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Abstract

We give an argument for strong positivity of the decoherence functional as

the correct, physical positivity condition in formulations of quantum theory

based fundamentally on the path integral. We extend to infinite systems

work by Boes and Navascues that shows that the set of strongly positive

quantum systems is maximal amongst sets of systems that are closed under

tensor product composition. We show further that the set of strongly positive

quantum systems is the unique set that is maximal amongst sets that are

closed under tensor product composition.
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1 Introduction

The huge breadth of Roger Penrose’s work means that there are many topics that are

appropriate to include in a volume celebrating his work and his 2020 Nobel Prize for

Physics. His accomplishments range from his pioneering work on global causal analysis in

General Relativity that the Nobel Prize recognises, to twistor theory, quantum foundations

and other highly original work in mathematics as well as physics. This paper describes

work in quantum foundations, though we believe it is also a contribution to the quest

to find a theory of quantum gravity, one of Roger’s longstanding interests from a time

well before it became mainstream. This paper adds a technical result to our knowledge

about the foundations of the path integral approach to quantum theory, one of whose

aims is to answer the question: what is the physical quantum world? Roger’s approach

to answering this question led to his proposal for a theory in which the wave function

or state vector for a quantum system undergoes a dynamical process of collapse induced

by the system’s interaction with the gravitational field [1]. The path integral offers an

alternative perspective in which the physical world is not a state vector or wave function at

all, dynamically collapsing or not, and, though Roger has not to our knowledge entertained

a path integral approach, we believe that it accords with other aspects of his seminal work

— in particular on the Lorentzian and causal structure of spacetime — because in the

path integral approach the concepts of event and (real time) history are primary, as they

are in General Relativity.

The path integral can be thought of as the basis of an approach to quantum foun-

dations that takes heed of relativity’s lessons. Indeed, the “fork in the road” between a

Hamiltonian based, canonical approach and a Lagrangian based, path-integral, relativity-

friendly approach to quantum theory was recognised by Paul Dirac in the early days of
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quantum mechanics in the paper The Lagrangian in Quantum Mechanics [2]. Richard

Feynman developed the path integral further [3] and promoted a way of thinking about

quantum theory in which events and histories are central [4,5]. In more recent times, the

path integral approach to quantum foundations has been taken up as part of the quest

for a solution to the problem of quantum gravity, exactly because the central concepts

of event and history in the path integral approach align with those of relativity and be-

cause the approach naturally accommodates events involving topology change such as the

creation of the universe from nothing and the pair production of black holes. Moreover,

in the specific case of the causal set programme for quantum gravity (Roger’s work on

global causal analysis is part of the foundations of causal set theory because it tells us

how much information is encoded in the spacetime causal order: in particular, the causal

order determines the chronological order [6] and the chronological order determines the

topology in strongly causal spacetimes [7]) the characteristic kind of spatio-temporal dis-

creteness of a causal set “militates strongly against any dynamics resting on the idea of

Hamiltonian evolution” [8] and practically demands a histories-based treatment.

The two most developed path integral approaches to quantum foundations are the

closely related programmes of generalised quantum mechanics (GQM) proposed and

championed by Jim Hartle [9–11] and quantum measure theory (QMT) proposed and

championed by Rafael Sorkin [12–16]. In this work we address a question about the ax-

ioms of path integral based approaches: what positivity condition should the decoherence

functional — also called the double path integral in the quantum measure theory (QMT)

literature — satisfy? The result we prove is applicable both to QMT and GQM because

the decoherence functional is a fundamental entity in both. We will discuss how QMT

and GQM diverge from each other in Section 5.

Within existing unitary quantum theories (and in non-unitary theories that arise in the

framework of open quantum systems) the decoherence functional is, essentially, the Gram

matrix of inner products of a set of appropriate vectors in an appropriate Hilbert space.

Therefore such a decoherence functional, by definition, satisfies a positivity condition

which is that it is, essentially, a positive matrix. This condition is known in the literature

as strong positivity. Conversely, if one starts — as one does in QMT and GQM — with a

decoherence functional on an algebra of events as the axiomatic basis for the physics of a

quantum system, the condition of strong positivity, if adopted as one of the axioms, allows

a Hilbert space to be be constructed, using that decoherence functional to define an inner

product on the free vector space on the event algebra, which can then be completed [17].

This derived history Hilbert space can be shown to equal the standard Hilbert space in non-

relativistic quantum mechanics and in finite unitary systems, in a physically meaningful

sense [8]. It is conjectured that this is the case in other unitary quantum theories such

as quantum field theory. The history Hilbert space has been used to imply the Tsirel’son

bound for scenarios of experimental probabilities in quantum measure theory [18] and,

more generally, to locate scenarios that admit strongly positive decoherence functionals

within the NPA hierarchy of semi definite programs [19, 20]. The history Hilbert space

also provides a complex vector measure on events, providing an additional toolkit for

exploring the question of the extension of the quantum measure [21–23].

These might be reasons enough to adopt strong positivity as the appropriate positivity

axiom for the decoherence functional in a path integral based approach to quantum foun-
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dations. We certainly want to be able to recover the standard Hilbert space machinery in

familiar cases like quantum mechanics. But it’s not a fully conclusive argument because

we do not know if a Hilbert space is a necessary structure in a path-integral based theory

of quantum gravity. In [24] Boes and Navascues give an argument for strong positivity

based on composability of finite, noninteracting, uncorrelated systems. They show that

the class of finite strongly positive systems satisfies a well defined maximality condition:

no other system can be added to the set without the set losing the property of being

closed under tensor product composition. In this work we will extend their result to infi-

nite systems and further show that the set of strongly positive systems is the unique set

of quantum systems that is maximal and closed under composition.

2 Quantum measure theory: a histories-based frame-

work

We will work within the formalism and use the terminology of quantum measure theory.

Our results will, however, apply to generalised quantum mechanics (GQM) because they

are technical results about decoherence functionals which are also fundamental in GQM.

We will review the basic concepts of QMT below and refer readers to [12–16] for more

details.

2.1 Event Algebra

In quantum measure theory, the kinematics of a physical, quantum system is given by

the set Ω of histories over which the path integral is done. Each history γ in Ω is as

complete a description of physical reality as is conceivable in the theory. For example, in

n-particle quantum mechanics, a history is a set of n trajectories in spacetime and in a

scalar field theory, a history is a real or complex function on spacetime. This is not to say

that even in these relatively well-known cases Ω is easy to determine: work must be done

to determine for example if the trajectories/fields are continuous or discontinuous and by

what measure, etc. Nevertheless, the concept of the path integral is familiar enough for

us to take Ω as the underlying context for the concept of a quantum system.

Any physical proposition about the system corresponds to a subset of Ω in the obvious

way. For example, in the case of the non-relativistic particle, if R is a region of space and

∆T a time interval, the proposition “the particle is in R during ∆T” corresponds to the

set of all trajectories that pass through R during ∆T . We adopt the standard terminology

of stochastic processes in which such subsets of Ω are called events.

An event algebra on a sample space Ω is a non-empty collection, A, of subsets of Ω

such that

1. Ω \ α ∈ A for all α ∈ A (closure under complementation),

2. α ∪ β ∈ A for all α, β ∈ A (closure under finite union).

It follows from the definition that ∅ ∈ A, Ω ∈ A and A is closed under finite intersections.

An event algebra is an algebra of sets by a standard definition, and a Boolean algebra.

For events qua propositions about the system, the set operations correspond to logical
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combinations of propositions in the usual way: union is “inclusive or”, intersection is

“and”, complementation is “not” etc.

An event algebra A is also an algebra in the sense of a vector space over a set of scalars,

Z2, with intersection as multiplication and symmetric difference as addition:

α · β := α ∩ β, for all α, β ∈ A;

α+ β := (α \ β) ∪ (β \ α), for all α, β ∈ A.

In this algebra, the unit element, 1 ∈ A, is 1 := Ω and the zero element, 0 ∈ A, is 0 := ∅.

This “arithmetric” way of expressing set algebraic formulae is very convenient and we

have, for example, that 1 +A is the complement of A in Ω.

If an event algebra A is also closed under countable unions then A is a σ-algebra but

we will not assume this extra condition on the event algebra.

2.2 Decoherence functional and quantum measure

A decoherence functional on an event algebra A is a map D : A× A → C such that,

1. D(α, β) = D(β, α)∗ for all α, β ∈ A (Hermiticity);

2. D(α, β ∪ γ) = D(α, β) +D(α, γ) for all α, β, γ ∈ A with β ∩ γ = ∅ (Additivity);

3. D(Ω,Ω) = 1 (Normalisation);

4. D(α, α) ≥ 0 for all α ∈ A (Weak Positivity).

A quantum measure on an event algebra A is a map µ : A → R such that,

1. µ(α) ≥ 0 for all α ∈ A (Positivity);

2. µ(α ∪ β ∪ γ) − µ(α ∪ β) − µ(β ∪ γ) − µ(α ∪ γ) + µ(α) + µ(β) + µ(γ) = 0, for all

pairwise disjoint α, β, γ ∈ A (quantum Sum Rule);

3. µ(Ω) = 1 (Normalisation).

If D : A × A → C is a decoherence functional then the map µ : A → R defined by

µ(α) := D(α, α) is a quantum measure. And, conversely, if µ is a quantum measure on A

then there exists (a non-unique) decoherence functional D such that µ(α) = D(α, α) [12].

The relationship between the quantum measure and the decoherence functional and their

physical significance — including the question of which is the more primitive concept —

remain to be fully worked out. In this paper we focus on the decoherence functional. A

triple, (Ω,A, D), of sample space, event algebra and decoherence functional will be called

a quantum measure system, or just system for short in what follows.

We will also need the more general concept of a quasi-system which we define to

be a triple (Ω,A, f), of sample space, event algebra and, what we will call, a functional

f : A×A → C that satisfies the conditions (1)—(3) in the above definition of a decoherence

functional but is not necessarily weakly positive.

We call the set of quasi-systems Q and the set of systems W.

A comment is in order here about why weak positivity of the decoherence functional

is a requirement for a physical system. Weak positivity is equivalent to the requirement
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that the quantum measure, µ(α) := D(α, α) take only real, non-negative values. In

the development of our understanding of the quantum measure, the predictive “law of

preclusion” [15, 25] that events of zero, or of very small measure, are precluded from

happening plays an important role. This preclusion law only makes sense if the measure

is non-negative, since, otherwise, certain events would have lower measure than the zero-

measure events. The positivity axiom for generalised quantum mechanics (GQM) is weak

positivity of the decoherence functional (see for example condition (ii) on page 32 of [11]

and equation (2.25a) of [26].

3 Composition

We want to describe a system that is composed of two non-interacting, uncorrelated

subsystems. For reasons that will become clear, we define composition at the level of

quasi-systems. Consider two quasi-systems (Ω1,A1, f1) and (Ω2,A2, f2) that together

form a composite quasi-system (Ω,A, f), which we write

(Ω,A, f) = (Ω1,A1, f1)⊙ (Ω2,A2, f2) = (Ω1 ⊙ Ω2,A1 ⊙ A2, f1 ⊙ f2) ,

where the individual components of the composite triple, Ω1 ⊙ Ω2, A1 ⊙ A2 and f1 ⊙ f2

are defined below.

First, we take the composite history space to be the Cartesian product: Ω1 ⊙ Ω2 :=

Ω1×Ω2. To construct the composite event algebra A, first consider product events of the

form “E1 ∈ A1 for quasi-system 1 and E2 ∈ A2 for quasi-system 2”, given by the Cartesian

product E1 × E2. These product events must be in the composite event algebra, and we

define A = A1 ⊙A2, to be the event algebra generated by the set of product events i.e. A

is the smallest event algebra that contains all the product events. One can show that A

equals the set of finite disjoint unions of product events. (By a “disjoint union”, here and

throughout the paper, we mean a union of a collection of sets that are pairwise disjoint;

the symbol ⊔ denotes disjoint union, i.e. it implies that the sets whose union is being

taken are pairwise disjoint.) This is standard but we will go through it.

Let us define Ã to be the set of finite disjoint unions of product events. Then Ã ⊆ A.

All we need to show therefore is that Ã is an algebra.

Lemma 1. (Closure under union) X ∪ Y ∈ Ã for all X,Y ∈ Ã.

Proof. Let X and Y be elements of Ã. They are finite disjoint unions of product events

and so their union is a finite union of product events. Thus, if we show that any event

Z ∈ A of the form

Z =

n⋃

i=1

Vi ×Wi , (3.1)

where Vi ∈ A1 and Wi ∈ A2 for all i, equals a finite union of pairwise disjoint product

events then we are done.

Consider the algebra AV ⊆ A1 generated by {V1, . . . Vn}. It is a finite Boolean algebra.

Let the atoms of this algebra be {v1, . . . vN}. Similarly consider the algebra AW ∈ A2

generated by {W1, . . .Wn}. Let the atoms of this algebra be {w1, . . . wM}. The atoms

of the product algebra AV ⊗ AW are of the form vk × wl. The event Z is an element of

AV ⊗ AW and so it is a unique disjoint union of atoms of the form vk × wl.
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Lemma 2. (Closure under complementation) 1 +X is an element of Ã for all X ∈ Ã.

Proof. If X be an element of Ã then it is a disjoint union of product events:

X =
n⊔

i=1

Vi ×Wi . (3.2)

So X is an element of the product algebra AV ⊗ AW as constructed in the proof of the

previous lemma. 1+X is also an element of AV ⊗AW and so it is a disjoint union of the

product atoms of AV ⊗ AW .

Corollary 1. A = Ã.

If one thinks of the event algebras as algebras qua vector spaces over Z2 then one sees

that A is the tensor product A1 ⊗ A2.

Finally, we define the composed functional f following [17] and [24]. We assume that

the two subsystems do not interact and are uncorrelated. In a classical measure theory

the probability of the product event of two independent events is P1(E1)P2(E2), where

P1 and P2 are the probability measures for system 1 and 2, respectively. By analogy, we

define f = f1 ⊙ f2 for product events:

f(A1 ×A2, B1 ×B2) := f1(A1, B1) f2(A2, B2) . (3.3)

One might want to consider other ways to combine f1 and f2 but note that if the prob-

ability measures P1 and P2 were expressed as two diagonal decoherence functionals D1

and D2, then this composition rule reproduces the classical composition rule. Moreover,

such a composition rule is observed for decoherence functionals constructed in ordinary

quantum mechanics when the initial state of the combined system is a product state.

The functional f is extended to the rest of A = A1 ⊗ A2 by linearity. Consider two

arbitrary elements of A,

A =

nA⊔

i=1

A1i ×A2i and B =

nB⊔

j=1

B1j ×B2j , (3.4)

where the notation ⊔ indicates that the sets over which the union is taken are pairwise

disjoint.

We extend f to these events:

f(A,B) :=

nA∑

i=1

nB∑

j=1

f1(A1i, B1j) f2(A2i, B2j) , (3.5)

where we must check that this is independent of the expansions of A and B as disjoint

unions of products.

Consider therefore different expansions of A and B as disjoint unions:

A =

mA⊔

k=1

α1k × α2k and B =

mB⊔

l=1

β1l × β2l . (3.6)

Let A1A be the event algebra generated by the events {A11, A12, . . . A1nA
}∪{α11, α12, . . . α1mA

}.

Let A2A be the event algebra generated by the events {A21, A22, . . . A2nA
}∪{α21, α22, . . . α2mA

}.
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Now, A is an element of A1A ⊗A2A and has a unique expansion as a disjoint union of

atoms of this algebra. Each of these atoms is a product of an atom of A1A and an atom

of A2A.

We can go through a similar procedure for B, defining algebras A1B , A2B , and A1B ⊗

A2B and their atoms.

Then, starting with f(A,B) as defined by equation (3.5), and using the additivity of

f1 and f2 separately, we can re-express this as a unique double sum over the atoms of

A1A ⊗A2A and over the atoms of A1B ⊗A2B . Then, again using the additivity of f1 and

f2, those atoms can be recombined to form the events α1j × α2j and β1j × β2j to show

that
nA∑

i=1

nB∑

j=1

f1(A1i, B1j) f2(A2i, B2j) =

mA∑

k=1

mB∑

l=1

f1(α1k, β1l) f2(α2k, β2l) , (3.7)

so f is well-defined. This completes our definition of the composition of quasi-systems.

We have defined composition for quasi-systems because, it turns out, composition does

not preserve weak positivity: the composition of two systems may not be a system. For

example, consider two finite systems each with only two histories: Ω1 = {γ
(1)
1 , γ

(2)
1 } and

Ω2 = {γ
(1)
2 , γ

(1)
2 }. For each system, the atomic events are the singleton sets with one

element. Consider, for each system the set of atomic events and let the respective 2 × 2

matrices M and N be

Mij :=D1({γ
(i)
1 }, {γ

(j)
1 }) ,

Nij :=D2({γ
(i)
2 }, {γ

(j)
2 }) ,

and have entries

M =


 2 −1

−1 1


 and N =

1

5


1 2

2 0


 . (3.8)

Consider now the composed event E := E1 + E2 where E1 := {(γ
(1)
1 , γ

(1)
2 )} and

E2 := {(γ
(2)
1 , γ

(2)
2 )}. We have the composed functional

D1 ⊙D2(E,E)

= D1 ⊙D2(E1, E1) +D1 ⊙D2(E1, E2) +D1 ⊙D2(E2, E1) +D1 ⊙D2(E2, E2)

= M11N11 +M12N12 +M21N21 +M22N22

=
1

5
(2− 2− 2 + 0)

= −
2

5
.

D1 and D2 are weakly positive but D1 ⊙ D2 is not and so the set of quantum measure

systems, W, is not closed under composition. Therefore, if we require that any two

physical systems must compose to form a physical system then the conclusion is that

not all systems in W are physical. We can turn this around and impose “membership of

a class of systems that is closed under composition” as a requirement to be an allowed

physical system.

Definition 1 (Tensor-Closed). A subset A ⊆ W is tensor-closed if

Ψ1 ⊙Ψ2 ∈ A ∀Ψ1,Ψ2 ∈ A . (3.9)
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We have chosen to call this property tensor-closed because the composed event algebra

is the tensor product algebra.

The question to investigate is then, what subsets of W are tensor-closed? One such

subset has already been identified in the literature: the set of systems with strongly

positive decoherence functionals [27], to which we now turn.

4 Strong Positivity

Definition 2 (Event Matrix). Given a functional f : A × A → C and a finite set of

events B ⊆ A, the corresponding Hermitian event matrix M is the |B| × |B| square

matrix, indexed by B, given by

MAB := f(A,B) , A,B ∈ B . (4.1)

Using this concept of event matrix, the definition of strong positivity can be stated:

Definition 3 (Strong Positivity). A decoherence functional D : A × A → C is strongly

positive if, for each finite B ⊆ A, the corresponding event matrix M is positive semi-

definite.

This condition is strictly stronger than weak positivity, indeed event matrix M in

(3.8) above is weakly positive but not positive definite. We call a system with a strongly

positive decoherence functional a strongly positive system and denoting the set of all

strongly positive systems S, we have

S ⊂ W ⊂ Q .

We will prove that S is tensor-closed using the following lemma:

Lemma 3. Consider a system (Ω,A, D) and the finite set of events B ⊆ A with event

matrix M . If there exists a finite set of events B
′ ⊆ A such that the event matrix M ′ of

B
′ is positive semi-definite and every event in B is a finite disjoint union of events in

B
′, then the event matrix M of B is also positive semi-definite.

Proof. A similar claim can be found on page 8 of [27] and we follow the same method of

proof. By assumption, for each event E ∈ B there is a number nE such that E is a union

of nE pairwise disjoint events Ei ∈ B
′:

E =

nE⊔

i=1

Ei . (4.2)
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Now, for any v ∈ C
|B|,

v†Mv =
∑

A∈B

∑

B∈B

vA
∗D(A,B) vB

=
∑

A∈B

∑

B∈B

vA
∗vB

nA∑

i=1

nB∑

j=1

D(Ai, Bj) by bi-additivity

=
∑

A∈B

∑

B∈B

vA
∗vB

nA∑

i=1

nB∑

j=1

M ′
AiBj

=
∑

A∈B

∑

B∈B

vA
∗vB

nA∑

i=1

nB∑

j=1

∑

E∈B′

∑

F∈B′

δAiE δBjF M ′
EF

=
∑

E∈B′

∑

F∈B′

(∑

A∈B

vA
∗

nA∑

i=1

δAiE

)
M ′

EF

(∑

B∈B

vB

nB∑

j=1

δBjF

)

=
∑

E∈B′

∑

F∈B′

V ∗
EM

′
EFVF ,

where vector V ∈ C
|B′| and its components are VF :=

(
∑

B∈B
vB
∑nB

j=1 δBjF

)
. M ′ is

positive semi-definite and so V †M ′V ≥ 0. Hence the result.

Definition 4. An event algebra A
′ is a finite coarse graining of an event algebra A, if

every element of A′ is a finite disjoint union of elements of A.

Corollary 2. Strong positivity is preserved under finite coarse-graining: if A′ is a finite

coarse graining of A and D is a strongly positive decoherence functional on A then D is

strongly positive on A
′.

Theorem 1. If Ψ1 = (Ω1,A1, D1) and Ψ2 = (Ω2,A2, D2) are strongly positive systems,

then Ψ1 ⊙Ψ2 is a strongly positive system.

Proof. Consider a set of events B ⊆ A1 ⊙A2 of cardinality n: B = {X1, X2, . . . Xn}. By

the previous Lemma, if there exists a set of events B′ ⊆ A1 ⊙ A2 with a positive definite

event matrix, such that every element of B is a disjoint union of elements of B′ then we

are done.

Each element of B is a disjoint union of product events:

Xa =

na⊔

i=1

Xa
1i ×Xa

2i , a = 1, 2, . . . n .

Let A(B)1 be the subalgebra of A1 generated by the set of events {Xa
1i | a = 1, 2, . . . n and i =

1, 2, . . . na}. Similarly let A(B)2 be the subalgebra of A2 generated by the set of events

{Xa
2i | a = 1, 2, . . . n and i = 1, 2, . . . na}. Consider the product algebra, A(B)1 ⊗ A(B)2.

Its atoms are products of the form a1i × a2j where a1i, i = 1, 2, . . .m1 are the atoms of

A(B)1 and a2j , j = 1, 2, . . .m2 are the atoms of A(B)2. Let B
′ denote the set of these

product atoms:

B
′ = {a1i × a2j | i = 1, 2 . . .m1 and j = 1, 2, . . .m2} .
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Each event Xa ∈ B is a unique finite disjoint union of elements of B′. The event matrix

for B′ is

D1 ⊙D2(a1i × a2j , a1k × a2l) = D1(a1i, a1k)D2(a2j , a2l) .

This is the Kronecker product of two positive semi-definite matrices, which is positive

semi-definite. Hence the result.

Thus, S is tensor-closed. However this condition is not sufficient to pick out S uniquely

from amongst subsets of W.

Definition 5 (Positive Entry Decoherence Functional). A decoherence functional D :

A×A → C is a positive entry decoherence functional if, for all A,B ∈ A, D(A,B) is real

and non-negative.

We call a system with a positive entry decoherence functional a positive entry system.

Let R+ denote the set of positive entry systems: R+ ⊂ W. The composition of two

positive entry systems is a positive entry system:

Lemma 4. R+ is tensor-closed.

Proof. Let Ψ1 = (Ω1,A1, D1) and Ψ2 = (Ω2,A2, D2) be positive entry systems.

Each event E ∈ A1 ⊙ A2 can be expanded as a finite disjoint union

E =

nE⊔

i=1

E1i × E2i , (4.3)

where E1i ∈ A1 and E2i ∈ A2. Then

D1 ⊙D2(A,B) =

nA∑

i=1

nB∑

j=1

D1(A1i, B1j)︸ ︷︷ ︸
≥0

D2(A2i, B2j)︸ ︷︷ ︸
≥0

≥ 0 .

Another example of a tensor-closed set of systems is the set of classical systems:

a system is classical if there exists a classical (probability) measure µ on A such that

D(A,B) = µ(A ∩B) for all A and B in A.

Lemma 5. The set of classical systems is tensor-closed.

Proof. Let Ψ1 = (Ω1,A1, D1) and Ψ2 = (Ω2,A2, D2) be classical systems with corre-

sponding classical measures µ1 and µ2 respectively.

Each event E ∈ A1 ⊙ A2 can be expanded as a finite disjoint union

E =

nE⊔

i=1

E1i × E2i , (4.4)
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where E1i ∈ A1 and E2i ∈ A2. Then

D1 ⊙D2(A,B) =

nA∑

i=1

nB∑

j=1

D1(A1i, B1j)D2(A2i, B2j)

=

nA∑

i=1

nB∑

j=1

µ1(A1i ∩B1j)µ2(A2i ∩B2j)

=

nA∑

i=1

nB∑

j=1

µ1 ⊗ µ2((A1i ×A2i) ∩ (B1j ×B2j))

= µ1 ⊗ µ2(A ∩B) ,

where µ1 ⊗ µ2 is the product classical measure on the product algebra A1 ⊗ A2.

4.1 Galois Self-Dual Sets

In [24], Boes and Navascues showed that, in the case where the set of systems considered

is the set of finite systems, Wfin, the set of finite strongly positive systems, Sfin, is

a maximal tensor-closed set: the set Sfin cannot be enlarged to include any system in

Wfin \ Sfin and remain tensor-closed. We will reproduce this result, extending it to

infinite systems W and S. We will formalise the maximality condition using the concept

of Galois dual :

Definition 6 (Galois Dual). The Galois dual of a subset A ⊆ W is the set

Â := {Ψ1 ∈ W | Ψ1 ⊙Ψ2 ∈ W ∀Ψ2 ∈ A} . (4.5)

Definition 7 (Galois Self-Dual). A subset A ⊂ W is Galois self-dual if Â = A.

In other words, the Galois dual of a set of systems A is the set of systems whose

composition with any element of A is also a system.

Note: the term “Galois” dual refers to the fact that the Galois dual operation, together

with itself, is an antitone Galois connection. Indeed, A ⊆ B̂ ⇔ B ⊆ Â.

Lemma 6. If A ⊆ W is tensor-closed, then A ⊆ Â.

Proof. Consider Ψ1 ∈ A. Since A is tensor-closed, for all Ψ2 ∈ A,

Ψ1 ⊙Ψ2 ∈ A . (4.6)

Therefore, Ψ1 ∈ Â.

Amongst the tensor-closed subsets of W, a subset A that is also Galois self-dual is

maximal because there is no system outside of A that can be composed with all systems

in A to produce a system.

Theorem 2. Ŝ = S.

Proof. Since S is tensor-closed, by Lemma 6 we have S ⊆ Ŝ.

Now consider Ψ1 = (Ω1,A1, D1) ∈ Ŝ. To prove that Ψ1 ∈ S we need to show that, for

any finite subset B ⊆ A1, the corresponding event matrix M1 is positive semi-definite.
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Let v be a vector in C
|B|. We define a square matrix M2, of order (|B|+ 1), indexed

by B
′ = B ∪ {x} where x is some extra index value,

M2AB :=
1

r





vA
∗vB if A,B ∈ B

1 if A = B = x

0 otherwise,

(4.7)

where

r = 1 +
∑

A∈B

vA
∗
∑

B∈B

vB . (4.8)

Note that the extra index value x and the M2xx = 1 entry are necessary to ensure that r is

a strictly positive number, in the cases where
∑

A∈B
vA = 0. This matrix is normalised —

in the decoherence functional sense that the sum of its entries equals 1 — and Hermitian.

Moreover, it is positive semi-definite because, for any u ∈ C
|B|+1,

u†M2u =
1

r
ux

∗ux +
1

r

∑

A∈B

∑

B∈B

uA
∗vA

∗vBuB

=
1

r
|ux|

2 +
1

r

∣∣∣∣∣
∑

A∈B

vAuA

∣∣∣∣∣

2

≥ 0 .

Now, consider the system Ψ2 = (Ω2,A2, D2) where Ω2 = {γα |α ∈ B
′} is a finite

history space indexed by B
′. The singleton sets {γα}, α ∈ B

′, are the atoms of the

algebra A2. Since Ω2 is finite, we can define D2 by choosing M2 as the event matrix for

the set of atoms and D2 is defined by additivity for all the other events. D2 is strongly

positive, so Ψ2 ∈ S. Therefore, since Ψ1 ∈ Ŝ, it follows by definition that Ψ1 ⊙Ψ2 ∈ W,

which implies that D1 ⊙D2 is weakly positive.

Now, consider the event E ∈ A1 ⊙ A2 given by

E =
⊔

A∈B

A× {γA} . (4.9)

Since the {γA} are atoms of A2, the union is indeed a disjoint union. Since D1 ⊙ D2 is

weakly positive, it follows that

0 ≤ D1 ⊙D2(E,E)

=
∑

A∈B

∑

B∈B

D1(A,B)D2({γA}, {γB})

=
∑

A∈B

∑

B∈B

M1ABM2AB

=
1

r

∑

A∈B

∑

B∈B

vA
∗M1ABvB

=
1

r
v†M1v .

Since r is a positive number and v is arbitrary, this implies that M1 is positive semi-

definite. B ⊆ A1 was also arbitrary and so Ψ1 ∈ S and Ŝ ⊆ S.
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Boes and Navascues’ proof of this result for finite systems is very similar: they use

a decoherence functional in the role of D2 that is constructed explicitly from strings of

projectors and an initial state in a Hilbert space. The next two lemmas show that the set

of positive entry systems R+ is not Galois self-dual.

Lemma 7. Let Ψ = (Ω,A, D) ∈ W be a system.

Ψ ∈ R̂+ ⇐⇒ Re
(
D(A,B)

)
≥ 0 ∀A,B ∈ A . (4.10)

Proof. Let Ψ1 = (Ω1,A1, D1) ∈ W and Ψ2 = (Ω2,A2, D2) ∈ R+. Note that this implies

D2 is a real symmetric functional.

For “⇐=” suppose that

Re
(
D1(A,B)

)
≥ 0 ∀A,B ∈ A1 . (4.11)

Then, for any event E ∈ A1 ⊙ A2, expanded as the disjoint union

E =

nE⊔

i=1

E1i × E2i , (4.12)

the corresponding diagonal entry in D1 ⊙D2 is

D1 ⊙D2(E,E)

=

nE∑

i=1

nE∑

j=1

D1(E1i, E1j)D2(E2i, E2j) (4.13)

=
1

2

nE∑

i=1

nE∑

j=1

(
D1(E1i, E1j)D2(E2i, E2j) +D1(E1j , E1i)D2(E2j , E2i)

)
(4.14)

=
1

2

nE∑

i=1

nE∑

j=1

(
D1(E1i, E1j) +D1(E1j , E1i)

)
D2(E2i, E2j) by symmetry of D2 (4.15)

=

nE∑

i=1

nE∑

j=1

Re
(
D1(E1i, E1j)

)
︸ ︷︷ ︸

≥0

D2(E2i, E2j)︸ ︷︷ ︸
≥0

by Hermiticity of D1

(4.16)

≥ 0 . (4.17)

Therefore, Ψ1 ⊙Ψ2 ∈ W and so Ψ1 ∈ R̂+.

For “=⇒” suppose Ψ1 ∈ R̂+. Let Ψ2 have exactly two histories, {γa, γb}, and let the

event matrix of the atoms, {γa} and {γb}, be M = 1
2

(
0 1
1 0

)
, so Ψ2 ∈ R+.

Let A,B ∈ A1, and consider the event E ∈ A1 ⊙ A2 given by

E = A× {γa} ⊔B × {γb} . (4.18)

Then, since Ψ1 ⊙Ψ2 ∈ W, it follows that

0 ≤ D1 ⊙D2(E,E)

= D1(A,A)Maa +D1(B,B)Mbb +D1(A,B)Mab +D1(B,A)Mba

=
1

2

(
D1(A,B) +D1(B,A)

)

= Re
(
D1(A,B)

)
.
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Lemma 8. R̂+ ⊃ R+.

Proof. By Lemma 7, R̂+ equals the set of systems (Ω,A, D) such that Re(D) is a positive

entry decoherence functional. This will include all the systems inR+, but will also include,

for example, the system with two histories whose “atomic” event matrix is 1
2

(
1 i
−i 1

)
. This

is not a positive entry system.

4.2 Self-Composition

We will prove that S is the only subset of W that is tensor-closed and Galois self-dual:

Theorem 3. If A ⊆ W is tensor-closed and Galois self-dual, then A = S.

The rest of the paper is devoted to proving Theorem 3.

A system is in S if and only if all its event matrices are positive semi-definite. A matrix

is positive semi-definite if and only if every principal submatrix — a square submatrix

formed by deleting a set of rows and the matching set of columns — has non-negative

determinant. Since a principal submatrix of an event matrix is also an event matrix — of

a subset of the original set of events — this means that a system is not in S if and only

if there exists an event matrix with a negative determinant.

We will need the following useful form of the determinant of a matrix:

Lemma 9. For a complex square matrix M of order m > 1,

m! detM = 2σee(M)− 2σeo(M) , (4.19)

where

σee(M) :=
∑

π∈Se
m

∑

π′∈Se
m

m∏

i=1

Mπ(i)π′(i) and σeo(M) :=
∑

π∈Se
m

∑

π′∈So
m

m∏

i=1

Mπ(i)π′(i) , (4.20)

where Sem (Som) is the set of all even (odd) permutations of [m] := {1, 2, . . .m}.

Proof.

m! detM =
∑

a1,a2,...,am

∑

b1,b2,...,bm

ǫa1a2...am
ǫb1b2...bmMa1b1Ma2b2 · · ·Mambm . (4.21)

ǫa1,a2,...,am
is only non-zero if the function π : [m] → [m] given by π(i) = ai is a permu-

tation, and equals +1 if this permutation is even and −1 if it is odd. So we have,

m! detM =


∑

π∈Se
m

−
∑

π∈So
m




 ∑

π′∈Se
m

−
∑

π′∈So
m




m∏

i=1

Mπ(i)π′(i) . (4.22)

Let s1m be the transposition that exchanges 1 and m. Note that s1m ◦ Som = Sem; i.e.

s1m composed with all odd permutations is the set of all even permutations, and vice
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versa. Therefore,

∑

π∈So
m

∑

π′∈Se
m

m∏

i=1

Mπ(i)π′(i)

=
∑

π∈So
m

∑

π′∈Se
m

Mπ(1)π′(1)Mπ(m)π′(m)

m−1∏

i=2

Mπ(i)π′(i)

=
∑

π∈So
m

∑

π′∈Se
m

Mπ◦s1m(m)π′◦s1m(m)Mπ◦s1m(1)π′◦s1m(1)

m−1∏

i=2

Mπ◦s1m(i)π′◦s1m(i)

=
∑

π∈Se
m

∑

π′∈So
m

Mπ(m)π′(m)Mπ(1)π′(1)

m−1∏

i=2

Mπ(i)π′(i)

=
∑

π∈Se
m

∑

π′∈So
m

m∏

i=1

Mπ(i)π′(i)

= σeo(M) . (4.23)

Similarly,

∑

π∈So
m

∑

π′∈So
m

m∏

i=1

Mπ(i)π′(i) =
∑

π∈Se
m

∑

π′∈Se
m

m∏

i=1

Mπ(i)π′(i)

= σee(M) .

Thus, (4.22) becomes

m! detM = 2σee(M)− 2σeo(M) . (4.24)

Lemma 10. For a Hermitian matrix M of order m > 1, both σee(M) and σeo(M) are

real.

Proof.

σee(M)∗ =
∑

π∈Se
m

∑

π′∈Se
m

m∏

i=1

Mπ(i)π′(i)
∗

=
∑

π∈Se
m

∑

π′∈Se
m

m∏

i=1

Mπ′(i)π(i)

= σee(M) .

detM is real for a Hermitian matrix and so Lemma 9 shows that σeo(M) is also real.

Lemma 11. Let θ 6= 0 and −π < θ ≤ π. Then there exist non-zero natural numbers

n,m ∈ N such that

cos(n θ) < 0 and cos(mθ) ≥ 0 . (4.25)

Proof. Since cosine is symmetric, it is sufficient to consider θ ∈ (0, π]. For θ ∈ (0, π/2],

we choose m = 1 and n to equal the floor

n =
⌊ π

2θ
+ 1
⌋
. (4.26)

For θ ∈ (π/2, 3π/4], we choose n = 1 and m = 3. Finally, for θ ∈ (3π/4, π], we choose

n = 1 and m = 2.
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We now show that any system that is in neither S nor R+ can be composed with itself

a finite number of times to produce a quasi-system that is not in W. This is the heart of

the proof of Theorem 3.

Lemma 12. If Ψ = (Ω,A, D) ∈ W\(S∪R+), then there exists k ∈ N such that Ψ⊙k 6∈ W,

where Ψ⊙k denotes the system Ψ composed with itself k times.

Proof. First, we write the values of D in polar form

D(A,B) = r(A,B) eiθ(A,B) , (4.27)

where r and θ are real functions on A× A,

r(A,B) ≥ 0, θ(A,B) ∈ (−π, π] and θ(A,B) = 0 if r(A,B) = 0 . (4.28)

Since D is Hermitian, r is symmetric and θ is antisymmetric, except when θ(A,B) = π =

θ(B,A). D(E,E) = r(E,E) for all E ∈ A.

Now, since Ψ 6∈ R+, there exists some A,B ∈ A such that

θ(A,B) 6= 0 . (4.29)

We want to find two disjoint events with the above property. Recalling that (1 + A) is

the complement of A, we define

A1 := A ·B , A2 := A · (1 +B) , B1 := A ·B and B2 := B · (1 +A) . (4.30)

These four events are pairwise disjoint, except for A1 = B1. We have A = A1 ⊔ A2 and

B = B1 ⊔B2. Thus,

r(A,B) eiθ(A,B) = D(A1 ⊔A2, B1 ⊔B2) (4.31)

= D(A1, B1) +D(A1, B2) +D(A2, B1) +D(A2, B2) by bi-additivity

(4.32)

= r(A1, A1) +D(A1, B2) +D(A2, B1) +D(A2, B2) by A1 = B1.

(4.33)

Since the phase on the left-hand side is non-zero, at least one of the last three f(·, ·) terms

must also have a non-zero phase. Choose one of these terms with a non-zero phase and

rename the first and second arguments of that term Ā and B̄ respectively. Then

θ̄ := θ
(
Ā, B̄

)
6= 0 , (4.34)

with r
(
Ā, B̄

)
6= 0 and Ā and B̄ disjoint.

In addition, since Ψ 6∈ S, there exists a finite subset B ⊆ A whose event matrix M

is not positive semi-definite. By considering the event matrix of the set of atoms of the

event algebra generated by B and using Lemma 3, we may assume that the elements of

B are pairwise disjoint. There exists a principal submatrix N of M such that

detN < 0 . (4.35)

Since N is a principal submatrix of M , it is the event matrix for some C ⊆ B. Let

C = {F1, F2, . . . Fn}. The Fi are pairwise disjoint. If n = 1 then N = D(F1, F1) < 0 and

D is not weakly positive and we are done. Therefore, from now on we assume n > 1.
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Consider now Ψ⊙k = {Ωk,A⊙k, D⊙k}. We will find an appropriate k for each of a number

of cases and subcases.

Case (a): r
(
Ā, Ā

)
= r
(
B̄, B̄

)
= 0.

Consider the event E ∈ A
⊙k given by

E = Āk ⊔ B̄k = Ā× Ā× · · · × Ā︸ ︷︷ ︸
k

⊔ B̄ × B̄ × · · · × B̄︸ ︷︷ ︸
k

. (4.36)

Āk and B̄k are disjoint. Then,

D⊙k(E,E) = D⊙k
(
Āk, Āk

)
+D⊙k

(
B̄k, B̄k

)
+D⊙k

(
Āk, B̄k

)
+D⊙k

(
B̄k, Āk

)

= D
(
Ā, Ā

)k
+D

(
B̄, B̄

)k
+D

(
Ā, B̄

)k
+D

(
B̄, Ā

)k

= r
(
Ā, B̄

)k
eikθ(Ā,B̄) + r

(
B̄, Ā

)k
eikθ(B̄,Ā)

= 2 r
(
Ā, B̄

)k
cos
(
kθ̄
)
,

where we used the symmetry of r and the antisymmetry of θ. Using Lemma 11 we choose

k such that cos
(
k θ̄
)
< 0 so that D⊙k(E,E) < 0 and we are done.

Case (b): r
(
Ā, Ā

)
+ r
(
B̄, B̄

)
> 0.

Let k = p + nq where p, q are positive integers and consider events Ee, Eo ∈ A
⊙k,

given by

Ee =
⊔

π1∈Se
n

⊔

π2∈Se
n

· · ·
⊔

πq∈Se
n

Āp ×
n∏

i1=1

Fπ1(i1) ×
n∏

i2=1

Fπ2(i2) × · · · ×
n∏

iq=1

Fπq(iq) , (4.37)

Eo =
⊔

π1∈So
n

⊔

π2∈So
n

· · ·
⊔

πq∈So
n

B̄p ×
n∏

i1=1

Fπ1(i1) ×
n∏

i2=1

Fπ2(i2) × · · · ×
n∏

iq=1

Fπq(iq) , (4.38)

where the Cartesian products “
∏

i” are taken in order, from left to right, as for example

in,
n∏

i1=1

Fπ1(i1) = Fπ1(1) × Fπ1(2) × . . . Fπ1(n) . (4.39)

The symbol
⊔

is used because the unions are indeed over disjoint events since
∏

i Fπ(i) is

disjoint from
∏

i Fπ′(i) when π and π′ are different permutations.

Let E = Ee ⊔ Eo, then

D⊙k(E,E) = D⊙k(Ee, Ee)+D⊙k(Eo, Eo)+D⊙k(Ee, Eo)+D⊙k(Eo, Ee) by bi-additivity.

(4.40)
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Focussing on the third term,

D⊙k(Ee, Eo)

=
∑

π1∈Se
n

∑

π2∈Se
n

· · ·
∑

πq∈Se
n︸ ︷︷ ︸

from Ee

∑

π′

1∈So
n

∑

π′

2∈So
n

· · ·
∑

π′

q∈So
n︸ ︷︷ ︸

from Eo

D⊙k

(
Āp ×

n∏

i1=1

Fπ1(i1) ×
n∏

i2=1

Fπ2(i2) × · · · ×
n∏

iq=1

Fπq(i2) ,

B̄p ×
n∏

i′1=1

Fπ′

1(i
′

1)
×

n∏

i′2=1

Fπ′

2(i
′

2)
× · · · ×

n∏

i′q=1

Fπ′

q(i
′

2)

)
by bi-additivity

=
∑

π1∈Se
n

∑

π′

1∈So
n

∑

π2∈Se
n

∑

π′

2∈So
n

· · ·
∑

πq∈Se
n

∑

π′

q∈So
n

D
(
Ā, B̄

)p n∏

i1=1

D
(
Fπ1(i1), Fπ′

1(i1)

) n∏

i2=1

D
(
Fπ2(i2), Fπ′

2(i2)

)
· · ·

n∏

iq=1

D
(
Fπq(iq), Fπ′

q(iq)

)

= D
(
Ā, B̄

)p
(∑

π∈Se
n

∑

π′∈So
n

n∏

i=1

NFπ(i)Fπ′(i)

)q

= D
(
Ā, B̄

)p
σeo(N)q .

We do a similar calculation for the other terms in (4.40). Then, we use the result from

(4.23) to change a sum over even permutations on the first index and odd permutations

on the second index to a sum over odd permutations on the first index and even permu-

tations on the second, and similarly a sum over odd permutations to a sum over even

permutations. We find that

D⊙k(E,E) =
(
D
(
Ā, Ā

)p
+D

(
B̄, B̄

)p)
σee(N)q +

(
D
(
Ā, B̄

)p
+D

(
B̄, Ā

)p)
σeo(N)q

= xp σ
ee(N)q + yp cos

(
p θ̄
)
σeo(N)q ,

where

xp := r
(
Ā, Ā

)p
+ r
(
B̄, B̄

)p
and yp := 2r

(
Ā, B̄

)p
. (4.41)

Both xp and yp are strictly positive real numbers.

By Lemma 9, we have

n! detN = 2σee(N)− 2σeo(N) . (4.42)

But detN is negative and by Lemma 10 both σee(N) and σeo(N) are real, so

σee(N) < σeo(N) . (4.43)

Subcase (i) σeo(N) ≤ 0. This implies σee(N) < 0. In this case, we choose q = 1 and

use Lemma 11 to choose a p such that cos
(
p θ̄
)
≥ 0 to get

D⊙k(E,E) = xp σ
ee(N) + yp cos

(
p θ̄
)
σeo(N)

< 0 .
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Subcase (ii) σeo(N) > 0 and σee(N) ≤ 0. Choose q = 1 and p such that cos
(
p θ̄
)
< 0

(Lemma 11). Then

D⊙k(E,E) = xp σ
ee(N) + yp cos

(
p θ̄
)
σeo(N)

< 0 .

Subcase (iii) σeo(N) > 0 and σee(N) > 0. Again choose a p such that cos
(
p θ̄
)
< 0.

Then

D⊙k(E,E) = xpσ
eo(N)q

((
σee(N)

σeo(N)

)q

+
yp
xp

cos
(
p θ̄
))

. (4.44)

Since σee

σeo < 1, for large enough q the first term in the brackets can be made arbitrarily

small, while the second term is fixed and strictly negative. So there exists q ∈ N for which

D⊙k(E,E) is negative.

Corollary 3. A tensor-closed subset of W is a subset of S ∪ R+.

Theorem 4. If A ⊆ W is tensor-closed, then either A ⊆ S or A ⊆ R+.

Proof. Let A be tensor-closed. A ⊆ S ∪R+. Assume, for contradiction, there exist Ψ1 =

(Ω1,A1, D1) and Ψ2 = (Ω2,A2, D2) both in A such that Ψ1 ∈ R+ \ S and Ψ2 ∈ S \ R+.

A is tensor-closed so Ψ1 ⊙Ψ2 is in A.

Since Ψ1 6∈ S, there exists some finite B ⊆ A1 with a corresponding event matrix M

that is not positive semi-definite. Consider the finite set of events

C = {A× Ω2 | A ∈ B } ⊆ A1 ⊙ A2 . (4.45)

The corresponding event matrix N for D1 ⊙D2 is given by

NA×Ω2B×Ω2 = D1(A,B)D2(Ω2,Ω2)

= MAB ,

which implies it is also not positive semi-definite. Therefore, Ψ1 ⊙Ψ2 6∈ S.

Also, since Ψ2 6∈ R+, there exists some A,B ∈ A2 such thatD2(A,B) is either negative

or non-real. But then

D1 ⊙D2(Ω1 ×A,Ω1 ×B) = D1(Ω1,Ω1)D2(A,B)

= D2(A,B) ,

so D1 ⊙D2 also has a negative or non-real entry. Therefore, Ψ1 ⊙Ψ2 6∈ R+.

But Ψ1 ⊙Ψ2 6∈ S and Ψ1 ⊙Ψ2 6∈ R+ contradicts Corollary 3.

Lemma 13. For any A,B ⊆ W,

A ⊆ B =⇒ B̂ ⊆ Â . (4.46)

Proof. If Ψ1 ∈ B̂, then

Ψ1 ⊙Ψ2 ∈ W ∀Ψ2 ∈ B ⊇ A

=⇒ Ψ1 ⊙Ψ2 ∈ W ∀Ψ2 ∈ A

=⇒ Ψ1 ∈ Â .
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We are now ready to prove Theorem 3:

Proof. Suppose A is tensor-closed and Galois self-dual. We know from Theorem 4 that

either A ⊆ R+ or A ⊆ S.

If A ⊆ R+, then

A ⊆ R+ ⊂ R̂+ ⊆ Â = A by Lemma 13 and Corollary 8, (4.47)

which is a contradiction.

If A ⊆ S, then

A ⊆ Ŝ = S ⊆ Â = A by Lemma 13 and Theorem 2, (4.48)

which implies A = S.

5 Discussion

Our theorem adds to the evidence that strong positivity is the correct physical positivity

condition on the decoherence functional/double path integral in both quantum measure

theory and generalised quantum mechanics but it is not a proof because of the various

assumptions we have made throughout, natural though they are.

Why should compose-ability be a requirement at all? The physical universe is a whole

and one might consider any attempt to split it up into subsystems as necessarily doing

some kind of violence to it. Maybe in a truly cosmological quantum theory the question of

composition of quantum systems might not arise but for now it is hard to see how we can

make progress without considering subsystems, both in isolation from and in interaction

with others. One can consider the concept of a set of physically allowed systems, closed

under composition as some sort of combined locality-cum-reproducibility requirement of

a physical theory and it is all but universally assumed. Thus, strong positivity of the

decoherence functional is the analogue of complete positivity of the time evolution of a

density operator in the sense that complete positivity guarantees compose-ability. Indeed,

the evolution of the composition of a system that evolves under a completely positive

map, with any second subsystem that evolves trivially remains positive [28]. Also, the

condition of compose-ability discriminates between different decoherence conditions in

generalised quantum mechanics and in the decoherent histories approach to quantum

foundations [29, 30].

It is also worth bearing in mind the possibility that the product composition law

that seems natural for pure, unentangled states may not be, or may not always be,

the appropriate composition law. As an illustration of the subtle issues that can arise

when generalising from classical stochastic measure theories to quantum measure theories,

consider the fact that even the product composition law for decoherence functionals of

pure, unentangled states can result in correlations between events in the subsystems if

one adopts the preclusion law that events of zero measure do not happen [31]. This is

what Sorkin refers to as the “radical inseparability” of quantum systems analysed from

the perspective of the path integral [32].

The issue of composition is intertwined, in quantum measure theory, with the question

of the relationship between the complex decoherence functional and the real, non-negative
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quantum measure. Whilst the imaginary part of the decoherence functional of a single

system does not affect the quantum measure of that system, if one composes the decoher-

ence functionals of two subsystems using the product composition rule then the quantum

measure of the composed system will depend on the imaginary parts of the decoherence

functionals of the subsystems. This means that we cannot compose quantum measure

systems by composing their quantum measures directly but must do it by composing

their decoherence functionals.

The previous remarks notwithstanding, one can nevertheless conceive of a theoretical

landscape of quantum measure theories given to us, somehow, only by their measures

and not by their decoherence functionals. How would one compose systems in this case?

Sorkin showed [12] that there is a one-to-one correspondence between quantum measures,

µ, and real symmetric decoherence functionals, Dµ given by:

µ(·) 7→Dµ(·, ·) ,

where, Dµ(A,B) :=
1

2

[
µ(A ∪B) + µ(A ∩B)− µ(A \B)− µ(B \A)

]
∀A,B ∈ A .

To define the composition of two quantum measures, µ1 and µ2, then, one can form

their real symmetric decoherence functionals, Dµ1 and Dµ2 , compose these decoherence

functionals and finally form the quantum measure from this composition. Now, in this

landscape, all decoherence functions are real, and we can redo the work in this paper

replacing the set W with WR which is the subset of W with real decoherence functionals.

Almost all the lemmas and theorems — mutatis mutandis — still hold, including theorem

4. The only thing that fails is the final result because the replacement of W with WR

in the definition of Galois dual has the effect of making the set R+ of positive entry

systems Galois self dual as well as tensor closed. So in a landscape of systems with real

decoherence functionals, our uniqueness theorem for strong positivity, theorem 3 fails.

One motivation for this work was that it might have an application or extension at

the higher, super-quantum levels of the Sorkin nested hierarchy of measure theories [12].

We have shown that the set of strongly positive systems S is the unique set of quantum

systems that is tensor-closed and Galois self-dual. This may be a useful clue for finding

the correct, physical positivity condition for measure theories at levels of the Sorkin

hierarchy above the quantum level. Strong positivity is a condition on the decoherence

functional, D, and not (directly) on the measure, µ and as we have seen above, we need

decoherence functionals to compose systems. So, to investigate composition of systems

and the analogue of the strong positivity condition at higher levels, we need the analogue

of the decoherence functional at higher levels.

Consider for example level 3, the first super-quantum level. Given a complex, level

3 decoherence functional with three arguments, E(A,B,C) such that the functional is

additive in each of its arguments,

E(A1 ⊔A2, B, C) = E(A1, B, C) + E(A2, B, C) ∀A1, A2, B, C ∈ A

and similarly for the other two arguments, and such that

E(A,A,A) ≥ 0 ∀A ∈ A ,

then the measure, µ(A) := E(A,A,A) satisfies the level three Sorkin sum rule [12]. There,
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however, the easy generalisations from the quantum level in the hierarchy end and a

number of questions arise.

The Sorkin hierarchy is nested so each level is contained in all higher levels. Thus,

a classical, level 1 theory is a special case of a quantum, level 2 theory in this measure

theoretic framework for classifying physical theories. Indeed, this is one of the reasons

for expecting that a path integral framework is the right one for understanding how

classical physics emerges approximately from a fundamentally quantum theory. This

nested relationship between classical and quantum measure theories can be expressed in

terms of the decoherence functional in the following way. If a quantum/level 2 decoherence

functional satisfies D(A,B) = D(A ∩ B,A ∩ B) for all events A and B in the event

algebra then the measure defined by µ(A) := D(A,A) is classical i.e. it satisfies the

level 1, Kolmogorov sum rule. Conversely, given a classical measure µ, one can define

a decoherence functional: D(A,B) := µ(A ∩ B). Now consider level 3, the first super-

quantum level. Any level 2 measure is a special case of a level 3 measure: it satisfies

the level 3 sum rule (and all higher level sum rules). But, can this inclusion of level 2

in level 3 be expressed in terms of decoherence functionals? Given a level 2 decoherence

functional, D(A,B), can a level 3 functional, E(A,B,C), be defined using D, such that

E(A,A,A) = D(A,A), i.e. E corresponds to the same measure? What condition should

replace the quantum/level 2 condition of Hermiticity? How do we describe the composition

of two level 3 systems: is the same product rule as employed in this paper the right rule?

What is the correct physical positivity condition on a level 3 decoherence functional? One

strategy for discovering this condition, suggested by the results of this paper, is to seek a

set of level 3 systems that is closed under composition and is maximal amongst such sets,

in the hope that this may again prove to be a unique set, whose elements are characterised

by a property one can recognise as a positivity condition.

Finally, let us address Roger’s particular concerns in quantum foundations in the

context of the difference between generalised quantum mechanics (GQM) and quantum

measure theory (QMT). In 1994 in a debate with Stephen Hawking, Roger said [33]:

Whatever “reality” may be, one has to explain how one perceives the world to

be. [...] It seems to me that in order to explain how we perceive the world to

be, within the framework of Quantum Mechanics, we shall need to have one

(or both) of the following:

(A) A theory of experience.

(B) A theory of real physical behaviour.

Roger goes on to state that he is “a strong B-supporter”.

How do the two path integral approaches to quantum foundations QMT and GQM

fare when judged against Roger’s (A) and/or (B)? The main distinction between QMT

and GQM is a fork in the road signposted by an attitude to measure theory in physics.

In GQM, the attitude taken is that a classical (level 1) measure is necessary to do physics

and so the full event algebra must be restricted to a subalgebra on which the measure

is classical. In contrast, in QMT, the attitude taken is that the null—and very close to

null—events exhaust the scientific content of a measure theory via what Borel called “la
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loi unique du hasard” (the only law of chance) namely that events of very small measure

almost certainly don’t happen. (See sections 2.2 and 6.2.2 of [34] for a historical perspec-

tive on this view—also known as Cournot’s Principle—in the context of an assessment

of Kolmogorov’s contributions to the foundations of probability theory.) In which case,

additivity of the measure is not necessary.

In GQM, then, one seeks a maximal subalgebra of the full algebra of events such that

the measure restricted to that subalgebra is a classical measure to a very good degree

of approximation. The set of atoms of such a subalgebra is a maximally fine-grained,

decoherent set of coarse-grained histories, in the terminology of GQM [9–11]. One then

interprets the measure restricted to a decoherent subalgebra as a probability in the usual

way as for a classical random process: exactly one atom of that subalgebra is realised, at

random and the measure of any event in the decoherent subalgebra is interpreted as the

probability that that event happens, i.e. the probability that the single realised atom is

a subevent of that event. In the case when the decoherence functional corresponds to an

initial Schroedinger cat-type state for some macro-object, a pointer say, then – heuristics

and model calculations show – there will be a decoherent subalgebra that contains amongst

its atoms, one atom in which the pointer is in one of the positions of the superposition

and another atom in which the pointer is in the other position. From this decoherent

subalgebra, only one atom is realised – either one or the other of the pointer positions –

which seems to indicate that GQM is a Penrose B-type theory.

However, in GQM, for any system there are many — infinitely many — incomparable

decoherent subalgebras, all on the same footing according to the axioms of GQM. If one

atom is realised from the pointer subalgebra then one atom is realised from each of the

decoherent subalgebras. [35, 36]. Without an extra axiom, a criterion for selecting one of

the decoherent subalgebras from the many, GQM is therefore a theory of many worlds.

Note, these are not the same many worlds as in the Everett interpretation. Those who

claim that GQM is satisfactory in the absence of a physical subalgebra selection axiom

must construct arguments to try to explain why we nevertheless experience only one

world. There is no consensus on whether the arguments that exist in the literature hold

water but, it seems to me, there is consensus that such arguments are needed. GQM

is therefore an A-type theory in the Penrose sense of needing to be supplemented by a

theory of experience.

By contrast, QMT is a One World theory in which the physical world is conjectured to

be exactly one co-event or generalised history [14–16] in which every event in the full event

algebra for the system either happens (is affirmed) or doesn’t happen (is denied). The term

co-event reflects that this physical information can be considered, mathematically, as a

map from the event algebra to Z2 = {0, 1} where 1 represents affirmation and 0 represents

denial. The theory provides the set of physically allowed co-events and exactly one of these

corresponds to the physical world. The quantum measure restricts the possible physical

co-events by the Law of Preclusion that null events are denied: µ(E) = 0 =⇒ φ(E) = 0.

This Law of Preclusion must be supplemented by other axioms for physically allowed

co-events and the question of what these axioms are remains open, though proposals have

been made and explored (see for example [14–16, 32, 37–39]). The ongoing search for a

physical co-event scheme is guided by several desiderata, including the requirement that

the physically allowed co-events turn out to be classical when restricted to the subalgebra
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of localised, quasi-classical, macro-events. Note: a co-event is classical if and only if it is

a homomorphism from its domain to Z2. This would imply that exactly one atom of the

macro-subalgebra is affirmed. QMT is a One World theory, which world should recover

a classical picture when restricted to the sub-algebra of macro-events. QMT is a Penrose

B-type theory.
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