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Abstract

We introduce a semantics for reasoning about probabilistic multi-agent systems in which the
number of participants is not known at design-time. We define the parameterised model checking
problem against PLTL specifications for this semantics, and observe that this is undecidable in
general. Nonetheless, we develop a partial decision procedure for it based on counter abstraction.
We prove the correctness of this procedure, and present an implementation of it. We then go on
to use our implementation to verify a number of example scenarios from swarm robotics and
other settings.
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1. Introduction

Robotic swarms [1, 2] have been put forward as a method for addressing a number of ap-
plications including environmental monitoring [3], search-and-rescue [4], and surveillance [5].
Compared to single-robot systems, robotic swarms may provide a number of advantages, includ-
ing robustness (tolerance of the system to faults) and scalability (the ability to deploy a different
number of robots depending on the scale of the problem being tackled). Many target applications,
such as autonomous monitoring of the condition of pipelines [6], benefit from the scalability and
robustness of the swarm.

Before deploying a robotic swarm in a safety-critical context, it is desirable to obtain formal
guarantees of its behaviour. These may include properties such as safety (the system will never
reach some undesirable state) or correctness (some goal is always achieved). A number of solu-
tions have been put forward to verifying swarms, including process calculi [7] and mathematical
modelling using rate equations [8]. These approaches to obtaining safety guarantees typically
require significant input from an expert.

Another approach to verifying desired properties in a multi-agent system is through model
checking [9], which aims to use a more automated approach to reduce the necessary expert input.
In the model checking approach, the system is described in terms of the states it can be in and
how it transitions between them. In addition, a specification of the desired properties is provided
in a logical language. An automated toolkit is used to verify that the possible runs of the system
satisfy the desired specification. However, traditional model checking techniques can only verify
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systems of a fixed size [10, 11]. Since one of the main advantages of robotic swarms is their
scalability, checking a property only on a system with a fixed number of participants is typically
not sufficient.

Parameterised model checking [12] is an extension of model checking that enables the verifi-
cation of systems of an arbitrary size. Despite the parameterised model checking problem being
undecidable in its most general formulation [13], decidable fragments exist. In particular, one
avenue to decidability is restricting either the communication pattern between agents, or the logic
in which specifications are expressed [14, 15]. Parameterised model checking has also been ex-
plored in the context of robotic swarms [16], where it has enabled the verification of a number
of protocols such as the alpha algorithm [17]. However, many protocols followed by robotic
swarms are probabilistic in nature and parameterised model checking has mainly so far focused
on non-stochastic systems (with a few exception that we discuss in our survey of related work
below).

Probabilistic model checking of fixed size systems has been extensively studied [18] and a
number of toolkits have been developed [19, 20] to enable the verification of practical systems in
a variety of different applications [21, 22]. Extensions of probabilistic model checking have also
been developed to study a number of more complex scenarios including stochastic games [23]
and timed systems [24]. These techniques have been applied to analyse a number of different
protocols from swarm robotics [10, 11, 25], but always with fixed number of participants. We aim
to overcome this limitation. We will extend the parameterised verification techniques discussed
earlier to the probabilistic case in order to provide methods and tools for the formal verification
of agent-based systems that are both stochastic and possibly unbounded in size.

Contribution. In this work we introduce a formal semantics for reasoning about unbounded
probabilistic swarms, i.e., multi-agent systems in which the number of agents is not known at
design-time. We study the parameterised model checking problem for this semantics against
PLTL specifications. While the problem is undecidable in general, we develop a novel method
based on counter abstraction [26] to provide an over-approximation of the possible executions
of the system. Using this over-approximation, we develop a partial decision procedure for the
verification problem. We formally prove the correctness of this procedure and report its imple-
mentation in a novel toolkit built on top of PRISM [19]. We use this implementation to study a
number of scenarios, including autonomous robots moving along a track [27], a swarm of robots
foraging for food [28], and a channel jamming scenario [29].

1.1. Related Work

The field of parameterised model checking [12, 30] is concerned with studying the verifi-
cation of systems that contain an arbitrary number of components. While in the most general
formulation the parameterised problem is undecidable [13], decidable fragments are known to
exist. Some of these fragments are identified in the context of token-passing systems [15]. Here,
communication happens by passing a token around a network, which is arranged in configu-
rations such as rings, cliques, and stars. In other work, network invariants [31] and network
decomposition [32] have resulted in partial verification procedures. Further, restrictions on the
communication pattern between agents, such as considering guarded protocols [14], have also
been used to lead to decidability of the verification problem.

Many approaches to parameterised model checking rely on computing cutoffs [33]. A cutoff

provides an indication of the number of agents that is sufficient to consider in order to check
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whether a specification holds on the arbitrary system. A cutoff may either be static if it does not
depend on the property in question, or dynamic if it does [34].

Static cutoffs have been explored in a line of work addressing parameterised swarm sys-
tems [16, 17, 35]. The semantics presented there are closely related to ours: they are also asyn-
chronous and use the same types of synchronisation between agents as we do. The parameterised
model checking toolkit MCMAS-P, relying on MCMAS [36] for finite model verification, was
put forward in that work and later extended to support richer scenarios such as systems that may
exhibit faults [37, 38]. However, this work mostly does not address probabilities as we do here.
Indeed, to the best of our knowledge, no results exist at present concerning cutoffs for stochastic
systems. One parametised model checking work in which probability was considered to some
extent is [39]. However, this was done in an ad-hoc manner to model the specific case of opinion
formation [40], and is less general than the techniques presented here.

Another formalism that has been widely considered is that of Petri nets [41] or equivalently
vector addition systems [42]. This work has included studies of reachability properties [43]
and of techniques to identify dynamic cutoffs [34, 44]. Extensions have also been developed that
incorporate continuous time [45, 46, 47]. We note that encoding a system into a Petri net requires
requires significant input from an expert, whereas the model checking approach we present here
aims to verify systems in a more automated manner.

A further formalism that has been used to study multi-agent systems is that of population
protocols [48]. In this semantics, agents interact in a pair-wise manner and update their state
according to the state of the agent they are interacting with. A protocol is well-defined, and said
to compute a predicate P if all fair sequences of interactions from an initial configuration C even-
tually result in the agents agreeing on a value P(C). It has been proved [49] that the predicates
computable by population protocols are exactly those definable in Presburger arithmetic [50].
Further, it has also been shown [51] that the problem of checking whether a protocol is well-
defined and computes a given predicate is decidable by reduction to reachability in Petri nets.
As with Petri nets, significant input from an expert human is needed to encode a system into a
population protocol. This limits the applicability of the technique.

There are also a variety of other methods that have been proposed for verifying multi-agents
that are less closely related to the verification approaches considered here, including techniques
such as process calculi [7] and rate equations [8]. As with the other techniques described, some
expert input is required to verify these systems. Futher, the properties considered with these
techniques are typically of the whole population and properties of inidividual agents cannot be
checked as we do here.

There is also a significant body of work on the model checking of probabilistic systems [9].
This work is very wide-ranging and has resulted in the development of techniques working on
a number of different models including DTMCs [52], MDPs [53], CTMCs [54] and PTAs [24].
Practical toolkits for probabilistic verification such as PRISM [19] and Storm [20] have been
developed and successfully applied in applications ranging from systems biology [21] to net-
work protocols [22]. Probabilistic model checking has also been applied to verifying multi-agent
algorithms such as foraging [55, 11], team formation [56], aggregation [10] and search-and-
rescue [25]. Some of this work has also included other aspects such as strategy synthesis [57].
However, we note that this work does not address the unbounded nature of swarm systems as
it relies on fixing a number of participants in the swarm with the verification of larger swarms
quickly becoming intractable.

The parameterised verification of probabilistic systems is a relatively unexplored area. In [58],
the authours present a technique for verifying probabilistic network protocols that is based on
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identifying a sub-class of systems (named degenerative) in which larger networks eventually
behave like smaller ones. This is similar to the non-probabilistic notion of cutoffs discussed
earlier. The approach in this paper tackles a similar problem but instead of studying a sub-class
of systems, we here aim to give a more general verification technique for a broader ranger of
systems.

In [59], a parameterised semantics is introduced that includes both probabilities and contin-
uous time. Reachability properties are studied on both systems where the number of participants
is fixed and ones where participants may enter and leave at run-time. Some of the resulting deci-
sion problems are found to be decidable whilst others are shown to be undecidable. The models
considered there are distinct from ours. In particular, we do not have a continuous notion of time
and the communication pattern between agents in our systems is different from the broadcasting
and receiving pattern used there which is more suited to network protocols than the AI applica-
tions we consider here. Further, the PLTL properties we consider here are more expressive than
the qualitative reachability ones considered there.

The only variable that may grow unboundedly in these studies is the number of participants
in the system, as is indeed the case in this paper. However, other forms of parameterised systems
have also been considered. For example, in systems with parameterised environments, aspects
of the environment can grow arbitrarily [60]. Similarly to the works above, this also raises issues
with decidability of the resulting verification problem. Further, in these lines as well as in this
paper, the number of participants may be arbitrarily large, but it does not change during the
system’s execution. Other approaches, however, have considered open, or dynamic, systems in
which the participants may join and leave the system at run-time [61, 62, 63]. However, the setup
and the objectives of these contributions are quite different from those in this paper.

Previous work by the authors. The work here presented builds upon previous papers by the same
authors [64, 65, 66, 67].

In [64] a semantics for reasoning about probabilistic swarm systems in which actions are
performed in synchronous rounds was presented. A logic on finite traces and a verification
procedure for it were introduced. The work here proposed is richer in expressiveness since this
semantics is asynchronous and the specifications are not limited to finite traces.

More similarly to the work presented here, in [65] the verification of asynchronous models
against a logic on infinite traces is studied. However, the present work extends [65] in sev-
eral ways. Firstly, the semantics here address inhomogenous systems in which agents can have
different behaviours. This is necessary to verify the scenarios presented in Section 5. Secondly,
while [65] provides no proofs and detailed technical constructions, we provide both here. Thirdly,
in [65] only one form of PLTL properties is considered, while here we give a procedure for the
full logic. Finally, the implementation here discussed is an extension of that from [65] to account
for different agent behaviours.

Different from the work here presented are the results in [66, 67], which relate to strategic
properties of the system and run-time faults. These explorations are orthogonal to what we
consider here.

1.2. Outline of the paper
The rest of the paper is organised as follows. In Section 2 we present the background on

probabilistic model checking, and introduce the notation that will be used throughout the paper.
In Section 3 we define the parameterised semantics for reasoning about unbounded probabilistic
swarms. We show this is associated to an undecidable verification problem. Nonetheless, in
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Section 4 we develop a partial decision procedure based on counter abstraction and show its
correctness. In Section 5, we present an implementation of this procedure and evaluate it against
a number of example scenarios. We conclude in Section 6.

2. Background

In this section we introduce some background on probabilistic model checking, along with
the notation that we will use throughout the paper.

2.1. Discrete Time Markov Chains
We briefly summarise discrete time Markov chains (DTMCs). For more background on

DTMCs and the model checking of them see [52, 9, 68].

Definition 1 (DTMC). A discrete time Markov chain (DTMC) is a tupleD = 〈S , ι, t, L〉 where S
is a set of states, ι ∈ S is a distinguished initial state, t : S ×S → [0, 1] is a transition probability
function (with

∑
s′∈S t(s, s′) = 1 for any s ∈ S ) and L : S → P(AP) is a labelling function on a

set AP of atomic propositions.

A path in a DTMC is a sequence of states s0s1s2 . . . such that for every i ∈ N it is the case
that t(si, si+1) > 0. We use FPathD and IPathD respectively, to denote the set of all finite and
infinite paths starting from the initial state ι. For any path ρ = s0s1s2 . . . and i ∈ N we use ρi , si

to denote the ith state in ρ and and ρ(i) , sisi+1si+2 . . . to denote the suffix of ρ starting from
the ith position. For a finite path we define its probability by PD(s0 . . . sn) ,

∏n−1
i=0 t(si, si+1).

Following [68], this can be extended to a probability space on the set of all infinite paths. For
ease of presentation we omit this; however, note that this probability space is uniquely defined
by the probabilities on finite paths. This corresponds to the intuition that the probability of a set
of infinite paths occurring is equal to the probability of their finite prefixes occurring.

2.2. Markov Decision Processes
We now summarise some key aspects of Markov decision processes (MDPs). We refer to [9,

69, 53] for more details. We mostly follow the notation used in [53].

Definition 2 (MDP). A Markov decision process (MDP) is a tupleM = 〈S , ι, A, P, t, L〉 where S
is a finite set of states, ι ∈ S is a distinguished initial state, A is a finite set of actions, P : S →
P(A) is a protocol function (such that P(s) , ∅ for all s ∈ S ), t : S ×A×S → [0, 1] is a transition
function (with

∑
s′∈S t(s, a, s′) = 1 for any s ∈ S and a ∈ P(s)) and L : S → P(AP) is a labelling

function on a set AP of atomic propositions.

Intuitively, a transition from a state s of an MDP occurs by first non-deterministically select-
ing some action a ∈ P(s) and then transitioning to state s′ with probability t(s, a, s′). MDPs thus
give a way of describing systems that include both probabilistic and non-deterministic choice,
unlike DTMCs which do not capture the latter.

A path in an MDP is a sequence of states and actions s0a0s1a1s2 . . . such that for all i ∈ N it
is the case that ai ∈ P(si) and t(si, ai, si+1) > 0. We use FPathM (IPathM, respectively) to denote
the set of all finite (infinite, respectively) paths starting from the initial state ι. For a finite path
ρ = s0a0 . . . sn, last(ρ) , sn denotes its last state.

In order to reason about the probability of a path occurring in an MDPs, we need a way to
resolve the inherent non-determinism. This is captured by a scheduler (also referred to as an
adversary, strategy or policy in some literature).
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Definition 3 (Scheduler). Given an MDPM = 〈S , ι, A, P, t, L〉 a scheduler forM is a function
σ : FPathM × A → [0, 1] such that for any finite path ρ ∈ FPathM, we have σ(ρ, a) > 0 only if
a ∈ P(last(ρ)) and

∑
a∈A σ(ρ, a) = 1.

We denote by S chM the set of all schedulers for M. Various classes of schedulers may be
defined [53]. Note that when maximising or minimising the probability of reaching a target set of
states, it is sufficient to consider schedulers that are memoryless, i.e.,. functions that only depend
on the final state of the path, and deterministic, i.e., functions that assign values from {0, 1} to all
actions.

We now proceed to define the DTMC induced by a scheduler on an MDP. Intuitively, this
describes the purely probabilistic system that results from fixing a given choice of scheduler in
an MDP.

Definition 4 (Induced DTMC). Given an MDP M = 〈S , ι, A, P, t, L〉 and a scheduler σ :
FPathM × A→ [0, 1], the induced DTMCMσ = 〈FPathM, ι, t′, L′〉 is defined by:

• t′ : FPathM × FPathM → [0, 1] is given by:

t′(ρ, ρ′) ,

σ(ρ, a) × t(last(ρ), a, s) if ρ′ = ρas, a ∈ P(last(ρ))
0 otherwise

• L′(ρ) , L(last(ρ)) for all ρ ∈ FPathM

Notice that while in general the induced DTMC might have an infinite number of states,
when considering memoryless schedulers it is possible to derive an equivalent DTMC that has
only finitely many states [53].

3. Probabilistic Swarm Systems

In this Section we introduce the syntax and semantics of probabilistic swarm systems and
define their model checking problem. In what follows a swarm system is characterised by finitely
many types of agents, each giving rise to an arbitrary number of agents.

3.1. Models
We begin by defining probabilistic parameterised interleaved interpreted systems (PPIIS).

These extend the framework of parameterised interpreted systems (PIIS) presented in [16] with
probabilistic behaviour. In turn, PIIS extend interleaved interpreted systems [70].

A PPIIS is composed of a finite number of agent templates, which describe the different
possible behaviours of individual agents and an environment which captures the behaviour of the
other parts of the system. Note that while there is a finite number of agent templates describing
the different behaviours of agents, there may be an arbitrarily large number of agents instantiated
from each template.

Definition 5 (Probabilistic agent template). A probabilistic agent template is a tuple Ti = 〈S i, ιi,
Acti, Pi, ti〉 where:

• The set S i is a finite set of agent local states.

• ιi ∈ S i is a distinguished initial state.
6



• Acti = Ai ∪ AEi ∪ GS is the non-empty set of actions that can be performed by the
agents. These may either be asynchronous actions, agent-environment actions or global-
synchronous actions. Each type of action implies a different communication pattern be-
tween the agents, as outlined in Definition 9.

• The agent’s protocol function Pi : S i → P(Acti) defines which actions are enabled at a
given state.

• The agent’s transition function ti : S i × Acti × S i → [0, 1] describes the evolution of
the agent’s state: given a local state s, an action a, and a local state s′, t returns the
probability that upon performing action a in state s the agent will transition to state s′.
Notice we require that for every l ∈ S i and a ∈ Pi(l) we have

∑
l′∈S i

ti(l, a, l′) = 1.

The agent template is closely related to MDPs (see Section 2), suitably extended to encode
action types for synchronisation purposes.

One particular class of agent templates that is worthwhile to distinguish is those that transition
deterministically when performing a global-synchronous action. We formalise this below.

Definition 6 (Deterministic-synchronous agent templates). A probabilistic agent template Ti =

〈S i, ιi, Acti, Pi, ti〉 is said to be deterministic-synchronous if it is the case that whenever a ∈ GS
then ti(s, a, s′) ∈ {0, 1} for all s, s′ ∈ S i.

For simplicity of presentation, we will assume that all agent templates are deterministic-
synchronous. However, note that an agent template that is not deterministic-synchronous can be
transformed into one that is by adding an asynchronous action to resolve the probabilistic choice
after the global-synchronous action.

We now proceed to define the environment that the agents operate in.

Definition 7 (Environment). An environment E is a tuple E = 〈S E , ιE , ActE , PE , tE〉 where:

• S E is a finite set of local states.

• ιE ∈ S E is a distinguished initial state.

• ActE is a non-empty set of actions ActE = AE ∪
⋃k

i=1 AEi ∪ GS.

• The environment protocol PE is a function PE : S E → P(ActE) giving the permissible
actions in each state.

• The transition function tE : S E × ActE × S E → [0, 1] which is such that for every l ∈ S E

and a ∈ PE(l) we have
∑

l′∈S E
t(l, a, l′) = 1.

Once again, the environment is similar to an MDP but has been extended to encode dif-
ferent action types. We can now define PPIIS, which will be composed of a finite number of
agent templates together with an environment and labelling functions which capture what atomic
propositions hold at different points of the system’s evolution.

Definition 8 (PPIIS). A probabilistic parameterised interleaved interpreted system (PPIIS) is a
tuple S = 〈T , E,V,VE〉, where T = {T1, . . . ,Tk} is a non-empty and finite set of probabilistic
agent templates, E is an environment and V = {V1, . . . ,Vk} is a set of valuation functions Vi :
S i × S E → P(AP), one for each agent template, to a set of atomic propositions AP. Finally,
VE : S E → P(AP) is a valuation function for the environment to the atomic propositions.
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(a) The first agent template
(T1).

(b) The second agent tem-
plate (T2). (c) The environment (E).

Figure 1: An example PPIIS S = 〈{T1,T2}, E, {V1,V2},VE〉 with two agent templates. The a action is asynchronous, the
e action is an agent-environment one, while the g action is global-synchronous.

Notice that we assume that the sets S i of local states of each agent template Ti are disjoint,
and likewise the sets of actions Acti are disjoint, with the exception of the global actions GS
which are the same for all agents and the environment.

Further, notice that while each agent template has its own valuation function Vi in order to
allow us to express local properties of that agent, the valuation functions can all also use the
local state of the environment in order to allow us to consider this when deciding what atomic
propositions hold. Further, the VE valuation function allows us to express global properties that
are only concerned with the state of the environment.

An example PPIIS with two agent templates can be seen in Figure 1. The agent template T1
has two states. In the initial state, it can perform the asynchronous a action which with equal
probability takes it back to the same state, or takes it to its other state. Once in its second state,
the agent can perform the global-synchronous action g. The agent template T2 is similar except
it uses an agent-environment action e instead of an asynchronous one a. Finally, the environment
has two states. In its initial state, it can perform the e action or the g one. On performing the g
action it can, with probability 0.5, transition to its second state. Once in the second state, it can
only perform the g action and remain there.

Each PPIIS describes an unbounded collection of concrete systems obtained by choosing a
different number of agents in the system. Given a PPIIS S and n̄ ∈ Zk, the system S(n̄) of n̄
agents is the result of the composition of n̄i copies of Ti for each 1 ≤ i ≤ k and one environment.
Each agent has an identity (i, j) ∈ N × N giving its type i (the agent template it was instantiated
from), and a unique number j distinguishing it from the other agents of type i. We will denote
byA(n̄) the set of all agents, i.e.

A(n̄) , {(i, j) ∈ N × N : 1 ≤ i ≤ k, 1 ≤ j ≤ n̄i}

For a system of size n̄ ∈ Zk, a global state g = 〈s̄1, . . . , s̄k, se〉 is a (k + 1)-tuple. The vector
s̄i ∈ (S i)n̄i gives the local state of the n̄i agents of type i. The state se ∈ S E gives the local state
of the environment. Thus, the global state encodes all the information to describe the system at
a particular instant of time. Let S n̄ denote the set of all such global states. For a global state
g = 〈s̄1, . . . , s̄k, se〉 ∈ S n̄ we write g.(i, j) to denote the local state of the j-th agent of type i in g,
i.e., (s̄i) j and g.E to denote the state of the environment in g, i.e. se.
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Actions in the global system may be one of four types as follows (this will be formalised in
Definitions 9 and 10).

1. Global-synchronous actions are performed by all agents and the environment together.
2. Asynchronous environment actions are performed by the environment on its own.
3. Asynchronous agent actions are performed by one agent on its own, and in the global

system are labelled with which agent performed the action.
4. Agent-environment agent actions are performed by one agent together with the environ-

ment, and in the global system are labelled with which agent performed the action.

We denote by Actn̄ the set of all such global actions, i.e.

Actn̄ , GS ∪ AE ∪
⋃

(i, j)∈A(n̄)

((Ai ∪ AEi) × {(i, j)})

We now go on to define the global protocol, which determines which actions are available at
each state in the global system.

Definition 9 (Global protocol). The global protocol Pn̄ : S n̄ → P(Actn̄) is defined by a ∈ Pn̄(g)
if and only if

• (Global-synchronous). (i) a ∈ GS ; (ii) for all (i, j) ∈ A(n̄), a ∈ Pi(g.(i, j)); (iii) a ∈
PE(g.E).

• (Asynchronous environment). (i) a ∈ AE; (ii) a ∈ PE(g.E).

• (Asynchronous agent). (i) a = (a′, (i, j)) ∈ Ai ×A(n̄); (ii) a′ ∈ Pi(g.(i, j)).

• (Agent-environment). (i) a = (a′, (i, j)) ∈ AEi × A(n̄); (ii) a′ ∈ Pi(g.(i, j)); (iii) a′ ∈
PE(g.E).

Thus, a global-synchronous action must be enabled for all agents and the environment. An
asynchronous environment action must be enabled for the environment. An asynchronous agent
action must be enabled for the agent performing it and, finally, an agent-environment action must
be enabled for both the agent performing it and the environment.

The next definition gives the global transition function, which defines the probability of tran-
sitioning between two states of the global system.

Definition 10 (Global transition function). The global transition function tn̄ : S n̄ × Actn̄ × S n̄ →

[0, 1] is defined by

tn̄(g, a, g′) ,



tE(g.E, a, g′.E) ·
∏k

i=1
∏n̄i

j=1 ti(g.(i, j), a, g′.(i, j)) if a ∈ GS
tE(g.E, a, g′.E) if a ∈ AE and

∀(i, j) ∈ A(n̄) : g.(i, j) = g′.(i, j)
ti(g.(i, j), a′, g′.(i, j)) if a = (a′, (i, j)) ∈ A ×A(n̄) and g.E = g′.E and

∀(i′, j′) ∈ A(n̄) \ {(i, j)} : g.(i′, j′) = g′.(i′, j′)
tE(g.E, a′, g′.E) · ti(g.(i, j), a′, g′.(i, j)) if a = (a′, (i, j)) ∈ AE ×A(n̄) and

∀(i′, j′) ∈ A(n̄) \ {(i, j)} : g.(i′, j′) = g′.(i′, j′)
0 otherwise
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Thus, the probability of a global transition is always given by multiplying the probability of
the agent(s) involved in the action (and, if applicable, the environment) performing their local
transition, whilst forcing all those not involved in the action to remain in the same state.

Having given this definition, we now prove that this defines a valid probability distribution.

Lemma 1. For any g ∈ S n̄ and a ∈ Actn̄, it is the case that:∑
g′∈S n̄

tn̄(g, a, g′) = 1

Proof. We check this for each different type of action a:

• a ∈ GS . Then:∑
g′∈S n̄

tn̄(g, a, g′) =
∑

sE∈S E

∑
g′∈S n̄:g′.E=sE

tE(g.E, a, sE) ·
k∏

i=1

n̄i∏
j=1

ti(g.(i, j), a, g′.(i, j))


=
∑

sE∈S E

tE(g.E, a, sE) ·
∑

g′∈S n̄:g′.E=sE

 k∏
i=1

n̄i∏
j=1

ti(g.(i, j), a, g′.(i, j))


=
∑

sE∈S E

tE(g.E, a, sE) ·
k∏

i=1

n̄i∏
j=1

∑
s′∈S

ti(g.(i, j), a, s′)

 = 1

with the first equality following by splitting the sum on its change to the state of the envi-
ronment and the state of the agents, and the second equality following by splitting the sum
on the states of the individual agents.

• a ∈ AE . Then: ∑
g′∈S n̄

tn̄(g, a, g′) =
∑

sE∈S E

tE(g.E, a, sE) = 1

with the first equality following from all g′ with g.(i, j) , g′.(i, j) for some (i, j) ∈ A(n̄)
having tn̄(g, a, g′) = 0.

• a = (a′, (i, j)) ∈ A ×A(n̄). Then:∑
g′∈S n̄

tn̄(g, a′, g′) =
∑
s∈S

ti(g.(i, j), a, s) = 1

with the first equality following again from all other terms of the sum being 0.

• a = (a′, (i, j)) ∈ AE ×A(n̄). Then:∑
g′∈S n̄

tn̄(g, a′, g′) =
∑

sE∈S E

∑
s∈S

tE(g.E, a′, sE)ti(g.(i, j), a′, s)

=
∑

sE∈S E

tE(g.E, a′, sE)

∑
s∈S

ti(g.(i, j), a′, s)

 = 1

with the first equality following by splitting the terms of the sum up between those that
change the state of the environment and those that change the state of agent (i, j) and noting
that those that change any other component of the state will be 0.

10



Figure 2: An example concrete system S((1, 1)) where S is the PPIIS from Figure 1.

This covers all cases for the action a, and thus completes our proof.

Having defined all the necessary components and shown the validity of our definitions, we
combine these to define concrete systems.

Definition 11 (Concrete system). Given a PPIIS S with k agent templates and n̄ ∈ Zk, the con-
crete system of n̄ agents is defined by S(n̄) = 〈S n̄, ιn̄, Actn̄, Pn̄, tn̄,Vn̄〉, where ιn̄ = 〈(ι1, . . . , ι1), . . . ,
(ιk, . . . , ιk), ιE〉, the labelling function Vn̄ : S n̄ → P((AP ×A(n̄)) ∪ AP) is defined by

Vn̄(g) , {(p, (i, j)) ∈ AP ×A(n̄) : p ∈ Vi(g.(i, j), g.E)} ∪ VE(g.E)

and the other components are defined as in Definitions 9 and 10.

Notice our labelling function creates a new atomic proposition (p, (i, j)) for each atomic
proposition p and agent (i, j) that holds precisely in the global states where p holds for the local
state of agent (i, j). Atomic propositions p that hold for the environment are added to the set
without such a label.

An example of such a concrete system with two agents (one of each type) can be seen in
Figure 2. In the initial state, either the agent of type 1 can perform the a action or the agent of
type 2 can perform the e action. If an agent changes state, then it can no longer perform any
action (since the only available action is the g one, but the other agent cannot yet perform it).
So, the other agent now performs its action until it changes state, at which point the g action
becomes possible. This action may change the state of the environment with probability 0.5, at
which point the system reaches state ((2), (4), 6) and no further state changes occur (though the
g action can continue being performed).

Notice that the concrete system is simply an MDP, so we can express properties of it in any
logics that are used in probabilistic model checking of MDPs. We now define such a logic.

Definition 12 (Probabilistic LTL). For a ∈ AP and i, j ∈ N, the probabilistic LTL logic (PLTL)
is the set of formulas φ defined by the following BNF:

φ ::= Pmax
./x [ψ] | Pmin

./x [ψ] for x ∈ [0, 1] and ./∈ {≤, <,≥, >}

ψ ::= > | (a, (i, j)) | a | ¬ψ | ψ ∧ ψ | Xψ | ψ U ψ

We say that a PLTL formula is m̄-indexed, where m̄ ∈ Nk, if m̄ is the least tuple such that
for any atomic proposition (a, (i, j)) that appears in the formula it is the case that 1 ≤ i ≤ k and
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1 ≤ j ≤ m̄i. Intuitively, this means that satisfaction of the formula is based only on the states of
the first m̄i agents for each type of agent i. Notice that since formulas are finite, every formula
has a well-defined index.

The PLTL formula Pmax/min
./x [ψ] is read as “with a scheduler that tries to maximise/minimise

the probability of ψ occurring, this probability is ./ x”. The path formula Xψ is read as “after
one time-step ψ holds”, whilst ψ1 U ψ2 is read as “at some point ψ2 will hold, and before then
ψ1 must hold.”

We will also use standard LTL abbreviations such as Fψ ≡ >Uψ to mean “at some point ψ
holds” and Gψ ≡ ¬F¬ψ to mean “ψ always holds”.

We now formalise the notion of satisfaction for PLTL specifications on swarm systems.

Definition 13 (Satisfaction). Given a concrete swarm system S(n̄) and φ an m̄-indexed PLTL
formula, where n̄i ≥ m̄i for all i, the satisfaction of φ on S(n̄) is inductively defined as follows:

S(n̄) |= Pmax
./x [ψ] iff supσ∈AdvM PS(n̄)σ ({ρ ∈ IPathS(n̄)σ : ρ |= ψ}) ./ x

S(n̄) |= Pmin
./x [ψ] iff infσ∈AdvM PS(n̄)σ ({ρ ∈ IPathS(n̄)σ : ρ |= ψ}) ./ x

Satisfaction for path formulae is defined as usual, i.e.,
ω |= > always holds
ω |= (a, (i, j)) iff (a, (i, j)) ∈ Vn̄(ω0)
ω |= a iff a ∈ Vn̄(ω0)
ω |= ¬ψ iff ω 6|= ψ
ω |= ψ1 ∧ ψ2 iff ω |= ψ1 and g |= ψ2
ω |= Xψ iff ω(1) |= ψ
ω |= ψ1Uψ2 iff for some i ≥ 0, ω(i) |= ψ2 and for all 0 ≤ j < i, ω( j) |= ψ1

For instance, consider a collective transport scenario [71] where a group of robots (all of the
same type) aims to collaborate to move an object to a destination. In this scenario we might want
to consider specifications such as:

Pmin
>0.7[FobjectAtDestination]

which says that even with a scheduler that tries to minimise the chances of this happening,
there is still a probability of over 0.7 that the object will reach its destination. The index of this
formula is (0) since it refers to no agents.

For another example, consider an opinion formation scenario [40] where a group of agents
(of two different types) must agree on a choice from a set of actions. In this scenario it might be
desirable to consider a property such as:

Pmax
≤0.1[G(¬(decisionReached, (2, 1))]

which says that even with a scheduler that tries to maximise the chances of this happening, the
probability of agent (2, 1) never reaching a decision is at most 0.1. The index of this formula is
(0, 1) since it refers to no agents of the first type, and the first agent of the second type.

In this Section we introduced PPIIS, a semantics for reasoning about probabilistic swarm
systems, as well as the logic PLTL to express specifications for them. In what follows we will
address the automatic verification of PLTL specifications on PPIIS.

4. Model Checking PPIIS

In this Section we introduce the parameterised model checking problem for PPIIS, which
consists of determining whether a PLTL formula holds in concrete systems of any size built from
a template. We formalise this below.

12



Definition 14 (Parameterised Model Checking). Given a PPIIS S and an m̄-indexed formula
φ, the parameterised model checking problem involves establishing whether it is the case that
S(n̄) |= φ for any n̄ with n̄i ≥ m̄i for all i. We write S |= φ if this is the case.

Notice that, since this is a probabilistic extension of a problem that is known to be undecid-
able in general [13], it is also undecidable in general. In the following we will explore a partial
decision procedure.

The partial decision procedure to be introduced is based on counter abstraction [26]. Intu-
itively, we will build a finite abstract model of the system capturing an over-approximation of the
infinitely many paths that can be executed by the infinitely many concrete systems of increasing
size. To do so, we will discard information about precisely how many agents are in each state at
each step and instead only record which states had one or more agents in them.

This will mean that for every path in a concrete system (of any size) there will be a cor-
responding path in our abstract model. We will exploit this property to give a partial decision
procedure for the parameterised model checking problem.

We now proceed to define our abstract system based on counter abstraction.

Definition 15 (Abstract system). Given a PPIIS S and an m̄ ∈ Zk, the abstract system of m̄
agents is defined by Ŝ(m̄) = 〈Ŝ m̄, ι̂m̄, Âctm̄, P̂m̄, t̂m̄, V̂m̄〉, where:

• Ŝ m̄ , S m̄ × P(
⋃k

i=1 S i) is the set of abstract global states.

• ι̂m̄ , (ιm̄, {ι1, . . . , ιk}) is the initial abstract global state.

• Âctm̄ , Actm̄ ∪
⋃k

i=1((Ai ∪ AEi) × S i × {↑, ↓}) is the set of abstract global actions.

• P̂m̄ : Ŝ m̄ → P(Âctm̄) is defined by:

P̂m̄(g, X) , (Pm̄(g) \ {a ∈ GS : ∃i ∈ {1, . . . , k}, x ∈ X with x ∈ S i and a < Pi(x)})

∪

k⋃
i=1

{(a, s, v) ∈ Ai × X × {↑, ↓} : a ∈ Pi(s)}

∪

k⋃
i=1

{(a, s, v) ∈ AEi × X × {↑, ↓} : a ∈ Pi(s) ∩ PE(g.E)}

• t̂m̄ : Ŝ m̄ × Âctm̄ × Ŝ m̄ → [0, 1] is the transition function, defined for asynchronous agent
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actions by:

t̂m̄((g, X), (a, l, ↑), (g′, X′)) ,
ti(l, a, l′) if X′ \ X = {l′} and l, l′ ∈ S i and g = g′∑

l′∈X∩S i
ti(l, a, l′) if X′ = X and l ∈ S i and g = g′

0 otherwise

t̂m̄((g, X), (a, l, ↓), (g′, X′)) ,
ti(l, a, l′) if X′ = (X \ {l}) ∪ {l′} and l ∈ S i

and l′ ∈ (S i \ X) ∪ {l} and g = g′∑
l′∈X′∩S i

ti(l, a, l′) if X′ = X \ {l} and l ∈ S i and g = g′

0 otherwise

t̂m̄((g, X), (a, i), (g′, X′)) ,

tm̄(g, a, g′) if X′ = X
0 otherwise

For agent-environment actions, we similarly define:

t̂m̄((g, X), (a, l, ↑), (g′, X′)) , tE(g.E, a, g′.E)×

tk(l, a, l′) if X′ \ X = {l′} and l, l′ ∈ S k

and ∀(i, j) ∈ A(m̄) : g.(i, j) = g′.(i, j)∑
l′∈X∩S k

tk(l, a, l′) if X′ = X and l ∈ S k

and ∀(i, j) ∈ A(m̄) : g.(i, j) = g′.(i, j)
0 otherwise

t̂m̄((g, X), (a, l, ↓), (g′, X′)) , tE(g.E, a, g′.E)×

tk(l, a, l′) if X′ = (X \ {l}) ∪ {l′} and l ∈ S k and l′ ∈ (S k \ X) ∪ {l}
and ∀(i, j) ∈ A(m̄) : g.(i, j) = g′.(i, j)∑

l′∈X′∩S k
tk(l, a, l′) if X′ = X \ {l} and l ∈ S k

and ∀(i, j) ∈ A(m̄) : g.(i, j) = g′.(i, j)
0 otherwise

t̂m̄((g, X), (a, i), (g′, X′)) ,

tm̄(g, a, g′) if X′ = X
0 otherwise

For asynchronous environment actions, we define:

t̂m̄((g,X), a, (g′, X′)) ,

tm̄(g, a, g′) if X′ = X
0 otherwise

Finally, for global actions we define:

t̂m̄((g,X), a, (g′, X′)) ,tm̄(g, a, g′) if X′ = {s′ ∈ S |∃i ∈ {1, . . . , k}, s ∈ X ∩ S i : ti(s, a, s′) = 1}
0 otherwise
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• V̂m̄ : Ŝ m̄ → P((AP ×A(m̄)) ∪ AP) is the labelling function given by V̂m̄(g, X) , Vm̄(g).

Intuitively, the abstract global state records the precise state of m̄ agents only. This is because
the problem involves checking an m̄-indexed formula. All other agents in the concrete systems
are represented via a set of states whose elements are the local states that have one or more agents
in that state. We will refer to the agents corresponding to the second component of the state as
the abstract agents.

Abstract global actions are either concrete actions of the first m̄ agents, or are actions of the
abstract agents. In the latter case, we add some further labelling to the actions to resolve how
the transition occurs. In particular, we label the action with both the state it was performed from,
and whether the agent performing the action was the only agent in that state (“shrinking” actions,
labelled by ↓) or one of several (“growing” actions, labelled by ↑).

The protocol then enables all concrete actions for the concrete agents (with the exception
of global-synchronous actions that cannot be performed by one of the abstract agents). For the
abstract agents, it enables their actions along with the corresponding labelling (notice that, since
we do not actually know how many agents are in each state, we always enable both the ↑ and the
↓ version of actions).

For the labelling function, we are only interested in the m̄ concrete agents in the first compo-
nent of the state (since these are the ones for which corresponding atomic propositions are used
in the formula), so we simply discard the second component.

It remains to check that the transition function we have defined gives a valid probability
distribution. We do so below.

Observation 1. For any s ∈ Ŝ m̄ and a ∈ Âctm̄, it is the case that:∑
s′∈Ŝ m̄

t̂m̄(s, a, s′) = 1

Proof. Let ŝ = (g, X) ∈ Ŝ m̄. We consider different choices of action.

• a ∈ Actm̄ \GS . Then:∑
s′∈Ŝ m̄

t̂m̄((g, X), a, s′) =
∑

g′∈S m̄

t̂m̄((g, X), a, (g′, X)) =
∑

g′∈S m̄

tm̄(g, a, g′) = 1

The equalities follow by noting which terms are non-zero, then applying the definition of
t̂ and finally using Lemma 1.

• a ∈ GS . Similarly to the above case, we have:∑
s′∈Ŝ m̄

t̂m̄((g, X), a, s′) =
∑

g′∈S m̄

t̂m̄((g, X), a, (g′, X′)) =
∑

g′∈S m̄

tm̄(g, a, g′) = 1

where X′ = {s′ ∈ S |∃i ∈ {1, . . . , k}, s ∈ X∩S i : ti(s, a, s′) = 1}. Once again, this follows by
picking out the non-zero terms of the sum, applying the definition of t̂, and finally using
Lemma 1.

• a = (a′, l, ↑) for a′ ∈ Ai and l ∈ S i. Then:∑
s′∈Ŝ m̄

t̂m̄((g, X), a, s′) =
∑

l′∈S i\X

ti(l, a, l′) +
∑

l′∈X∩S i

ti(l, a, l′) =
∑
l′∈S i

ti(l, a, l′) = 1
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by picking out the non-zero terms, performing some rearranging and then noting that ti is
a valid transition function.

• a = (a′, l, ↓) for a′ ∈ Ai and l ∈ S i. This is almost identical to the above case.

• a = (a′, l, ↑) for a′ ∈ AEi and l ∈ S i. Then:

∑
s′∈Ŝ m̄

t̂m̄((g, X), a, s′) =
∑

sE∈S E

 ∑
l′∈S i\X

tE(g.E, a′, sE)ti(l, a, l′) +
∑

l′∈X∩S i

tE(g.E, a′, sE)ti(l, a, l′)


=
∑

sE∈S E

tE(g.E, a′, sE)
∑
l′∈S i

ti(l, a, l′)


=
∑

sE∈S E

tE(g.E, a′, sE) = 1

by picking out the non-zero terms, performing some rearranging and then noting first that
ti is a valid transition function and subsequently that tE is also a valid transition function.

• a = (a′, l, ↓) for a′ ∈ AEi and l ∈ S i. This is almost identical to the above case.

This covers all possible cases for the action a and completes our proof.

We refer to Figure 3 to exemplify the definitions of abstract model, where the first few tran-
sitions are depicted. From the initial state, the two concrete agents (1, 1) and (2, 1) may perform
their concrete transitions with a and e actions exactly as in the concrete system. Further, the ab-
stract agents can also perform a or e. This gives abstract actions like (a, 1, ↑) which indicates one
of several abstract agents in state 1 performing the a action and may result in the abstract state
being updated from {1, 3} to {1, 2, 3}. The abstract action (a, 1, ↓) corresponds to the last abstract
agent in state 1 performing the a action and may result in the abstract state being updated from
{1, 3} to {2, 3}. The transitions for the abstract e action are similar.

Having defined abstract systems, we now formalise the extent to which paths in concrete
models correspond to paths in the corresponding abstract model. As a stepping stone to doing
so, we now define how a concrete state can be mapped to an abstract one.

Definition 16 (State abstraction). Let n̄, m̄ ∈ Zk with n̄i > m̄i for all i. Then, the abstraction map
on states λn̄,m̄ : S n̄ → S m̄ is given by:

λn̄,m̄(s̄1, . . . , s̄k, se) , ((s̄′1, . . . , s̄
′
k, se), X) where

s̄′i , (s̄i,1, . . . , s̄i,m̄i ) and X ,
k⋃

i=1

{s̄i,m̄i+1, . . . , s̄i,n̄i }

Intuitively, for each type of agent i this map preserves the exact state of the first m̄i such agents
in the first component. The states of the remaining agents are projected into the set in the second
component, thus preserving which states are present in one or more agents, but discarding the
information on precisely how many agents are in each state. We now define a similar abstraction
notion for actions.
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Figure 3: The first state and its outgoing transitions of the abstract system Ŝ((1, 1)) where S is the PPIIS from Figure 1.
Note the full abstract system is much larger (it contains 19 states and 105 transitions) so is not shown.

Definition 17 (Action abstraction). Let n̄, m̄ ∈ Zk with n̄i > m̄i for all i. Then, the abstraction
map on actions λn̄,m̄ : S n̄ × Actn̄ → Âctm̄ is given by:

λn̄,m̄((s̄1, . . . , s̄k, se), a) ,



a if a ∈ Actm̄
(a′, s̄i, j, ↓) if a = (a′, (i, j)) for some a′ ∈ (Ai ∪ AEi) and

(i, j) ∈ A(n̄) \ A(m̄) with
|{ j′ ∈ m̄i + 1, . . . , n̄i|s̄i, j = s̄i, j′ }| = 1

(a′, s̄i, j, ↑) if a = (a′, (i, j)) for some a′ ∈ (Ai ∪ AEi) and
(i, j) ∈ A(n̄) \ A(m̄) with
|{ j′ ∈ m̄i + 1, . . . , n̄i|s̄i, j = s̄i, j′ }| > 1

Intuitively, for each type of agent i this maps actions concerning the first m̄i such agents
to themselves. For actions of the remaining agents, these are labelled with the state that they
occurred from and whether they were shrinking (↓) or growing (↑) ones.

We now give a technical lemma that will be helpful to prove the validity of the verification
algorithm later. Intuitively, this result assures that the probability of a transition in the abstract
model is precisely the sum of the probabilities of the concrete transitions it could represent.

Lemma 2. Let n̄, m̄ ∈ Zk with n̄i > m̄i for all i. Let g ∈ S n̄ and a ∈ Pn̄(g). Then, for any ĝ′ ∈ Ŝ m̄:

t̂m̄(λn̄,m̄(g), λn̄,m̄(g, a), ĝ′) =
∑

g′∈λ−1
n̄,m̄(ĝ′)

tn̄(g, a, g′)

Proof. Let g = (s1, . . . , sk, se) and λn̄,m̄(g) = ((ŝ1, . . . , ŝk, ŝe), X). Denote ĝ′ = ((ŝ′1, . . . , ŝ
′
k, ŝ
′
e), X′).

We now consider different possible cases for a:

• a ∈ AE . Note that if X , X′, both sides of the equation are equivalent to 0 following the
definitions. Similarly, if for any i ∈ Z we have ŝi , ŝ′i then both sides are 0. It remains to
consider the case where X = X′ and ŝi = ŝ′i for all i ∈ Z. Then, note that:

t̂(λn̄,m̄(g), λn̄,m̄(g, a), ĝ′) = tm̄((ŝ1, . . . , ŝk, ŝe), a, (ŝ1, . . . , ŝk, ŝ′e)) = tE(se, a, ŝ′e)
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by following the definitions from the left hand side. On the right hand side we have:∑
g′∈λ−1

n̄,m̄(ĝ′)

tn̄(g, a, g′) = tn̄((s1, . . . , sk, se), a, (s1, . . . , sk, ŝ′e)) = tE(se, a, ŝ′e)

with the first equality following from the fact that since a ∈ AE , the only non-zero cases
for tn̄ are those where only the state of the environment changes, and the second equality
following by definition. Thus, the result holds.

• a ∈ GS . Note that since the agent transitions are deterministic (Definition 6), if we have
X′ , {s′ ∈ S |∃i ∈ {1, . . . , k}, s ∈ X ∩ S i : ti(s, a, s′) = 1} then both sides would be equal
to 0 (the left simply by definition, the right by noting that no g′ ∈ λ−1

n̄,m̄(ĝ′) is reachable
from g so every term being summed is 0). So, we need only consider the case when
X′ = {s′ ∈ S |∃i ∈ {1, . . . , k}, s ∈ X ∩ S i : ti(s, a, s′) = 1}.

Further note that (once again by the agent transitions being deterministic) there are unique
states p̂1, . . . , p̂k ∈ S m̄ such that tm̄((ŝ1, . . . , ŝk, ŝe), a, ( p̂1, . . . , p̂k, ŝ′e)) , 0. If for any i ∈ Z
it is the case that ŝ′i , p̂i then both sides are equal to 0. So, we only need to check that case
where ŝ′i = p̂i for all i ∈ Z. Then, on the left hand side we have:

t̂(λn̄,m̄(g), λn̄,m̄(g, a), ĝ′) = tm̄((ŝ1, . . . , ŝk, ŝe), a, (ŝ1, . . . , ŝk, ŝ′e)) = tE(se, a, ŝ′e)

since all of the deterministic agent transitions are 1, so only the transition of the environ-
ment is needed to determine the probability. On the right hand side, we note that once
again by the deterministic nature of the agent transitions there is precisely one reachable
g′ = (s′1, . . . , s

′
k, ŝ
′
e) ∈ λ−1

n̄,m̄(ĝ′). Then:∑
g′∈λ−1

n̄,m̄(ĝ′)

tn̄(g, a, g′) = tn̄((s1, . . . , sk, ŝe), a, (s′1, . . . , s
′
k, ŝ
′
e)) = tE(se, a, ŝ′e)

with the second equality following once again from the deterministic agent transitions
being 1. Thus, the result holds.

• a = (a′, (i, j)) ∈ Ai × Agtm̄. We consider only the case when X = X′, ŝe = ŝ′e and ŝl,m = ŝ′l,m
for all (l,m) , (i, j). If any of those conditions are violated, it follows easily from the
definitions that both sides are 0. In the remaining case note that:

t̂(λn̄,m̄(g), λn̄,m̄(g, a), ĝ′) = ti(ŝi, j, a, ŝ′i, j) = ti(si, j, a, s′i, j)

by definition. On the right hand side, note that the only non-zero term of the sum is when
g′ = (s′1, . . . , s

′
k, ŝ
′
e) with s′l,m = sl,m for all (l,m) , (i, j) and s′i, j = ŝ′i, j. Thus:∑

g′∈λ−1
n̄,m̄(ĝ′)

tn̄(g, a, g′) = tn̄((s1, . . . , sk, se), a, (s′1, . . . , s
′
k, s
′
e)) = ti(si, j, a, s′i, j)

• a = (a′, (i, j)) ∈ AEi × Agtm̄. This case is identical to the one above, except that we
needn’t have ŝe = ŝ′e and thus the final result is multiplied by tE(se, a, ŝ′e) to account for the
environment’s transition.
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• a = (a′, (i, j)) ∈ Ai × (Agtn̄ \ Agtm̄). We consider only the case when ŝe = ŝ′e and ŝl = ŝ′l for
all l. If either of those conditions are violated, it follows easily from the definitions that
both sides are 0. We further subdivide this case into two:

– { j′ ∈ m̄i + 1, . . . , n̄i|si, j = si, j′ } = 1. Then, λ(g, a) = (a′, si, j, ↓). Here, there are two
non-zero cases. If X′ = X \ {si, j} then on the LHS we have:

t̂(λn̄,m̄(g), (a′, si, j, ↓), ĝ′) =
∑

l′∈X∩S i

ti(si, j, a′, l′)

by definition. But note this is equal to the RHS since the only g′ = (s′1, . . . , s
′
k, se) ∈

λ−1(ĝ′) for which tn̄(g, a, g′) is non-zero are those where s′o = so for all o , (i, j), and
in order to be in the pre-image, it must be the case that si, j ∈ X ∩ S i.
The other non-zero case is when X′ = (X \ {si, j})∪ {l′} for some l′ ∈ S i \ X. Then, on
the LHS we have:

t̂(λn̄,m̄(g), (a′, si, j, ↓), ĝ′) = ti(si, j, a′, l′)

by definition. But this is equal to the RHS, since the only g′ = (s′1, . . . , s
′
k, se) ∈

λ−1(ĝ′) for which tn̄(g, a, g′) is non-zero is the one with s′o = so for all o , (i, j) and
s′i, j = l′.

– { j′ ∈ m̄i + 1, . . . , n̄i|si, j = si, j′ } > 1. Then, λ(g, a) = (a′, si, j, ↑), and once again there
are two non-zero cases which are similar to the ones for the case above.

• a = (a′, (i, j)) ∈ AEi × (Agtn̄ \ Agtm̄). This case is identical to the one above, except that
we needn’t have ŝe = ŝ′e and thus the final result is multiplied by tE(se, a, ŝ′e) to account for
the environment’s transition.

This covers every possible case for our action and completes the proof.

Having defined the notion of abstraction on states and actions and investigated the probability
of a transition in the abstract model, we extend these notions to execution paths.

Definition 18 (Path abstraction). Let n̄, m̄ ∈ Zk with n̄i > m̄i for all i. Then, the abstraction map
on paths λn̄,m̄ : IPathS (n̄) → IPath

Ŝ(m̄) is given by mapping each infinite path ρ = g0a0g1 . . . in
S (n̄) to the unique infinite path ρ̂ = ĝ0â0ĝ1 . . . in Ŝ(m̄) such that, for all i ∈ N: (i) ĝi = λn̄,m̄(gi);
(ii) âi = λn̄,m̄(gi, ai).

We restrict this definition to finite paths in the obvious way, i.e., by mapping a finite path to
abstract finite path of the same such that conditions (i) and (ii) hold for all i up to the length of
the path.

We now proceed to define the notion of an equivalent scheduler for the abstract model. Given
a scheduler in a concrete system of size n̄, we would like to have a scheduler in the abstract model
of size m̄, which achieves “the same behaviour” (to be formalised later in Lemma 3).

Definition 19 (Equivalent scheduler). Let σ : FPathS (n̄) × Actn̄ → [0, 1] be a scheduler in S(n̄).
Then, for any m̄ with m̄i < n̄i for all i, we define the equivalent scheduler σ̂ : FPath

Ŝ(m̄)× Âctm̄ →

[0, 1] by:

σ̂(ρ̂, â) ,

∑
ρ∈λ−1

n̄,m̄(ρ̂)
∑

a∈Actn̄:λn̄,m̄(last(ρ),a)=â PS(n̄)σ (ρ) · σ(ρ, a)∑
ρ∈λ−1

n̄,m̄(ρ̂) PS(n̄)σ (ρ)
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Intuitively, since in the abstract model we do not know precisely which path would have been
followed in the concrete model, we have to consider all paths that could have been followed (i.e.,
those in the preimage of λn̄,m̄) and weigh the probabilistic choice of the next action according to
the probability of each path.

Before proceeding in this direction, we show that this definition is indeed a valid scheduler
(i.e., it only gives actions that are permitted by the protocol function and it defines a probability
distribution on the next action). We do so below.

Observation 2. σ̂ : FPath
Ŝ(m̄) × Âctm̄ → [0, 1] is a valid scheduler.

Proof. First, suppose that σ̂(ρ̂, â) > 0. Then, there is at least one ρ ∈ λ−1
n̄,m̄(ρ̂) and one a ∈ Actn̄

such that λn̄,m̄(last(ρ), a) = â and σ(ρ, a) > 0. Then it must be the case that a ∈ Pn̄(last(ρ)) since
σ is a valid scheduler. It follows that â ∈ P̂n̄(last(ρ̂))

It remains to check that for any ρ̂ ∈ FPath
Ŝ(m̄) we have that

∑
â∈Âctm̄

σ̂(ρ̂, â) = 1. For this
notice that: ∑

ρ∈λ−1
n̄,m̄(ρ̂)

∑
â∈Âctm̄

∑
a∈Actn:λn̄,m̄(last(ρ),a)=â

PS(n̄)σ (ρ) · σ(ρ, a)

=
∑

ρ∈λ−1
n̄,m̄(ρ̂)

∑
a∈Actn̄

PS(n̄)σ (ρ) · σ(ρ, a) =
∑

ρ∈λ−1
n̄,m̄(ρ̂)

PS(n̄)σ (ρ)

with the first equality following simply from λn̄,m̄ being a function and the second from σ being
a valid scheduler. So

∑
â∈Âctm̄

σ̂(ρ̂, â) = 1, as desired.

Having proved the validity of our definition, we present a further Lemma. This shows the
desirable property that when following the equivalent scheduler, the probability of a path in the
abstract model is exactly equal to the sum of the probabilities of the concrete paths that it could
represent.

Lemma 3. Let σ : FPathS (n̄) × Actn̄ → [0, 1] be a scheduler in S(n̄). Then it is the case that, for
any path ρ̂ ∈ FPath

Ŝ(m̄):

P
Ŝ(m̄)σ̂ (ρ̂) =

∑
ρ∈λ−1

n̄,m̄(ρ̂)

PS(n̄)σ (ρ)

Proof. We proceed by induction on the length of the path ρ̂. For the base case, note the only path
of length 1 has just the initial state ι̂m̄. This has probability 1. Further, ρ = ι is the only element
of λ−1

n̄,m̄(ρ̂) for which PS(n̄)σ (ρ) is non-zero, and this is also 1. So, both sides of the equation are 1,
and the statement holds.

Now, suppose the statement holds for a path ρ̂′ and consider its extension ρ̂ = ρ̂′âŝ for some

20



â ∈ Âctm̄ and ŝ ∈ Ŝ m̄. Now:

P
Ŝ(m̄)σ̂ (ρ̂) = P

Ŝ(m̄)σ̂ (ρ̂′) ·

∑
ρ∈λ−1

n̄,m̄(ρ̂′)
∑

a∈Actn̄:λn̄,m̄(last(ρ),a)=â PS(n̄)σ (ρ) · σ(ρ, a)∑
ρ∈λ−1

n̄,m̄(ρ̂′) PS(n̄)σ (ρ)
· t̂m̄(last(ρ̂′), â, ŝ)

=

 ∑
ρ∈λ−1

n̄,m̄(ρ̂′)

∑
a∈Actn̄:λn̄,m̄(last(ρ),a)=â

PS(n̄)σ (ρ) · σ(ρ, a)

 · t̂m̄(last(ρ̂′), â, ŝ)

=
∑

ρ∈λ−1
n̄,m̄(ρ̂′)

∑
a∈Actn̄:λn̄,m̄(last(ρ),a)=â

PS(n̄)σ (ρ) · σ(ρ, a) ·
∑

s∈λ−1
n̄,m̄(ŝ)

tn̄(last(ρ), a, s)


=
∑

ρ∈λ−1
n̄,m̄(ρ̂)

PS(n̄)σ (ρ)

with the first equality following from the definitions, the second from the inductive hypothesis,
the third from Lemma 2 and the final one simply by rearranging. Thus, by induction on the
length of the path, the lemma holds for all finite paths.

We are now ready to present one of the main results on this paper. We show that if an m̄-
indexed formula of the form Pmax

≤x [ψ] holds in the abstract model of size m̄, then it holds in any
larger concrete system. This will enable us to partially solve the PMCP from Definition 14.

Theorem 1. Suppose Ŝ(m̄) |= Pmax
≤x [ψ] for some m̄-indexed formula ψ. Then, S(n̄) |= Pmax

≤x [ψ] for
all n̄ ∈ Zk with n̄i > m̄i for all i.

Proof. We prove the contrapositive of this statement. Suppose we have S(n̄) |= Pmax
>x [ψ] for some

n̄ ∈ Zk with n̄i > m̄i for all i. Then, by definition, for some scheduler σ in S(n̄) we have:

PS(n̄)σ ({ρ ∈ IPathS(n̄)σ : ρ |= ψ}) > x

Now, let σ̂ be the equivalent scheduler in Ŝ(m̄) as given by Definition 19. But now every path in
the concrete model has a corresponding path in the abstract model where, by definition, the same
atomic propositions hold at each step (and thus the same LTL formulas hold along the path). So:

P
Ŝ(m̄)σ̂ ({ρ̂ ∈ IPath

Ŝ(m̄)σ̂ : ρ̂ |= ψ}) > x

since by Lemma 3 the probability of a path in the abstract model is at least as much as that of the
corresponding path in the concrete model.

Thus, by considering σ̂ as our scheduler, we see that Ŝ(m̄) |= Pmax
>x [ψ].

Note the above theorem also gives a method to check properties of the form Pmin
>x [ψ] since this

is equivalent to checking Pmax
≤1−x[¬ψ]. Further, if we can verify Pmax

≤x [ψ] then certainly it cannot
be the case that Pmax

>x [ψ]. This enables us to falsify properties of the form Pmax
>x [ψ] (and thus also

properties of the form Pmin
≤x [ψ], which are equivalent to Pmax

>1−x[¬ψ]).

Theorem 2. Suppose Ŝ(m̄) |= Pmax
<x [ψ] for some m̄-indexed formula ψ. Then, S(n̄) |= Pmax

<x [ψ] for
all n̄ ∈ Zk with n̄i > m̄i for all i.

Proof. This is identical to the proof for Theorem 1 with strict and non-strict inequalities swapped.
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Algorithm 1 Decision Procedure for the PMCP
Input: PPIIS S with k agent templates, m̄-indexed formula φ
Output: Boolean, or FAIL

1: function Check(S, φ)
2: switch φ do
3: case φ = Pmax

≤x [ψ] or φ = Pmax
<x [ψ]

4: if Ŝ(m̄) 6|= φ then
5: return FAIL

6: end if
7: for n̄← {n̄ ∈ (Z+)k | m̄i ≤ n̄i ≤ m̄i + 1 for i = 1, . . . , k} do
8: if S(n̄) 6|= φ then
9: return false

10: end if
11: end for
12: return true
13: case φ = Pmax

>x [ψ]
14: if Check(S, Pmax

≤x [ψ]) = true then
15: return false
16: end if
17: return FAIL

18: case φ = Pmax
≥x [ψ]

19: if Check(S, Pmax
<x [ψ]) = true then

20: return false
21: end if
22: return FAIL

23: case φ = Pmin
>x [ψ]

24: return Check(S, Pmax
≤1−x[¬ψ])

25: case φ = Pmin
≥x [ψ]

26: return Check(S, Pmax
<1−x[¬ψ])

27: case φ = Pmin
<x [ψ]

28: return Check(S, Pmax
≥1−x[¬ψ])

29: case φ = Pmin
≤x [ψ]

30: return Check(S, Pmax
>1−x[¬ψ])

31: end function
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As before, this theorem can also be used to verify properties of the form Pmin
≥x [ψ], and to

falsify properties of the form Pmax
≥x [ψ] or Pmin

<x [ψ].
All the above combine to give our partial decision procedure for solving the PMCP, which

can be seen in Algorithm 1. The main case of the algorithm is when the formula φ being checked
is either of the form Pmax

≤x [ψ] or Pmax
<x [ψ]. Other cases are transformed into this case by checking

the negation of the formula. In the main case, the algorithm constructs (using Definition 15) the
abstract system Ŝ(m̄), where m̄ is the index of the formula. If the formula holds on this abstract
system, then we know by Theorem 1 (Theorem 2, respectively) that it will hold in systems larger
than m̄, so it only remains to check systems of size up to m̄. If the formula holds in all of these,
then we return true. If not, then we return false. If the formula does not hold in the abstract
system, then we cannot make any claim on whether it will hold in systems of arbitrary size, so
we simply return FAIL.

We now prove the correctness of the procedure.

Corollary 1. Let S be a PPIIS, and φ and m̄-indexed formula. Then, if Check(S, φ) = true it is
the case that S |= φ. Further, if Check(S, φ) = false then it is the case that S 6|= φ.

Proof. Suppose Check(S, φ) returns false at line 9. Then, there is some n̄ such that S(n̄) 6|= φ.
So, it must be the case that S 6|= φ.

If Check(S, φ) returns true at line 12, then by either Theorem 1 or Theorem 2 (depending on
the form of φ) it is the case that S(n̄) |= φ for all n̄ ∈ (Z+)k with n̄i > m̄i for all i. Further, since
the algorithm did not exit at line 9, then S(n̄) |= φ for all n̄ ∈ (Z+)k with m̄i ≤ n̄i ≤ m̄i + 1 for all
i. Together, these two facts prove that S |= φ.

If Check(S, φ) returns false at line 15, then φ = Pmax
>x [ψ] and, by similar reasoning as in

previous parts of this proof, then we must have S |= Pmax
≤x [ψ]. Thus, it must be the case that

S 6|= φ. The same argument proves the return value at line 20.
For the return value at line 24, note that checking Pmin

>x [ψ] is identical to checking Pmax
≤1−x[¬ψ]

since the scheduler that minimises ψ is just the one that maximises ¬ψ, and if this achieves a
probability ≤ 1− x of satisfying ¬ψ, it will certainly achieve a probability > x of satisfying ψ. A
similar argument shows the validity of the return values at lines 26, 28 and 30.

Thus, we have showed that the Check procedure’s result (when it returns one) is always valid.
Further, note that the procedure always terminates. This can be observed by noting that when a
recursive call is made, it will always go into one of the cases higher up, and the only loop present
(line 7) is over a finite set. However, note that the procedure is not complete since in some cases
it will not return a result but will return FAIL instead. This is inevitable, since the PMCP decision
problem it is solving (Definition 14) is a more general version of one that is already known to be
undecidable [13] and thus is also undecidable.

5. Implementation and Evaluation

We now report on an implementation of the method described in the previous section and
present the experimental results obtained by verifying swarm protocols.

5.1. Implementation Details

The Java toolkit PSV-CA (Probabilistic Swarm Verifier by Counter Abstraction) is built as
an extension of PRISM 4.0 [19]. The toolkit takes as input a description of the behaviour of
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asynchronous = {a}

agentEnvironment = {e}

globalSynchronous = {g}

agent module AgentA

stateA : [1..2] init 1;

[a] (stateA=1) -> 0.5:(stateA’=1) + 0.5:(stateA’=2);

[g] (stateA=2) -> 1.0:(stateA’=2);

endmodule

agent module AgentB

stateB : [3..4] init 3;

[e] (stateB=3) -> 0.5:(stateB’=3) + 0.5:(stateB’=4);

[g] (stateB=4) -> 1.0:(stateB’=4);

endmodule

environment module Environment

stateE : int init 5;

[e] (stateE=5) -> 1.0:(stateE’=5);

[g] (stateE=5) -> 0.5:(stateE’=5) + 0.5:(stateE’=6);

[g] (stateE=6) -> 1.0:(stateE’=6);

endmodule

label "firstAgentTransitioned" = (stateA_0_0 = 2);

Figure 4: The code modelling the example from Figure 1 in PSV-CA.

one or more agent templates and of the environment. The specifications to be checked are given
in PLTL. The language used to describe the system is inspired by that used in PRISM (which
we also re-used some of the parsing procedures from), suitably extended to handle parameterised
systems. In particular, the declaration of variables and updates described below is the same as that
used by PRISM. However, the definining of action types as asynchronous, agent-environment or
global-synchronous is novel, as is the fact that we define distinct agent and environment modules
which give rise to the different synchronisation patterns.

Depending on the arguments passed to the toolkit, PSV-CA will either construct the abstract
model (according to Definition 15) or the concrete model of a given number of agents (according
to Definition 11). It then passes this to PRISM to verify the properties given against it. The
source code and a number of case studies reported below are released as open source [72].

An example model can be seen in Figure 4. The code begins with three sets that define the
type of each action (asynchronous, agent-environment or global synchronous). Every action used
later in the model must appear in one of these sets in order to specify what synchronisation is
required when performing the action.
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This is followed by a number of agent modules. Each agent module defines a number of
variables using the syntax

vi : ti init ki;

which declares a new variable vi of type ti with initial value ki. The variable types supported
are the same as those in PRISM – they can either be Booleans (declared with bool), unbounded
integers (declared with int) or integers bounded between a and b (declared with [a, b]). Note
that while unbounded integers can be used for convenience, in order for PSV-CA to terminate it
must be the case that the part of the model that is actually explored is finite.

These variable definitions are followed by a number of update actions of the form

[actionName] (guard) -> p1:(update1) + ... + pn:(updaten);

Update actions as above are interpreted as follows: If guard evaluates to true in the current
state, then the agent may perform action actionName. Upon performing this action, there is a
probability pi of updatei being performed for each i in order to transition to the next state. Note
that it must be the case that Σi∈{1,...,n}pi = 1.

The agent modules are followed by an environment module which is defined in exactly the
same way as an agent (but is distinct in what synchronisation it gives rise to). Finally, some
labels allow us to define which atomic propositions hold at specific points in the execution of the
system. These labels are Boolean expressions on the variables of agents and/or the environment.
To refer to variable v of the ith agent of type j we use v j i. To refer to a variable k of the
environment we use k E. These labels are used in the properties file, which contains a sequence
of properties expressed in PLTL, such as

P<=0.9 [ F<4 ("firstAgentTransitioned") ]

which expresses that the probability of the first agent transitioning to state 2 within four time-
steps is at most 0.9. Once PSV-CA has constructed the abstract or concrete model (depending on
the arguments passed to it), PRISM is used to check each property in the file against it.

Finally, PSV-CA can also be passed additional arguments to export the full model constructed
to a DOT file or export the optimal strategy for each property under consideration to be satisfied.
Further details on these options can be found in the documentation within the software package.

We now describe three case studies that can be analysed by using PSV-CA. All timing results
were obtained on a machine running Ubuntu 19.10 (Linux kernel 5.3.0) with an Intel i9-9940X
processor and 128GB of RAM. The code was run using OpenJDK 1.8.0 (64-bit version), with
96GB of RAM allocated to the Java heap.

5.2. Autonomous robots

As a first case study to verify the applicability of PSV-CA we consider a probabilistic variant
of the autonomous robots example from [27]. In this scenario, there are a number of robots
moving along a track of infinite length. The robots begin at the start of the track and are moved
synchronously along by an environment until they decide to stop. The robots aim to stop in a
target region (for our experiment, we fixed this to be between 19 and 21 units of distance along
the track). Some of the robots are equipped with sensors to detect their position, but others are
not and must rely on communication from other agents in order to decide when to stop.
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...

agent module WithoutSensor

locationB : [1..7] init 1;

stoppedB : bool init false;

[move] (!stoppedB) -> 1.0:(locationB’=locationB+1);

[signal] (true) -> 1.0:(stoppedB’=true);

endmodule

...

Figure 5: A snippet of the code modelling the autonomous robots scenario giving the code for sensorless robots.

For our experiment, we assumed that the sensor of the robots equipped with one is noisy and
can give readings up to two below or up to two above the actual position. Further, we assumed
that all these readings are equally likely (i.e., they all have a probability of 0.2). The robots with
a sensor decide to halt if the reading they receive from their sensor is at least 20. When they
halt, they also broadcast a signal to sensorless agents telling them to stop. The model includes
a combination of asynchronous, agent-environment and global-synchronous actions. Part of the
code for the model can be seen in Figure 5.

We considered the (0, 1)-indexed property

Pmax
≤p [F((stopped, (2, 1)) ∧ ¬(target, (2, 1)))]

where stopped is an atomic proposition that holds when an agent has halted, and target holds
when an agent is within the target region. The property expresses that we are certain that the
probability of a sensorless agent stopping outside the target region is at most p. We checked this
for a different number of concrete agents with sensors, and recorded the largest p for which this
holds in each case. The results are shown in Figure 6.

We see that when the number of agents with sensors is increased the probability also in-
creases. This is as expected, since when the number of agents is increased it is more likely that
at least one of the agents with a sensor will misjudge the stopping position and start broadcasting
a signal too early, causing our sensorless agent to stop early. Further, note that the maximum
probability computed by the abstract model is 1. This corresponds to our intuition that when we
have arbitrarily many agents the probability of at least one misjudging the position will tend to
1.

The largest of these models (with 7 concrete agents) has 15,676,417 states and 99,246,301
transitions. It takes around 190 seconds for PSV-CA to construct the model and pass it to PRISM,
which then computes the value of p in around 770 seconds.

5.3. Foraging protocol

As a further example, we modelled a foraging protocol [28, 73]. In this scenario, agents
begin resting in a nest. They may choose to leave the nest and search for food, which they then
retrieve and bring back to the nest. Upon returning to the nest the agents return to the resting
state.

We considered agents of two types. Both types of agents choose to stop resting with prob-
ability 0.5. However, when searching for food the first type of agent will look up to two units
of distance away whereas the second will only look one unit of distance away. Accordingly, we
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Figure 6: For different numbers of concrete type 1 agents (robots with a sensor), the maximum value of p for which the
property Pmax

≤p [F((stopped, (2, 1))∧¬(target, (2, 1)))] holds, i.e. how likely it is for a sensorless robot to stop outside the
target region. The red line shows the maximum value computed by the abstract model.

gave the second type of agent a probability of 0.15 of finding food when searching for it, and the
first a higher probability of 0.3 (with a 0.15 chance it is one unit of distance away, and a 0.15
chance it is two). Both types of agent immediately travel to the food and bring it back to the nest
upon locating it.

The model involves a combination of asynchronous and agent-environment actions. Asyn-
chronous actions are used to model the agents moving, searching for food, and collecting the
food. Agent-environment actions are used to model the agents depositing food in the nest (which
is captured by the environment). Part of the code for our model can be seen in Figure 7.

We used PSV-CA to investigate the probability that a unit of food will be found and deposited
within a certain number of time-steps. In particular, we checked for different values of p and k
the (0, 0)-indexed property

Pmax
≤p [F<kdepositedFood],

where depositedFood is an atomic proposition that holds when a unit of food has been deposited
in the nest by any agent.

the results of checking this property for different values of p and k against the abstract model
are recorded in Table 1. Note that when the property holds we are guaranteed by Theorem 1
that it will hold in concrete systems of any size. However, when the property does not hold we
cannot make any claims. Incompleteness of the procedure is a necessary consequence of the
general undecidability.

The results match our expectations: when the agents are given a longer number of time-steps
to collect food then there is a higher probability that they will succeed. The abstract model
constructed to verify the properties takes around 255 seconds to construct and has 766,977 states
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...

agent module Agent1

state : [0..3] init 0;

fromHome : [0..2] init 0;

...

[move] state=3 & fromHome>0 -> 1.0:(fromHome’=fromHome-1);

[deposit] state=3 & fromHome=0 -> 1.0:(state’=0);

endmodule

...

environment module Env

deposited : [0..1] init 0;

[deposit] deposited<1 -> 1.0:(deposited’=deposited+1);

endmodule

Figure 7: A snippet of the code modelling the foraging scenario giving the part of the model that encodes robots moving
back to the nest with food and depositing it.

k
4 6 8 10 12 14 16

0.10 False False False False False False False
0.25 True False False False False False False
0.50 True True False False False False False
0.75 True True True False False False False
0.90 True True True True False False False
0.95 True True True True True False False
0.98 True True True True True True False

p

0.99 True True True True True True True

Table 1: For different numbers of time-steps k and probabilities p, whether or not the property Pmax
≤p [F<kdepositedFood]

holds, where depositedFood is an atomic proposition that holds when a unit of food has been deposited.

and 20,994,481 transitions. Once the abstract model is constructed, checking the individual
properties on it takes a negligible time (around 50ms per property).

5.4. Channel jamming

As a final scenario to further assess the scalability of PSV-CA, we considered the channel
jamming scenario described in [29]. In our model of this scenario, there are four different chan-
nels that some agents may wish to use to transmit messages to a receiver on. Additionally, there
are some jamming agents who can jam the channels the transmitters are using.

At each round of communication the transmitters each choose a channel to transmit on and
the jammers each choose a channel to jam. The probability of successful transmission on an
unjammed channel is set to 0.8, while on a jammed channel it is reduced to 0.3. The receiver only
accepts at most one transmission per communication round with further successful transmissions
being ignored.

Our model of this system involves a combination of all three types of actions. Asynchronous
actions are used by receivers and jammers to decide which channel they will transmit on or jam.
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...

agent module Transmitter

stateT: [1..4] init 1;

channel : [0..4] init 0;

...

[chooseTransmit] (stateT=2) -> 0.25:(stateT’=3) & (channel’=1)

+ 0.25:(stateT’=3) & (channel’=2)

+ 0.25:(stateT’=3) & (channel’=3)

+ 0.25:(stateT’=3) & (channel’=4);

...

endmodule

...

Figure 8: A snippet of the code modelling the channel jamming scenario showing how a transmitter chooses which
channel to transmit on.

Agent-environment actions are used by them to communicate to the environment which channels
have been jammed and to attempt to transmit the message. Finally, global synchronous actions
are used to advance between communication rounds. Part of the code for the model can be seen
in Figure 8.

We checked the (0, 0)-indexed property

Pmax
≤p [F(roundsFinished ∧ ¬receivedAll)]

where roundsFinished is an atomic proposition that holds after some maximum number of com-
munication rounds allowed (m) has passed and receivedAll holds after all k messages that are
being transmitted have been received. This property expresses that the probability of the trans-
mission not succeeding is less than p. We varied both m and k and recorded the maximum value
of p for which the property holds along with some information about the size of the resulting
model and time needed to construct and verify it. Our results can be found in Table 2.

The results match our expectations about the protocol. The probability of the transmission
failing is highest when the number of messages being transmitted is high and the number of
rounds of communication allowed is low. Further, the timing results show that PSV-CA can be
used to verify reasonably large systems; the largest case (14 messages, 45 rounds of communi-
cation) has over 1 million states and 20 million transitions but is still constructed and verified in
under 5 minutes.

6. Conclusion

One of the key difficulties in deploying robotic swarms is providing formal guarantees about
their behaviour, particularly when either the behaviour of the robots or the environment they are
acting in is stochastic in nature. In this work, we have provided a framework for formalising and
verifying heterogenous swarms in which the number of components is unknown at design-time.
Specifically, we have introduced PPIIS which give a framework for reasoning about probabilistic
swarms. We have observed that the model checking problem of PPIIS against PLTL specifica-
tions is in general undecidable, as is typical in parameterised model checking.
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k
25 30 35 40 45

m

6

0.1935
281,226

5,490,717
10.9 / 18.1

0.0766
340,806

6,658,077
12.4 / 25.8

0.02690
400,386

7,825,437
15.5 / 37.3

0.0086
459,966

8,992,797
17.0 / 50.3

0.0026
519,546

10,160,157
18.8 / 61.2

8

0.5118
355,560

6,997,560
13.0 / 29.8

0.2814
434,200

8,551,290
16.2 / 41.9

0.1326
512,840

10,105,020
18.6 / 58.3

0.0553
591,480

11,658,750
23.4 / 76.1

0.0209
670,120

13,212,480
25.7 / 94.6

12

0.9558
481,356

9,547,602
17.5 / 53.4

0.8407
598,116

11,874072
24.0 / 85.0

0.6516
714,876

14,200,542
27.6 / 116.5

0.4406
831,636

16,527,012
30.4 / 142.2

0.2620
948,396

18,853,482
37.8 / 190.3

14

0.9940
532,818

10,590,801
18.9 / 72.9

0.9599
668,638

13,303,641
25.6 / 108.3

0.8650
804,458

16,016,481
29.9 / 149.8

0.7032
940,278

18,729,321
37.9 / 196.2

0.5089
1,076,098

21,442,161
43.3 / 250.6

Table 2: For different number of messages (m) and rounds of communication (k) the worst-case probability that the
messages won’t all be communicated, along with the number of states and transitions in the abstract model used to
compute this, and the time in seconds needed to construct this model and compute the value.

Nonetheless, we have developed a partial decision procedure by building an abstract model
using counter abstraction. This abstract model gives an over-approximation of the executions
that may be exhibited by swarms of arbitrary size. Using this intuition, we have shown that if
certain properties are satisfied in the abstract model they will be satisfied in systems of any size.
This allows us to solve the parameterised model checking problem in these cases.

We have implemented this technique in the probabilistic model checking toolkit PSV-CA,
which we built on top of PRISM. We used our toolkit to verify properties in a number of scenarios
both from swarm robotics and security applications.

There are a number of avenues for future work in this area. One possible research direc-
tion is developing more scalable techniques that would enable the verification of more realistic
scenarios. Since the size of the abstract model here presented may grow exponentially with the
number of states each agent may exhibit, this technique becomes intractable for larger systems.
More efficient, tighter abstractions may scale more favourably. Another possible direction for
further work is exploring a different choice of semantics. It is possible that by considering a
more restricted version of either the models considered or of the specification language, a fully
decidable version of the stochastic parameterised model checking problem could be obtained.
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