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Abstract

Pricing is a term in the simplex method for linear programming used to refer to the

step of checking the reduced costs of nonbasic variables. If they are all of the ‘right

sign’ the current basis (and solution) is optimal, if not, this procedure selects a candidate

vector that looks profitable for inclusion in the basis. While theoretically the choice of

any profitable vector will lead to a finite termination (provided degeneracy is handled

properly) but the number of iterations until termination depends very heavily on the

actual choice (which is defined by the selection rule applied). Pricing has long been an area

of heuristics to help make better selection. As a result, many different and sophisticated

pricing strategies have been developed, implemented and tested. So far none of them is

known to be dominating all others in all cases. Therefore, advanced simplex solvers need

to be equipped with many strategies so that the most suitable one can be activated for each

individual problem instance. In this paper we present a general pricing scheme. It creates

a large flexibility in pricing. It is controlled by three parameters. With different settings

of the parameters many of the known strategies can be reproduced as special cases. At

the same time, the framework makes it possible to define new strategies or variants of

them. The scheme is equally applicable to general and network simplex algorithms.
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1 Introduction

Pricing is certainly an evergreen research topic in the simplex method for linear program-

ming (LP). This step does two things. It checks whether the optimality conditions for the

nonbasic variables are satisfied, and if not it chooses a violating variable to enter the basis.

The selected variable has the potential of improving the current solution. According to

the theory the simplex method terminates in a finite number of iterations regardless of

which profitable candidate is chosen (if degeneracy is treated properly). On the other

hand, the total computational effort to solve a problem heavily depends on this choice.

The importance of a good selection rule has long been recognized. While many pric-

ing strategies have been worked out none of them proved to be the best in the sense

that it dominates all others on all problems. Important ideas have been put forward

by Dantzig [4], Orchard-Hays [12], Harris [9], Benichou at al. [1], Bland [2], Goldfarb

and Reid [7], Greenberg [8], Cunningham [3], and Forrest and Goldfarb [5]. Fourer [6]

discusses pricing designed for staircase linear programs. Advanced simplex solvers are

equipped with several pricing strategies and the user or the solution algorithm itself can

decide which one to activate for any given problem instance.

Maros [10] described a pricing procedure for structured network problems in the net-

work simplex method. In this paper we elaborate on this work and propose a general

pricing framework. It creates a large flexibility and seems to be practical for structured

LP problems but also can be beneficial for others, too. It incorporates many of the know

pricing strategies as special cases.

The rest of the paper is organized as follows. Section 2 sketches the revised simplex

method for further reference. Some characteristics of structured problems are discussed

in section 3. Section 4 gives an annotated list of the best known pricing strategies. The

proposed pricing scheme is introduced and discussed in section 5 which is followed by

some concluding remarks in section 6.
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2 Problem statement and algorithmic framework

We consider the primal LP problem in the following general form:

minimize cTx,

subject to Ax = b, (1)

l ≤ x ≤ u, (2)

where A ∈ Rm×n, c, x, l, u ∈ Rn, and b ∈ Rm. Arbitrary components of l and u can be

−∞ or +∞, respectively. Without loss of generality, we can assume that all finite lower

bounds in (2) are shifted to zero.

In formulating LP problems, it is typical that A contains a unit matrix I, A = [I, Ā],

as each row is assigned a logical variable to make the constraints equality and, therefore,

A is of full row rank.

Let B denote a basis to (1) (which is actually the set of indices of basic variables) and

B the corresponding basis matrix of A. A similar notation for the nonbasic part of A

is N and N. The matrix and the vectors are partitioned as A = [B |N], x = [xB,xN ]

and c = [cB, cN ]. The constraints in (1) can be rewritten as BxB + NxN = b, or

equivalently, xB = B−1(b −NxN). Variables in N are either at zero or upper bound or

some ‘superbasic’ value.

As large scale LP problems exhibit increasingly high degree of sparsity the only realistic

version of the simplex algorithm is the sparsity exploiting implementation of the revised

simplex method, often referred to as SSX.

The iteration cycle of the computational version of the primal SSX consists of the

following steps.

Step 1. Compute simplex multiplier πT = vTB−1 using a form vector v (different for

Phase-1 and Phase-2).

Step 2. Check optimality (also known as Choose Column or PRICE ): compute reduced

costs dj = cj − πTaj if in Phase-2 or dj = πTaj if in Phase-1, for j ∈ N . If all of
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them satisfy their optimality condition, exit with “optimal solution” or “problem

infeasible”. Otherwise, there is at least one variable that can enter the basis. We

choose one from among the candidates using some (simple or complex) criterion.

Its subscript is denoted by q.

Step 3. Transform the column vector aq of the improving candidate: αq = B−1aq.

Step 4. Choose row (also known as pivot step or ratio test): determine the outgoing

variable or bound swap or conclude that “solution is unbounded” and exit.

Step 5. Update solution, basis inverse and any other changing information; do reinversion

(refactorization) if necessary.

There are some variants of SSX where a row vector of reduced costs is maintained. In

this case Step 2 is simpler but Step 5 becomes computationally more intensive.

3 Structure in LP problems

Real life LP problems are often very large in size and usually have some structure. This

is because they typically represent multi-period, multi-location, dynamic or stochastic

models.

Structure can be exploited in SSX to speed up iterations or to make them more

effective. Different levels of sophistication can be applied in the design of such strategies.

If there is more information available about the structure then better pricing can be

achieved (c.f. [6]). The industry standard LP input format (MPS format) is not defined

to carry such information. Therefore, general purpose simplex solvers are usually not

prepared to take advantage of structure directly. We come back to this issue in section 6.

For now, we assume that the variables of the LP problem exhibit some identifiable

structure. It means that variables can be grouped into clusters according to the nonzero

pattern of their column vectors. Vectors in a cluster are more related to each other than

vectors in different clusters. It is quite likely that each cluster will have representatives

in every basis and, therefore, in the optimal solution.
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4 Pricing in the simplex method

Column selection is often referred to as the PRICE step (see section 2). During pricing,

the dj reduced costs of the nonbasic variables are computed. If there is at least one that

violates its optimality condition it is a candidate to enter the basis. Since usually there

are many improving candidates the goal is to select the best one in some sense. What can

this sense be? An obvious interpretation is to call ‘best’ at any given iteration the one

which results in a least number of iterations. As SSX provides only local information it is

impossible to identify the best in this sense. Another possibility is to call ‘best’ the one

which leads to the least computational effort (shortest solution time). This is again an

unachievable goal. The most that can be done is to try to approximate one of these goals.

It is usually the minimization of the computational effort that is aimed at by different

pricing heuristics.

PRICE is computationally an expensive step because of the many dot products that

have to be calculated for some or all the nonbasic columns of the A matrix. This equally

applies to the case when the nonbasic dj’s are kept explicitly and updated at each basis

change.

It is well known that the actual magnitude of dj’s is scale dependent and a profitable

variable with the largest dj usually does not lead to the largest improvement in the

objective function. While the scaling procedure applied to LP problems prior to solving

tries to consolidate the magnitudes it does not resolve this problem. There are some

pricing techniques that attempt to overcome this difficulty by dynamically determining

some weight factors for nonbasic variables. The dj’s are normalized by these weights

before being compared. Below we enumerate some of the best known PRICE strategies

for SSX.

1. First improving candidate. The first aj, j ∈ N with nonoptimal dj is selected. This

is the cheapest criterion (part of Bland’s rule [2]) but it usually leads to a very large

number of iterations. Therefore, it is mostly of theoretical importance and is not

used in practice.
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2. Dantzig rule [4]. In this option all nonbasic variables are checked (full pricing) and

one which violates its optimality condition the most is selected. This rule is quite

expensive (dot products with all nonbasic variables) but, overall, is considerably

better than the previous method.

3. Partial pricing. To alleviate the computational burden, only a part of the nonbasic

variables is scanned and the best candidate from this part is selected [12]. In the

next step, the next part is scanned, and so on. If the partition is chosen initially

and kept fixed then this is known as static partial pricing. In contrast, the parts of

matrix A may dynamically be redefined during the SSX iterations; this is known as

dynamic partial pricing [1].

4. Multiple pricing. Some of the most profitable candidates (in terms of the magni-

tude of dj) are selected during one scanning pass (major iteration, [12]). They are

updated and a suboptimization is performed involving the current basis and the se-

lected candidates using the criterion of greatest improvement. During these minor

iterations the update of the selected candidates is inexpensive but some updated

columns may become nonprofitable even before using them. Still, this technique is

successful and is included in many solvers.

5. Sectional pricing [8]. It can be viewed as a kind of partial pricing. LP models often

exhibit some structure which is characterized by the presence of sections or clusters

of variables. In this case pricing can operate more effectively by choosing candidates

from different sections during a multiple pricing step. This increases the possibility

that the selected candidates are not or just loosely related and most of them will

remain candidates during the minor iterations.

6. Steepest edge. The magnitude of dj shows the rate of change (scale dependent)

but not how far the selected variable can go. Hence, it is not a good indicator of

the achievable progress in the objective function. Normalized pricings attempt to

estimate the relative merit of the improving candidates by evaluating dj in a fixed
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framework. This is achieved by scaling the computed dj by a scale factor before

comparison. Scale factors are updated after every basis change.

Steepest edge [5] is the most powerful normalized pricing algorithm but it is com-

putationally the most expensive. It is a full pricing and does not adapt to the

multiple pricing scheme. It can dramatically reduce the total number of iterations

but the work per iteration can be so large that there can be no computational gain.

However, in certain problem instances this strategy is clearly superior to any other

method. It is used in the dual simplex more frequently because it requires less extra

computations there.

7. Devex. Introduced by Paula Harris [9], this was the first effective normalized pricing;

today we see it as an approximation to steepest edge. It requires less work per

iteration but still can reduce the number of iterations quite considerably. In a

number of cases it results in the reduction of the overall computational effort and

is considered a useful tool for the primal SSX but it is also easily adaptable to the

dual. It is a full pricing and is not suitable for multiple pricing.

8. Dynamic scaling [1]. This is an inexpensive approximation to the steepest edge pric-

ing. Its advantage is its suitability for partial and multiple pricing. Its effectiveness

is, however, unproven for many problem instances even though there is evidence of

its usefulness in some cases [11].

5 A general pricing scheme

In this section we introduce a pricing scheme that creates a great flexibility and contains

many known pricing strategies as special cases. It also makes it possible to define new

pricing strategies.

Let the index set of all variables in the problem be denoted by S and let K denote the

number of disjoint clusters of variables. The main characteristics of variables in a cluster

is that they are somehow related to each other. Let Sk, k = 1, . . . , K, denote the index
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set of variables in cluster k with nk = |Sk| > 0 denoting its cardinality. The set of indices

of all variables is thus

S =
K⋃

k=1

Sk, Si ∩ Sj = ∅, if i 6= j.

Obviously, |S| = n.

We consider a fixed circular ordering of the variables within each cluster, and also a

fixed circular ordering of the clusters. It can be assumed that members of a cluster are

located contiguously. If not, a linked list structure can be created and the variables can

be accessed by some fixed order in this list.

Common sense suggests and experience shows that if a properly selected vector from

a cluster enters the basis at a given iteration then it is unlikely that good candidates in

the same cluster (or in clusters that have also recently been visited) can be found during

the next pricing pass. This can be interpreted in such a way that if the—locally—best

vector enters the basis then, as a consequence of the correlation among the members of

the cluster, the other candidates usually lose their attractiveness as they have become

represented in the current solution by their ‘best’ candidate. If so, we can avoid super-

fluous pricing of non-improving or little-improving vectors by starting to look for new

candidates in a different cluster(s). At the same time, we do not have to visit all the

clusters if a sufficient number of profitable candidates have been found (partial pricing

of the clusters). Furthermore, it is not necessary to make a complete scan of a cluster

either. We can stop scanning it if an acceptable number of candidates have been found

there (partial pricing of a cluster).

On the basis of what we have said so far, we can introduce the following pricing

(column selection) algorithm, referenced as SIMPRI (for Simplex Pricing) in the sequel.

The main parameters that control SIMPRI are:

• K : the number of clusters (defined above),

• P : the number of clusters to be scanned in one iteration (1 ≤ P ≤ K),
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• R : the number of improving vectors to be found in one cluster (this number can be

Rk, if we allow it to be different for each cluster).

The i-th element of cluster k in the fixed circular traversing order will be denoted

by ek
i . Two pointers are also needed: k will point to a cluster, while ik will point to an

element in cluster k.

In a general step of the algorithm pricing stopped in Sk at ek
ik

. The next pricing will

start in the next cluster Sk+1 at the next element ek+1
ik+1+1 to come after the one where

pricing stopped at the last visit in cluster Sk+1. It means that if we increment k by 1

(mod K) and ik by 1 (mod nk) we can start pricing formally in Sk at ek
ik

.

To describe the complete algorithm in which this general step is imbedded, some

auxiliary variables have to be introduced:

• r is the number of improving variables found so far within a cluster during the

current pass of SIMPRI,

• s counts the number of clusters scanned,

• q counts the number of vectors interrogated in a cluster

• dmax is the largest reduced cost found so far,

• j is the absolute index (1 ≤ j ≤ n) of dmax.

Algorithm SIMPRI:

Step 0. Setup. Initialize

pointers: k = K, ik = nk, k = 1, . . . , K,

counts and markers: s = 0, dmax = 0, j = 0.

Step 1. Cluster count. Increment s. If s > K go to Step 7.

Step 2. Cluster initialization. Increment k (mod K). Set r = 0, q = 0.

Step 3. Variable count. Increment q. If q > nk go to Step 6.
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Step 4. Reduced cost. Increment ik (mod nk).

If ek
ik

is nonbasic, compute its reduced cost d, otherwise go to Step 3.

If d is non-profitable then go to Step 3,

otherwise increment r by 1.

If d is better than dmax then

d is the new value of dmax and the absolute index of ek
ik

is recorded in j.

Step 5. Terminate cluster? If the sufficient number (R) of improving vectors have been

found exit from the cluster, i.e., if r = R go to Step 6, otherwise go to Step 3.

Step 6. Terminate pricing? If the prescribed number (P ) of clusters have been scanned

and at least one candidate was found, terminate pricing, otherwise take next cluster,

i.e., if s ≥ P and dmax > 0 then go to Step 7, otherwise go to Step 1.

Step 7. Evaluate termination. If dmax > 0 then variable with index j is a candidate to

enter the basis, otherwise the simplex algorithm terminates. In the latter case if the

current solution is feasible then it is optimal, if infeasible then the problem has no

feasible solution.

Some comments on SIMPRI help identify its general usefulness.

• If dj is explicitly maintained then ‘compute reduced cost’ can be replaced by ‘retrieve

reduced cost’.

• If normalized pricing is used it is usually done in the framework of full pricing.

However, even in this case it is still possible to use some sort of a partial pric-

ing. In either case, SIMPRI can be used with the evaluation criterion of the given

normalized pricing method.

• SIMPRI is applicable to multiple pricing in a straightforward way. In this case, a

pool of Ns best candidates is maintained, where Ns is a strategic parameter, with

value usually 2 ≤ Ns ≤ 8. Now the interesting issue is how to make the selection.

It appears to be a good idea to keep candidates from different clusters with the
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understanding that they are relatively unrelated so that if of one of them enters

the basis the profitability of the other selected candidates will not be damaged

significantly.

• Pricing the nonbasic logical variables is computationally very simple and can easily

be done whether and explicit dj is maintained or not. Logicals can be considered

as a single cluster, or, if there is information about rowwise subdivision they can be

added to the appropriate clusters.

It remains to see if SIMPRI really does not overlook any special situation that can

occur. The answer is formulated in the following proposition.

Proposition 5.1 If the parameters are assigned meaningful values, i.e., 1 ≤ K ≤ n,

1 ≤ P ≤ K, and 1 ≤ R ≤ n, then the application of SIMPRI in the simplex method leads

to a correct answer to the LP problem.

Proof. It is enough to show that as long as there is at least one profitable candidate

among the nonbasic variables, SIMPRI will find it, and SIMPRI will never fall into an

endless loop.

First we show that if there is a single candidate it cannot be missed.

The algorithm will always start, because K ≥ 1, therefore in the beginning relation

“s > K” is false, so Step 2 is performed.

Since it is assumed that R ≥ 1, there is always something to look for. A candidate in a

cluster cannot be overlooked: Variables in a cluster are scanned sequentially in a circular

order by the inner loop through Steps 3 − 4 − 5. This loop can terminate in two ways:

(i) through Step 5, if a sufficient number of profitable candidates were found, (ii) through

Step 3, if the list is exhausted, i.e., all the elements in the given cluster have been checked.

If no candidate was found in the requested (P ) number of clusters then Step 6 and

Step 1 ensure that new cluster(s), taken in the circular order, will be scanned as long as

there are unvisited clusters.
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What would make SIMPRI try to loop infinitely? It may be thought that such case

could happen if SIMPRI is given an unsolvable task, like to find more profitable candidates

than presently available. A typical situation of this kind occurs when we are at an optimal

solution (i.e., there is no profitable candidate at all). An endless loop cannot occur within

a cluster, Step 3 takes care of it, since in a cluster the basic variables also increment the

pointer. Similarly, clusters cannot be taken infinitely one after the other since Step 1

does not allow more than K clusters to be scanned, regardless of the index of the starting

cluster. These two remarks ensure the proper termination of SIMPRI. �

It is clear that SIMPRI creates a large flexibility in pricing. It enables us to tune the

simplex algorithm for identified problem families by proper setting of the newly introduced

parameters.

Of course, it may happen that a structure does not exist at all. Even in this case, if

n � m holds, some kind of a partial pricing with SIMPRI can help a lot in reducing the

overall effort to solve the problem. Computational evidence shows [11] that SIMPRI with

reasonably chosen clusters (not necessarily closely following any ‘natural’ clustering) can,

in fact, be very efficient.

It is instructive to see how some known pricing schemes can be obtained as special

cases of SIMPRI by appropriate setting of the three parameters.

1. If we define S as one cluster, requiring all nonbasic vectors to be scanned then we

arrive at the generally known full pricing. This is achieved by the following setting

of the parameters: K = 1, P = 1, and R = n. Clearly, here we do not expect

that the number of improving vectors will be equal to n, but by this setting we can

force the algorithm to scan all the nonbasic variables in every step. If the selection

criterion is the unscaled max dj then it reproduces the Dantzig pricing [4].

2. If we want to price one cluster fully per each iteration, taking one cluster after the

other then we get the full sectional pricing. SIMPRI will work in this way for K > 1

if we set P = 1, and R = n.
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3. Bland’s rule can be obtained if we set K = 1, P = 1, R = 1 and restart SIMPRI

in every iteration at Step 0.

4. If we have K > 1 and set P = K, R = 1, then we get the one candidate from each

subset pricing strategy.

5. The frequently used simple dynamic cyclic pricing [1] is obtained if we set K = 1,

P = 1, and R to some value 1 ≤ R < |D|, where D = {j | j nonbasic, dj > 0 at

a given step of the algorithm}, i.e, the set of profitable candidates in the whole

problem. D is usually determined after every reinversion of the basis.

6. Another example is Cunningham’s LRC (Least Recently Considered) rule [3] for the

network simplex method which is achieved by setting K = 1, P = 1, and R = 1.

On the basis of these examples we can say that SIMPRI is a certainly a generalization

of several well known pricing schemes.

6 Concluding remarks

An obvious question arises. How do we know that the problem at hand has a structure that

can be taken into account for pricing? Furthermore, if it exists, how can this information

be passed over to the simplex solver?

In many cases the answer is quite straightforward as large scale problems are usually

structured. They typically represent multi-period, multi-location, dynamic or stochastic

models. Such problems are created and maintained by modelling systems. Therefore, the

actual modelling system has all information needed for SIMPRI. The known structure

can be encoded in the input (MPS) file prepared for the solver (MPS format being the de

facto standard of representing LP problems). It can be placed either after the usual LP

data or included in the ‘column section’ indicated by marker records, the same method

which is applied to identify integer variables in an LP problem. It is very easy to adjust

the input routines of the solvers to interpret this information and set up the structure

needed for SIMPRI.
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Another possibility is to visually inspect the distribution of nonzeros in the LP matrix.

There are several tools available that can display the nonzero pattern. If K clusters of

(nearly) equal size can be identified then cluster sizes (and thus boundaries) can well be

approximated by taking nk = n/K. In this way the benefits of any cluster-based pricing

method can be enjoyed nearly in full.

It is important to emphasize that SIMPRI is just a framework. It can be extended,

modified, customized or tuned in several different ways. To give some examples, we point

to the following.

First of all, it is clear that SIMPRI can further be generalized by nesting the procedure

when a higher hierarchy of structure exists, i.e., clusters within clusters.

It is an interesting variation when the selection criterion is a dynamically updated

threshold value that can be different for each cluster. In this case, the first profitable can-

didate with a reduced cost greater than the threshold is selected and no further variables

are scanned. Or, if multiple pricing is used, this idea can be applied to separate clusters

to collect Ns candidates.

Clusters need not be visited in their ‘natural’ order. Sophisticated, dynamically up-

dated ranking schemes among the clusters can be worked out but the main logic of SIMPRI

still can be used.

Finally, SIMPRI can be used in the framework of the dual simplex method without

any changes.
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