

Detecting Implied Scenarios in
MSCs Using LTSA.

(Draft Version)

Departmental Technical Report: 2001/4

Sebastian Uchitel, Jeff Kramer and Jeff Magee
Department of Computing, Imperial College,
180 Queen's Gate, London SW7 2BZ, UK.

{su2, jk, jnm}@doc.ic.ac.uk

ABSTRACT
Scenario-based specifications such as Message Sequence Charts
(MSCs) are becoming increasingly popular as part of a
requirements specification. Scenarios describe how system
components, the environment and users working concurrently
interact in order to provide system level functionality. Each
scenario is a partial story which, when combined with other
scenarios, should conform to provide a complete system
description. However, it is not always possible to build a set of
components that provides exactly the same system behaviour as
described with a set of scenarios. Implied scenarios may appear as
a result of unexpected component interaction.

In this paper, we present an algorithm that builds a behaviour
model that describes the closest possible implementation for a
specification based on basic and high-level MSCs. We also
present a technique for detecting and providing feedback on the
existence of implied scenarios. We have integrated these
procedures into the Labelled Transition System Analyser, which
allows for model checking and animation of the behaviour model.

Keywords
Synthesis, message sequence charts, implementability, labelled
transition systems, FSP, LTSA.

1. INTRODUCTION
Scenarios are becoming increasingly popular as tools for
requirement elicitation and specification. Scenarios describe how
system components, the environment and users interact in order to
provide system level functionality. Each scenario is a story which,
when combined with all other scenarios, should conform to
provide a complete system description. Their simplicity and
intuitive graphical representation allows stakeholder involvement
and helps to build a common ground with the developers.
Besides, as they are partial system descriptions, stakeholders can
develop descriptions independently, contributing their own view
of the system to those of other stakeholders.

The components participating in scenario-based specifications are
assumed to work independently synchronising through message
exchange. The resulting systems, called concurrent systems, are
amenable to analysis through the construction of behaviour
models. A behaviour model can be used as a precise specification
of intended behaviour of a system, as a prototype for exploring the

system behaviour and also to allow for automated checking of
model compliance to properties (model checking). Numerous
tools that allow model checking and animation of behaviour
models exist (e.g. [6, 8]).

Our objective is to facilitate the development of behaviour models
in conjunction with scenario-based specifications. Such models
are complementary and provide an alternative view of how system
components interact. In particular, we believe that there is benefit
to be gained by experimenting with and replaying analysis results
from behaviour models in order to help correct, elaborate and
refine scenario-based specifications.

Scenario specifications depict a set of acceptable system
behaviours and show how these behaviours are shared out among
the system components. This information can be used to
synthesise [2, 10, 14] a behaviour model for a possible
implementation of such system. Initially one would expect the
model to have exactly the same set of behaviours as those
depicted in the scenario specification. However, this is not always
the case. Scenarios can combine in unexpected ways and certain
system behaviours not present in the scenario specification may
appear in all possible implementations of the system. We call
these behaviours implied scenarios, and they arise because
components have a local view of what is happening in the system.
If this view has insufficient information, a component may behave
incorrectly in terms of the expected behaviour at a system level.

The existence of implied scenarios is an indication of unexpected
system behaviour, and detecting them is a relevant issue. An
implied scenario may simply mean that an acceptable scenario has
been overlooked and the scenario specification needs to be
completed. However, the implied scenario may represent an
unacceptable behaviour and therefore imply a need to modify the
scenario specification to avoid the undesired situation.

In this paper, we present a framework for synthesising
implementation models for scenario-based specifications and for
detecting the existence of and providing feedback on implied
scenarios. Implied scenarios have been studied by Alur et al. [1]
for a restricted scenario language. The issue of constructing an
implementation and finding implied scenarios is limited to a set of
message sequence charts (MSCs) that specify a finite set of
(finite) system behaviours. We extend their work by providing a
framework for a more expressive scenario language that provides

for high-level MSCs for specifying an infinite number of (possibly
infinite) system behaviours.

Our previous work on scenario-based languages [12] differs
significantly from the approach presented in this report. In [12]
we consider scenario-based languages as design languages, a view
similar to work of other authors [2, 3, 10, 14]. The semantics of a
scenario specification is defined directly in terms of labelled
transition systems, in other words the scenarios specify how
components should by designed. In this paper we consider a
scenario specification as describing system behaviour and not a
system design, thus the relevant issue of finding an adequate
design for the specification.

The goal of this report is to present our framework for
synthesising behaviour models for scenario-based specifications
and detecting implied scenarios. We also aim to provide a proof
for the results discussed in the report. In Section 2, we present a
scenario-based specification language that uses basic and high-
level MSCs. Section 3 describes a procedure for synthesising a
behaviour model of an implementation for MSC specifications. In
addition, we show the synthesised implementation model to be the
closest possible to the specified system. Section 4 introduces the
notion of implied scenario and in Section 5 we present a method
for detecting the existence of implied scenarios. Section 6
discusses our implementation that integrates with the Labelled
Transition System Analyser tool. Finally, in Sections 7 and 8 we
discuss related work, conclusions and future work.

2. MESSAGE SEQUENCE CHARTS
In this section, we briefly describe message sequence charts
(MSCs). We also introduce the example that is used to illustrate
our approach. This example has several scenarios showing how a
control unit operates sensor and actuator components to control
the pressure of a steam boiler. A database is used as a repository
to buffer sensor information while the control unit performs
calculations and commands the actuator.

The language is a subset of the MSC ITU language [7]. A basic
MSC (bMSC) describes a finite interaction between a set of
components (see top of Figure 1). Each vertical line represents a
component and is called an instance. Each horizontal arrow
represents a synchronous message, its source on one instance
corresponds to a message output and its target on a different
instance corresponds to a message input. Placing MSC events
(message inputs and message outputs) further down on an
instance means that they occur later on.

Definition 1. (Basic Message Sequence Charts) A basic message
sequence chart (bMSC) is a structure (E, L, I, λ, <, tgt) where:

- E is a set of events partitioned into a set S of send events
and a set R of receive events.

- L is a finite set of labels.
- I is a finite set of instances.
- λ : E → L x I maps events to their labels and instances.

We define i(E) to be the set of events e such that λ(e) = (l,
i).

- < is a set of total orders <i ⊆ (i(E) x i(E)) where i ∈ I. We
define ≤ to be the transitive closure of ∪<i ∪ tgt ∪ tgt-1

- tgt: S→ R is a bijective function that maps send events to
receive events.

We will note lbl(e) = l and inst(e) = I if λ(e) = (l, i).

For simplicity, throughout the paper, we shall require message
labels to denote message types. In other words a message uniquely
characterizes a sending and a receiving component. In addition, as
messages are synchronous we require arrows to be drawn
horizontally and do not allow components sending messages to
themselves.

Definition 2. (Consistent bMSCs) Let b = (E, L, I, λ, <, tgt) be a
bMSC, s, s’ ∈ S be send events and r, r’ ∈ R be receive events.
We say that b is consistent if:

- lbl(s) = lbl(tgt(s)) (connected events have same label)
- inst(s) ≠ inst(t(s)) (instances cannot send messages to

themselves)
- if s ≤ r and r ≤ s then tgt(s) = r (message lines do not

cross)

The behaviour of a bMSC is a set of sequences of message labels.
The set is determined by the casual precedence of events of the
bMSC. Events are totally ordered within instances and are
considered to occur simultaneously if the receive event
corresponds to the send event (s and tgt(s)). This casual relation
determines a partial order of events (≤). Thus, any sequence of
send events that respects this partial order gives rise to an
acceptable behaviour of the bMSC. For example the behaviour of
the bMSC Analysis of Figure 1 comprises only one sequence of
labels: Query, Data, Command.

Definition 3. (Linearisations) Let b = (E, L, I, λ, <, tgt) be a
bMSC. A word l1, …, l|S| over the alphabet L is a linearization of b
iff there is a word s1, …, s|S| over the alphabet S such that:

- lbl(si) = li for 1< i < |S|.
- If si ≤ sj then i ≤ j.
Let w be a linearisation of b, we define w|i to be the projection
of w on the alphabet of i.

Definition 4. (bMSC Languages) Let b = (E, L, I, λ, <, tgt) be a
bMSC. We define the language of b as a set L(b) of words over
the alphabet L, where L(b) = {w | w is a linearization of b}.

A high-level MSC (hMSC) provides the means for composing
bMSCs, it is a directed graph where nodes represent bMSCs and
edges indicate their possible continuations (see bottom of Figure
1). hMSCs also have an initial node represented with a triangle.
An MSC specification is a set of bMSCs and a hMSC. For
simplicity we assume bMSCs have the same set of instances and
that message labels are used consistently throughout the bMSCs.

Definition 5. (High-level Message Sequence Charts) A high-
level message sequence chart (hMSC) is a graph of the form (N,
A, so) where:

- N is a set of nodes.
- A ⊆ (N x N) is a set of arrows.
- s0 ∈ N is the initial node.
A (possibly infinite) sequence of nodes w = n0, n1, … is a path
if ni ∈ N, n0 = s0, and (ni, ni+1) ∈ A for 0≤ i < |w|. We say a
path is maximal if it is not a proper prefix of any other path.

We can now define a MSC specifications. They consist of a set of
bMSCs, a hMSC and a bijective function that maps every node in
the hMSC to a bMSC. We shall assume that all bMSCs have the
same set of instances and that message labels are used consistently
throughout them.

Definition 6. (Message Sequence Chart Specifications) A
message sequence chart (MSC) specification is a structure (B, H,
f) where:

- B is a set of bMSCs.
- H=(N, A, s0) is a hMSC.
- f : N → B is a bijective map from hMSC nodes to bMSCs.
We shall denote α(i) the set of labels that can be received or
sent by an instance i.

Definition 7. (Consistent MSC Specifications) Let Spec = (B, H,
f) be a MSC specification. We say that Spec is consistent if:

- All bMSCs in B have the same set of instances.
- If lblb(s) = lblb’(s’) then instb(s) = instb’(s’) (message

labels characterize a unique sender)
- If lblb(r) = lblb’(r’) then instb(r) = instb’(r’) (message

labels characterize a unique receiver)

The behaviour of a MSC specification is also given by a set of
sequences of message labels. The hMSC together with the
mapping of nodes to bMSCs show how the system can evolve
from one scenario to another. There are two usual interpretations
of this evolution. The first is to assume that all components wait
until all events of the previous bMSC have occurred before
moving on to the next bMSC. This implies that there is some kind
of implicit synchronisation scheme that components use in order
to know when a scenario is completed. We believe that this is not
a reasonable assumption and adopt the second and more accepted
approach in which components move into subsequent scenarios in
an unsynchronised fashion. We define the notion of sequential
composition (or concatenation) of bMSCs accordingly.
Definition 8. (Sequential Composition of bMSCs) The
sequential composition of two bMSCs b = (E, L, I, λ, <, tgt) and
b’ = (E’, L’, I’, λ’, <’, tgt’) is denoted (b • b’) and is defined by
the bMSC (E ∪ E’, L ∪ L’, I ∪ I’, λ’ ∪ λ’, << , tgt ∪ tgt’), where
<< is a set of total orders <<i such that i ∈ I, <<i = <i ∪ <i’ ∪
{(max(i(E), min(i(E’))}.

For example the bMSCs (Analysis • Register) determines two
possible sequences of events Query, Data, Pressure, Command
and Query, Data, Command, Pressure. These sequences occur
because message Pressure is independent of Command, there is
no causal relation between the send events of these messages in
(Analysis • Register). This is not surprising, they involve different
components, and thus any interleaving of these messages could
happen.
The sequences of event labels determined by a MSC specification
are those belonging to the language of any maximal concatenation
of bMSCs allowed by the hMSC.
Definition 9. (Maximal bMSCs) Let Spec = (B, H, f) be a MSC
specification. We say that a b is a maximal bMSC in Spec if there
is a maximal path n1, n2, … in H such that b = f(n1) • f(n2) • …

Definition 10. (MSC Specification Languages) Let Spec = (B,
H, f) be a MSC specification with a set of instances I. We define
the language of Spec as a set L(Spec) of words, where L(Spec) =
{w ∈ L(b) | b is a maximal bMSC of Spec}. We also define
L(Spec)|i = {w|i | w ∈ L(Spec)}

3. IMPLEMENTATION SYNTHESIS OF
MSC SPECIFICATIONS
A MSC specification not only determines a set of acceptable
system executions, but also states what components participate in
these executions and what responsibilities they have. Thus,
building a set of components that can send and receive messages
as in the MSC specification is a relevant issue. In this section we
shall show how this can be done and explain to what degree these
components can comply with the original specification. We shall
model components as labelled transitions systems where labels
represent messages that the components can input and output. We
consider the system they conform as the parallel composition of
all components. In other words the system is the result of putting
components together and forcing them to synchronize on all
common message labels. For a detailed explanation of LTS and
parallel composition refer to [8].

Definition 11. (Labelled Transition Systems) A finite labelled
transition systems (LTS) P is a structure (S, L, ∆, q) where:

- S is a set states.
- L = ∝(P)∪ {τ} is a set of labels where ∝(P) denotes the

alphabet of P and τ denotes internal actions that cannot
be observed by the environment of an LTS.

On

Sensor Database Actuator

Pressure

Initialise

TerminateAnalysis

Register

Control
Initialise

Sensor Database ActuatorControl
Register

Query

Sensor Database ActuatorControl
Analysis

Data
Command

Sensor Database ActuatorControl
Terminate

Off

Figure 1. Message sequence chart specification.

- ∆ ⊆ (S x L x S). We will write ts l→ if (s, l, t) ∈ ∆.
- q ∈ S is the initial state.

Definition 12. (Parallel Composition of LTS) The parallel
composition of two LTSs P1 and P2 where Pi = (Si, Li, ∆i, qi) is
denoted P1 ||P2 and is defined by the LTS (S, L, ∆, q) where:

- S = S1 x S2
- L = L1 ∪L2
- q = (q1, q2)
- ∆ is the smallest relation satisfying the rules

)(
)',()',(2

1 La
stss

ts
a

a

∉
→

→)(
),'(),'(1

2 La
tsss

ts
a

a

∉
→

→

}){\)((
)',()',(

''
21

21 τLLa
ttss

tsts
a

aa

∩∈
→

→→

Parallel composition is both commutative and associative.
Consequently, we will note parallel composition of multiple
LTSs as follows: P1 ||…|| Pn

Definition 13. (Hiding) The hiding of a set of labels H in a LTSs
P = (S, L, ∆, q) is denoted P1 \H and is defined by the LTS (S, L\B
∪ {τ}, ∆’, q) where ∆’ is the smallest relation satisfying the rules

)(Ba
ts
ts a

∈
→
→

τ
)(Ba

ts
ts

a

a

∉
→
→

Given a LTS we wish to compare the executions it models with
the executions specified in a MSC specification. Thus we
introduce the notion of trace.

Definition 14. (Traces) Let P = (S, L, ∆, q) be a LTS. A (possibly
infinite) word w = l1, l2, … over the alphabet L is a trace of P iff
there is a word q1,q2, … over the alphabet S such that:

- (qi , li, qi+1) ∈ ∆ for 0 < i < |w|
- q1 = q
We say a trace is maximal if it is not a proper prefix of any
other trace. Let w be a trace of P, we define w|i to be the
projection of w on the alphabet of Pi. We also define L(P) =
{w | w is a maximal trace of P}.

The weakest condition that one can require from an
implementation of a MSC specification is that it must comprise a
component for each instance, that each component must have the
interface determined by the specification (i.e. inputs and outputs
according to the send and receive events of its instance) and that
the complete system must be able to execute all the sequences
determined by the specification.

Definition 15. (Implementations) Let Spec = (B, H, f) be a MSC
specification with instances I, and P a LTSs resulting from the
parallel composition of LTSs Pi with i ∈ I. We define P to be a
implementation of Spec if

- ∝(Pi) = ∝(i)
- L(Spec) ⊆ L(P).

The algorithm of Figure 2 can be used to build a LTS for each
component specified in a MSC specification. Furthermore, if the
LTS models for all the components are composed in parallel, then
we obtain an implementation of the MSC specification.

The algorithm works by translating the MSC specification into a
behaviour model specification in the form of Finite Sequential
Processes (FSP) [8], which is the input language of the Labelled
Transition System Analyser (LTSA) [8]. Using LTSA one can
visualise the LTS for each component for the complete system or
animate the system model. Furthermore, as we shall see, LTSA
can be used to check if the model satisfies certain properties [9].

We present a simplified version of the algorithm in [12]. Main
differences are due to the fact that this version does not have to
deal with state labels in MSC specifications. Although the version
in [12] can be used for the current approach, the algorithm
presented here produces clearer FSP productions.

The algorithm synthesises one component at a time, and we shall
present it briefly by applying it to component Control of Figure 1.

Given a MSC specification and a component to be synthesised,
the algorithm constructs a deterministic FSP process that can has
the same language as the projection of the MSC language on the
alphabet of the component. First, the algorithm builds one FSP
production for each bMSC in the specification. The non-terminal

void Synthesise(Specification S, Component c) {
Grammar G = new Grammar();
ForEach bMSC b in S.getbMSCs()

G.add(buildProduction(S, c, b);

G.removeUnreachableNonTerminals();
print “\\-----” + c.name()+ “-----“;
print “determinisitic “ + c.name()+ “ = “;
print Continuations(S, “Init”);
ForEach Production p in G

print p.getLeftHandSide()+ “= (”;
print p.getRightHandSide();
print Continuations(S,p.getLeftHandSide());
print “)”;

print “/{hiddenAction}.”;
}

Production buildProduction(Specification S,
Component c, bMSC b) {

Production p = new Production();
String s = “”;
p.setLeftHandSide(b.name());
Instance i = b.getInstance(c);
for (int a = 0; a<i.size();a++) {.

s = s + i.getEvent(a).label() + “->”;
p.setRightHandSider(s);
return p;

}

String Continuations(Specification S, String
name)

SetOfbMSCs C=S.getMaximalContinuations(name);
if (C.size() == 0)

return “STOP”;
else if (C.size() == 1)

return C.getElement().name();
else

String s = “(”;
ForEach bMSC b in Cont
s = s +“silentAction->” + b.name() + “|”;

s = s + “)”;
return s;

}

Figure 2. Synthesis Algorithm.

Initialise: on
Register:
Terminate: off
Analyse: query->data->command

Figure 3 – Initial FSP productions for Control

on the left hand side of the production is the name of the bMSC,
while the right hand side is the sequence of events (reading top-
down) that the component’s instance can perform. The
productions generated for the Control component are show in
Figure 3.

Second, the algorithm calculates the maximal continuations for
each bMSC. A bMSC b2 is a continuation of b1 (denoted b1 ⇒ b2)
if it possible to get to b2’ from b1 in through one edge on the
hMSCs or if there is a b3 such that b2 ⇒ b3, b3 ⇒ b1 and the
component’s instance in b3 has no events. To exemplify, we
calculate the continuations of bMSC Initialise for component
Control. According to the hMSC of Figure 1, bMSC Register is a
continuation of Initialise. However, as Control does not
participate in Register, the bMSCs Analysis and Terminate are
also continuations of Analysis. Consequently, we have Analysis,
Terminate and Register as continuations of Initialise. A maximal
continuation of b1 is a bMSC b2 such that b1 ⇒ b2 and for all b3,
b1 ⇒ b3 implies b3 ⇒ b2. Of the three continuations of Initialise,
only Analysis and Terminate are maximal continuations because
they are also continuations of Register. The maximal
continuations of all bMSCs for component Control are shown in
Figure 5.

Third, the right hand side of each FSP production is appended
with a string of the form silentAction->b1 | … |
silentAction->bn where b1…bn are the names of bMSC that
are maximal continuations of b.

Finally, productions with unreachable left hand side non-terminals
are eliminated and the remaining FSP productions are printed
according to FSP syntax. The action silentAction is hidden in
the final FSP process because it represents an internal component
action that is not visible to other components. In addition, the
process is declared determinisitic using the corresponding
FSP keyword. The final FSP process for the Control component is
shown in Figure 4.

The result of the synthesis algorithm can be fed into LTSA and
the LTS model for the Control component can visualised (see
Figure 6). Once all components have been synthesised, the
complete system is the parallel composition of all components:
||System = (Control || Sensor || Database ||
Actuator).

Definition 16. (FSP Synthesis) Let Spec be a MSC specification
and let P = (P1 || P2 || … || Pn) where Pi corrsponds to the LTS
resulting from the algorithm of Figure 2. We say that P is the
synthesised model of Spec.

A simple argument can be used to show that the model
synthesised by our algorithm is an implementation of the MSC
specifications used as input. First, we can prove that each
synthesised component can produce all projections of words in
L(Spec) on its alphabet. Second, we prove that this is enough to
guarantee that the composed system can produce all words in
L(Spec).

Proposition 1. Let Spec = (B, H, f) be a MSC specification with
instances I, and let n1, n2, … be a maximal path in H. If w ∈ L(b1
• b2 • …) where bj = f(nj) then w|i = v1v2… where vj is the
sequence of labels determined by the total ordering <i of bj.

Demonstration: If w = l1, l2, …∈ L(b) with b = b1 • b2 •… = (E,
L, I, λ, <, tgt) and bk = (Ek, Lk, Ik, λk, <k, tgtk). From the definition
of bMSC languages, there is a word σ = s1, s2, … such that lbl(sj)
= lj and sj ≤ sj’ implies j ≤ j’. From the definition of ≤ in
sequential composition we know that as <k ⊆ ≤, if sj, sj’∈ bk and j
≤ j’ then sj <k sj’ . Furthermore, if sj, ∈ bk and sj, ∈ bk’ with k < k’,
then j<j’.

Let us consider a new word σ’ resulting from eliminating all
events s in σ such that lbl(s) ∉ α(i) with i an instance. Let σ’ =
s1, s2, … obtained by renumbering events in σ. It is clear that w|i
= lbl(σ’). Furthermore, if we replace all send events s not
corresponding to instance i with their receive counterparts (tgt(s))
we will still have the following situation: w|i = lbl(σ’), sj, sj’∈ bk
and j ≤ j’ implies sj < sj’ , and that if sj, ∈ bk and sj, ∈ bk’ with k <
k’, then j<j’. This is because for all send event, we know lbl(s) =
lbl(tgt(s)), s ≤ tgt(s) and tgt(s) ≤ s.

Consequently, it is possible to split σ’ into words σ1, σ2,… where
σi is a sequence of events of the instance i in bMSC bk, and where
σi is ordered according to <i in bk. We also know that there are no
missing events because all send events of the original maximal
bMSC b must have appeared in σ and every event in instance i of
bMSC bk is either a send event or a reveive event of an event
appearing in σ.

Proposition 2. Let Spec be a MSC specification with instances I.
If P = (P1 || P2 || … || Pn) is the synthesized model of Spec then
L(Spec)|i ⊆ L(P)|i for all i ∈ I.

Demonstration: We first prove to prove that L(Spec)|i ⊆ L(Pi) for
all i ∈ I. Let P be the synthesised LTS of a MSC specification
Spec = (B, H, f) with instances I. Let w ∈ L(Spec). We shall prove
that w|i ∈ L(Pi):

As w ∈ L(Spec), there is a maximal path n1, n2, … in H such that
w ∈ L(f(n1) • f(n2) • …). Using the previous result, we then know
that w|i = v1v2… where vj is the sequence of labels determined by
the total ordering <i of f(nj).

We also know from the FSP synthesis algorithm that the FSP
respresentation of Pi comprises productions of the form f(nj) =

deterministic Control = Initialise,
Initialise = (on -> (silentAction -> Analysis |

silentAction -> Terminate)),
Analysis = (query -> data -> command ->

(silentAction -> Analysis |
silentAction -> Terminate)),

Terminate = (off -> Initialise)\{silentAction}.

Figure 4 – FSP specification for Control

Init: Initialise
Initialise: Analysis, Terminate.
Register: Analysis, Terminate.
Analysis: Analysis, Terminate.
Terminate: Initialise.

Figure 5 – Maximal continuations for Control.

on

off

query data

command

0 1 2 3

Figure 6 – LTS for Control

vj.(internalAction->b1 |…| internalAction->bk) where . b1, …, bk
are all the continuations of f(nj). Thus, as f(nj+1) is a continuation
of f(nj), f(nj) can produce sequence of labels vj followed by
internalActionand then continuing as production f(nj+1). In
addition as f(n1) is a continuation of Init, Pi must be of the form
(…| internalAction-> f(n1) |…). Finally, as internalAction is
hidden in process Pi it is clear that v1v2… ∈ L(Pi). Thus, we have
w|i ∈ L(Pi).

We now prove that L(Pi) ⊆ L(Spec)|i: let w ∈ L(Pi). We shall
prove that there is a word v ∈ L(Spec) such that w = v|i. By
construction of Pi we know that w = v1v2… where there is a
production of the form f(nj) = vj.f(nj+1), nj+1 ∈ H(nj) and either w
is infinite or f(n|w|) = ∅. Let v ∈ L(f(n1) • f(n2) • …), we know
that v ∈ L(Spec) because n1, n2,… is a maximal path in H. It is
also clear that w = v|i.

Proposition 3. Let Spec be a MSC specification with instances I,
and P be an LTS resulting from the composition of Pi with i ∈ I.
If L(Spec)|i ⊆ L(P)|i for all i ∈ I then L(Spec) ⊆ L(P).

Demonstration: First we introduce the following notation: If (S,
L, ∆, q) is an LTS, s and t are states in S, and w is a word over the
alphabet L then s –w→ t notes that there is a sequence s0, s1, …s|w|
such that s0 = s, s|w+1| = t, and (sj-1, wj, sj) ∈ ∆ for 0<j<|w|+1 and
wj the jth element in w. Thus, if w is an empty word s=t.

Let P = (S, L, ∆, q) be an LTS resulting from the composition of
Pi with i ∈ I, such that L(Spec)|i ⊆ L(Pi) for all i ∈ I. We shall
assume w ∈ L(Spec) and prove that w ∈ L(P). We shall assume
that w is infinite, the proof for finite words follows the same
reasoning.

The proof is by induction on the n for the following property: If w
∈ L(Spec) then there are two words v, v’ and a state q’ such that
|v| = n, w=v.v’, and q–v→ q’. It is clear that if the property is true
for all n then w ∈ L(P).

Supose n = 0, then v is an empty. If we choose q’ to be q we
trivially have that q–v→ q.

Suppose that the following holds: there are two words v, v’ and an
q’ such that |v| = n, w=v.l.v’, and q–v→ q’. We wish to show that
there is a state q’’ such that q –v.l→ q’’. By definition of parallel
composition we can assume that q = (q1 || … || qn), q’ = (q1’ || …
|| qn’) and that qi –v|i→ qi’. We also know that qi –v|i.l→ qi’’ for
all i ∈ I such that l ∈ α(i). We now have qi –v|i→ qi’–l→ qi’’.
Thus we have that q’ –l→ q’’ and finally that q –v.l→ q’’.

Corollary 1. If P is the synthesised model of a MSC specification
Spec, then P is an implementation of Spec.

4. IMPLIED SCENARIOS
In the previous section we defined a rather weak notion of
implementation. We only require model to include all possible
behaviours that have been described in the MSC specification
(L(Spec) ⊆ L(P)). In many cases any implementation will not do.
One wishes to obtain an implementation that is as close as
possible to the language of the specification. Moreover, why not
have an implementation that provides exactly the same language
as the specification? The problem is that such implementation
does not always exist. In this section we exemplify how this

happens and define the notion of implied scenario. In the next
section we show how these situations can be detected.

Applying the synthesis algorithm presented above, we can
construct the complete FSP model for the MSC specification of
Figure 1. Once the FSP specification is fed into the LTSA tool,
we can play with our model to see how it behaves. In Figure 7 we
show a trace (using the bMSC syntax for clarity) which can be
executed in our system model. The trace shows how the Control
component is accessing the database and receiving information
from a previous activation of the sensor. This is clearly not an
intended behaviour and does not belong to the language of our
MSC specification. The MSC specification clearly states that after
initialising Sensor there must be some data registered into the
Database before any queries can be done. Note that as the
pressure message and the query message involve the database, the
trace of Figure 7 cannot be a result of the interleaving of messages
in some maximal bMSC determined by the high-level MSC
diagram of Figure 1.

This means that we have a problem with our implementation. It is
allowing some system executions that are unacceptable. We could
try to build another implementation that does not include this
trace. However, we can show that the implementations
synthesised by the algorithm presented above are the
implementations that allow the least system executions that are
not in the language defined by a MSC specification. In other
words our synthesised model of the system specified in Figure 1 is
minimal with respect to inclusion of system traces.

Proposition 4. If P is the synthesised LTS of a MSC specification
Spec, then P is the minimal implementation of Spec (i.e. for all
implementation P’, L(P) ⊆ L(P’)).

Demonstration: Let Spec be a MSC specification with instances
I, let P = (P1 || … || P|I|) be the synthesised LTS of Spec, and P’ =
(P’1 || … || P’|I|) an implementation of Spec.

We have already shown that L(Spec)|i = L(Pi) for all i ∈ I. In
addition it is easy to show that L(Spec) ⊆ L(P’) implies L(Spec)|i
⊆ L(P’i). Thus we have L(Pi) ⊆ L(P’i) for all i ∈ I. It follows that
L(P) ⊆ L(P’).

We must now conclude that the unwanted trace will appear in any
implementation of our system. How can this be possible? If we

On

Sensor Database Actuator

Pressure

Control

Query

Data
Command

Off

On

Pressure

Figure 7 – Implied Scenario

analyse the MSC specification closely, we can see the following:
The Control component cannot see when the Sensor has
registered data in the Database, thus if it is to query the database
after data has been registered at least once, it must rely on the
Database to enable and disable queries when appropriate.
However, as the Database cannot tell when the sensor has been
turned on or off; it cannot distinguish between a first registration
of data from others. Thus, it cannot enable and disable queries
appropriately. Succinctly, components do not have enough local
information to prevent the system execution shown in Figure 7.
Note that each component is behaving correctly according to
some valid, but different, sequence of bMSCs. The Sensor,
Control and Actuator are going through scenarios Initialise,
Register, Terminate, Initialise, Analysis, Register. However, the
Database is doing Initialise, Register, Analysis, Register. We will
use the term implied scenario to refer to system executions like
the one shown in Figure 7.

Definition 17. (Implied Scenario) Let Spec be a MSC
specification with an alphabet L. An implied behaviour is a word
w ∉ L(Spec) over the alphabet L such that w ∈ L(P) for all
implementations of Spec.

Implied scenarios are not necessarily unwanted situations they can
simply be acceptable scenarios that have been overlooked by
stakeholders. Thus, once implied scenarios have been detected
(discussed in the next section), the MSC specification can be
completed with the overlooked scenarios and refined to avoid
unwanted ones. Eventually an MSC specification that has not
implied scenarios may be reached. Thus we can use our synthesis
algorithm to build an implementation that behaves exactly as the
specified system. We can guarantee this as the algorithm builds
minimal implementations. We say that an implementation is safe
if it behaves exactly as the specified system.

Definition 18. (Safe Implementation) Let Spec be a MSC
specification, and P an implementation. P is a safe
implementation of Spec if L(Spec) = L(P). We shall say that a
Spec is safely implementable if there is a safe implementation of
Spec.

The following corallary follows from the fact that synthesised
models are minimal:

Corollary 2. If P is the synthesised model of a safely
implementable MSC specification Spec, then P is safe
implementation of Spec.

5. DETECTING IMPLIED SCENARIOS
We have shown how a minimal implementation can be
constructed for a MSC specification. But we have also shown that
it is possible to obtain unexpected behaviours from such
implementations. These implied scenarios can help complete the
MSC specification with unforeseen situations or indicate that the
specification must be refined to prevent unwanted executions.
Consequently, detecting implied scenarios is a relevant issue.

Having developed an algorithm that builds a system model within
an analysis tool such as LTSA, we have focused on using such a
tool to detect implied scenarios. The simplest approach would be
to build a safety property that has exactly the same behaviours as
the MSC specification and check that our LTS model satisfies
such property using LTSA. If the property is satisfied, then the

model cannot perform any more executions than that of the
property. As the property behaves exactly as the specified system,
we could conclude that the LTS model does not have implied
behaviours.

However, this naïve approach would be extremely expensive in
computational terms. This is due to the fact that the language of
an MSC specification cannot be built compositionally.
Concatenating the languages of bMSCs according to the hMSC
does not provide the specified behaviour, nor does combining
partial orders for each bMSC. The way to build the language of a
MSC specification would be to construct all maximal bMSCs, and
find all linearisations for each one. However, the number of
maximal bMSCs may be infinite and so may be the length of each
one.

We avoid calculating the whole language of an MSC specification
by finding a safety property that accepts a simpler language,
which if satisfied by the LTS model guarantees the non-existence
of implied scenarios. Furthermore, if the property is not satisfied,
the counter-example provided by LTSA is an example of an
implied scenario. The problem, of course, is to find such a simpler
language to use as our safety property.

The general reasoning we use is the following: If there is an
implied scenario then the model can behave properly according to
the specification up to a certain point and then deviate from
acceptable behaviour. This deviation must be able to occur in a
finite prefix of some trace. Furthermore, this deviation must be
able to occur before the system reaches a state in the LTS system
model twice. Accordingly, we build a safety property that accepts
traces that behave correctly according to the MSC specification up
to a point where a system state has been reached twice.

Building such a property requires listing all acceptable behaviours
of the MSC specification and truncating them when a loop in the
LTS model is detected. This is not a simple task because there are
infinite number acceptable behaviours, and because the cost of
simulating each one on the LTS model to check when a state is
reached twice is too big. The method we now present builds a
safety property without using the LTS model.

We assume that the MSC specification has been normalised to

initialise register

register

analysis

terminate

0 1 2

Figure 8 – hMSC viewed as an LTS.

initialise

analysis
terminate

0 1

Figure 9 – Control’s view of the hMSC.

avoid choices of bMSCs in the hMSC that can start with a
common message. Normalisation can be automated by applying
the method described by Hélouet and Le Maigat [5].

In the rest of the section shall use an alternative representation of
hMSCs. We shall view hMSCs as labelled transitions systems
instead of graphs. The transitions of the LTS are labelled with
bMSC names and the language accepted by the LTS is the set
maximal bMSCs of the MSC specification. Synthesising such
LTS from an hMSC is very simple; in Figure 8 we show the LTS
view of the hMSC of Figure 1 as an example. In the remainder of
this section hMSC will refer to the LTS representation of hMSCs

From a components perspective, the hMSC may refer to bMSCs
in which it does not participate. For example, the Control
component only participates in bMSCs Initialise, Analysis and
Terminate. Thus, the occurrence of bMSC Register is completely
transparent to it. We define a component view of an hMSC as an
LTS: We require the LTS to accept all projections of the words
accepted by the hMSC on the alphabet of bMSCs in which the
component participates. In Figure 9 we show the Control hMSC
view. Note that a component hMSC view shows the relation
between the synthesised FSP productions of the component
(Compare Figure 9 with Figure 4). Furthermore, as the component
LTS is deterministic, we can show that the component’s view of
the hMSC is an abstraction of its behaviour: Each state in the
component hMSC view represents a state in the component LTS.
The state reached after accepting the events determined by a
sequence of bMSCs in the component LTS is the state represented
by the one reached after accepting the same sequence of bMSCs
in the component hMSC view. For example state 1 in Figure 9
represents the component state 1 shown in Figure 6. This means
that after executing the events determined by a sequence of
bMSCs that leads to state 1 in Figure 9, the component will
always reach state 1 of Figure 6.

The fact that component hMSC views are abstractions of their
own behaviour is important because we can use it to build an
abstraction of the system LTS. If we compose component hMSC
views in parallel we obtain an abstraction of the system model that
assumes that components will synchronise in their choices of

bMSCs. (see Figure 10). Components do not actually synchronise
on bMSCs, they synchronise via messages. A component could
choose to go through a different bMSC than the rest of the
components if the events involved are the same. Nevertheless,
because components are deterministic, the state in which the
component would be in after choosing either bMSC is the same.
So it is as if the component chose the right bMSC and
synchronised with the rest of the system components.

Following this reasoning, we can show the state reached by the
system model after accepting the events determined by a sequence
of bMSCs is the state represented by the one reached after
accepting the same sequence of bMSCs in the composed hMSC
view. For example, the state reached by the implied scenario
shown in Figure 7 is being represented by state 2 in Figure 10.
Returning to the explanation of why the implied scenario of
Section 4 occurred, we mentioned that the Sensor, Control and
Actuator were going through scenarios Initialise, Register,
Terminate, Initialise, Analysis, Register. While the Database was
doing Initialise, Register, Analysis, Register. Note that both
sequences of bMSCs lead to the same state in Figure 10.

We now have an abstraction of our system model that allows us to
detect when the synthesised implementation model of a MSC
specification has looped. We will build a safety property that
accepts traces that behave correctly (according to the MSC
specification) and do not go more than once through a state
represented by the composed hMSC. If there is an implied
scenario in which deviated behaviour occurs after passing one of
these states more than once, the system must have been able to
perform this deviated behaviour in its first pass through the state.
Moreover, as we have assumed a normalised hMSC, the
behaviour without the loop must also be an implied scenario.
Thus, our safety property would have detected it. .

Definition 19. (Safety Language) Let Spec = (B, H, f) be a MSC
specification with a set of labels L. The safety language of Spec,
denoted SL(Spec) is a set of words over the alphabet L such that w
∈ SL(Spec) if and only if there is a prefix s1, s2, …, sn of w such
that s1, s2, …, sn, … is a linearisation of a maximal bMSC b1, b2,
…, bm, …with b1, b2, …, bm a maximal non-looping sequence of
the composed hMSC view and either sn is the first event appearing
in w of bMSCs bm+1, bm+2, … or w = s1, s2, …, sn

initialise register

register

analysis

terminate initialise

register

analysis register

terminate

0 1 2 3 4 5

Figure 10 – Composition of component hMSC views.

initialise register

register

analysis

terminate initialise

register

analysis

register

terminate

-1 0 1 2 3 4 5

Figure 11 – Composed hMSC with violations to hMSC.

The construction of our safety property is quite straightforward.
First all maximal non-looping sequences of bMSCs in the
composed hMSC view that are valid according to the hMSC are
constructed. We do this by considering the hMSC as a property
and checking the traces of the composed hMSC that violate this
property. This is shown in Figure 11, where traces in the
composed hMSC that are not valid according to the hMSC lead to
state –1. An example for the composed hMSC of Figure 10 is the
sequence Initialise, Register, Terminate, Initialise, Register.

Second, for each sequence of bMSCs, we calculate the set of
possible first messages that can occur starting at the ending state
of the sequence. These messages will be an indication that an
acceptable behaviour can be truncated and we call them truncating
messages of the bMSC sequence. As an example, we look at
sequence shown above. This sequence ends in state 2, which is
the first state to be reached twice. We are interested in the first
messages that can occur starting at state 2. These can be found by
looking at the partial orders determined by valid bMSC sequences
starting at state 2. We know that there is no need to look for
messages after a bMSC is repeated once so this is relatively
cheap. The messages that can occur first starting at state 2 are:
Pressure, Off and Query.

Third, each sequence is composed sequentially together each one
of its truncating messages. For the sequence Initialise, Register,
Terminate, Initialise, Register three bMSC would be constructed,
one for Pressure, another for Off and a third for Query. The first
bMSC would be the result of sequentially composing (Initialise •
Register • Terminate • Initialise • Register) with a bMSC that
only has the message Pressure.

Finally, the safety property can is built by simply enumerating the
linearisations of all constructed bMSCs. These linearisations are
truncated as soon as the truncating message is reached.

Once the safety property for detecting implied scenarios is built,
the synthesised implementation can be checked for implied
scenarios using LTSA. The result is a trace that leads to the
violation of the safety property and that is (a prefix of) an implied
scenario of the Sensor system MSC specification. The trace
returned by LTSA is shown in is shown in Figure 12 and
corresponds to the implied scenario depicted in Figure 7.

Summarising the results presented in this section, we have
presented a method for building a safety property, which
combined with the synthesised implementation presented before
can check if the implementation is safe and if not provide an
example of implied scenario.

Theorem 3. Let P be the synthesised LTS of the normalised MSC
specification Spec and SP be the safety property that accepts
SL(Spec),

A. If P satisfies SP then P is a safe implementation of
Spec.

B. If P does not satisfy SP and w is a trace violating SP

then Spec is not safely implementable and w is the
prefix of an implied scenario of Spec.

Demonstration (Part A): We shall prove the contra-positive of P
satisfies SP then L(P) = L(Spec). However, as L(Spec) ⊆ L(P) we
shall prove that if (L(P) \ L(Spec)) ≠ ∅ then P does not satisfy SP.

Let Spec be a MSC specification, P be the synthesised LTS of
Spec and w such that w ∈ (L(P) \ L(Spec)) we shall show that
there is a word in L(P)\L(SP).

We can split w just where it can no longer be extended into a
word in L(Spec). Let w = w1w2 such that w1 is a maximal prefix of
w that can be extended with by some w3 such that w1w3 ∈ L(Spec).

As w1w3 ∈ L(Spec), there is a sequence s1, s2, …, sn, … which is a
linearisation of a maximal bMSC b1, b2, …, bm,… such that w1 =
lbl(s1, s2, …, sn) and for all 0 < I ≤ n there is j ≤ m such that si ∈ bj
. We also know that we can reorder all si so to have events of the
same bMSC together and still have w1w2 ∈ (L(P) \ L(Spec)) with
w1 maximal prefix of w that can be extended with by some w3
such that w1w3 ∈ L(Spec).

Suppose we have an event from a bMSC b1, b2, …, bm that does
not appear in s1, s2, …, sn. Then it must appear in the rest of the
sequence of events si. If this event is independent from the first
event of w2 then we must be able to move it from w3 to w1. So we
can reach the following situation, where βi is a word over the
events of bi for i ≤ m’ ≤ m.

Suppose we have an event in w4 that is independent of the first
event in w2, we can move it to the beginning of w3, while still
having w1w2 ∈ (L(P) \ L(Spec)) with w1 maximal prefix of w that
can be extended with by some w3 such that w1w3 ∈ L(Spec). But
in addition, we now have that none of the bm’+1, …, bm are
complete whithin w1.

Furthermore, we can show that if we have b1, …, bj, …bk, …, bm’
and b1, …, bj leads to the same state as b1, …, bk in the composed
hMSC then we can eliminate bj+1, …, bk from w1 and still have
w1w2 ∈ (L(P) \ L(Spec)) with w1 maximal prefix of w that can be
extended with by some w3 such that w1w3 ∈ L(Spec). This is
because the original MSC specification was assumed to be
normalised.

This shows that if there is an implied scenario, there is also one
which will the deviate before fully completing the bMSCs that
appear in a non-looping trace of the composed hMSC

Trace to property violation in DetProperty:
start
pressure
stop
start
query

Figure 12 – Implied Scenario detected by LTSA.

w2

w3

βm’ β2β1

w1

w4

w2

w3
βjβ1

w1

w4 βm βk+

w2

w3
w1

This implied scenario will not be accepted by our safety property.
We shall show this by assuming the contrary and reaching a
contradiction: If the implied scenario were accepted by our safety
property then there would be a prefix s1, s2, …, sn of w1w2 such
that there is a linearisation s1, s2, …, sn, … of a maximal bMSC b1,
b2, …, bn’, …with b1, b2, …, bn’ a maximal non-looping sequence
of the composed hMSC and sn is the first event appearing in w of
bMSCs bn’+1, bn’+2, …or s1, s2, …, sn = w1w2

- If w1 is a proper prefix of s1, s2, …, sn then s1, s2, …, sn
includes the first action in w2. But as s1, s2, …, sn is the prefix
of a word in L(Spec) then w1 is not the maximal prefix of w1w2
that can be extended to belong to L(Spec). This is a
contradiction.

- If w1 is not a proper prefix of s1, s2, …, sn, then s1, s2, …, sn is
a prefix of w1. We have two possibilities:

o If s1, s2, …, sn is a prefix of β1, β2, …βm, as b1, b2, …bm does
not have loops and sn is the first event in the looping part we
have a contradiction.

o If β1, β2, …βm is a proper prefix of s1, s2, …, sn then sn is in
w4. As sn is in one of the following bn’+1, bn’+2, …, all the
events of b1, b2, …bn’ that are missing in w4 are independent
of sn. Then we could move these missing events before sn
and still reach the same global state after sn. But now we
would have a sequence of β1, β2, …βn’ that loops and we had
repeated this procedure as far as possible to generate w1w2.
This is a contradiction.

Demonstration (Part B): Let Spec be a MSC specification, P be
the synthesised LTS of Spec and w a trace detected by our safety
property. We shall show that w is an implied scenario. In other
words that w ∉ L(Spec). We shall suppose that w∈ L(Spec) and
reach a contradiction.
First of all, we know that if w is detected by our safety property,
then there is no prefix s1, s2, …, sn of w such that s1, s2, …, sn, … is
a linearisation of a maximal bMSC b1, b2, …, bm, …with b1, b2, …,
bm a maximal non-looping sequence of the composed hMSC and
sn is the first event appearing in w of bMSCs bm+1, bm+2, …or w =
s1, s2, …, sn

However, if w∈ L(Spec) then there is a maximal bMSC b1, b2, …
such that w is a linearisation of it. Let b1, b2, …, bm, be the
maximal non-looping sequence of bMSCs. If we consider the
minimal prefix of w in that ends with an event in bm+1, … this
prefix contradicts the previous paragraph. If such prefix does not
exist, then bm is the last bMSC of the bMSC sequence, thus it also
contradicts the previous paragraph.

6. LTSA – MSC TOOL
The algorithms presented above have been implemented in Java
and integrated into the Labelled Transition System Analyser
(LTSA) tool. MSC specifications are inputted in textual format
[7] and output is a FSP specification, which can immediately
processed by LTSA. The implementation, together with some
examples (including the one used throughout this paper), is
available at [11]. In Table 1 we show some execution times and
sizes of synthesised LTSs for the example used in this paper, a
slightly bigger version of it and a version of the ATM system (see
e.g. [10]). All examples were run on a Pentium III, 300Mhz,
256Mb with Windows NT 4.0 and Java 1.3.

7. RELATED WORK
This work uses several of the concepts presented by Alur et al. in
[1]. In particular we have used their notions of implied scenario
and realisability, which we call implementability. The
fundamental difference with this work is the scenario language
being studied. In [1] only bMSCs are allowed, thus the issue of
constructing an implementation and finding implied scenarios is
limited to a finite set of finite executions. We extend their work as
high-level MSCs allow specifying an infinite number of (possibly
infinite) systems traces. Another difference is that in [1]
communication between components is considered to be
asynchronous. In other words message passing is not considered
to be hand shaking.

Van Lamsweerde et al. [13] present a different approach, a set of
examples and counterexamples expressed as scenarios is used to
infer a temporal logic specification. Thus, generating explicit
declarative requirements from an operational description.
Combining these requirements with LTS models may be an
interesting possibility for future work.

Harel et al. [4] use a complex scenario language that uses live
sequence charts (LSC) to describe universal and existential
scenarios. This approach departs from the idea of using simple
graphical scenario languages for requirement elicitation. We
believe that much benefit can and should be gained from the kind
of scenario languages being used today, thus prefer the simpler
approach to scenarios. The synthesis method presented in [4]
differs from our approach significantly in that firstly a system
model is constructed and then decomposed into a set of
components.

There is much work on scenario on synthesis techniques for
building models from a scenario description. However, these
approaches do not make a distinction between specification and
implementation. In one sense, these approaches consider the
scenario specification to be more of a design language that

Table 1 - Synthesis algorithm execution times.

 Nodes in
hMSC

Transitions in
hMSC

Model
synthesis

time

Model size
(# states)

Property
synthesis time

Property size
(# states)

Safety check
time

Sensor v1.0 (this paper) 4 7 20ms 11 190ms 17 31ms

Sensor v2.0 6 8 40ms 21 200ms 42 92ms

ATM 10 15 90ms 32 211ms 71 82ms

uniquely determines an implementation up to a certain level of
abstraction. This is a valid approach but differs from the one used
in this paper where we consider that a specification can be
implemented by many models. In this view of scenarios as a
design language many approaches provide algorithms for
generating statechart models from MSCs [2, 10, 14]. Another
approach is to provide a formal semantics for MSCs based on
state machines such as the one provided by Cobens et al. [3],
which is part of the Z.120 recommendations for MSCs. In [12] we
have present an MSC language that integrates these kind of
approaches by providing a simple mechanism for tailoring MSC
specifications to specific interpretations by use of state labels.

8. CONCLUSIONS
We have presented a framework for synthesising implementation
models for scenario-based specifications and for the existence and
providing feedback on implied behaviours. This framework,
which has been entirely implemented and integrated in the LTSA
tool, allows building a model of a system that implements a MSC
specification. The resulting model is guaranteed to be the model
that implements the least unwanted behaviours. The framework
also provides a method for assessing if a scenario specification
has implied behaviours. Furthermore, an example of implied
behaviour is given if the specification is not safely implementable.
Finally as our approach integrates with LTSA, the synthesised
implementation can be more thoroughly analysed by model
checking of safety and liveness properties. There is also the
potential for model animation [9] as a means of including further
domain constraints and of making the models more
comprehensible to stakeholders and developers.

An important observation on implied scenarios is that they are the
result of an inconsistency between system decomposition and
system behaviour. Providing an implementation for a set of
components that can send and receive messages as in the MSC
specification such that the overall system behaviour is the
language determined by the MSC specification is not always
possible. Implied scenarios are not an artefact of a particular MSC
language, they are the result of specifying the global behaviours of
a system that will be implemented component-wise.

Scenarios have proved to be a good tool for bridging the gap
between stakeholders and developers. However, up to now, this is
mainly a one-way bridge in which developers gain more insight of
stakeholders’ domain knowledge. Future work will be focused on
building a bridge in the other direction, i.e. building mechanisms
to provide feedback of the developer’s world to stakeholders.
Preliminary work in this direction is promising. We are
automating the construction of alternative system views from
synthesised LTS models.

9. ACKNOWLEDGMENTS
We would like to thank Victor Braberman for his helpful
comments and discussion. We are grateful to the EPSRC for
funding part of the work under grant BR/M24493 (BEADS).

10. REFERENCES
1. Alur, R., Etessami, K. and Yannakakis, M., Inference of
Message Sequence Charts. in 22nd International Conference on
Software Engineering (ICSE'00), (Limerick, Ireland, 2000).
2. Broy, M., Krüger, I., Grosu, R. and Scholz, P., From MSCs
to Statecharts. in Distributed and Parallel Embedded Systems, (,
1999), Kluwer Academic Publishers, 61-71.
3. Cobens, J.M.H., Engels, A., Mauw, S. and Reniers, M.A.
Formal Semantics of Message Sequence Charts, Eindenhoven
University of Technology, Eindhoven, The Netherlands, 1998.
4. Harel, D. and Damm, W., LSCs: Breathing Life into
Message Sequence Charts. in 3rd IFIP Int. Cond. of Formal
Methods for Open Object-Based Distributed Systems, (New York,
1999), Kluwer Academic, 293-312.
5. Helouet, L. and LeMaigat, P., Decomposition of Message
Sequence Charts. in 2nd Workshop on SDL and MSC, (Grenoble,
France, 2000).
6. Holzmann, G.J. and Peled, D., The State of Spin. in
CAV'96, (, 1996), Springer.
7. ITU. ITU-T Recommendation Z.120. Message Sequence
Charts (MSC'96), ITU Telecommunication Standardisation
Sector, Geneva, 1996.
8. Magee, J. and Kramer, J. Concurrency: State Models and
Java Programs. John Wiley & Sons Ltd., New York, 1999.
9. Magee, J., Kramer, J., Giannakopoulou, D. and Pryce, N.,
Graphical Animation of Behavior Models. in 22nd International
Conference on Software Engineering (ICSE'00), (Limerick,
Ireland, 2000), 499-508.
10. Systä, T. Static and Dynamic Reverse Engineering
Techniques for Java Software Systems Dept. of Computer and
Information Sciences, University of Tampere, Tampere, 2000.
11. Uchitel, S. LTSA-MSC Tool., Available at http://www-
dse.doc.ic.ac.uk/~su2/Synthesis/, Department of Computing,
Imperial College., 2001.
12. Uchitel, S. and Kramer, J., A Workbench for Synthesising
Behaviour Models from Scenarios. in ICSE 2001, (Toronto,
Canada, 2001).
13. Van Lamsweerde, A. and Willemet, L. Inferring Declarative
Requirements Specifications from Operational Scenarios. IEEE
Transactions on Software Engineering, 24 (12). 1089-1114.
14. Whittle, J. and Schumann, J., Generating Statechart Designs
from Scenarios. in 22nd International Conference on Software
Engineering (ICSE'00), (Limerick, Ireland, 2000), ACM Press.

