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Abstract— Achieving instinctive multi-grasp control of pros-
thetic hands typically still requires a large number of sensors,
such as electromyography (EMG) electrodes mounted on a
residual limb, that can be costly and time consuming to position,
with their signals difficult to classify. Deep-learning-based EMG
classifiers however have shown promising results over tradi-
tional methods, yet due to high computational requirements,
limited work has been done with in-prosthetic training. By
targeting specific muscles non-invasively, separating grasping
action into hold and release states, and implementing data
augmentation, we show in this paper that accurate results for
embedded, instinctive, multi-grasp control can be achieved with
only 2 low-cost sensors, a simple neural network, and minimal
amount of training data. The presented controller, which is
based on only 2 surface EMG (sEMG) channels, is implemented
in an enhanced version of the OLYMPIC prosthetic hand.
Results demonstrate that the controller is capable of identifying
all 7 specified grasps and gestures with 93% accuracy, and is
successful in achieving several real-life tasks in a real world
setting.

I. INTRODUCTION

Commercial electromyography (EMG) controlled upper
limb prostheses can cost from 25,000 to 75,000 USD [1].
Such a high cost means advanced prosthetic hands remain
inaccessible to the majority of amputees. Existing commer-
cially successful advanced myoelectric hands, such as the
bebionic hand [2] and the Hero Arm [3], despite being
controlled based on surface EMG (sEMG) signals, are cum-
bersome and unintuitive to use [4]. Often external buttons or
other kinds of inputs are used in conjunction to enable more
specialised control [3]. For example, the button is used to
scroll through and select from a set of grasps/gestures, then
the SEMG signal triggers the selected grasp. There is no or
minimal classification on the EMG signal in these solutions,
thus the same or a couple of muscle movements are used for
various grasps.

The topic of EMG signal classification has been tackled
in research for many years. Historically, traditional signal
processing and statistical methods were unsuccessful, either
having a low accuracy, or could only classify a couple
of grasps [5]. Classical machine learning methods such
as Support Vector Machines (SVMs) [6], [7], [8], Hidden
Markov Models [7], and K-Nearest-Neighbours [9] achieved
more satisfactory, but still limited, results. More recently,
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Fig. 1. The improved OLYMPIC prosthetic hand used in this work with
embedded control system in the forearm. A CAD cross-section illustrates
the internal structure and components of the prosthetic.

thanks to developments in deep learning, a lot of research
progress has been made in the area. Convolutional neural net-
works (CNN5s) have been used to classify EMG signals [10],
[11]. Moreover, since voice and EMG signals share some
similar characteristics by both being a continuous analog
signal, researchers have also tried to apply speech recognition
techniques for EMG signal classification. Examples include
long-short term memory (LSTM) [12], [13], [14], [15], gated
recurrent units (GRUs) [14], [15], and attention mechanism
[15], [16]. However, most of these approaches are still far
from commercial viability due to limited training data, lack
of real-time performance [17], computational limitations in
embedded systems, and high cost.

Embedded microcontrollers (MCUs) historically have not
been powerful enough to satisfy the high computational
needs of various deep learning techniques for EMG clas-
sification. Researchers have then relied on more traditional
methods like finite state machines [18], linear discriminant



analysis and multi layer perception [19], Kernel Fisher
discriminant analysis [20], and SVM [21]. But recently,
thanks to the improvements in computing power of MCUs,
researchers have been able to implement embedded deep
learning-based EMG classifiers and analyse its real-time per-
formance. For example, Tam et al. [4] implemented a CNN
based classifier on a Jetson Nano MCU, and Zanghieri et al.
[22] implemented a temporal convolutional network based on
a GAP8 MCU. Nguyen et al. [23] implemented a GRU based
classifier on a Jetson Nano MCU, and additionally tested the
classifier on a prosthetic hand to verify its practicability in
a clinical/real-world scenario.

Despite this progress, among all of these embedded so-
lutions, none of them train their neural networks on the
embedded processor. The need for a powerful computer
for the setup of the prosthetic hand adds to the cost and
complexity of the system, and overall jeopardises suitability
of use by different users. On top of this, while achieving
great results, the EMG sensors used in previous works are
either too expensive to afford [4] or too complicated to setup
[22], sometimes even requiring surgery [23]. To allow ad-
vanced myoelectric hands become more wide spread among
amputees, prosthetic hands that can achieve sophisticated
control with cheaper, simpler sensors have to be developed.
The challenge is that using such sensors typically results
in noisy contaminated signals, making classification more
troublesome.

This work focuses on the development of a low-cost, fully
embedded sEMG-based prosthetic hand control platform
using deep learning techniques, which address some of the
limitations of previous solutions described above and the
problems associated with the use of low-cost EMG sensors.
Summarised in Fig. 1, the proposed control platform is
implemented and tested on an enhanced version of the
OLYMPIC prosthetic hand—improvements respect to the
original version [24] include the addition of position and
torque sensors, a redesigned wrist connection, and a fore-
arm socket housing the circuits and MCU. The developed
controller is fully trained on the MCU, requiring only two
low-cost electrodes, and uses a data acquisition and augmen-
tation method that minimises the data required to train the
prosthetic hand controller.

II. HARDWARE INTEGRATION

The improved OLYMPIC hand with additional sensors and
embedded control system in the added forearm is shown in
Fig. 1. The hand was modified as such to enable the desired
multi-grasp, EMG-based control with a minimum number of
low-cost sensors in a small embedded solution. All hardware
of the enhanced version can be manufactured with standard
soldering iron and 3D printer, with a total cost of £384.6.
Details of the modifications introduced are discussed next.

A. Electrical

The NVIDIA Jetson Nano 2GB was chosen as the MCU
thanks to its powerful GPU (graphics processing unit) and
support for popular deep learning platforms like Tensorflow.
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Fig. 2. Block diagram of the electronics for motor control and sensor
feedback

It also had a 40-pin GPIO header, which enables digital
communication with other peripheral devices. However, it
does not have any analog input capability, and also lacks a
hardware PWM generator.

The EMG sensor and motor torque signals, both new
additions to the prosthetic to provide input from the users’
residual limb and improved control of the fingers respec-
tively, required analog input capability as both are analog
signals. An MCP3008 analog to digital converter (ADC) with
8 input channels was used to provide this capability, enough
for 2 EMG and 5 motor torque signals.

The ability to produce PWM signals was also crucial for
driving the motor to achieve precise position and torque
control. To provide these a PCA9685 PWM driver was
selected. To drive the 5 motors of each finger, three L298n
dual H-bridge were used.

Pololu Magnetic Encoders were chosen to provide position
feedback of each motor to the Jetson Nano. The encoders are
very compact, and can be directly soldered to the back of
the existing motor with no additional modification to the
hand. The encoder provides 6 ticks per rotation, and the
existing motor takes 400 rotations to drive the finger from
fully open to closed. Therefore, each finger can be controlled
to a resolution of approximately 2400 positions.

Torque of a brushed DC motor is proportional to its current
draw, thus to measure torque a simple method is to measure
the current draw. To achieve this, a shunt resistor (0.1 Ohm)
is placed in series with the motor and the voltage across the
resistor is measured, which allows us to calculate the current
according to Ohm’s law. The voltage signal is then passed
through a RC (resistor-capacitor) low pass filter (500 Hz cut
off) to remove switching frequency of the PWM, and a non-
inverting amplifier (gain of 75), before final signal input to
the MCP3008 ADC. The overall electrical system diagram
is shown in Fig. 2.

B. Control

With electrical current and position sensing capabilities,
each motor in the hand can be controlled to either a reference
current (torque) or a reference position. Both torque and
position control are achieved by adding proportional integral
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Fig. 3. Motor torque vs encoder position during tripod grip, solid line -
loaded (grasping an object), dashed line - unloaded (freely closing). From
top to bottom: thumb, index and middle finger.

Guide Magnets

Central
Through-Hole

Male Pogo
Pin Connectors

Alignment Shaft
with Locking Tabs

Female Pogo Pin
Connectors

Fig. 4. Modular wrist design, highlighting the significantly increased
number of pogo pins (original 10, new 22) to provide the necessary control
signals.

(PD) controllers, and both output direction and PWM duty-
cycle values to control the motors.

Monitoring the current and position of each motor means
contacts with each finger can be detected. Fig. 3 shows the
motor torque and position of the thumb, index finger, and
middle finger of the hand during a tripod grip. As seen, the
torque of each finger of the motor spikes when contact is
made, either with an object or the palm of the hand, and
the motor is unable to rotate, so encoder position halts. This
enables the grasping of more delicate objects.

C. Mechanical

With the additions of new sensors to the hand, the modular
wrist no longer had enough electrical connections to support
all of the motors and their signals. A new wrist was designed
and constructed using pogo-pins at the modular interface to
ensure a reliable electrical connection. The pogo-pins were
rotated to be co-linear with the forearm to enable the close
spacing of the pins, and female pogo-pins were positioned in
the forearm socket to increase the connection quality. To lock
the hand in place once connected, a rotary shaft with locking
tabs was utilised. Inserted at a 90° offset, the hand could
then be rotated to its correct position where it would then be
locked in place due to a positioned seat for the locking tabs.
Additional guide magnets were introduced to the internal
faces of the modular wrist to further increase this locking

Fig. 5. The moulding process for the OLYMPIC forearm. (a) Forearm with
overlaid scanned 3D model, (b) 3D printed forearm mould, (c¢) Fibreglass
and epoxy resin composite shell, and (d) finished painted socket with
installed modular wrist and port and fan cut-outs.

connection, and to increase the locking ’click’ felt by the
user when assembling the hand. The implemented wrist and
its components can be viewed in Fig. 4.

A socket was constructed to house the electronics, using
the forearm of the original hand model participant. First, a
scan of the forearm was captured and area desired extracted.
This was modified to include port and fan cut outs, then 3D
printed as a mould. A fibreglass and epoxy resin composite
lay-up was formed using this mould, which was then finished
aesthetically and functionally to include the electronics and
modular wrist. The manufacturing process of the socket can
be seen in Fig. 5. Following both of these modifications, the
mass of the hand and forearm combined is now 1.426 kg.

III. DEEP LEARNING GRASP CLASSIFICATION
A. Targeted Grasps and Gestures

The muscle activity corresponding to 7 different grasps
and gestures are targeted for classification: Power Grasp,
Tool Grasp, Tripod, Lateral Pinch, Index Finger Point, Open
Palm, and relaxed, selected based on the GRASP taxonomy
[25]. As shown in Fig. 6, the set consists of a balanced
mixture of precision grasps, power grasps, and gestures, thus
provides a foundation to perform a variety of day to day
tasks. In addition, an idle state is also needed for the system
to recognise when there is no grasping action at all.

B. Classification Method

Instead of trying to recognise the EMG signal when a
grasp is active (steady state), we target a change of state (hold
action) and a common release action that separates different
grasp types. The neural network will try to recognise the
hold action for each grasp, and all grasps share the release
action to return the hand to the relaxed position.

The hold action of a grasp consists of 2 sections: the
movement of fingers to meet in a particular position; and the
static force applied on the fingers when holding an object.
However, a gesture only has the finger movement section,
since there is no need to apply a constant force on the fingers
to hold an object. By using this insight, we can then discern
between grasps and gestures, being able to classify a larger
set of grasps and gestures with only 2 EMG channels. The
muscle activity pattern recorded for each action is congruent
to the desired motion of the prosthesis, allowing us to achieve
intuitive control.



Fig. 6. The default, grasping, and gesture configurations implemented on the OLYMPIC hand. (a) Relax (default position), (b) Open Palm and (c¢) Index
Finger Point (gestures), (d) Tripod Grasp, (e) Power Grasp, (f) Tool Grasp, and (g) Lateral Pinch (grasps).

The ML problem here is multi-class classification. The
classification uses a window method, in which the input of
the classifier is a 1.5 second snapshot of EMG signal, and
tries to determine which class the signal belongs to. The
1.5s duration ensures the EMG signal of the previous grasp,
transition movement, and the new grasp to be recorded, as
one of the goal is to eliminate the need of labelling the data
afterwards.

C. EMG Sensor and Signal Preprocessing

The MyoWare Muscle Sensor was chosen for several of
its advantages. With a small profile of 52 mm by 20 mm, the
sensor is lightweight and compact for a portable prosthetic
hand. The sensor requires a single 3.3 V or 5 V power supply,
and only draws 10 mA, which are all suitable for using
battery power. The sensor also pre-processes the raw EMG
signal in an analogue fashion by its on-board electronics,
which saves computing power on the microcontroller. The
raw EMG signal from the 2 electrodes feed into a precision
differential amplifier, followed by 2 amplifiers, a rectifier,
and an integrator. The output is the envelope of the raw
EMG signal, which directly inputs to the Jetson Nano MCU.
The targeted areas of the forearm are anterior and posterior
regions, corresponding to the bulk muscle responsible for
flexion and extension of the fingers of the hand, respectively.

Crossing the analogue and digital domain, the Jetson Nano
samples the incoming EMG envelope at 200 Hz. The raw
EMG signal used has a bandwidth of 500 Hz [26]. The
integrator circuit on the MyoWare sensor cutoff the output
envelope signal bandwidth at 12.5 Hz. According to the
Nyquist sampling theorem, we need to sample at 25 Hz in
this case to ensure no information will be lost. Sampling at
200 Hz is well above the minimal requirement and ensures
no information is lost.

D. Training Data

30 repetitions for each of the 8 classes (7 grasps + Idle
state) were collected as the training data. The user was be
asked to perform the grasping action within the 1.5 second
time window. Data augmentation is used to generate more
training data in order to improve the generalisation ability of
the model. Three data augmentation strategies, inspired from
computer vision/image recognition, are used: random shift,

random zoom, and random contrast. These strategies used to
deal with images of an object under different camera angle
or lighting condition. In this case they each corresponding
to the start time, speed, and force variations of the grasping
action of the user during the data collections.

E. Neural Network Architecture

The first layer of the CNN is the data augmentation layer,
consisting of the aforementioned 3 data augmentation strate-
gies. There are 2 advantages of applying data augmentation
as an input layer over directly producing modified copies of
original data: it saves storage space on the micro-controller,
and exploits the computing power of GPU during training.
Following is a convolutional layer of 8 filters with a kernel
size of 2 * 30. The size of the filter extracts spatial infor-
mation of the 2 input channels, and temporal information
of 30 consecutive samples. The features extracted by the
convolutional layer are processed by 2 dense layers with sizes
of 128 and 64 respectively. ReLU was used as the activation
function between all the convolutional and dense layers.
Finally, a dense layer of size 8 and a softmax activation
function completes the classification of the 8 classes.

F. Roll-out

The EMG data, sampled at 200 Hz, is input to a 300
sample FIFO, corresponding to the 1.5 second window. The
trained neural network is inferred every 20 new samples of
the EMG signal, i.e. a new prediction is generated every 0.1
seconds. The predictions feed into a decision making chain.
First, the inference must have a confidence greater than 70%
in order for the prediction to be valid. Next, 3 consecutive
identical predictions are needed. Then, the prediction needs
to be feasible, i.e. a grasp needs to be unlocked by entering
the relax state before another grasp. If the 3 criterion are
all satisfied, the result will be sent to the motor controller
to perform the actions with the OLYMPIC hand. Finally,
predictions of the following second are blocked to avoid
post-grasping-action signal leading to incorrect results. The
overall signal processing flow can be seen in Fig. 7.

IV. EVALUATION
A. Experiment 1 - Data collection and training

First, we would like to understand the time needed for
the data collection procedure. We also would like to verify
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the categorisation ability of the classifier by analysing the
validation accuracy and the confusion matrix. 5 non-disabled
participants were asked to perform 30 repetitions of each
grasp in turn. A 4s interval before and between the 30
repetitions was used to allow the participant to rest and
prepare for the next repetition. The participants were asked
to perform the grasp or gesture action approximately 0.5s
into the recording period, which ensures the whole action is
recorded. The participants were asked to perform the grasp
and gestures exactly as they normally do in real life, and try
to be consistent for all the repetitions. The real-time EMG
signal is displayed in front of the participants to help with
the consistency. For the relax state, the participants are asked
to shake their hands several times, as they would to relax a
stiff tired muscle. The entire data collection process took less
than 30 minutes to complete for each participant.

The collected data were randomly split into training and
validation sets at a ratio of 7:3. The model trained with a
categorical cross-entropy loss function, and Adam optimiser
with learning rate of le-4. The model trained for 30 epochs
with a batch size of 8.

B. Experiment 2 - Roll-out of the classifier

The performance of the classifier in terms of both accuracy
and latency was tested on a real-time continuous EMG signal.
Participants performed 90 grasps in total each in a random
pre-determined order, with 15 repetitions for the 6 targeted
grasps and gestures. Participants were asked to perform
the grasps in the order, and then release the grasp to the
relax state, at a pace they feel comfortable. Upon a wrong
prediction, the participants needed to redo the motion until
a correct prediction was made.

The Jetson Nano ran the real-time classification, with the
10 Hz inference frequency, continuously outputting the most
up-to-date prediction. The number of tries it took to get a
correct prediction, and the time delay between the end of
hand movement to the correct prediction were recorded.

V. RESULTS
A. Experiment 1 - Training result of the neural network

On average of the five participants, the validation accuracy
of the classifier converges at around 20 epochs, at a value of
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making predictions on their respective validation datasets.

96.68%, with total training time of 54 seconds. Fig. 8 shows
the average confusion matrix of the classifiers trained on each
participant, making predictions on their respective validation
datasets. As seen, all of the grasps have a sensitivity greater
than 90%, with lateral pinch and idle showing greatest
sensitivity and specificity. Tripod and tool grips show the
worst performance, although sensitivity is still above 90%.

B. Experiment 2 - Roll out of the classifier

During roll out, participants achieved at 79.11% accuracy
on first attempt at performing each action, and 96.22%
accuracy with a second try. However, more interestingly,
we observed an increase in accuracy throughout the 90
repetitions. Shown in Fig. 9, if we look at the accuracy over
a 30 repetitions window through the 90 repetitions, we see
the one try average accuracy started at 66%, and gradually
increased to 93% by the end.

The average latency of a correct grasp is at 1.097 seconds,
with a standard deviation of 0.307 seconds. The value is
expected due to the setup protocol, as the participants were
asked to perform the grasping action 0.5 seconds into the 1.5
second window. The total time for the participants to finish
the 90 repetitions was no longer than 20 minutes.

Finally, the controller was demonstrated in practice by
performing daily tasks with each of the targeted motions,
as shown in Fig. 10. During these tasks, the prosthesis was
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mounted directly below a non-disabled user’s forearm with
an offset block.

VI. DISCUSSION

We have achieved a state-of-the-art classification accuracy
of 93% in the real-time test, with just two hobbyist level
surface EMG sensors. The window technique has allowed
the CNN architecture to be very simple, thus can be trained
locally on the microcontroller. We also don’t need to man-
ually label the data, partially thanks to the automated data
collection procedure, but also because we do not need to
align the grasping action with time. Doing all the computing
locally and without the need of a professional to label the
data makes the setup and use of the hand more versatile.

However, there is a drawback of the method we used,
which is the latency between the grasping action and a
correct prediction is rather long, at 1.097 seconds. To make
a correct prediction, the classifier must wait for the EMG
signal to propagate through the FIFO to the correct time
stamp. This problem arises because we rely on a larger time
window to acquire a more detailed input, rather than more
sensors. One method to reduce this problem is to decrease
the window size, i.e. from 1.5 to 1 second, but it would more
difficult to ensure the entire grasping action will be captured
in the window.

For data collection, and therefore for calibration, the
amount of training data needed is minimal. The size of all
the training data are less than 2MB, which is suitable for
an embedded micro-controller. More importantly, the time
needed to collect all the training data is only 30 minutes;
together with the automated guidance, the data collection
procedure is quick and user friendly. Thanks to the simple
CNN architecture, the training time of the CNN is less
than 60 s. This makes the controller suitable for use for
real prosthetic hand users, since all data used to train the
controller is recorded directly from the user. This allows the
controller to account for heterogeneity in muscle activity
post-amputation, and means that users would be able to
record muscle activity patterns that are most suited to their
residual limb during rehabilitation.

The intuitive control leads to a fast learning curve. After a
20 minute practice period of 90 repetitions, the participants

(@)

Fig. 10. Demonstration of the hand in a real-life setting: (a) Power Grasp:
An orange, (b) Tripod: A strawberry, (¢) Lateral Pinch: A card, (d) Tool
Grasp: A screw driver, (e) Index Finger Point: Pressing Keyboard, (f) Open
Palm: Applaud,

were able to achieve a state-of-the-art 93% accuracy, which
has been achieved previously with more precise sensors in
greater quantity [4], [22], [23]. During this practice period,
users perform actions in the context of the controller; each
action must be followed by a relax action, which, observa-
tionally, accounts for much of the learning. The total time
needed to setup the hand for a new user can be completed in
less than one hour. With the automated guidance, the entire
process can be done without specialised supervision from an
instructor. The quick and easy setup, together with a low cost
of manufacture, pave the way to make advanced myoelectric
hands accessible to more people.

VII. CONCLUSIONS & FUTURE WORK

In this paper we have presented a low cost embedded
SEMG based intuitive grasping prosthetic hand control sys-
tem. All the electrical and mechanical hardware are compact
and can be fit inside a forearm socket. Data collection, CNN
training and classification, and motor control all runs on the
embedded Jetson Nano 2GB micro-controller. Experiments
showed the entire system is easy to setup, achieves state-
of-the-art classification accuracy, and successfully achieves
several real-life tasks, despite only using 2 electrodes.

Future work will investigate reducing latency of classifi-
cation and integrating the sensing capabilities of the hand
with the myoelectric control system. The sensed torque and
positing information could be useful for a haptic feedback
system. Although currently powered by an external power
supply, the system was also designed with battery powered
usage in mind. The whole system works at 5V, and draws
a maximum of 4A when motors are heavily loaded. There
is also space left in the forearm socket where rechargeable
batteries can be placed. If the weight of the battery is
significant, or does not have enough power density to power
the hand for extended periods, an option could be to place
the battery in a waist bag.
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