (1.3), while
F≤N−1 is used as index set for expansions of σµ(Y (t)) for µ ∈ [d].

The crucial data regarding “iterated integrals” of the X is indexed by the trees T̊≤N . In
particular, while the trees of order N never explicitly appear in expansions, the fact that X
is defined on those trees and satisfies an appropriate Hölder bound there is crucial - see the
Sewing Lemma - Proposition 2.11 ([Gub03, Gub06]).

Extending X multiplicatively means that F is the natural set of objects for X to act on.
We note that any character path X satisfies 〈Xs,t,1〉 = 1.

Definition 2.4. A character path satisfies Chen’s relation if, for every s, u, t ∈ [0, T ] and
h ∈ T ,

〈(Xs,u ⊗Xu,t),∆h〉 = 〈Xs,t, h〉 .
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Note that above, we overload the notation 〈•, •〉 for tensor products by setting 〈u⊗v, a⊗
b〉 = 〈u, a〉〈v, b〉 and then extending by linearity. Given a character path X and f ∈ F we
define

(2.3) [X : f ] := sup
0≤s,t≤1
s 6=t

|〈Xs,t, f〉|
|s− t|α|f |

.

The exponent α above corresponds to the imposed regularity condition on the driving noise.
Note that one has the obvious bound [X : f ] ≤

∏
h∈F [X : h].

Definition 2.5. A (branched) α-rough path is a character path X that satisfies Chen’s
relation and has the property that [X : h] <∞ for every h ∈ T̊ .

We usually drop the word branched below, just calling X an α-rough path.

Proposition 2.6. If X is the canonical lift of a smooth function X then X is an α-rough
path for any α ∈ (0, 1].

2.6. Controlled paths.

Definition 2.7. We call a map Y : [0, T ] → Span(T≤N−1)k a tree path and a map Y :
[0, T ]→ Span(F≤N−1)k a forest path.

We apply operations to tree/forest paths component wise, writing expressions like ∆Ys ∈
(Span(F≤N−1)⊗ Span(F≤N−1))k and so on.

We usually use the removal of boldface to indicate the “1 - component” of a tree path or
forest path Y, for instance we write Ys = 〈1,Ys〉 ∈ Rk and define δYs so that

(2.4) Ys = Ys1+ δYs .

Remark 2.8. Following the thread from Remark 2.3, a tree path Y is used as an expansion
for the solution Y to (1.3) while, for each µ ∈ [d], a forest path σµ(Y) will be used as an
expansion of σµ(Y ).

Definition 2.9. Fix I ⊂ [0, 1] and let X be an α-rough path. Given a forest/tree path Y
we define, for any f ∈ F≤N−1,

[Y : f ]I = sup
s,t∈I

0<|s−t|<1

|RY,f
s,t |

|t− s|(N−|f |)α

where the f -remainder of Y between s and t, denoted RY,f
s,t , is given by

RY,f
s,t := 〈f,Yt〉 − 〈Xs,t ⊗ f,∆Ys〉 ∈ Rk .

When I = [0, 1] we suppress it from that notation, i..e writing [Y : f ][0,1] = [Y : f ]. We call
Y an X-controlled rough forest/tree path if max{[Y : f ] : f ∈ F≤N−1} <∞.

As in [HK15] we will define the composition of a function g ∈ CN−1(Rk,Rk) with a tree
path Y via appealing to the Taylor expansion of g about Y•. In particular, we define the
forest path g(Y) by setting

(2.5) g(Y)s = g(Ys)1+ P≤N−1

N−1∑
p=0

1

p!
Dpg(Ys)

[(
δYs, . . . , δYs︸ ︷︷ ︸

p-times

)]
.

Remark 2.10. Note that in (2.5) we naturally view p-linear forms on Rk as p-linear forms
on Span(T̊≤N−1)k, for instance

Dpg(Ys)
[(
δYs, . . . , δYs︸ ︷︷ ︸

p-times

)]
=

∑
h1,...,hp∈T̊≤N−1

Dpg(Ys)
[(
〈Ys, h1〉, . . . , 〈Ys, hp〉

)] p∏
i=1

hi .
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2.7. Integration of controlled paths. We now explain how we define our rough integral
that is needed to define our fixed point problem. Given a forest path U, µ ∈ [d], and
s, t ∈ [0, 1], we define

ΞU,µ
s,t =

∑
f∈F≤N−1

〈f,Us〉〈Xs,t, [f ]µ〉 .

The quantity Ξs,t should be seen as a single term in a Riemann -type approximation for the
rough integral. We can now state Gubinelli’s sewing lemma [Gub03, Gub06].

Proposition 2.11. Let X be a branched rough path and U be an X-controlled forest path.
Then, for any 0 ≤ s ≤ t ≤ 1, we have

(2.6) lim
|P|→0

∑
{sn,sn+1}∈P

ΞU,µ
sn,sn+1

=:

∫ t

s

UrdX(µ)
r

where the limit above is over partitions P of [s, t] with mesh size going to 0.
We have the estimate

(2.7)

∣∣∣∣∣
∫ t

s

UrdX(µ)
r − ΞU,µ

s,t

∣∣∣∣∣ ≤ C(α)|t− s|(N+1)α
∑

f∈F≤N−1

∑
µ∈[d]

[X : [f ]µ][U : f ][s,t] .

Note that
∫ t
s

UrdX
(µ)
r is an element of Rk, not a tree/forest path. Our notion of a solution

to (1.3) will itself be an expansion so we also want to make sense of the integration of an
X-controlled forest path as a tree path rather than just an element Rk. Therefore we define,
given a branched rough path X, an X-controlled tree path Y, and a tuple of functions
σ = (σµ : µ ∈ [d]) with σµ ∈ CN−1(Rk,Rk), the new tree path

(2.8) Z• =

•∫
0

σ(Y)rdXr =
∑
µ∈[d]

(∫ •
0

σµ(Y)rdX(µ)
r

)
1+

∑
f∈F≤N−2

〈f, σµ(Y)•〉[f ]µ .

Note that we typographically distinguish the integral
∫
appearing in (2.6) from the integral∫

appearing in (2.8) since they produce different sorts of objects.

We can now state a precisely what we mean by a “solution” to (1.3).

Definition 2.12. Given a branched rough path X we say that an X-controlled tree path Y
is a solution to (1.3) if we have, for 0 ≤ s ≤ 1,

(2.9) Ys = y01−
(∫ s

0

|Yr|m−1Yrdr
)
1+ Zs .

where Zs is defined as in (2.8).

2.8. Coherence. A necessary (but not sufficient) condition for the tree path Y to be a
solution in the sense of Definition 2.12 is that:

(2.10) ∀[f ]µ ∈ T̊≤N−1, s ∈ (0, T ], one has 〈f, σµ(Ys)〉 = 〈[f ]µ,Ys〉 .
The condition (2.10) is algebraic and completely local in time. In order to be able to conclude
that Y is a solution in the sense of Definition 2.12 one would additionally have to impose
that Y is X-controlled and that, for all s ∈ (0, T ], the 1 coefficient on both sides of (2.9)
are the same.

Given Ys as input, one can use (2.10) to calculate either side of (2.10) inductively in |f |.
This motivates the following definition.

Definition 2.13. We define the collection of functions

(Υµ[f ](·) : f ∈ F≤N−1 , µ ∈ [d]) , Υµ[f ](·) : Rk → Rk ,

inductively, as follows. Given
f =

∏
i∈I

[fi]µi
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we set

(2.11) Υµ[f ](·) = D|I|σµ(·)
[(

Υµi [fi](·)
)
i∈I

]
.

The definition given above is inductive in |f | and also fixes the base case f = 1 where we
have Υµ[1](·) = σµ(·).

Remark 2.14. The functions Υµ[f ] are also known as elementary differentials in the anal-
ysis of Runge-Kutta methods, see [Bro00].

These elementary differentials usually appear with symmetry factors. We define S :
Fall → N via recursively setting, S(1) = 1, and

S(f) =
∏
h∈T̊all

(fh!)S(h)fh ,

where we recall that fh ∈ N is the number of instances of h in f .
A straightforward inductive proof then gives the following lemma.

Lemma 2.15. Given a tree path Y, the condition (2.10) is equivalent to

(2.12) ∀[f ]µ ∈ T̊≤N−1, s ∈ (0, T ], one has 〈f, σµ(Ys)〉 = 〈[f ]µ,Ys〉 =
1

S(f)
Υµ[f ](Ys) .

Definition 2.16. We call a tree path Y that satisfies (2.10) (or equivalently (2.12)) coher-
ent.

Remark 2.17. We extend Υµ[•] from Fall to Span(Fall) by linearity. We also define Υ[•]
on Span(T̊all) by setting, for h = [f ]µ ∈ T̊all, Υ[h] = Υµ[f ] and then again extend linearly.
We can then write (2.11) as

(2.13) Υ
[
[f ]µ

]
(·) = Υµ[f ](·) = D#fσµ(·)

[(
Υ[h](·)

)
h∈f

]
.

This duplication of notation (giving equivalent definitions of Υµ on forests and Υ on trees) is
convenient because trees appear for the expansion of Y while forests appear for the expansion
of the right hand side of the equation.

As an example, we compute

Υl

[
•k

i

j
]
(x) = Υ

[
l

i

j

k
]
(x) = D2σl(x)

[(
σk(x), Dσi(x)[σk(x)]

)]
.

We close this section with the following remark.

Remark 2.18. Note that the drift term −|Y (t)|m−1Y (t)dt didn’t play much of a role in this
section, in particular it has no direct effect on the coherence coefficients Υµ[·](·). However,
since

∣∣ ∫ t
s
|Y (r)|m−1Y (r)dr

∣∣ . |s − t|, this term is negligible compared to the other terms in
our local expansion for Y . In particular, by virtue of (2.9), we have

(2.14) RZ,1
s,t = Zt − Zs − 〈Xs,t, δZs〉 = RY,1

s,t +

∫ t

s

|Y (r)|m−1Y (r)dr ,

where δZ is defined via the same convention as in (2.4) and we used that, by coherence,

〈Xs,t, δZs〉 =
∑

h∈T̊≤N−1

〈Xs,t, h〉〈h,Zs〉 =
∑

h∈T̊≤N−1

〈Xs,t, h〉〈h,Ys〉 .

The role of the drift becomes important only in the final step of our argument in Section 4.
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3. Grafting, coherence, and remainder estimates

3.1. Grafting operations. We introduce grafting operations which will later be shown to
be “adjoints” of the co-product under a particular inner product we introduce later.

In words, given f̃ , f ∈ Fall, the grafting of f̃ onto f sums over all the ways of attaching
each of the trees in h̃ ∈ f̃ to a vertex of f with an edge, or concatenating h̃ to the forest f .
More precisely, given

(3.1) f̃ =
∏
j∈J

h̃j ∈ Fall and f =
∏
i∈I

[fi]µi .

we inductively define

(3.2) f̃ y f =
∑
K⊂J

( ∏
j∈J\K

h̃j

) ∑
θ:K→I

(∏
i∈I

[( ∏
k∈θ−1(i)

h̃k

)
y fi

]
µi

)
∈ Fall .

The definition above is inductive in |f |, with the base case corresponding to f = 1 for which
we have I = ∅ in (3.1) and so one must choose K = ∅ in the first sum of (3.2) – in particular
we have f̃ y 1 = f̃ . Additionally, we note that 〈f̃ y f, f̄〉 6= 0 ⇒ |f̃ | + |f | = |f̄ |. We give
an example grafting computation below:

m

n o •k y •l
i

j
= m

n o •k •l
i

j
+ m

n o (
l

k

i

j
+ •l( i

k j
+

i

j
k

)
)

+ •k
(

l

m

n o

i

j
+ •l(

i

j

m

n o

+
i

jm

n o

)
)

+ l

m

n o (
i

k j
+

i

j
k )

+
l

k (
i

j

m

n o

+
i

jm

n o )
.

Remark 3.1. The operation f̃ y f is a decorated version of the “grafting forests over
forests” operation of [Foi13, Section 1.5], this is essentially a version of the Grossman-Larson
product [GL89].

3.2. Inner products and the adjoint relation.

Definition 3.2. We define a new inner product on Span(Fall) by inductively setting
• 〈〈1,1〉〉 = 1
• 〈〈[f ]µ, [g]µ′〉〉 = 1{µ = µ′}〈〈f, g〉〉
• For hi, gj ∈ T̊all,

〈〈
∏
i∈I

hi,
∏
j∈J

gj〉〉 =
∑
θ:I→J
biject.

∏
i∈I

〈〈hi, gθ(i)〉〉 ,

We extend this inner product to Span(Fall)⊗ Span(Fall) by setting, for f, g, f̄ , ḡ ∈ Fall,

〈〈f ⊗ g, f̄ ⊗ ḡ〉〉 = 〈〈f, f̄〉〉〈〈g, ḡ〉〉 .

Remark 3.3. Note that, for f, g ∈ Fall,

(3.3) 〈〈f, g〉〉 = 1{f = g}S(f) = S(f)〈f, g〉 .
In particular, (2.12) can be rewritten as :

∀[f ]µ ∈ T̊≤N−1, s ∈ (0, T ], one has 〈〈f, σµ(Ys)〉〉 = 〈〈[f ]µ,Ys〉〉 = Υµ[f ](Ys) .

The following lemma is straightforward to prove from our definition of 〈〈•, •〉〉.

Lemma 3.4. Given any h̃j , hi ∈ T̊ and also an ∈ Span(Fall)⊗ Span(Fall) one has〈〈(∏
j∈J

h̃j
)
⊗
(∏
i∈I

hi
)
,
∏
n∈N

an

〉〉
=

∑
θJ :J→N
θI :I→N

∏
n∈N

〈〈( ∏
j∈θ−1

J (n)

h̃j
)
⊗
( ∏
i∈θ−1

I (n)

hi
)
, an

〉〉
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Our main purpose for introducing the inner products 〈〈•, •〉〉 is that it is convenient for
stating and proving following theorem.

Theorem 3.5. For any f̃ , f, g ∈ Fall, we have

(3.4) 〈〈f̃ y f, g〉〉 = 〈〈f̃ ⊗ f,∆g〉〉 .

Proof. We give an inductive proof with the induction being in |f |. For the base case we
have f = 1 in which case (3.4) is immediate. We now prove the inductive step. We write
g =

∏
n∈N [gn]µ̄n and also write f̃ and f as in (3.1). We then have

〈〈f̃ y f, g〉〉 =
∑
K⊂J

∑
θ:K→I

〈〈( ∏
j∈J\K

h̃j

)∏
i∈I

[( ∏
k∈θ−1(i)

h̃k

)
y fi

]
µi
,
∏
n∈N

[gn]µ̄n

〉〉
=
∑
K⊂J

∑
σ:(J\K)tI→N

biject.

∑
θ:K→I

( ∏
j∈J\K

〈〈
h̃j , [gσ(j)]µ̄σ(j)

〉〉)
×
(∏
i∈I

〈〈[( ∏
k∈θ−1(i)

h̃k

)
y fi

]
µi
, [gσ(i)]µ̄σ(i)

〉〉)
=
∑
K⊂J

∑
σ:(J\K)tI→N

biject.

∑
θ:K→I

( ∏
j∈J\K

〈〈
h̃j , [gσ(j)]µ̄σ(j)

〉〉)
×
(∏
i∈I

1{µi = µ̄σ(j)}
〈〈( ∏

k∈θ−1(i)

h̃k

)
⊗ fi,∆gσ(i)

〉〉)
.

Above, in the second equality we used the third identity of Definition 3.2, and in the third
equality we used our the third identity of Definition 3.2 followed by our induction hypothesis.

One the other hand, ∆g =
∑
M⊂N

(∏
m∈M [gm]µ̄m⊗1

)(∏
n∈N\M (id⊗ [•]µ̄n)∆gn

)
which

gives

〈〈f̃ ⊗ f,∆g〉〉

=
∑
M⊂N

〈〈
f̃ ⊗ f,

( ∏
m∈M

[gm]µ̄m ⊗ 1
)( ∏

n∈N\M

(id⊗ [·]µ̄n)∆gn

)〉〉
=
∑
M⊂N

∑
θJ :J→N

∑
θI :I→N

( ∏
m∈M

〈〈( ∏
j∈θ−1

J (m)

h̃j

)
⊗
( ∏
i∈θ−1

I (m)

[fi]µi

)
, [gm]µ̄m ⊗ 1

〉〉)
×
( ∏
n∈N\M

〈〈( ∏
j∈θ−1

J (n)

h̃j

)
⊗
( ∏
i∈θ−1

I (n)

[fi]µi

)
, (id⊗ [·]µ̄n)∆gn

〉〉)
=
∑
M⊂N

∑
θJ :J→N

∑
θI :I→N\M

biject.

( ∏
m∈M

〈〈( ∏
j∈θ−1

J (m)

h̃j

)
, [gm]µ̄m

〉〉)

×
(∏
i∈I

1{µi = µ̄θI(i)}
〈〈( ∏

j∈θ−1
J (θI(i))

h̃j

)
⊗ fi,∆gθI(i)

〉〉〉
=
∑
M⊂N

∑
K⊂J

∑
π:J\K→M

biject.

∑
θI :I→N\M

biject.

∑
θ:K→I

( ∏
j∈J\K

〈
h̃j , [gπ(m)]µ̄π(m)

〉)

×
(∏
i∈I

1{µi = µ̄θI(i)}
〈〈( ∏

j∈θ−1(i)

h̃j

)
⊗ fi,∆gθI(i)

〉〉)
=
∑
K⊂J

∑
σ:(J\K)tI→N

biject.

∑
θ:K→I

( ∏
j∈J\K

〈〈h̃j , [gσ(j)]µ̄σ(j)
〉〉
)

×
(∏
i∈I

1{µi = µ̄σ(j)}
〈〈( ∏

k∈θ−1(i)

h̃k

)
⊗ fi,∆gσ(i)

〉〉)
.



14 TIMOTHEE BONNEFOI, AJAY CHANDRA, AUGUSTIN MOINAT, AND HENDRIK WEBER

In the second equality above we used Lemma 3.4. In the third equality we above we used
the fact that the line before vanishes unless θI is a bijection from I to N \M .

In the fourth equality we used that the line before vanishes unless |θ−1
J (m)| = 1 for every

m ∈M . Therefore the sum over the map θJ in the line before can be written as a sum over
K = θ−1

J (N \M), π = θJ �J\K and θ = (θJ �K) ◦ θ−1
I . In the last equality we exchange the

sums over π and θI , and M for just a single sum over σ. �

Remark 3.6. The result of Theorem 3.5 was actually first obtained in [Hof03, Proposi-
tion 4.4], and reflects the duality between the Grossman-Larson and Connes-Kreimer Hopf
algebras.

3.3. Coherence and grafting. The next lemma states a generalisation of (2.13) and shows
that maps Υµ interact well with our grafting procedure.

Lemma 3.7. Given any f̃ , f ∈ F with |f̃ |+ |f | ≤ N − 1, and µ ∈ [d] one has

Υµ[f̃ y f ] = D#f̃Υµ[f ]
[(

Υ[h̃]
)
h̃∈f̃

]
.

Proof. We prove the general case by induction in |f | - the base case when f = 1 is immediate.
We write f and f̃ as in (3.1). Now we note that, by Leibnitz rule and the definition of

Υ, for any v = (vj)j∈J ∈ (Rk)J ,

D#f̃Υµ[f ][v]

=
∑

(Ji:i∈I)

D#f+#f̃−
∑
i∈I |Ji|σµ

[(
D|Ji|Υµi [fi][vJi ]

)
i∈I t vJc

]
,

(3.5)

where above the sum is over collections of disjoint subsets (Ji : i ∈ I), Ji ⊂ J and we write
vJi = (vj)j∈Ji and Jc = J \

(⋃
i∈I Ji

)
.

On the other hand, using the definition of the grafting procedure followed by that of Υµ

Υµ[f̃ y f ]

=
∑
K⊂J

∑
θ:K→I

Υµ

[( ∏
j∈J\K

h̃j

)(∏
i∈I

[( ∏
k∈θ−1(i)

h̃k
)
y fi

]
µi

)]

=
∑
K⊂J

∑
θ:K→I

D|J\K|+#fσµ

[(
Υ[h̃j ]

)
j∈J\K

t
(

Υµi

[( ∏
k∈θ−1(i)

h̃k
)
y fi

])
i∈I

]
.

Now, by our induction hypothesis, for any θ : K → I and i ∈ I we have

Υµi

[( ∏
k∈θ−1(i)

h̃k
)
y fi

]
= D|θ

−1(i)|Υµi [fi]
[(

Υ[h̃k]
)
k∈θ−1(i)

]
.

Inserting the above calculation into the previous equation gives

Υµ[f̃ y f ]

=
∑
K⊂J

∑
θ:K→I

D|J\K|+#fσµ

[(
D|θ

−1(i)|Υµi [fi][(Υ[h̃j ])j∈θ−1(i)]
)
i∈I t (Υ[h̃j ])j∈J\K

]
,

which finishes the proof by comparing with (3.5), identifying Ji ↔ θ−1(i), and setting
v = (Υ[h̃j ])j∈J . �

In what follows we define, for g ∈ F≤N−1 and µ ∈ [d], Υµ[g](·) = 1
S(g)Υµ[g](·) and, for

h ∈ T̊≤N−1, Υ[h](·) = 1
S(h)Υ[h](·). We also write

Υµ(·) =
∑

g∈F≤N−1

Υµ[g](·)g .

In particular, Υµ : Rk → Span(F≤N−1)k and for any g ∈ F≤N−1 we have 〈〈Υµ, g〉〉 = Υµ[g].
We also define

Υ(·) =
∑

h∈T̊≤N−1

Υ[h](·)h .
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We see that if a tree path Y is coherent then, for any s ∈ (0, 1], we have δYs = Υ(Ys) and,
for every µ ∈ [d], σµ(Ys) = Υµ(Ys).

Lemma 3.8. Given any f ∈ F≤N−1 and µ ∈ [d],∑
f̃∈F≤N−1

〈f̃ ⊗ f,∆Υµ〉f̃ = P≤N−|f |−1

N−1∑
p=0

1

p!
DpΥµ[f ]

[
(Υ, . . . ,Υ)︸ ︷︷ ︸

p-times

]
.

Proof. We observe that

〈f̃ ⊗ f,∆Υµ〉f̃ =
1

S(f̃)S(f)
〈〈f̃ ⊗ f,∆Υµ〉〉f̃

=
1

S(f̃)S(f)
〈〈f̃ y f,Υµ〉〉f̃ =

1{|f |+ |f̃ | < N}
S(f̃)S(f)

Υµ[f̃ y f ]f̃

=
1{|f |+ |f̃ | < N}

S(f̃)S(f)
D#f̃Υµ[f ]

[(
Υ[h̃]

)
h̃∈f̃

]
f̃

=1{|f |+ |f̃ | < N}Multi(f)

#f̃ !
D#f̃Υµ[f ]

[(
Υ[h̃]h̃

)
h̃∈f̃

]
.

In the first equality above we are using (3.3) and in the second equality we are applying
Theorem 3.5. In the third equality above we are using Lemma 3.7, and for the third equality
we define the multinomial coefficient

Multi(f̃) =
#f̃ !∏

h̃∈T̊≤N−1
f̃h̃!

where f̃h̃ in again the number of instances of h̃ in f̃ , so that we have

S(f̃) =
#f̃ !

Multi(f̃)

∏
h̃∈f̃

S(h̃) .

It follows that∑
f̃∈F≤N−1

〈f̃ ⊗ f,∆Υµ〉f̃ =
∑

f̃∈F≤N−1

|f̃|<N−|f|

Multi(f̃)

#f̃ !
D#f̃Υµ[f ]

[(
Υ[h̃]h̃

)
h̃∈f̃

]

=
N−1∑
p=0

1

p!

∑
f̃∈F≤N−1

|f̃|<N−|f|

1{#f = p}Multi(f̃)DpΥµ[f ]
[(

Υ[h̃]
)
h̃∈f̃

]

=

N−1∑
p=0

1

p!

∑
h1,...,hp∈T̊≤N−1

DpΥµ[f ]
[(

Υ[hi]hi
)p
i=1

]

=P≤N−|f |−1

N−1∑
p=0

1

p!
DpΥµ[f ]

[
(Υ, . . . ,Υ)︸ ︷︷ ︸

p-times

]
.

(3.6)

�

The above lemma gives us the following corollary, the main result of this section. It
expresses remainders at higher levels in terms of remainders at level 0.

Corollary 3.9. For any coherent tree path Y, f ∈ F≤N−1, and µ ∈ [d], we have

R
σµ(Y),f
s,t = Υµ[f ](Yt)−

〈
Xs,t, P≤N−|f |−1

N−1∑
p=0

1

p!
DpΥµ[f ](Ys)

[
(Υ(Ys), . . . ,Υ(Ys))︸ ︷︷ ︸

p-times

]〉
.

(3.7)
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Proof. Using the definition of coherence we can write

R
σµ(Y),f
s,t =〈f, σµ(Yt)〉 − 〈Xs,t ⊗ f,∆σµ(Yt)〉

=Υµ[f ](Yt)− 〈Xs,t ⊗ f,∆Υµ(Ys)〉.

We then use Lemma 3.8 to see that

〈Xs,t ⊗ f,∆Υµ(Ys)〉 =
〈
Xs,t,

∑
f̃∈F≤N−1

〈f̃ ⊗ f,∆Υµ(Ys)〉f̃
〉

=
〈
Xs,t, P≤N−|f |−1

N−1∑
p=0

1

p!
DpΥµ[f ](Ys)

[
(Υ(Ys), . . . ,Υ(Ys))︸ ︷︷ ︸

p-times

]〉
.

�

Remark 3.10. Note that if we know that the functions (σµ)dµ=1 are actually smooth then
the Υµ make sense on Fall and it easy to check that the various lemmas and corollaries of
this subsection hold without any constraint on the orders of the participating forests.

3.4. The main remainder estimate. In order to estimate (3.7) we will use the Taylor
expansion/remainder formula of [Hai14, Proposition A.1].

We will want to impose a stopping rule on generating our Taylor expansion that takes
into the consideration the order forests that are produced, a Taylor expansion like [Hai14,
Proposition A.1] is convenient because it lets us enforce a rule on how the expansion is
iteratively generated.

We say A ⊂ F is full if it is non-empty, finite, and, for any f ∈ A, we have

{f̃ ∈ F : f̃h ≤ fh for every h ∈ F} ⊂ A .

Note that, for any M ∈ N, F≤M is full.
We now fix some arbitrary total order on T̊≤N−1. For any A ⊂ F we define a “boundary”

of A by setting

(3.8) ∂A =
{
f ∈ F \ (A ∪ 1) : (fh − 1{h = m(f)} : h ∈ T̊≤N−1) ∈ A

}
,

where
m(f) = min{h ∈ T̊≤N−1 : fh 6= 0}

is the minimal tree appearing in the non-empty forest f . In words, f ∈ ∂A if f is non-
empty, does not belong to A, but if one reduces the number of instances of the minimal tree
appearing in f by 1 then the resulting forest does belong to A.

We can then state the formulation of [Hai14, Proposition A.1] we will use.

Proposition 3.11. Let A ⊂ F be full and F ∈ CK+1([0, 1]T̊≤N−1) where K = maxf∈A #f ,
then

F (1) =
∑
f∈A

∂fF (0)

f !
+
∑
f∈∂A

∫
[0,1]

T̊≤N−1

∂fF (y)Qf (dy)

where 1 = (1 : h ∈ F) ∈ [0, 1]T̊≤N−1 is vector of all ones and we are using standard notation
for derivatives and monomials indexed by multi-indices f = (fh : h ∈ T̊≤N−1) ∈ F , and for
each f ∈ F , Qf (dy) is measure of total mass 1 on [0, 1]T̊≤N−1 .

We can now state the key lemma for this section.

Corollary 3.12. Suppose the tree path Y is coherent, then, for any µ ∈ [d] and f ∈ F≤N−1,

|Rσµ(Y),f
s,t | . sup

{∣∣DΥµ[f ]
(
Ys + a

)∣∣ · |RY,1
s,t | : a ∈ Rk, |a| ≤ EY

s,t + |Yt − Ys|
}

+ sup

∣∣∣D#f̃Υµ[f ](Ys + z)
∏
h∈f̃

Υ[h](Ys)〈Xs,t, h〉
∣∣∣ :

f̃ ∈ ∂F≤N−|f |−1

z ∈ Rk, |z| ≤ EY
s,t

 ,
(3.9)
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where

(3.10) EY
s,t =

∑
h∈T̊≤N−1

|Υ[h](Ys)〈Xs,t, h〉| .

Before turning to the proof, we point out that (3.9) estimates Rσµ(Y),f
s,t by treating it as

a multivariable Taylor remainder - this is why we see suprema of derivatives on the right
hand side above. Being careful about the constraints on the arguments of these derivatives
will be important, in particular when working with coefficients σ that are allowed to grow
at infinity, see Assumption 1.2.

Proof. Given any x = (xh) ∈ [0, 1]T̊≤N−1 we define

Ys,t(x) =
∑

h∈T̊≤N−1

xhΥ[h](Ys)〈Xs,t, h〉 .

We then have
Ys + Ys,t(1) +RY,1

s,t = Yt

We now define the function F : [0, 1]T̊≤N−1 → Rk given by

F (x) = Υµ[f ]
(
Ys + Ys,t(x)

)
.

Now, by Corollary 3.9 and adding and subtracting F (1), we have

R
σµ(Y),f
s,t ≤

∣∣∣Υµ[f ](Ys + Ys,t(1) +RY,1
s,t )−Υµ[f ](Ys + Ys,t(1))

∣∣∣
+
∣∣∣F (1)−

〈
Xs,t, P≤N−|f |−1

N−1∑
p=0

1

p!
DpΥµ[f ]

[
(Υ, . . . ,Υ)︸ ︷︷ ︸

p-times

]〉∣∣∣ .(3.11)

By the mean value theorem the first term on the right hand side of (3.11) is bounded by

sup
λ∈[0,1]

∣∣DΥµ[f ](Ys + Ys,t(1) + λRY,1
s,t )

∣∣ · |RY,1
s,t | ,

which in turn is bounded by the first term on the right hand side of (3.9).
We now claim that

∑
f̃∈F≤N−|f|=1

∂f̃F (0)

f̃ !
=
〈
Xs,t, P≤N−|f |−1

N−1∑
p=0

1

p!
DpΥµ[f ](Ys)

[
(Υ(Ys), . . . ,Υ(Ys))︸ ︷︷ ︸

p-times

]〉
.

(3.12)

To verify that (3.12) holds, note that we can substitute into (3.12) the right hand side of
the first line of (3.6) and also use that

Multi(f̃)

#f̃ !
=

1

f̃ !
and

〈
Xs,t, D

#f̃Υµ[f ](Ys)
[(

Υ[h̃](Ys)h̃
)
h̃∈f̃

]〉
= ∂f̃F (0) .

Applying Proposition 3.11 to F (1) with A = F≤N−1−|f | then gives us

F (1)−
〈
Xs,t, P≤N−|f |−1

N−1∑
p=0

1

p!
DpΥµ[f ](Ys)

[
(Υ(Ys), . . . ,Υ(Ys))︸ ︷︷ ︸

p-times

]〉

=
∑

f̃∈∂F≤N−1−|f|

∫
[0,1]

T̊≤N−1

(∂f̃F )(y)Qf̃ (dy) .

(3.13)

We then see the second term on the right hand side of (3.11) is bounded by the second term
on the right hand side of (3.9). �
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4. Proof of main Theorems

Before proceeding to the details of the proof we give a brief overview. The key idea is
contained in the interior regularity estimate, Lemma 4.2, which in turn builds on the Sewing
Lemma, Proposition 2.11, and Corollary 3.12. More precisely, the Sewing Lemma provides
an estimate of order (N + 1)α on the rough integral Z in terms of the various order bounds
[X : [f ]µ] and the semi-norms [σµ(Y) : f ] which measure the quality of local approximations
of all coefficients. According to Corollary 3.12 the semi-norms [σµ(Y) : f ] can be controlled
in terms of

• the size of the coefficients Υ on the relevant interval,
• the order bounds [X : [f ]µ], as well as
• the remainder RY,1

s,t .

It is important to note the relevant estimate (3.9) is linear in |RY,1
s,t | and that |RY,1

s,t | describes
an error of order Nα in the local description of Y . Furthermore, the quantity |RY,1

s,t | can
be easily estimated in terms of the corresponding quantity for Z. Combining all of these
estimates one obtains an estimate on the error of the local approximation of order N +
1 of Z in terms of (the coefficients Υ, the order bounds [X : [f ]µ] and) the quantities
|RZ,1
s,t | which measure the error in the approximation of order Nα. This can be seen as

a regularity improvement from Nα to (N + 1)α, which in turn allows to absorb the term
|RZ,1
s,t | provided one works on a small-enough interval. The proof of Theorem 1.4 then mostly

consists of plugging (a truncated version of) the interior regularity estimate, Lemma 4.2,
into Lemma 1.11, which captures the damping of the non-linear term as discussed in the
introduction, and choosing appropriate parameters depending on the growth assumption on
the coefficient σ. The final iteration argument (see Step 3 of the Proof of Theorem 1.4 1))
is an adaptation of the additive noise case, [MW20a, Proof of Lemma 2.1, Step 6].

We start the argument with the following simple lemma that translates Assumptions 1.1
and 1.2 into estimates on Υ[h] for h ∈ T̊≤N .

Lemma 4.1. Let h ∈ T̊≤N and 0 ≤ p ≤ N − |h|+ 1.
Suppose that Assumption 1.1 holds, then

(4.1) sup
y∈Rk

|DpΥ[h](y)| . C |h|σ .

Suppose instead that Assumption 1.2 holds, then

(4.2) |DpΥ[h](y)| . C |h|σ 〈y〉(γ−1)|h|+1−p .

Proof. We treat the case p = 0, the case of p 6= 0 can be treated similarly - the constraint
on p comes from the fact that we control only N derivatives of the (σµ)µ∈d.

A straightforward inductive argument shows that

|Υ[h](y)| .
∏
u∈Nh

|Dc(u)σµ(u)(y)| ,

where on the right hand side we are taking an appropriate operator norm, Nh denotes the
set of nodes of the tree h and, given u ∈ Nh, we write c(u) for the number of children nodes
of u in h (that is, the number of nodes directly attached to u that are further from the root)
and µ(u) ∈ [d] for the value of the node decoration that u carries.

Using the fact that the cardinality of Nh is |h|, the bound in the case of Assumption 1.1
follows immediately.

In the case of Assumption 1.2, the first bound follows from the fact that
∑
u∈Nh c(u) is

just the number of edges of h which is |h| − 1. �

We can alternatively formulate the above lemma by saying that, for any f ∈ F≤N−1 and
µ ∈ [d], we have, uniformly over y ∈ Rk and 0 ≤ p ≤ N ,

|DpΥµ[f ](y)| .

{
C
|f |+1
σ under the Assumption 1.1,

C
|f |+1
σ 〈y〉(γ−1)(|f |+1)+1−p under Assumption 1.2.
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We are now ready to pass to the proofs of Theorems 1.4 and Theorems 1.5. The following
“interior regularity estimate” which gives a control of the Cα norm of Z and Y in terms of
its lower regularity L∞ norm is key to both arguments. To keep the length of some formulas
within reason we use the following shorthand notation combining some of the quantities
appearing on the right hand side of (3.9)

Uµ(f,Y, I) := sup
{∣∣DΥµ[f ](Ys + a)

∣∣ : s, t ∈ I, |a| ≤ EY
s,t + |Yt − Ys|

}
,

Uµ(f, f̄ ,Y, I) := sup

{∣∣D#f̄Υµ[f ](Ys + z)
∏
h∈f̄

Υ[h](Ys)
∣∣ :

s, t ∈ I,
|z| ≤ EY

s,t

}
.

(4.3)

Below, for any j, we denote by F=j the set {f ∈ F : |f | = j}.

Lemma 4.2 (Interior regularity). Let Y solve (1.3) on [0, 1] in the sense of Definition 2.12
and let Z be given by (2.8). Let I ⊆ [0, 1] be a closed interval of length L and assume that
L is small enough to ensure that for all forests f ∈ F≤N−1 and all µ ∈ [d]

L(|f |+1)α [X : [f ]µ]Uµ(f,Y, I) ≤ ε ,(4.4)

for a suitably small ε = ε(α, d, k) ≤ 1. Then we have the estimates

LNα[Z : 1]I .
∑

f∈F≤N−1

∑
µ∈[d]

[X : [f ]µ]

·

{
L(|f |+1)α+1Uµ(f,Y, I)‖Y ‖mI + max

f̄∈∂F≤N−|f|−1

L(|f̄ |+|f |+1)αUµ(f, f̄ ,Y, I)[X : f̄ ]

}
+

∑
f∈F=N−1

∑
µ∈[d]

LNα[X : [f ]µ]‖Υµ[f ](Y•)‖I .(4.5)

Proof. Part 1: Application of Sewing Lemma. For 0 ≤ s ≤ t ≤ 1, the estimate (2.7)
implies that∣∣∣Zt − Zs − Ξ

σ(Y)
s,t

∣∣∣ . |t− s|(N+1)α
∑

f∈F≤N−1

∑
µ∈[d]

[X : [f ]µ] [σµ(Y) : f ][s,t] ,

where
Ξ
σ(Y)
s,t :=

∑
µ∈[d]

Ξ
σµ(Y)
s,t =

∑
µ∈[d]

∑
f∈F≤N−1

〈Xs,t, [f ]µ〉〈f, σµ(Y)s〉 ∈ Rk .

By coherence of Y, i.e. by (2.10), we get,

Ξ
σ(Y)
s,t =

∑
h∈T̊≤N−1

〈Xs,t, h〉〈h,Ys〉+
∑

f∈F=N−1

∑
µ∈[d]

〈Xs,t, [f ]µ〉〈f, σµ(Y)s〉 .

Recalling that δY = δZ this leads to

|RZ,1
s,t | =

∣∣∣Zt − Zs − 〈Xs,t, δYs〉
∣∣∣

≤
∣∣∣Zt − Zs − Ξ

σ(Y)
s,t

∣∣∣+
∣∣∣Ξσ(Y)
s,t − 〈Xs,t, δYs〉

∣∣∣
. |t− s|(N+1)α

∑
f∈F≤N−1

∑
µ∈[d]

[X : [f ]µ]
[
σµ(Y) : f

]
[s,t]

+ |t− s|Nα
∑
F=N−1

∑
µ∈[d]

[X : [f ]µ] · |〈f, σµ(Y)s〉| .

Dividing by |t− s|Nα and taking the supremum over all s < t in I we arrive at

[Z : 1]I . L
α

∑
f∈F≤N−1

∑
µ∈[d]

[X : [f ]µ]
[
σµ(Y) : f

]
I

+
∑

f∈F=N−1

∑
µ∈[d]

[X : [f ]µ] · ‖Υµ[f ](Y•)‖I .(4.6)
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Part 2: Application of Corollary 3.12. We use the estimate (3.9) in Corollary 3.12 in
the form
(4.7)
[σµ(Y) : f ]I . L

|f |αUµ(f,Y, I)[Y : 1]I + max
f̄∈∂F≤N−|f|−1

L(|f̄ |+|f |−N)αUµ(f, f̄ ,Y, I)[X : f̄ ] .

Note that |f̄ | ≥ N − |f |, so that the exponent (|f̄ | + |f | − N)α in the second term on the
RHS of (4.7) is always non-negative.

We plug this estimate into the RHS of (4.6) resulting in

[Z : 1]I . L
α

∑
f∈F≤N−1

∑
µ∈[d]

[X : [f ]µ]

·

{
L|f |αUµ(f,Y, I)[Y : 1]I + max

f̄∈∂F≤N−|f|−1

L(|f̄ |+|f |−N)αUµ(f, f̄ ,Y, I)[X : f̄ ]

}
+
∑
F=N−1

∑
µ∈[d]

[X : [f ]µ] · ‖Υµ[f ](Y•)‖I .(4.8)

The key observation at this point is that the terms [Y : 1]I on the RHS can be replaced by
[Z : 1]I . Indeed, equation (2.14) which relates the tree paths Y and Z immediately implies
the bound

[Y : 1]I ≤ [Z : 1]I + L1−Nα‖Y ‖mI .

Plugging this into the RHS of (4.8), the resulting terms involving [Z : 1]I can be absorbed
into the LHS, provided their pre-factors are small. More precisely,

[Z : 1]I . L
α

∑
f∈F≤N−1

∑
µ∈[d]

[X : [f ]µ]

·

{
L|f |αUµ(f,Y, I)L1−Nα‖Y ‖mI + max

f̄∈∂F≤N−|f|−1

L(|f̄ |+|f |−N)αUµ(f, f̄ ,Y, I)[X : f̄ ]

}
+

∑
|f |∈F=N−1

∑
µ∈[d]

[X : [f ]µ] · ‖Υµ[f ](Y•)‖I ,

provided for all forests f ∈ F≤N−1 and all µ ∈ [d]

L(|f |+1)α [X : [f ]µ]Uµ(f,Y, I) ≤ ε ,

for a suitably small ε = ε(α, d, k) ≤ 1. This is the desired estimate (4.9). �

It turns out, that for the proof of Theorems 1.4 and 1.5 only the following truncated
version of the estimate (4.5) is required

Corollary 4.3. Let Y solve (1.3) on [0, 1] in the sense of Definition 2.12 and let Z be given
by (2.8). Let I ⊆ [0, 1] be a closed interval of length L satisfying (4.4). Then we have the
estimates

Lα[Z]α,I .
∑

f∈F≤N−1

∑
µ∈[d]

[X : [f ]µ]

·

{
L(|f |+1)α+1Uµ(f,Y, I)‖Y ‖mI + max

f̄∈∂F≤N−|f|−1

L(|f̄ |+|f |+1)αUµ(f, f̄ ,Y, I)[X : f̄ ]

}
+

∑
h∈T̊≤N

∑
µ∈[d]

L|h|α[X : h]‖Υ[h](Y•)‖I(4.9)

and

Lα[Y ]α,I . RHS of (4.9) + L‖Y ‖mI .(4.10)
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Proof. The estimate (4.9) follows from (4.5) combined with

Lα[Z]α,I ≤
∑

h∈T̊≤N−1

L|h|α[X : h]‖Y : h‖I + LNα[Z : 1]I ,

as well as the identification∑
F=N−1

∑
µ∈[d]

LNα[X : [f ]µ] · ‖Υµ[f ](Y•)‖I =
∑

h∈T=N

L|h|α[X : h] · ‖Υ[h](Y•)‖I .

The estimate (4.10) is an immediate consequence of the defining relationship Yt = y0 −∫ t
0
|Yr|m−1Yrdr + Zt. �

Proof of Theorem 1.4 (1) - The case of bounded coefficients. Step 1: Simplification of
interior regularity estimate. We now work under Assumption 1.1, i.e. we assume that
σ and its derivatives up to order N are bounded. Using the boundedness of coefficients, and
estimate (4.1) in Lemma 4.1, this the estimate (4.9) simplifies to

Lα[Z]α,I .
∑

h∈T̊≤N

L|h|α[X : h]

+
∑

f∈F≤N−1

∑
µ∈[d]

L(|f |+1)α+1[X : [f ]µ]‖Y ‖mI

+
∑

f∈F≤N−1

∑
µ∈[d]

max
f̄∈∂F≤N−|f|−1

L(|f̄ |+|f |+1)α[X : [f ]µ][X : f̄ ](4.11)

provided I is an interval of length L satisfying

L(|f |+1)α [X : [f ]µ] ≤ ε ,(4.12)

for all forests f ∈ F≤N−1 and for a potentially smaller value of ε = ε(α, d, k, Cσ) ≤ 1. In
order to simplify these expressions further, we make additional assumptions: first, we fix a
t? ∈ [0, 1] and for the remainder of this step we assume that the interval I satisfies I ⊆ [t?, 1).
Next, we work under the assumption that for all trees h ∈ T̊≤N we have

(4.13) [X : h] ≤ ε‖Y ‖|h|δα[t?,1] ,

for δ = m. Under (4.13) the condition (4.12) is guaranteed as soon as

L ≤ ‖Y ‖−δ[t?,1] .(4.14)

Under these assumptions the estimate (4.11) simplifies further to

Lα[Z]α,I . ε(1 + L‖Y ‖m[t?,1] + 1 + 1) . ε+ εL‖Y ‖m[t?,1] .(4.15)

The estimate (4.10) turns into

Lα[Y ]α,I . ε+ L‖Y ‖m[t?,1] .(4.16)

Step 2: Application of Lemma 1.11 We continue working under the boundedness
Assumption 1.1 on the coefficients, and assuming the bound (4.13) on the trees [X : h]. We
apply Lemma 1.11 on the interval [t?, 1] and for

L = ‖Y ‖−δ[t?,1] = ‖Y ‖−m[t?,1] .

We assume throughout that all times involved are contained in [0, 1] which implies in par-
ticular that L ∈ (0, 1) so that (4.14) implies

(4.17) ‖Y ‖[t?,1] ≥ 1.
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Under these assumptions, combining Lemma 1.11 with (4.15), (4.16) we obtain for t > t?+L

|Y (t)| . max
{

(t− t? − L)−
1

m−1 ;
(
εL−1 + ε‖Y ‖m[t?,1]

) 1
m

;(
‖Y ‖m−1

[t?,1]

(
ε+ L‖Y ‖m[t?,1]

)) 1
m

;
(
ε+ L‖Y ‖m[t?,1]

)}
. max

{
(t− t? − L)−

1
m−1 ; ε

1
m ‖Y ‖[t?,1]; ‖Y ‖

m−1
m

[t?,1]; 1
}
.

We bound using Young’s inequality

‖Y ‖
m−1
m

[t?,1] ≤ ε‖Y ‖[t?,1] + C(ε,m) ,

and then choose first ε small and absorb all constants into the term (t − t? − L)−
1

m−1 ≥ 1
and conclude that if t is large enough to ensure that

(t− t? − L)−
1

m−1 ≤ ε̄‖Y ‖[t?,1],(4.18)

for ε̄ = ε̄(α, d, k, Cσ) small enough, we get

|Y (t)| ≤ 1

2
‖Y ‖[t?,1].(4.19)

We observe that (4.18) is guaranteed as soon as

t− t? ≥ ε̄−(m−1)‖Y ‖−(m−1)
[t?,1] + ‖Y ‖−m[t?,1].

which, taking into account (4.17) follows from the simpler condition

t− t? ≥ (ε̄−(m−1) + 1)‖Y ‖−(m−1)
[t?,1] .(4.20)

Step 3: Coming down from infinity for bounded coefficients. We continue working
under the boundedness Assumption 1.1 and aim to establish the estimate (1.4). We define
a finite sequence 0 = t0 < t1 < t2 < . . . < tN = 1 by setting

tn+1 − tn = A‖Y ‖−(m−1)
[tn,1] ,(4.21)

where A = ε̄−(m−1) + 1 (see (4.20)), as long as the resulting tn+1 satisfies tn+1 < 1. As soon
as tn+1 defined by this rule is ≥ 1 we set tn+1 = tN = 1 and terminate the sequence. Note
that the sequence tn+1 − tn is increasing by definition (at least before passing 1), so that
this algorithm must terminate after a finite number of steps.

The time t is contained in precisely one interval (tn, tn+1] and precisely one of the following
must hold:

(1) either there exists a k ≤ n and a tree h such that

ε‖Y ‖|h|mα[tk,1] < [X : h] ,

(2) or for all k ≤ n all trees h satisfy condition (4.13) for δ = m.
In case (1), the desired estimate (1.4) follows immediately from

|Y (t)| ≤ ‖Y ‖[tk,1] ≤
1

ε
[X : h]

1
|h|mα .

In case (2) invoking (4.19) repeatedly for t∗ = tk yields

(4.22) ‖Y ‖[tn,1] ≤ 2k−n‖Y ‖[tk,1] for k = 0, 1, 2, . . . n.

We split (2) further into the following three cases:
(2a) n+ 1 < N .
(2b) n+ 1 = N and tn ≤ 1

2 .
(2c) n+ 1 = N and tn > 1

2 .
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In case (2a) we write using (4.22)

tn+1 =

n∑
k=0

tk+1 − tk = A

n∑
k=0

‖Y ‖−(m−1)
[tk,1] ≤ A‖Y ‖−(m−1)

[tn,1]

n∑
k=0

2−(m−1)(n−k)

. ‖Y ‖−(m−1)
[tn,1] ,

which implies

|Y (t)| ≤ ‖Y ‖[tn,1] . t
− 1
m−1

n+1 ≤ t−
1

m−1 ,

as desired.
For (2b) to hold by definition (4.21) we have

A‖Y ‖−(m−1)
[tn,1] ≥ 1

2
,

and in particular

|Y (t)| ≤ ‖Y ‖[tn,1] ≤
( 1

2A

)− 1
m−1

,

which implies (1.4).
Finally, in case (2c) we can apply case (2a) to tn to get

|Y (t)| ≤ ‖Y ‖[tn,1] ≤ t
− 1
m−1

n ≤
(1

2

)− 1
m−1

,

completing the proof of (1.4). �

Proof of Theorem 1.4 (2) - The case of polynomial coefficients. The proof follows the same
general lines as the proof in the case of bounded coefficients and we only explain the dif-
ferences. Combining, their definition (4.3) with the estimate on Υ provided by Lemma 4.1,
yields

Uµ(f,Y, I) . sup
{
〈Ys + a〉(γ−1)(|f |+1) : s, t ∈ I, |a| ≤ EY

s,t + |Yt − Ys|
}
,

Uµ(f, f̄ ,Y, I) . sup

{
〈Ys + z〉(γ−1)(|f |+1)+1−#f̄ 〈Ys〉(γ−1)|f̄ |+#f̄ :

s, t ∈ I,
|z| ≤ EY

s,t

}
.

(4.23)

We follow the same approach as Step 1 of the proof in the case of bounded coefficients, fixing
t? ∈ [0, 1), but here the condition (4.14) is replaced by

L ≤ ε2〈Y 〉−(m−1)
[t?,1](4.24)

where we have introduced an auxiliary parameter ε2 ≤ 1 that will ultimately be chosen
small but still large relative to ε and we have changed values of exponents from δ = m to
δ = m− 1. Instead of (4.13) we assume that for h ∈ T̊≤N

(4.25) [X : h] ≤ ε1‖Y ‖|h|(α(m−1)−(γ−1))
[t?,1] .

Note that the exponent |h|(α(m− 1)− (γ − 1)) appearing on the right hand side is positive
if and only if the upper bound γ < (m− 1)α+ 1 in Assumption 1.5 holds. Under (4.24) and
(4.25) we have

EY
s,t =

∑
h∈T̊≤N−1

|〈Xs,t, h〉Υ[h](Ys)|

.
∑

h∈T̊≤N−1

(
ε2〈Y 〉−(m−1)

[t?,1]

)α|h|
ε1‖Y ‖|h|(α(m−1)−(γ−1))

[t?,1] 〈Y 〉(γ−1)|h|+1
[t?,1]

. εα2 ε1〈Y 〉[t?,1] .(4.26)

Note that in the first inequality, we have made use of (4.2) and the assumption γ ≥ 1 in
(1.5) which ensures that the exponent (γ − 1)|h| + 1 in the last term is non-negative and
permits to use the estimate∣∣∣Υ[h](Ys)

∣∣∣ . 〈Ys〉(γ−1)|h|+1 ≤ 〈Y 〉(γ−1)|h|+1
[t?,1] .(4.27)



24 TIMOTHEE BONNEFOI, AJAY CHANDRA, AUGUSTIN MOINAT, AND HENDRIK WEBER

We now enforce that

ε1ε
α
2 ≤

ε

C
,(4.28)

Using this, (4.26), and once more the fact that (γ − 1) ≥ 1 the estimate (4.23) simplifies to

Uµ(f,Y, I) . 〈Y 〉(γ−1)(|f |+1)
[t?,1] ,

Uµ(f, f̄ ,Y, I) . 〈Y 〉(γ−1)(|f |+f̄+1)+1
[t?,1] .(4.29)

Note that these estimates in conjunction with (4.28), (4.24), and Assumption (4.25) imply
(4.4) and in this case (4.9) and (4.10) turn into

Lα[Z]α,I .
∑

f∈F≤N−1

∑
µ∈[d]

[X : [f ]µ]

·

{
L(|f |+1)α+1〈Y 〉(|f |+1)(γ−1)

[t?,1] ‖Y ‖mI + max
f̄∈∂F≤N−|f|−1

L(|f̄ |+|f |+1)α〈Y 〉(|f̄ |+|f |+1)(γ−1)+1
[t?,1] [X : f̄ ]

}
+

∑
h∈T̊≤N

L|h|α[X : h]〈Y 〉|h|(γ−1)+1
[t?,1]

. ε(L〈Y 〉m[t?,1] + 〈Y 〉[t?,1] + 〈Y 〉[t?,1]) . ε〈Y 〉[t?,1] ,

(4.30)

and

Lα[Y ]α,I . ε〈Y 〉[t?,1] + L‖Y ‖m[t?,1] . ε2〈Y 〉m[t?,1] .

As above in Step 2 we next apply Lemma 1.11 on the interval [t?, 1] yielding

〈Y (t)〉 . max
{

(t− t? − L)−
1

m−1 ;
( ε
ε2

) 1
m ‖Y ‖[t?,1];(

‖Y ‖m−1
[t?,1]

(
ε2〈Y 〉[t?,1]

)) 1
m

; ε2〈Y 〉[t?,1]

}
.

Then choosing first ε2 small to control the pre-factors in the second line and then also
ε small to also make the pre-factors in the first line small (this amounts to choosing ε1 in
(4.25) small) we obtain

〈Y (t)〉 ≤ max
{
C(t− t? − L)−

1
m−1 ;

1

2
〈Y 〉[t?,1]

}
.

The proof concludes as in the case of bounded coefficients, Step 3 above, where in (4.21)
and in what follows, the role of ‖Y ‖[tk,1] is played by 〈Y 〉[tk,1]. �

Proof of Theorem 1.5. We first show (1.8) under Assumption 1.1 (i.e. for bounded coeffi-
cients). We first define the auxiliary time

T0 = inf
{
t ∈ [0, 1] : 〈y(t)〉 ≥ 3〈y0〉

}
,(4.31)

with the convention that T0 = 1 if the set is empty. Continuity of |y(t)| in t implies that if
T0 < 1 we have

〈y(T0)〉 = 3〈y0〉 .(4.32)

Furthermore, let T1 and T2 be as in (1.7), where ε2 is assumed to be small enough to play
the role of ε in the absorption condition (4.12) above and ε1 is fixed below, and set

T ? = min{T0, T1, T2} .

Note that by choice of T2 condition (4.12) is automatically satisfied for I = [0, T ?] and (4.11)
turns into

(T ?)α[Z]α,[0,T?] . ε2 + ε2ε13m〈y0〉 ,
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where we have used the fact that by definition

T ?〈Y 〉m[0,T?] ≤ ε1
1

〈y0〉m−1
3m〈y0〉m ≤ ε13m〈y0〉 .

Hence we get from (1.3), choosing ε1 = 1
23−m and possibly making ε2 smaller

〈Y 〉[0,T?] ≤ ‖Y ‖[0,T?] + 1 ≤ |y0|+ T ?‖Y ‖m[0,T?] + (T ?)α[Z]α

≤ |y0|+ ε13m〈y0〉+ C
(
ε2 + ε2ε13m〈y0〉

)
≤ 3

2
〈y0〉+ 1 ≤ 5

2
〈y0〉 .(4.33)

To conclude that (1.8) holds indeed, it remains to see that T ? = min{T0, T1, T2} = min{T1, T2}.
This is indeed the case, because otherwise we would have ‖Y ‖[0,T?] = ‖Y ‖[0,T0] and T0 < 1,
but then (4.33) would contradict (4.32).

We next pass to the case of polynomially bounded σ, i.e. to establishing (1.10) under
Assumption 1.2. Let T0 be as in (4.31) and set

T ? = min{T0, T1, T2} ,

where this time T2 is defined in (1.9). We claim that on I = [0, T ?] satisfies the Assump-
tion (4.4). Indeed, just as in (4.26) above one can see that for s, t we have

EY
s,t =

∑
h∈T̊≤N−1

|〈Xs,t, h〉Υ[h](Ys)|

.
∑

h∈T̊≤N−1

(T ?)|h|α[X : h]‖Υ[h](Y•)‖[0,T?]

.
∑

h∈T̊≤N−1

ε
|h|α
2

1

[X : h]

( 1

〈y0〉

)(γ−1)|h|
[X : h]〈Y 〉(γ−1)|h|+1

[0,T?]

.
∑

h∈T̊≤N−1

ε
|h|α
2

1

[X : h]

( 1

〈y0〉

)(γ−1)|h|
[X : h]〈Y 〉(γ−1)|h|+1

[0,T?]

. εα2 〈Y 〉[0,T?] ,

where in the first inequality the fact T ? ≤ T2 and in the last inequality T ? ≤ T0 was used.
From this one can conclude just as in (4.29) that

Uµ(f,Y, [0, T ?]) . 〈Y 〉(γ−1)(|f |+1)
[0,T?] ,

Uµ(f, f̄ ,Y, [0, T ?]) . 〈Y 〉(γ−1)(|f |+f̄+1)+1
[0,T?] ,

which in turn leads to

Lα[Z]α,[0,T?] . ε〈Y 〉[0,T?] . ε〈y0〉

where the first inequality follows like (4.30) and the second follows from T ? ≤ T0. The rest
of the argument follows as in the case of bounded coefficients. �

Proof of Corollary 1.6 . We treat the case of bounded coefficients first. If we have t ≥ T1 =

ε1
1

〈y0〉m−1 or if t ≥ T2 = ε2 min

{
1

[X : h]
1
|h|α :h∈T̊≤N

}
defined in (1.7) we use the estimate (1.4)

|Y (t)| . max
{
t−

1
m−1 , max

h∈T̊≤N
[X : h]

1
mα|h|

}
.

In the second term on the right-hand-side, we can replace the exponent 1
mα|h| by the slightly

larger 1
(m−1)α|h| at the expense of adding the additional 1 into the maximum in (1.11). For
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the first term, we use the lower bound on t provided by T1 and T2. Indeed, for t ≥ T1 we
get

t−
1

m−1 ≤ ε−
1

m−1

1 〈y0〉(4.34)

and for t ≥ T2 we have

t−
1

m−1 ≤ ε−
1

m−1

2 max
h∈T̊≤N

[X : h]
1

(m−1)|h|α

in each case establishing (1.11). Finally, if t ≤ min{T1, T2} (1.11) follows from (1.8).
The argument for polynomial coefficients is very similar. If t ≥ T1 or if t ≥ T2, where

this time T2 is defined by (1.9), we use the estimate (1.6)

|Y (t)| . max
{
t−

1
m−1 , max

h∈T̊≤N
[X : h]

1
((m−1)α−γ+1)|h|

}
.

For t ≥ T1 (4.34) gives the desired (1.12), while for t ≥ T2 we write

t−
1

m−1 ≤ ε−
1

m−1

2 〈y0〉
γ−1

(m−1)α max
h∈T̊≤N

[X : h]
1

(m−1)|h|α

. 〈y0〉+ max
h∈T̊≤N

[X : h]
1

((m−1)α−γ+1)|h| ,

where in the second inequality we have used the estimate ab ≤ ap + bq for p = (m−1)α
γ−1 and

q = (m−1)α
(m−1)α−γ+1 . As above, if t ≤ min{T1, T2} (1.12) follows from (1.10). �
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