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ABSTRACT 12 

This paper presents an efficient hybrid continuum-discrete macro-modelling strategy with an 13 

enhanced multiscale calibration procedure for realistic simulations of brick/block-masonry 14 

bridges. The response of these structures is affected by the intrinsic nonlinearity of the masonry 15 

material, which in turn depends upon the mechanical properties of units and mortar joints and 16 

the bond characteristics. Finite element approaches based upon homogenised representations 17 

are widely employed to assess the nonlinear behaviour up to collapse, as they are generally 18 

associated with a limited computational demand. However, such models require an accurate 19 

calibration of model material parameters to properly allow for masonry bond. According to the 20 

proposed approach, the macroscale material parameters are determined by an advanced multi-21 

objective strategy with genetic algorithms from the results of mesoscale "virtual" tests through 22 

the minimisation of appropriate functionals of the scale transition error. The developed 23 

continuum-discrete finite element macroscale description and the calibration procedure are 24 

applied to simulate the nonlinear behaviour up to collapse of multi-ring arch-bridge specimens 25 

focusing on the 2D planar response. The results obtained are compared to those achieved using 26 

detailed mesoscale models confirming the effectiveness and accuracy of the proposed approach 27 

for realistic nonlinear simulations of masonry arch bridges.  28 
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ring masonry arches; optimisation procedures; genetic algorithms.    30 

1 INTRODUCTION 31 

Old masonry arch bridges belong to the cultural and architectural heritage and still play a 32 

critical role within railway and roadway networks in Europe and worldwide. These structures 33 

were built following empirical rules and were not designed to resist current traffic loading and 34 

the loads induced by extreme events, such as earthquakes. An accurate assessment of the 35 

ultimate performance of these complex structural systems represents a crucial step to prevent 36 

future failures and preserve such historical structures for the next generations.  37 

Masonry arch barrels are the key structural components of masonry arch bridges. Their 38 

nonlinear behaviour is strongly influenced by the mechanical properties of the two constituents, 39 

masonry units and mortar joints, and their arrangement to form the brick/blockwork of the arch 40 

(i.e. masonry bond). Two main categories of masonry arch bridges can be identified: stone 41 

masonry and brick masonry bridges [1]. In the first group, the arches are built from large 42 

voussoirs organised in a single arch ring. Conversely, in the case of brick masonry bridges, a 43 

multi-ring arrangement is usually utilised, where the number of rings depends on the span 44 

length of the arch. The rings are typically bonded together using the stretcher method, where 45 

the connection between adjoining rings is guaranteed by continuous mortar joints. To date, 46 

numerous laboratory and in-situ tests have been performed to investigate the failure 47 

mechanisms of masonry arches and bridges, considering also the influence of backfill, under 48 

monotonic and cyclic loading conditions [2]. Specific studies on multi-ring arches showed how 49 

ring separation and shear sliding generally affect the ultimate strength and failure mode [3]-50 

[6], where weak circumferential mortar joints have been found to lead to an ultimate strength 51 

reduction of about 30% for short spans and up to 70% in the case of longer span arches. 52 

In previous research, different numerical strategies have been proposed to simulate the 53 

nonlinear behaviour of masonry arches and bridges [2]. Generally, approaches based on limit 54 
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analysis principles can be effectively used to estimate the ultimate load capacity [7]-[9]. 55 

However, such strategies do not provide information about the nonlinear response before 56 

collapse, and they are often based upon crude assumptions, e.g. the representation of masonry 57 

as a no-tension material, which may lead to underestimating the ultimate resistance of masonry 58 

arches. Previous studies also comprised simplified 2D finite element (FE) limit-analysis 59 

descriptions to simulate the arch-backfill interaction [10],[11] and 3D nonlinear FE strategies 60 

with elasto-plastic solid elements [1]-[14], where masonry is assumed as a homogeneous 61 

isotropic material disregarding its anisotropic nature. Isotropic modelling approaches are 62 

widely employed in engineering practice due to their computational efficiency, especially for 63 

the analysis of large bridges. However, they may lead to an unrealistic representations of 64 

typical failure modes not directly associated with longitudinal bending. Also, their application 65 

to masonry may require complex calibration procedures to account even in a simplified way 66 

for its anisotropic nature, as shown in [15] with reference to masonry walls. Furthermore, the 67 

use of more complex damage/plasticity orthotropic models [16]-[20], based on damage and/or 68 

plasticity formulations where tensile, shear and compressive failure mechanisms are described, 69 

are still largely applied for research and not yet considered for the practical assessment of 70 

realistic structures.  71 

More recent numerical models for masonry arched structures and bridges include the micro-72 

model strategy proposed by Milani et al. [21] using triangular rigid elements and nonlinear 73 

links, the discrete macro-element method (DMEM) [22]-[24] and the distinct element method 74 

(DEM) [25],[26]. A detailed 3D mesoscale modelling strategy for masonry arch bridges has 75 

been developed at Imperial College London [27],[28], which is used as the reference solution 76 

for the calibration of the proposed macroscale approach hereinafter. According to this strategy, 77 

the masonry parts of the bridge are simulated by using linear solid elements and 2D nonlinear 78 

interface elements to explicitly allow for the masonry bond [29]. The backfill is modelled by 79 
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elasto-plastic solid elements, and the connection between the masonry components and the 80 

backfill is represented through nonlinear interfaces allowing for the actual frictional 81 

interaction. This approach generally leads to accurate response predictions, including under 82 

extreme loading, but it is associated with significant computational cost which can hinder its 83 

use for the practical assessment of real large structures. 84 

With the aim of achieving a suitable compromise between accuracy and efficiency, this paper 85 

proposes a hybrid continuum-discrete macroscale description for multi-ring masonry arches 86 

and masonry arches bridges. Elasto-plastic-damage continuum solid elements interacting with 87 

2D nonlinear interfaces are employed to model a masonry arch, although, unlike the mesoscale 88 

strategy, mesh discretisation is not directly related to the dimensions of units and mortar joints. 89 

The damage-plasticity model proposed in [30] and a multi-surface cohesive-frictional model 90 

[30] are employed for solid and interface elements, respectively. Furthermore, an innovative 91 

multi-objective optimisation procedure, based on virtual tests developed adopting detailed 92 

mesoscale descriptions, is put forward and applied to evaluate the mechanical parameters of 93 

the hybrid model.  94 

 The proposed modelling strategy with the advanced calibration procedure is validated against 95 

mesoscale simulations considering multi-ring arches and masonry arch-backfill specimens 96 

with different geometrical and mechanical properties. The numerical results confirm the 97 

accuracy and high efficiency of the developed hybrid approach, which can be used for practical 98 

and accurate assessment of realistic, including long span, masonry arch bridges. 99 

 100 

2 THE HYBRID MACRO-MODELLING APPROACH  101 

In the proposed FE modelling strategy, the arch is discretised using a regular mesh of nonlinear 102 

continuum 20-noded solid elements. In addition, 2D nonlinear zero-thickness interface 103 

elements are arranged along the circumferential mid-thickness surface of the arch to simulate 104 
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damage associated with potential ring sliding and separation. In the simplest case where only 105 

one circumferential layer of interfaces is considered (Figure 1), each interface lumps the linear 106 

deformability and non-linear behaviour of n-1 ring joints, with n being the number of rings of 107 

the physical arch. Importantly, the characteristics of the FE mesh with solid elements are not 108 

directly linked to the masonry bond. Thus, an arbitrary number of solid elements can be 109 

employed along the length of the arch, according to the desired level of response detail, but at 110 

least two solid elements should be arranged along the thickness of the arch to accommodate 111 

the mid-thickness nonlinear interfaces. The accuracy due to different discretisation along the 112 

circumferential direction is explored in the numerical applications described in the following 113 

sections.  114 

 115 

(a)                                                                                (b) 116 

Figure 1. 2D view of (a) a generic multi-ring arch  and (b) its 3D macro-modelling description.  117 

2.1 The 3D damage-plasticity model    118 

In the macroscale representation implemented in ADAPTIC [31], the isotropic plastic-damage 119 

material model presented in [15] is used for the 20-noded solid elements. A standard 120 

decomposition of total strains (𝛆) in elastic (𝛆𝐞) and plastic (𝛆𝐩) components is considered, and 121 

the stress tensor (𝛔) is obtained from the effective stress tensor (𝛔") and a scalar damage variable 122 

𝑑(𝛔", 𝜅! , 𝜅"). The latter variable depends on the stress state and two historical variables (𝜅!, 𝜅") 123 

representing the evolution of plastic strains in tension and in compression. The material 124 

relationship is expressed analytically by:  125 
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 126 

 𝛔	 = (1 − 𝑑)	𝛔̅	 = (1 − 𝑑)	𝐄𝟎	(𝛆 − 𝛆𝐩) (1) 

 127 

where 𝐄𝟎 is the initial fourth-order isotropic elastic tensor.  128 

The local plastic problem is solved at each integration point of the domain to evaluate the 129 

effective stress, adopting a non-associated elasto-plastic constitutive law with Drucker-Prager-130 

like plastic flow potential, according to the approach proposed in [32].  131 

The plastic behaviour is governed by the evolution of the yield surface: 132 

 133 

 𝐹(𝛔", 𝛋) =
1

1 − 𝛼 ⋅ 3𝛼𝐼% +63𝐽& + 𝛽
(𝛋)〈𝜎<'()〉 − 𝛾〈−𝜎<'()〉? + 𝑓"̅(𝜅") (2) 

where: 134 

-  𝛽(𝛋) = − *̅!(-!)
*"̅(-")

	(1 − 𝛼) − (1 + 𝛼) ; 135 

- 𝛼 = */#$0%
&*/#$0%

 ; 136 

- 𝛾 = 1(%02!)
&2!0%

 ; 137 

- 𝜎<'() = max(𝜎<%, 𝜎<&, 𝜎<1) with 𝜎<3 principal effective stress; 138 

- 〈𝑥〉 = )4|)|
&

. 139 

- 𝑓"̅(𝜅"), 𝑓!̅(𝜅!) effective strength in compression and tension, respectively; 140 

- 𝐾" ratio of the second stress invariant on the tensile meridian to that on the compressive 141 

meridian at initial yield; 142 

- 𝑓F67 ratio between biaxial and uniaxial compressive strength. 143 

To improve the computational robustness, both tensile and compressive strengths, 𝑓8̅3𝜅8? with 144 

𝜒 = 𝑡, 𝑐, allow for hardening behaviour, while the softening response is obtained for the 145 
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nominal strength 𝑓83𝜅8? by introducing an appropriate damage law 𝑑83𝜅8? = 1 − *%9-%:
*%̅9-%:

, as 146 

shown in Figure 2. 147 

 148 

Figure 2. Uniaxial constitutive relationships in tension and compression. 149 

The global damage variable is obtained as: 150 

 151 

 𝑑(𝛔", 𝛋) = 1 − [1 − 𝑠!(𝛔")	𝑑"(𝜅")][1 − 𝑠"(𝛔")	𝑑!(𝜅!)] (3) 

where: 152 

- 𝑠!(𝛔") = 1 − 𝑤!𝑟(𝛔"); 153 

- 𝑠"(𝛔") = 1 − 𝑤"31 − 𝑟(𝛔")?;	154 

- 𝑟(𝛔") = P
0 𝑖𝑓	𝜎<% = 𝜎<& = 𝜎<1 = 0

∑ 〈=>&〉
'
&()

∑ |=>&|'
&()

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,	scalar parameter ranging from 0 (all principal 155 

stresses are negative) to 1 (all principal stresses are positive) expressing the state stress; 156 

- 𝑤! , 𝑤" are parameters governing the stiffness recovery from compression to tension and 157 

vice versa. 158 

Since as well-known softening behaviour may lead to mesh sensitivity, a fracture-energy 159 

approach has been adopted to maintain objectivity in the results. In particular, the stress-strain 160 

constitutive relationship is defined at element level starting from a stress-crack opening curve 161 

ft0
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st

kt

Nominal Effective

fc0
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kc(fc,max)
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sc
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based on fracture energy, assumed as material parameter and a characteristic length evaluated 162 

as a function of the element volume. 163 

The model has been extensively used to simulate the mechanical behaviour of concrete [32][33] 164 

and masonry [34],[35],[36]. Some inherent model characteristics, however, hinder its use to 165 

represent specific shear failure modes typical of multi-ring masonry arches. More specifically, 166 

the adopted damage-plasticity continuum description does not enable the definition of the shear 167 

strength independently from the tension and compression strengths. It can be seen by applying 168 

Eq. (2) assuming a pure shear 2D stress state (𝜎<) = 𝜎<@ = 𝜎<A = 𝜏)̅@ = 𝜏̅@A = 0, 𝜏)̅A = 𝜏̅) which 169 

leads to the yield function: 170 

 171 

 𝐹(𝜏̅, 𝛋) =
1

1 − 𝛼 ⋅ 3√3𝜏̅ + 𝛽
(𝛋)𝜏̅? + 𝑓"̅(𝜅") (4) 

 172 

Imposing 𝐹(𝜏̅, 𝛋) = 0 in Eq. (4), the effective shear strength 𝑓B̅(𝜿) can be evaluated as: 173 

 174 

 𝑓B̅(𝛋) =
1 − 𝛼

√3 + 𝛽(𝛋)
Y𝑓"̅(𝜅")Y (5) 

 175 

and, since 𝑟(𝛔") = 0.5 for pure shear, the damage parameter becomes: 176 

 177 

 𝑑(𝛋) = 1 − [1 − (1 − 0.5	𝑤!)	𝑑"(𝜅")][1 − (1 − 0.5	𝑤")	𝑑!(𝜅!)] (6) 

 178 

Assuming that damage in compression has not developed, 𝑑"(𝜅") = 0, the equivalent damage 179 

parameter becomes: 180 

 181 
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 𝑑(𝛋) = (1 − 0.5	𝑤")	𝑑!(𝜅!) (7) 

and 182 

 

𝑓B(𝛋) = 31 − 𝑑(𝛋)?𝑓B̅(𝛋)

= [1 − (1 − 0.5	𝑤")	𝑑!(𝜅!)]
1 − 𝛼

√3 + 𝛽(𝛋)
Y𝑓"̅(𝜅")Y 

(8) 

 183 

From Eq. (8), some considerations can be made on the shear behaviour of the model. Firstly, 184 

the initial shear strength (Eq. (5) with 𝛋 = 𝟎) is governed by the initial compression and tension 185 

strengths and the parameter 𝑓F67, which in practice is always in the range 1.12÷1.16. This 186 

confirms that it is not possible to define a specific shear strength independent from tension and 187 

compression strengths, as for instance a shear strength relating to the sliding of mortar joints, 188 

which is a typical shear failure mode for multi-ring masonry arches. A workaround to have 189 

some freedom in the definition of initial shear strength could be to calibrate 𝑓"̅(0) = 𝑓"7 190 

appropriately and independently from the observed compressive behaviour, while both 𝑓!7 and 191 

𝑓",'() would still be determined based on their specific failure modes.  192 

The second consideration is that the evolution of nominal shear strength depends on the 193 

parameter 𝑤" (see Eq. (8)) which is defined based on the expected cyclic response (stiffness 194 

recovery). A typical value, leading to complete stiffness recovery from tension to compression, 195 

is 𝑤" = 1.0 [37],[38]. Inserting this in Eq. (7), the expression for damage in pure shear in the 196 

absence of compression damage is obtained 𝑑(𝜅!) = 0.5	𝑑!(𝜅!). The conclusion is that the 197 

evolution of nominal shear strength is completely governed by damage in tension, without the 198 

possibility for specifying an alternative more realistic constitutive relationship. 199 

Finally, it is worth mentioning that the macroscale damage-plasticity continuum representation 200 

is not capable of distinguishing failure due to shear parallel to the mortar bed joint 𝜏A) from 201 

that due to shear orthogonal to the mortar bed joint 𝜏)A, as in the Cauchy solid these two stresses 202 
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are equal, and the yield surface cannot consider separate contributions. In reality, while the 203 

former failure mode is governed by sliding of the units on the weak planes represented by the 204 

mortar joints, the latter is governed by the internal rotation of bricks depending on their 205 

geometric shape ratio and brick interlocking, as schematically shown in [39]. To allow for these 206 

different phenomena enriched continuum representations, e.g. Cosserat continuum [39], would 207 

need to be employed. 208 

 209 

Figure 3. Shear stress and failure mode in a brick/block masonry sample under (a) pure shear parallel  210 

and (b) orthogonal to the bed joints.    211 

To overcome these intrinsic limitations of typical continuum damage-plasticity constitutive 212 

models, an alternative hybrid macroscale representation is proposed, in which, as outlined 213 

before, shear sliding along the continuous circumferential mortar joints of multi-ring arches is 214 

described by introducing nonlinear interfaces whose material characteristics are defined based 215 

on the calibration strategy described in Section 3. 216 

2.2  Constitutive model for nonlinear interface elements  217 

2D 16-noded interface elements [29] are employed for the mid-thickness circumferential 218 

interfaces using the plasticity-damage constitutive model proposed in [30]. According to this 219 

description, interface tractions and relative displacements describing the static and kinematics 220 

of the element, are composed of a normal component in the direction orthogonal to the interface 221 

and two shear components on the plane of the interface. The effective stresses are evaluated at 222 
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each Gauss point by solving a linear hardening elasto-plastic problem considering multi-223 

surface plasticity. Then, the nominal stresses are obtained by multiplying the effective stresses 224 

by the damage matrix D, containing the damage index in tension, shear and compression 225 

ranging from 0 (no-damage) to 1 (complete damage).  226 

Similarly to the solid elements, a standard decomposition between elastic and plastic 227 

deformations is considered and the concept of effective stress 	𝐬̅ = 𝐊73𝐞 − 𝐞𝐩? is introduced, 228 

where 𝐊7 = 𝑑𝑖𝑎𝑔{𝑘D 𝑘! 𝑘!} is the diagonal initial stiffness matrix with 𝑘D and  𝑘! the 229 

normal and shear stiffness, 𝐬̅ = [σ"			𝜏%" 		𝜏&" ],  𝐞 = [𝜀			𝛾%		𝛾&] and 𝐞𝐩 = [εE		𝛾E%		𝛾E&] the 230 

effective stress, the total strains and the plastic strains, respectively. The nominal stresses are 231 

evaluated from the effective stress according to:  232 

𝐬 = (𝐈1 − 𝐃)𝐬̅ = (𝐈1 − 𝐃)𝐊73𝐞 − 𝐞𝐩?       (9) 233 

where 𝐃 represents an anisotropic damage tensor, containing distinct variables for the normal 234 

(𝐷D) and the tangential (𝐷!) directions. A tri-linear plastic yield domain is considered to 235 

simulate the tensile (Mode I), shear (Mode II) and crushing (Model III) failure models. Three 236 

distinct plastic works, corresponding to each fracture mode rule the evolution of the damage 237 

variables. 238 

The plastic yield domain (Figure 4) is composed of three surfaces, 𝐹!, 𝐹", and 𝐹F respectively, 239 

associated with the tensile (mode I), compression and shear (mode II) failure modes, as defined 240 

by:  241 

 242 

FF(𝐬̅, 𝑞) = m𝜏%&<<<+ 𝜏&&<<< + 𝜎<	𝑡𝑎𝑛	(𝜙) − 𝑐′               (10a) 243 

F!(𝐬̅, 𝑞) = σ" − (𝑓! − 𝑞)                 (10b) 244 

F"(𝐬̅) = −σ" + 𝑓"                  (10c) 245 

 246 
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where 𝑓! and 𝑓" are the tensile and compression material strengths, 𝜙 the friction angle and 𝑞 a 247 

linear hardening variable, ranging from 0 (initial value) to the limit value 𝑞GH' = "
𝑡𝑎𝑛(𝜙)

− 𝑓!. 248 

Moreover, 𝑐I = 𝑐 if 𝑞 ≤ 𝑞GH' and 𝑐I = 𝑐 +	(𝑞 − 𝑞GH')𝑡𝑎𝑛(𝜙) if 𝑞 > 𝑞GH'. With the increase 249 

of 𝑞 the surface 𝐹! 	reduces until becoming a point when 𝑞 reaches the value 𝑞GH'. On the other 250 

hand, 𝐹F increases with the increase of 𝑞 (Figure 4). Two associated plastic flows are related to 251 

𝐹! and 𝐹", while a plastic potential 𝐺F in shear, obtained from 𝐹F substituting 𝜙 to 𝜙J, is 252 

considered to take into account the effects of masonry dilatancy. 253 

  254 

 255 

Figure 4. Yield surface of the material model for nonlinear interfaces.  256 

Following the solution of the plastic problem, the damage evolution is evaluated as a function 257 

of the three ratios 𝑟" = 𝑊E"/𝐺", 𝑟! = 𝑊E!/𝐺! and 𝑟F = 𝑊EF/𝐺F where 𝑊E" ,𝑊E!	𝑎𝑛𝑑	𝑊EF are 258 

the plastic works in compression, tension and shear, respectively, and 𝐺" , 𝐺! , 𝐺F the 259 

corresponding fracture energies. Finally, the nominal stresses are given by Eq. (8). More details 260 

on the model formulation can be found in [30]. 261 

 262 

3 CALIBRATION PROCEDURE  263 

The mechanical calibration of the proposed model requires the determination of several 264 

material parameters defining the linear and nonlinear behaviour of the 3D solid elements and 265 

!(𝜏*̅+ + 𝜏̅++) 
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the 2D interfaces, as described Sections 2.1 and 2.2, and reported in [15],[29] and [30]. For this 266 

reason, an objective and robust calibration procedure represents a fundamental step to 267 

guarantee the model accuracy and applicability.  268 

This work presents an original multi-objective calibration procedure based on the multiscale 269 

approach proposed in [15] which considers the representation of a structure under suitable 270 

boundary conditions according to two scales: mesoscale, indicated hereinafter by the 271 

superscript m, and macroscale, with the superscript M. The considered setup is called virtual 272 

test, and it is assumed there exists a mapping ℳ:	𝛺' → 𝛺K between the mesoscale and the 273 

macroscale domains. As elaborated subsequently, different to the procedure proposed in [15] 274 

which consisted of a single-objective optimisation algorithm, the newly proposed procedure 275 

leads to a multi-objective optimisation problem allowing for a set of optimum solutions (Pareto 276 

Front) which improves the robustness and accuracy of the model calibration procedure.   277 

According to the original formulation put forward in [15], stress power equivalence between 278 

the two scales is approximately enforced on the entire domain of the virtual test. The stress 279 

power equivalence reads: 280 

 x 𝛔𝐌:	𝛆̇𝐌𝑑𝛺K
M,

= x 𝛔𝐦:	𝛆̇𝐦𝑑𝛺'
O-

+ 𝜖̇ (11) 

where ϵ̇ represents the error rate due to the approximations induced by the specific macromodel 281 

utilised. Considering pseudo-static stress states, the equality between internal and external 282 

work implies: 283 

 

x 𝐭𝐌 ⋅ 𝐮̇𝐌𝑑𝛤K
P,

+x 𝐛𝐌 ⋅ 𝐮̇𝐌𝑑𝛺K
M,

= x 𝐭𝐦 ⋅ 𝐮̇𝐦𝑑𝛤'
P-

+x 𝐛𝐦 ⋅ 𝐮̇𝐦𝑑𝛺'
M-

+ 𝜖̇ 

(12) 

 284 
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where 𝒕 are the surface forces on the boundary Γ, while 𝒃 are volume forces. Neglecting the 285 

contribution of these latter and considering the chain rule of differentiation, Eq. (12) finally 286 

reads: 287 

  𝜖̇ = x �𝐭𝐌 ⋅ 𝐮̇𝐌 − 𝐭𝐦 ⋅ 𝐮̇𝐦
𝜕𝛤H'

𝜕𝛤HK
�𝑑𝛤HK

P,
 (13) 

Eq. (13) represents the error rate at time t due to the scale transition. In [15], a global non-288 

negative monotonically increasing error function was defined: 289 

 

𝜖(𝑡) = x[𝜖̇(𝜏)]&𝑑𝜏
!

7

= x�x �𝐭𝐌(𝜏) ⋅ 𝐮̇𝐌(𝜏) − 𝐭𝐦(𝜏)
P,

!

7

⋅ 𝐮̇𝐦(𝜏)
𝜕𝛤H'

𝜕𝛤HK
�𝑑𝛤HK�

&

𝑑𝜏 

(14) 

 290 

The extension of the original procedure, proposed in this paper, consists of partitioning the 291 

error defined as in Eq. (11) or in Eq. (13) as: 292 
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𝜖̇ = 𝜖%̇ + 𝜖&̇ +⋯

= x (𝛔𝐌:	𝛆̇𝐌 − 𝛔𝐦:	𝛆̇𝐦)𝑑𝛺%K
M),

+x (𝛔𝐌:	𝛆̇𝐌 − 𝛔𝐦:	𝛆̇𝐦)𝑑𝛺&K
M.,

+⋯	

(15) 

 

𝜖̇ = 𝜖%̇ + 𝜖&̇ +⋯

= x (𝐭𝐌 ⋅ 𝐮̇𝐌 − 𝐭𝐦 ⋅ 𝐮̇𝐦)𝑑𝛤%K
P),

+x (𝐭𝐌 ⋅ 𝐮̇𝐌 − 𝐭𝐦 ⋅ 𝐮̇𝐦)𝑑𝛤&K
P.,

+⋯ 

(16) 

The contributions 𝜖%̇, 𝜖&̇, … respectively refer to a volume partitioning in Eq. (15), with 293 

𝛺%
K|' + 𝛺&

K|' +⋯ = ΩK|', or load-based partitioning in Eq. (16). For the sake of simplicity, 294 

in Eq. (15), (16) it is assumed that there is not any modification of volumes and surfaces in the 295 

scale transition, i.e., 𝜕𝛤H
'

𝜕𝛤HK
� = 𝜕ΩH'

𝜕ΩHK
� = 1. 296 

In this case several error functions can be defined as: 297 

 298 

 𝜔H = x[ϵ̇H(𝜏)]&𝑑𝜏
Q

7

			𝑖 = 1,2, … (17) 

 299 

The solution of the calibration procedure is given by the solution of the multi-objective 300 

minimisation problem: 301 

 302 

 𝐩� = argmin
𝒑
[𝜔%, 𝜔&, … ]      (18) 
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The error partitioning defined in Eq. (15) or (16) has two consequences. The first consequence 303 

is that it allows defining the granularity of the homogenisation, avoiding the possible error 304 

compensations given by different parts of the structure. For instance, if the nonlinearities in the 305 

mesoscale model are concentrated in one small region of the domain, it is possible to use 306 

volume partitioning in Eq. (15) to focus the calibration of the parameters governing the 307 

nonlinear behaviour of the macroscale representation in that region, while controlling the 308 

elastic parameters by matching the response in the remaining domain. The second consequence 309 

is that the calibration problem is turned into a multi-objective optimisation problem, in contrast 310 

to the original formulation [15] which was a single-objective optimisation procedure. As shown 311 

in [40] and [41], using multiple objectives in a calibration problem may strongly increase the 312 

robustness of the procedure. In the numerical applications reported in Sections 4 and 5, two 313 

partitions of the global error are considered to simplify the interpretation of the optimisation 314 

results. However, the use of a larger number of partitions may be considered.     315 

The multi-objective optimisation problem is solved by means of a Non-Dominated Sorting 316 

Genetic Algorithm [42], implemented in TOSCA-TS software [43]. The optimum is given by 317 

the Pareto Front (PF), which represents the set of non-dominated solutions. A careful 318 

investigation on the features of the Pareto Front may highlight possible inconsistencies of the 319 

model to calibrate [40] and represents a key part of the calibration procedure towards the 320 

definition of the most representative solutions and a significant improvement of the original 321 

procedure presented in [15].   322 

Finally, it is worth noting that the calibration strategy considers the evolution of the stress 323 

power over time, and thus it cannot properly allow for the additional work contribution due to 324 

initial loading. Thus, it is preferable to avoid initial loading in the virtual test. However, this 325 

does not limit the applicability of the procedure, as multiple loads with independent loading 326 

paths can be introduced without any modifications in the methodology. 327 



17 
 

The proposed strategy enables an objective evaluation of the macroscale model parameters 328 

given the masonry mesoscale properties which can be obtained directly from simple in-situ or 329 

laboratory tests performed on masonry units and mortar (or tests performed on small 330 

assemblages of units such as triplets), following consolidated methodologies already reported 331 

in the literature [44]. 332 

4 NUMERICAL SIMULATIONS OF MEDIUM SPAN MASONRY ARCHES AND 333 

BRIDGES 334 

Two medium-span masonry arch specimens, one interacting with backfill as found in typical 335 

masonry arch bridges, are analysed by means of detailed mesoscale models [29]. The results 336 

of the mesoscale analyses are then used as reference solutions to highlight some limits of a 337 

typical continuum macroscale description, and to investigate the improved accuracy 338 

guaranteed by the proposed continuum-discrete hybrid representation for multi-ring masonry 339 

arches. 340 

4.1 Masonry arch and bridge specimens   341 

The first specimen (Figure 5a) consists of a 5 m span three-ring brick-masonry arch. The arch 342 

is characterised by 1250 mm rise, 330 mm thickness and 675 mm width. Adjacent rings with  343 

215×102.5×65 mm3 bricks are connected according to the stretcher method by continuous 344 

circumferential 10 mm thick mortar joints. The second specimen (confined arch) comprises a 345 

brick-masonry arch with the same geometrical characteristics of the bare arch interacting with 346 

backfill material, which, extends 2460 mm horizontally from the two supports of the arch and 347 

300 mm vertically above the crown, according to the experimental layout considered in [4], 348 

(Figure 5b). Full supports are assumed at the base of the arch and the backfill, while simple 349 

supports against the horizontal longitudinal displacements are applied on the two vertical sides 350 
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of the backfill. Moreover, the horizontal transverse displacements on the two lateral faces of 351 

the arch and backfill are restrained to represent a plane strain condition (Figure 5b). 352 

 (a) 353 

 (b) 354 

Figure 5. Geometrical characteristics and loading conditions for the (a) bare and (b) confined arch 355 

specimens. 356 

4.2 Mesoscale simulations 357 

In the numerical mesoscale description, 20-noded elastic solid elements are used to simulate 358 

the brick units and 16-noded interfaces [29] are employed to represent both the radial and the 359 

circumferential mortar joints. As the focus is on the 2D response, a mesh with only one element 360 

along the representative 1m width of the arch specimens is considered. The mesoscale 361 

description of the arch requires 240 3D solid elements, 403 2D interface elements and 6453 362 

nodes to which correspond 19359 DOFs. The backfill is modelled adopting a FE mesh with 363 

15-noded tetrahedral elements. Finally, nonlinear interface elements are utilised to model the 364 

physical interface connecting the arch to the backfill.  365 

Two masonry types have been considered in the analyses: a strong masonry to represent 366 

modern good quality brickwork, and a weak masonry to represent historical masonry [45]. The 367 

mesoscale mechanical parameters are reported in Tables 1 and 2. These parameters have been 368 
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selected based on previous numerical studies where the adopted mesoscale description for 369 

masonry arches and bridges was validated against experimental tests. In particular, the 370 

parameters of the strong masonry have been adopted in [27] and [28] to reproduce the response 371 

of a two-ring 3 m span arch, while the parameters for weak masonry were adopted in [47] in 372 

further validations against physical experiments. 373 

Following [28], an elasto-plastic material model with a modified Drucker-Prager yield criterion 374 

is employed for the backfill, assuming a Young's modulus 𝐸6 = 500𝑀𝑃𝑎, a cohesion cb = 375 

0.001MPa, a friction and a dilatancy coefficient 𝑡𝑎𝑛𝜙6 = 0.95  and 𝑡𝑎𝑛𝜓6 = 0.45. The 376 

nonlinear interfaces simulating the interaction between the arch and the backfill at the extrados 377 

of the arch have tensile strength 𝑓*H = 0.002𝑀𝑃𝑎, cohesion 𝑐*H = 0.0029𝑀𝑃𝑎, friction 378 

coefficient 𝑡𝑎𝑛𝜙*H = 0.6 and zero dilatancy.  379 

Table 1. Mechanical parameters of the bricks adopted in the analyses. 380 

Masonry 𝐸(	 

[MPa] 

𝜈 

	[−] 

𝑤	 

[kN/m3] 

Weak 6000 0.15 16 

Strong 16000 0.15 22 

 381 

Table 2. Interface mechanical parameters adopted in the analyses. 382 

Masonry 𝑘) 	− 	𝑘*	 

[N/mm3] 

𝑓* − 𝑓+ − 	𝑐	 

[MPa] 

𝐺* − 𝐺, 	− 𝐺+ 

[N/mm] 

𝑡𝑔𝜙 − 𝑡𝑔𝜙- 

Weak 60.0 - 30.0 0.05 - 9.1 - 0.085 0.02 - 0.125 - 5.0 0.5 - 0.0 

Strong 90.0 - 40.0 0.26 - 24.5 - 0.40 0.12 - 0.125 - 5.0 0.5 - 0.0 

 383 

In the numerical simulations of the bare arch, two initial vertical forces F0 = 22.5kN are applied 384 

at the quarter and three-quarter span and then maintained constant during the subsequent 385 
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loading stage, when a vertical force F is applied at quarter span and monotonically increased 386 

up to collapse. Both forces F0 and F are uniformly distributed on a patch area of 210×675mm2.  387 

When the arch interacts with the backfill, the initial load corresponds to the weight of the arch 388 

and the backfill both with a specific weight of 22kN/m3, while the force F is applied on the top 389 

surface of the backfill on a patch area of 400×675mm2 centred  at the quarter span of the arch 390 

(Figure 5b). To improve the numerical stability, nonlinear dynamic analysis is performed by 391 

imposing an initial velocity of 0.1mm/s at the loaded nodes, which is maintained constant 392 

during the simulation up to collapse. Zero viscous damping is considered in the analyses. 393 

Figure 6 shows the load-displacement curves of the bare arch (Figure 6a) and the arch 394 

interacting with backfill (Figure 6b), where the force F is plotted against the vertical deflection 395 

at the quarter span of the arch. In Figure 6a, the ultimate load evaluated through the limit-396 

analysis, based on the classic Heyman’s hypotheses and evaluated through an ad-hoc tool [48], 397 

is reported for comparison.  398 

A significant influence of the masonry typology on the global response is observed both in the 399 

case of the bare arch, where the ultimate load ranges from 31kN to 66kN, and for the arch with 400 

backfill, where the peak force varies from 74kN to 137kN. As expected, the initial stiffness of 401 

the bare arch is significantly affected by the masonry characteristics. Conversely, the confined 402 

arch shows almost the same initial stiffness for weak and strong masonry. Considering the 403 

specific weight of the strong masonry (Table 1), standard limit analysis provides a prediction 404 

of the peak-load (39.43kN) significantly lower compared to the strong-masonry model due to 405 

the hypothesis of no-tension material. At the same time, it provides an overestimated peak-load 406 

compared to the weak-masonry model because it neglects the sliding between the rings.  407 
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(a) 

 

(b) 

Figure 6. Load-deflection curves for the (a) bare arch and (a) the arch interacting with backfill.  408 

The failure mechanisms and the equivalent von-Mises stress contours of the two specimens, 409 

with both masonry typologies, are reported in Figure 7. Finally, Figure 8 shows the tensile 410 

damage contours at the last step of the analysis obtained by the different models. The failure 411 

mechanism of the models with weak masonry is characterised by shear sliding along the 412 

circumferential interfaces, mainly concentrated in the zone between the left support of the arch 413 

and the loading area at quarter span, and close to the three-quarter span of the arch. This 414 

mechanism prevents the activation of flexural plastic hinges. In the case of strong masonry, 415 

flexural failure is observed with the opening of four radial cracks in both the bare arch (Figure 416 

7) and the arch with backfill (Figure 7d). In the models with weak masonry, significant damage 417 

in the radial joints is observed close to the load. In the models with backfill, large portions at 418 

the extrados of the arch are affected by shear-sliding damage, both at the radial and 419 

circumferential interfaces. This damage develops also at the frame-backfill interfaces.  420 

In the following, the mesoscale solutions are assumed as the baseline results for the assessment 421 

of more efficient macroscale models and the proposed hybrid continuous-discrete descriptions 422 

for multi-ring arches. 423 

 424 
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 426 

 427 

(a) (b) 

 

(c) (d) 

          MPa 

 >1.00  1.00  0.833  0.677  0.500  0.333  0.167 
 

Figure 7. Ultimate deformed shape and von-Mises stress contours for the bare arch with (a) weak 428 

masonry and (c) strong masonry, and for the arch interacting with backfill with (b) weak masonry and 429 

(d) strong masonry. 430 

 (a)  (b) 431 

 (c)  (d) 432 

          MPa 

 >1.00  0.100  0.833  0.677  0.500  0.333  0.167 
 

Figure 8. Interface tensile damage contours for the bare arch with (a) weak masonry and (c) strong 433 

masonry, and for the arch interacting with backfill with (b) weak masonry and (d) strong masonry. 434 
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4.3 Macroscale simulations 435 

The two specimens presented in Section 4.1 have been analysed by a continuum macroscale 436 

description for masonry, using the isotropic damage-plasticity constitutive law described 437 

before. Since the model is developed employing quadratic elements, a relatively coarse mesh 438 

can be used to improve computational efficiency. More specifically, a mesh with two elements 439 

along the thickness of the arch with a length in the circumferential direction approximately 440 

equal to half the thickness of the arch has been considered in the numerical simulations. 441 

Moreover, as for the mesoscale model, only one solid element is arranged along the 1m width 442 

of the arch. As a result of this, the masonry arch is represented by 80 3D solid elements, 40 2D 443 

interface elements and 981 nodes corresponding to 2943 DOFs. It can be observed that the 444 

macro-modelling description allows a reduction of 85% of DOFs compared to the mesoscale 445 

description demonstrating the potential for considerable reduction in computational demands 446 

with the proposed model.  447 

The aim of this investigation is to explore the accuracy and potential limitations of a standard 448 

continuum isotropic macroscale approach to predict the response of multi-ring masonry arches, 449 

where the model material parameters are calibrated according to two alternative simplified and 450 

advanced procedures.   451 

4.3.1. Simplified calibration procedure 452 

In initial macroscale simulations, the material model parameters for masonry have been 453 

evaluated through a simplified calibration procedure considering the mesoscale material 454 

properties reported in Tables 1 and 2. The macroscopic Young's modulus for the masonry 455 

material 𝐸 has been determined by combining in series the stiffness of brick units with that of 456 

the mortar interfaces along the direction of the arch. The tensile strength and fracture energy 457 

𝑓! , 𝐺! and the compressive strength 𝑓" are assumed coincident to the corresponding values of 458 
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the mesoscale interfaces. The remaining parameters for the damage plasticity model are 459 

assumed equal to standard values used in previous studies for modelling masonry materials.  460 

More specifically: 461 

• The ratio between initial and maximum compressive strength 𝑓F@ =
*!$

*!,-01
  is assumed 462 

equal to 0.3  according to [32][33]Error! Reference source not found.; 463 

• The dilatancy angle	𝜓 is taken equal to 35° which is consistent with the value adopted 464 

for modelling quasi-brittle material as concrete [32][33] and corresponds 465 

approximately to the median of the values (ranging from 10° to 50°) typically used for 466 

masonry [34][35][36];  467 

• The eccentricity of the plastic flow potential is taken as 𝜖 = 0.1 to improve 468 

computational robustness as suggested in [37];  469 

• 𝜇 governing the relative influence of damage and plasticity in tension (𝜇 = 0 for fully 470 

damage material) is assumed equal to 0.2;  471 

• The plastic strain at maximum compression stress 𝑘",*" is taken as 0.002 following [47];  472 

• The ratio between the plastic strain at damage onset in compression and the plastic 473 

strain at maximum compression 𝜌" is considered equal to 1.0, as damage is assumed to 474 

develop in the softening branch of the stress-strain response. 475 

As noted in Section 2.1, preliminary numerical simulations showed a significant influence of 476 

the parameter governing the stiffness recovery in compression 𝑤" on the global response of the 477 

arch. Thus, two limit values (0,1) are considered, while parameter 𝑤! determining the stiffness 478 

recovery in tension is assumed as zero. The complete set of mechanical properties for the 479 

continuum macro-modelling description are reported in Table 3.  480 

 481 

 482 
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Table 3. Macroscopic mechanical parameters resulting from the simplified calibration procedure. 483 

𝐸	 

[MPa] 

𝜈 

[-] 

𝑓%!"	 

[-] 

𝑓%#	 

[-] 

𝜓	 

[o] 

𝜖	 

[-] 

𝐾$ 	 

[-] 

𝑓%&	 

[MPa] 

𝑓%$ 	 

[MPa] 

𝐺%&	 

[N/mm] 

𝜇	 

[-] 

𝑘$,($ 	 

[-] 

𝜌$ 	 

[-] 

𝑤$ 	 

[-] 

𝑤&	 

[-] 

weak masonry 

2571 0.15 1.16 0.3 35 0.1 0.66 0.05 9.1 0.02 0.2 2E-3 1.0 
0.0

1.0 
0.0 

strong masonry 

4747 0.15 1.16 0.3 35 0.1 0.66 0.26 24.0 0.12 0.2 2E-3 1.0 
0.0 

1.0 
0.0 

 484 
 485 

Figure 9 shows the load-displacement responses predicted by the macroscale descriptions 486 

which are compared against the reference mesoscale curves. In the main, the macromodels 487 

predict the initial stiffness of the masonry arches accurately, yet significantly overestimating 488 

the peak strengths without providing a realistic representation of the post-peak behaviour as 489 

given by the reference mesoscale models. Furthermore, very different macromodel curves are 490 

obtained depending on the adopted value for 𝑤". In particular, the largest differences between 491 

the mesoscale models and the corresponding macromodels are achieved when wc=1. It should 492 

be noted that this value is recommended by most software implementations [37][38] to model 493 

the cyclic response of quasi-brittle materials. 494 

In Figure 10, the influence of the dilatancy angle on the global response of the weak masonry 495 

bare arch is shown. Since this parameter governs the normal plastic deformation due to shear, 496 

it is expected that by increasing ψ the global behaviour becomes more ductile due to the 497 

confinement effects exerted by the surrounding elements. Given its high influence on the global 498 

behaviour, it is apparent that more accurate calibration is needed for such critical parameter. 499 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 9. Load-displacement curves for the (a) bare arch and (b) the confined arch with weak masonry 500 

and (c) the bare arch and (d) confined arch with strong masonry. 501 

 502 

Figure 10. Influence of dilatancy angle on the global response. 503 
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The deformed shapes at failure (at the last step of the analysis) with the tensile damage contour 504 

distributions are depicted in Figure 11. The models with strong masonry exhibit flexural failure 505 

(Figure 11c,d) which is in agreement with the failure mode predicted by the mesoscale models 506 

(Figure 7c,d) and mostly characterised by damage in tension concentrated at the intrados and 507 

extrados of the arch corresponding to the opening of plastic hinges.  The models with weak 508 

masonry show a mixed failure mechanism with a clear local shear in the arch with a marked 509 

punching shear effect developing underneath the area where the external load is applied and 510 

flexural damage at the extrados of the arch at the side opposite to the loaded area (Figure 11a,b). 511 

This is not predicted by the mesoscale model, which shows ring separation at failure (Figure 512 

7a,b). This main difference confirms the inability of the continuum isotropic damage-plasticity 513 

model to represent shear sliding between adjacent rings, which is a characteristic failure 514 

mechanism of multi-ring arches well captured by detailed mesoscale models. Moreover for the 515 

arches with strong masonry, the use of the macroscale continuum isotropic model leads to a 516 

significant overestimation of the ultimate strength and ductility, where the numerical 517 

predictions are affected significantly by some model parameters (e.g. wc and ψ) which cannot 518 

be determined via simplified calibrations. 519 

4.3.2. Advanced calibration procedure 520 

To improve the accuracy of the macroscale predictions, the advanced calibration procedure 521 

described in Section 3 has been applied to determine the macromodel material parameters, 522 

focusing first on the specimens with weak masonry where the initial macroscale predictions, 523 

based on a simplified calibration of the model material parameters, were not in good agreement 524 

with the mesoscale results. 525 

The bare arch in Figure 5a, subjected to two constant initial forces at the quarter span (L/4) and 526 

three-quarter span (3/4L), both equal to 16kN, and to a patch load applied at L/4 and increased 527 

up to collapse, is used as the virtual test for the calibration of the model parameters. The specific 528 
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loading condition ignoring the self-weight contribution of masonry has been chosen to activate 529 

both flexural damage and shear sliding between adjacent the rings, thus providing suitable 530 

information to the optimisation algorithm. 531 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

          MPa 

 >1.0  1.00  0.833  0.677  0.500  0.333  0.167  0.00 

Figure 11. Deformed shape and damage in tension contours at failure for the weak bare (a) and 

confined (b) arches, and for strong bare (c) and confined (d) arch specimens. 

 532 

It should be pointed out that the selection of appropriate virtual tests which should activate the 533 

most critical failure modes of the investigated masonry specimens is the critical step for a 534 

successful application of the proposed calibration strategy. For instance, in the case of multi-535 

ring arches, the failure mechanism of the virtual test should be characterised by flexural 536 

damage, namely the activation of one or more plastic hinges and shear sliding along the rings. 537 

In the alternative case, if it is not possible to identify a virtual test with these characteristics, 538 

multiple virtual tests may be considered, and the multi-objective optimisation procedure should 539 

consider error functions for each of these.   540 

Some parametric analyses, not included in the paper for the sake of brevity, have been 541 

performed to identify the parameters that affect most significantly the arch response. As a result 542 

of these parametric analyses, and to limit the computing time associated with the model 543 
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calibration, six model parameters are considered as unknowns in the optimisation procedure: 544 

the Young modulus (E), the tensile strength (ft) and fracture energy (Gt), the ratio (𝑓F@) between 545 

the yielding and ultimate compression strength, the parameter governing stiffness recovery 546 

from tension to compression (wc, see Section 2.1) and the angle of dilatancy (y). The range for 547 

each parameter is reported in the Table 4. The remaining parameters of the solid elements are 548 

fixed equal to the default values in Table 3.  549 

A load-based partitioning strategy is used for the solution of the calibration problem based on 550 

two objectives as defined in Eqs (16),      (18) with 𝜔%, 𝜔& the errors due to the loads at L/4 551 

(F1) and 3/4L (F2), normalised with respect to a reference value with the same units (final 552 

squared strain energy, divided by the time interval of the virtual test, [J2/s]). 553 

The evaluated PF (Figure 12) appears discontinuous; the minimum of 𝜔& (4 ⋅ 1001) is reached 554 

for 𝜔% = 0.10. Conversely, the minimum of 𝜔% (6 ⋅ 100S) corresponds to a much larger value 555 

𝜔& = 1.19. This implies that calibrating the response on the force-displacement curve of the 556 

variable load at L/4 (minimum 𝜔%) may entail significant error in the total energy.  557 

In Error! Reference source not found.a, the solutions on the PF are shown using the 558 

normalised errors 𝜔%∗ = (𝜔% − 𝜔%'HD)/(𝜔%'() − 𝜔%'HD) and 𝜔&∗ = (𝜔& − 𝜔&'HD)/(𝜔&'() −559 

𝜔&'HD) ranging from 0 to 1. In the following, the solution corresponding to the minimum global 560 

error 𝜔'HD∗ = 𝑚𝑖𝑛 �6𝜔%∗& + 𝜔&∗&  = 0.078, highlighted in the graph, is considered as the 561 

reference solution.  562 

Error! Reference source not found.b shows the displacement d1 at L/4 against the load F1 563 

associated with all the solutions of the PF compared to the response of the mesoscale model. 564 

Three families of curves can be observed: the curves that minimise the error related to F1, 565 

which fit very well the response of the mesoscale; the curves that minimise 𝜔&, i.e., the error 566 

related to F2, which provide a significant overestimation of the peak-strength of the arch (from 567 

35 kN to 45 kN) and the curves that minimise the global dimensionless error allowing for the 568 
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two objectives of the optimisation procedure. These solutions and in particular the solution 569 

associated with the minimum error provide a good prediction in terms of initial stiffness and 570 

peak load, but they show some differences regarding the post-peak stage. In Error! Reference 571 

source not found.c, the vertical displacement at three-quarter d2 span is plotted against the 572 

load F1. It is possible to see that in no case the final uplift shown by the mesoscale model is 573 

attained by the macroscale models of the PF. However, the dashed line, identifying the 574 

compromise solution of the multi-objective optimisation, shows a general good agreement with 575 

the mesoscale curve. 576 

It is important to point out that even when the minimum error solution provides a satisfactory 577 

approximation of the load-displacement curves, it can lead to a failure mechanism inconsistent 578 

with that predicted by the virtual test. Therefore, a comparison in terms of failure mechanism 579 

is crucial to choose the best solution from the PF.  580 

The ultimate deformed shapes corresponding to the minimum error solution and the two ends 581 

of the PF, each providing the minimum of one error function, are reported in Figure 12d. It can 582 

be noticed that the solution corresponding to w*2,min (best fit of the load-displacement at the 583 

loaded point) does not indicate shear failure of the arch, leading to a wrong failure mode 584 

prediction. 585 

Conversely, the two other solutions predict different shear failure mechanisms. In particular, 586 

the minimum error solution (w*min) represents well the failure mode of the virtual test by 587 

predicting circumferential shear deformations, in accordance with the shear sliding among 588 

adjacent rings determined by the mesoscale model.    589 

In Table 4, the calibrated parameters for the minimum error solution are shown, together with 590 

the range identified by the solutions in its surroundings (𝜔∗ < 2.5𝜔'HD∗ ). These latter values 591 

allow investigating the sensitivity of the calibrated response to each parameter, compared to 592 

the initial variation range. Analysing the results, all parameters seem rather univocally 593 
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determined as a significant reduction of the ranges is observed, with the only exception of 	594 

𝑓F@. It is interesting to see that the calibrated wc is close to zero, unlikely the typical assumption 595 

considered in the simplified calibration. 596 

 

(a) 

 

(b)  

 597 

 

w*2,min                                                               

w*1,min 

w*min 
(c) (d)  

Figure 12. Calibration of the continuum weak model: (a) Pareto Front solutions; load-displacement curve at  598 

(b) L/4 and  (c) 3/4L; (d) failure mechanisms of the minimum error and PF solutions.  599 

The results of the model calibration are validated by analysing the confined and bare arches 600 

subjected to the loading condition described in the initial mesoscale simulation in Section 4.2. 601 

Moreover, two additional load conditions for the bare arch are investigated in which the arch 602 

is subjected to a concentrated force alternatively applied at the mid span and at one eight span 603 

w*2 

w
* 1 

Mesoscale model 
Minimum error solution 

d1 [mm] 

d1  
d2  
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without initial symmetric forces. The load-displacement curves for the weak masonry models 604 

are shown in Figure 13, where the continuum calibrated model is compared against the 605 

mesoscale model and the continuum model with simplified calibration procedure for wc=0.  606 

Table 4: Input parameters and results of the calibration procedure for the continuum model (weak masonry)   607 

	Parameter Unit 

Initial range 
Solutions with  

𝜔∗ ≤ 2.5𝜔𝑚𝑖𝑛∗  
Minimum 

error 

Solution   
Lower   

bound 

Upper   

bound 

Upper   

bound 

Upper   

bound 

𝐸 MPa 1000  6000 2050 2550 2500 

𝜓 O 0  90 18 26 25 

𝑓& N/mm 0.01  1.0 0.024 0.041 0.025 

𝐺& N/mm 0.001 0.5 0.021 0.028 0.022 

𝑓%# - 0.01 1.0 0.40 0.83 0.72 

wc - 0.0 1.0 0.00 0.16 0.02 

 608 

Generally, the model calibrated by the advanced procedure exhibits a much-improved 609 

agreement with the mesoscale model. However, in the case of the bare arch loaded at the 610 

quarter-span, the continuum model shows a premature shear failure which leads to a significant 611 

underestimation of the maximum load and displacement capacity of the arch (Figure 13c). In 612 

the case of bare arch loaded at the mid span (Figure 13a), the macromodel calibrated by the 613 

advanced procedure underestimates the peak-load value. It provides, however, an adequate 614 

prediction of the residual strength and pre/post peak response. Finally, a satisfactory 615 

comparison can be observed in the cases of bare arch loaded at one eighth span and the confined 616 

arch specimen (Figure 13b and 13d).  617 

The failure mechanism of the bare arch, displayed in Figure 14a, is characterised by an evident 618 

punching effect due to the shear failure of the element of the arch underneath the load, which 619 
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is not observed in Figure 7a. On the contrary, the failure mechanism of the confined arch 620 

(Figure 14b) is rather consistent with the mechanism obtained by the mesoscale model (Figure 621 

7b). The sliding between adjacent rings is represented by shear failure of the solid elements; 622 

however, unlikely the continuum model calibrated by means of the simplified procedure 623 

(Figure 11b), the punching effect is not observed.      624 

  

(a) (b) 

  

(c) (d) 

Figure 13. Load-displacement capacity curves for the bare arch loaded with a concentrated force at (a) 625 

mid-span, (b) one eight span,  (c) one quarter span with initial forces, and  (d) for the confined arch.  626 
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(a) 
(b) 

          MPa 

 >1.0  1.00  0.833  0.677  0.500  0.333  0.167  0.00 
 

Figure 14. Failure mechanism and damage in tension contours predicted by the calibrated continuum 630 

model for the (a) bare arch and (b) the confined arch. 631 

In conclusion, it can be affirmed that the rigorous calibration procedure allows for a substantial 632 

improvement of the continuum model predictions in representing the confined arch specimen. 633 

However, the calibrated continuum model still shows evident limits in simulating the bare arch 634 

response, as it provides an unrealistic failure mode underestimating both the global strength 635 

and ductility of the arch.       636 

It is worth pointing out that despite the fact that the adopted calibration strategy is based on the 637 

use of the entire arch specimen for the virtual test, its applicability is still computationally 638 

efficient as it applied on a simple 2D strip model neglecting the backfill and its interaction with 639 

the arch. 640 

4.4 Hybrid model simulations 641 

In this section, the proposed hybrid model described in Section 2 is employed to simulate the 642 

bare and the confined arch of Figure 5. The same mesh with quadratic solid elements 643 

considered in the previous macroscale continuum simulations has been employed, but 644 

circumferential nonlinear interfaces (Section 2) have also been introduced to connect each pair 645 

of adjacent solid elements along the thickness of the arch according to the proposed hybrid 646 

macroscale representation (Figure 1b). The model material parameters of the solid elements 647 

and the circumferential interfaces are calibrated through the rigorous procedure described in 648 

Section 3 and applied before to determine the material properties for the continuum macroscale 649 
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model. Nine model parameters are calibrated by the optimisation procedure. Namely, the same 650 

six parameters for the solid elements, already considered in Section 4.3.2 with the addition of 651 

three parameters characterising the interfaces: the shear stiffness (𝑘!K), the cohesion (cM) and 652 

the shear fracture energy (𝐺FK) which have been identified as the most significant interface 653 

parameters affecting the response of multi-ring arches [49]. The remaining interface parameters 654 

are assumed either coincident to the parameters of the mesoscale model (𝑓" , 𝐺" , 𝑡𝑔𝜙, 𝑡𝑔𝜙J) or 655 

proportional to the parameters assumed as unknown in the optimisation (𝑘DK , 𝑓!K , 𝐺!K) as 656 

indicated below: 657 

 

𝑘DK = 𝑘!K ⋅
𝑘D'

𝑘!'
 

𝑓!K = 𝑐K ⋅
𝑓!'

𝑐'  

𝐺!K = 𝐺FK ⋅
𝐺!'

𝐺F'
 

(19) 

where the superscripts M and m refer to the macroscale and mesoscale representation, 658 

respectively. 659 

In the following, the interface stiffness and cohesion parameters are represented by the non-660 

dimensional coefficients:  661 

- 𝑘∗ = 2𝑘!K𝑡(1 + 𝜈)/𝐸, where 𝐸 and 𝜈 are the Young modulus and the Poisson's 662 

coefficient of the solid elements and 𝑡 a fictitious thickness equal to 1 mm. 663 

-  𝑐∗ = 𝑐K/𝑓BU , where 𝑓BU  is the initial shear strength of the solid elements evaluated 664 

through Eq. (5) with 𝛋 = 𝟎). 665 

The variation ranges of the unknown parameters are reported in Table 5. The calibration was 666 

performed for both weak and strong masonry by using the same procedures and objective 667 

functions as for the continuum model. 668 
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Figure 15a displays the solutions belonging to the PF (𝜔%∗ 	- 𝜔&∗) for the calibration of the weak 669 

masonry model, while the corresponding load-displacement curves are reported in Figure 670 

15b,c. Comparing these results to the solutions of the optimisation for the continuum model in 671 

Section 5.1, it can be observed that:  672 

- The solutions of the PF are uniformly distributed in the space ω1-ω2 and are 673 

associated with much lower errors. 674 

- The load-displacement curves are less dispersed and much closer to the mesoscale 675 

predictions.   676 

These remarks confirm that the further free parameters included in the optimisation algorithm 677 

(𝑘∗, 𝑐∗, 𝐺!K) effectively improve the quality of the results. In this case, the absolute minimum 678 

of 𝜔& (4.88 ⋅ 1001) is reached for a value of 𝜔% = 4.97 ⋅ 1001 while the minimum of 𝜔% 679 

(4.66 ⋅ 100V) corresponds to 𝜔& = 7.57 ⋅ 1001. Following the procedure in Section 5.1, the 680 

two errors are normalised leading to a minimum solution error 𝜔W3X∗ = 𝑚𝑖𝑛 ¥6𝜔%∗& + 𝜔&∗&¦ =681 

0.2284 which corresponds to the set of model parameters reported in Table 5.  682 

Contrary to what is observed in the case of the continuous model (Figure 12d), here the 683 

minimum and PF solutions provide the same failure mechanism (Figure 15d), confirming the 684 

ability of the hybrid model to represent the sliding mechanism among adjacent rings.  685 

The PF for the model with strong masonry is shown in Figure 16a. The minimum error of 𝜔& =686 

0.011 is reached for 𝜔% = 0.0056, while the minimum error 𝜔% = 0.0012	is associated with 687 

𝜔& = 0.337. The minimum solution error corresponds to 𝜔'HD∗ = 0.3207, (A in Figure 16a) 688 

and the matching set of parameters are indicated in Table 5. It can be noticed that the latter 689 

solution is characterised by a low value of the dimensionless cohesion (c*=0.69). This 690 

circumstance may potentially lead to a response characterised by sliding between the ring 691 

which is in disagreement with the mesoscale results. For this reason, another solution (B in 692 
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Figure 16a), corresponding to 𝜔Y∗ = 0.4673, is also considered. This solution has been chosen 693 

as the solution with minimum error among those characterised by 𝑐∗ > 1.  694 

The response curves of the PF solutions are shown in Figure 16b and 16c with the two reference 695 

solutions reported with dashed lines. Two families of curves, which tend to minimise the two 696 

objectives separately are visible. Although the PF is less regular than the previous case, the 697 

selected solutions confirm a good match with the mesoscale curves. Finally, Figure 16d depicts 698 

the failure mechanisms corresponding to the two selected solutions, A and B. It is observed 699 

that the two failure mechanisms are relatively consistent with each other. However, the failure 700 

mechanism associated with solution A comprises sliding along the circumferential interface, 701 

evidencing ring separation not observed in the virtual test. On the contrary, Solution B provides 702 

a better approximation of the flexural failure mechanism of the virtual test, thus is corresponds 703 

to the best solution to calibrate the macroscale hybrid description for the strong-masonry arch.  704 

Analogously to the procedure for the continuum model in Section 4.3.2, the results of the 705 

calibration are validated considering the bare and confined specimens, plus two further models 706 

representing the bare arch subjected to a concentrated force at mid span and at one-eighth span. 707 

The load-displacement curves of the hybrid model are displayed in Figure 17, where they are 708 

compared against the mesoscale curves and the predictions of the continuum macroscale model 709 

calibrated by the advanced procedure in Section 4.3.2. 710 

The results of the hybrid macromodel are in a good agreement with those obtained by the 711 

mesoscale model confirming a generally improved prediction compared to the results provided 712 

by the continuum macromodel. The only exception is represented by the load condition with 713 

the force at L/8, where the continuum model provides a better prediction of the peak-loads. 714 

However, the curve of the hybrid model, also in this case, is more consistent to the mesoscale 715 

curve in the pre- and post-peak stages. It appears that the presence of the backfill reduces the 716 

differences between the results, with mesoscale and hybrid model curves almost coincident. 717 
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 718 

    719 

(a)                                                                                (b) 720 

 

w*2,min                                                               

w*1,min 

w*min 
(c) (d) 

Figure 15. Calibration for the weak masonry model: Pareto Front solutions (a); capacity curves at one 721 

quarter (b) and three quarter span (c); failure mechanisms of the minimum error solution and the 722 

frontier solutions of the PF (d).  723 
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(a)                                                                                (b) 729 

 

 
Solution A 

Solution B 
(c) (d) 

 730 
Figure 16. Calibration for the strong masonry model: Pareto Front solutions (a); capacity curves at one 731 

quarter (b) and three quarter span (c); failure mechanisms of the two selected solutions A and B (d).  732 
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Table 5: Input parameters and results of the calibration procedures for the hybrid model. 740 

	Parameter Unit 

Initial range Minimum error 

solution 

weak masonry   

Minimum error solutions 

strong masonry  

Lower   

bound 

Upper   

bound 
Solution A Solution B 

𝐸 MPa 1000  6000 2350 4700 4200 
𝜓 O 0  90 63 23 59 
𝑓& N/mm 0.01 1.0 0.083 0.164 0.137 
𝐺& N/mm 0.001 0.5 0.089 0.042 0.03 
𝑓%# - 0.01 1.0 0.79 0.71 0.68 
wc - 0.0 1.0 0.10 0.48 0.00 
𝑘∗ - 0.01 1.5 0.01 0.01 0.04 
𝑐∗ - 0.0 2.0 0.62 0.69 1.44 
𝐺*1 N/mm 0.01 0.25 0.096 0.167 0.213 

  
(a) (b) 

  
(c) (d) 

Figure 17. Weak masonry model: load-displacement capacity curve for the bare arch loaded with a 741 

concentrated force at (a) mid-span, (b) at one eight span and (c) at one quarter span with initial forces, 742 

and (d) for the arch interacting with backfill loaded at one quarter span.  743 
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The failure modes of the bare arch and the arch interacting with backfill are displayed in Figure 744 

18, where the von-Mises equivalent stress distribution in the solid elements and the damage 745 

contours on the interface elements are also shown. A good agreement between the failure 746 

modes of the hybrid model and those obtained by the mesoscale model, both in terms of stress 747 

distribution (Figure 7) and damage index distribution along the ring-to-ring and arch-to-748 

backfill interfaces (Figure 8). Importantly, the ring sliding mechanism, which could not be 749 

predicted by the continuum model, is well described by the proposed hybrid macroscale 750 

representation. 751 

  

(a1) (b1) 

  

(a2) (b2) 

  

(a3) (b3) 
 752 

 Colour map for stress (MPa) and damage index (-)  

 >1.0  1.00  0.833  0.677  0.500  0.333  0.167  0.00 
 

Figure 18. Weak masonry model: deformed shape at collapse for the (a) bare arch and (b) the arch 753 

interacting with backfill loaded at quarter span showing (a1, b1) von Mises stresses, (a2, b2) damage in 754 

tension contours for the solid elements and (a3, b3) the interface elements. 755 

 756 

  757 
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The results of the calibration analyses in term of load-displacement curves and failure 758 

mechanisms for the strong masonry model are shown in Figure 19 and in Figure 20, 759 

respectively. The curves obtained using the solution B parameters indicate a good agreement 760 

with the mesoscale results for all the considered models and loading conditions. Conversely, 761 

solution A leads to a significant underestimation of the ultimate strength of the structure in the 762 

cases of the bare arch loaded at L/2 (Figure 19a) and the arch interacting with backfill (Figure 763 

19d). The failure mechanisms obtained by the macromodel calibrated with the solution B 764 

(Figure 20) result in a good agreement with those obtained by the mesoscale model (Figure 7). 765 

In conclusion, it can be stated that the advanced calibration procedure leads to a realistic set of 766 

mechanical parameters to describe the global response of the arches, including strong masonry 767 

arches, under a wide range of boundary and loading conditions. The adopted approach to select 768 

the reference solution from the results of the multi-objective optimisation procedure, based on 769 

the analysis of the Pareto Front, appears to be sufficiently accurate and robust. However, the 770 

circumstance by which the minimum error solution (A) provided less satisfactory results 771 

compared to those obtained by another solution belonging to the PF solution (solution B) 772 

denotes that further improvements to the selection strategy from the PF and/or the definition 773 

of the multi-objective optimisation problem may be needed. This open issue will be 774 

investigated by the authors in future studies. 775 
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(a) 

  

(b) 

  

(c) 

  

(d) 

Figure 19. Load-displacement curves for the strong masonry bare arch loaded at mid-span (a), one eight 776 

span (b), one quarter span (c) and for the arch interacting with backfill loaded at quarter span (d). 777 
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(a1) (b1) 

 
 

(a2) (b2) 

  

(a3) (b3) 
 788 

 Colour map for stress (MPa) and damage index (-)  

 >1.0  1.00  0.833  0.677  0.500  0.333  0.167  0.00 
 

Figure 20. Strong masonry model: deformed shape at collapse for (a) the bare arch and (b) the arch 789 

interacting with backfill loaded at quarter span showing (a1, b1) von Mises stresses, (a2, b2) damage in 790 

tension contours for the solid elements and (a3, b3) the interface elements.  791 

 792 

5 NUMERICAL SIMULATIONS OF LONG SPAN MASONRY ARCHES AND 793 

BRIDGES 794 

In this section, the hybrid model and the advanced calibration procedure are employed to 795 

analyse a masonry arch with seven rings and a 16 m span. The numerical results, obtained using 796 

ADAPTIC [31], enable investigating the computational efficiency of the proposed macroscale 797 

strategy and the improved accuracy due to the use of various nonlinear circumferential interface 798 

layers for modelling large masonry arches typical of realistic masonry bridges. Similar to the 799 
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discussion in Section 4, the performance of the macroscale hybrid description is assessed based 800 

on load-displacements curves and predicted failure mechanisms which are compared against 801 

computationally expensive mesoscale simulations. 802 

The considered masonry arch specimen with stretcher bond is characterised by a 770 mm 803 

thickness and a span-to-rise ratio of 4.0. The considered material properties for the masonry 804 

constituents are those for the weak masonry material reported in Tables 1 and 2. Figure 21 805 

shows the geometrical layout of the mesoscale model for the specimen with a representative 806 

1 m width. The vertical loads are applied at the top of the backfill at quarter span of the arch, 807 

assuming the same boundary conditions described in Section 4, where the bases of the arch and 808 

the backfill are fixed, and the vertical ends of the backfill are restrained against horizontal 809 

displacement. The mesoscale mesh for the arch with only one element along the width 810 

comprises 35672 nodes with a total of 106680 DOFs.   811 

The virtual test requires loading the bare arch by the masonry self-weight and two constant 812 

symmetric forces of 22 kN applied at one-quarter and three-quarter span, after which an 813 

increasing force is applied at one-quarter span until the failure of the arch. Three hybrid 814 

macroscale models are adopted, utilising one, two and three circumferential interface layers 815 

equally spaced along the thickness of the arch. Table 6 reports the number of elements and 816 

DOFs for the three arch macromodels (1-Interface, 2-Interface and 3-Interface), which require 817 

3.3%, 7.7% and 10.3% of the total DOFs of the detailed mesoscale model.  818 

The macroscale mechanical parameters resulting from the calibration procedure are 819 

summarised in Table 7. The minimum error solution is considered for each model, while the 820 

parameters corresponding to the two ends of the Pareto Front are also reported only for the 821 

basic mesh with one circumferential interface layer (1-Interface). It can be observed that the 822 

model parameters for the three solutions of the 1-Interface model are very close highlighting 823 

the robustness of the calibration algorithm. 824 

     825 

 826 

Figure 21. Large-span arch bridge specimen. 827 
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Table 6: Characteristics of the three macroscale hybrid meshes. 828 

1 
In

te
rf

ac
e 

 

 

nodes  1244 
solid FE 204 
interfaces  102 
DoFs 3624 

2-
In

te
rf

ac
e  

 

nodes  2804 
solid FE 231 
interfaces  154 
DoFs 8244 

3-
In

te
rf

ac
e  

 

nodes  3740 
solid FE 308 
interfaces  231 
DoFs 10992 

 829 
Table 7: Input parameters and results of the calibration procedures for the hybrid model. 830 

	Parameter Unit 
1-Interface 2-Interface 3-Interface 

𝜔2,45)∗  𝜔45)∗  𝜔6,45)∗  𝜔45)∗  𝜔45)∗  

𝐸 MPa 2500 2500 2500 2600 2450 

𝜓 O 53 54 54 56 55 

𝑓& N/mm 0.053 0.036 0.053 0.051 0.049 

𝐺& N/mm 0.046 0.036 0.036 0.029 0.076 

𝑓%# - 0.11 0.17 0.18 0.93 0.43 

wc - 0.92 0.94 0.94 0.88 0.93 

𝑘∗ - 0.01 0.02 0.02 0.01 0.01 

𝑐∗ - 1.65 1.64 1.63 1.52 1.71 

𝐺*1 N/mm 0.221 0.250 0.217 0.166 0.168 

 831 

The load-displacement capacity curves and the deformed shape at failure predicted by 832 

macroscale 1-Interface model are shown in Figures 22a-b, where these are compared against 833 

the mesoscale results. Figure 22a presents the response curves of the virtual test used for model 834 

calibration, whereas Figure 22b shows the results for the arch confined by backfill (bridge 835 

specimen) which have been considered for model validation. In the graphs, the response curves 836 
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of the continuum model without circumferential interface layers and calibrated by the empirical 837 

procedure described in Section 4.1 are also reported for comparison.   838 

In the case of the bare arch, the response obtained using the proposed macroscale hybrid model 839 

is very close to the mesoscale results confirming the effectiveness of the developed calibration 840 

procedure. Conversely, the continuum model leads to a significant overestimation of the arch 841 

load-bearing capacity. The failure mechanisms of the macroscale and mesoscale descriptions 842 

for the bare arch are shown in Figure 23, where a good agreement can be observed. Both models 843 

predict a mixed failure mechanism characterised by the activation of three flexural plastic 844 

hinges and ring sliding in the two portions of the arch close to the skewbacks (Figures 23a and 845 

23c). The damage contours at the mesoscale interfaces and those at the circumferential 846 

interface layer of the macroscale 1-Interface model are shown in Figures 23b and 23d, 847 

respectively. Comparing the load-displacement curves of the arch interacting with backfill 848 

(Figure 22b), it is observed that the hybrid model predicts well the response of the system until 849 

about 10 mm. For larger vertical displacements, the mesoscale model shows softening 850 

behaviour, though the response predicted by the macroscale 1-Interface models with selected 851 

calibrated material properties exhibits slight hardening. Such discrepancy translates to some 852 

differences in the characteristics of the failure mode shown by the deformed shapes and stress 853 

contours in Figure 24. More specifically, the mesoscale model predicts distributed ring sliding 854 

leading to local shear failure associated with a drastic reduction of the arch resistance. On the 855 

other hand, the macroscale model shows sliding and flexural plastic deformations on the two 856 

continuum portions of the FE mesh separated by the single damaged circumferential interface 857 

layer which is not associated with sudden degradation of the load-bearing capacity of the arch. 858 

 859 

(a) (b) 860 
Figure 22. Load-displacement capacity curves for the (a) bare arch (a) and (b) arch with backfill. 861 
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(a)  (b) 862 

(c) (d) 863 
Colour map for stress (MPa) and damage index (-)  

 >1.0  1.00  0.833  0.677  0.500  0.333  0.167  0.00 
 

Figure 23. Ultimate deformed shapes of the bar arch (amplificated 50 times) predicted by the (a, b) 864 

mesoscale model and (c, d) the macroscale model with (a,c) von-Mises stresses in the solid elements 865 

and (b,d) damage in tension contours on the nonlinear interfaces. 866 

 867 

(a) 868 

(b) 869 

(c) (d) 870 
Colour map for stress (MPa) and damage index (-)  

 >1.0  1.00  0.833  0.677  0.500  0.333  0.167  0.00 
 

Figure 24. Ultimate deformed shape (amplificated 30 times) of the arch interacting with backfill with 871 

von-Mises stresses in the solid elements of the (a) mesoscale model and (b) the macroscale model; and 872 

damage in tension contours at the (c) mesoscale interfaces and (d) the nonlinear interfaces of the 873 

macroscale hybrid model. 874 
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Figure 25 shows the load-displacement mesoscale and macroscale curves for the bare arch and 875 

the bridge specimen. It can be seen that each calibrated macroscale model reproduces very well 876 

the arch response as determined by the baseline mesoscale model (Figure 25a). Furthermore, 877 

the models with two or three circumferential interface layers (2-Interface and 3-Interface 878 

models) lead to improved predictions in terms of ultimate load and post-peak response 879 

compared to the model with a single interface layer.     880 

 881 

 (a)  (b) 882 
Figure 25. Load-displacement curves of the hybrid models with single and multiple interfaces: (a) bare 883 

arch virtual test and (b) arch bridge specimen.  884 

The failure mechanisms depicted in Figure 26 confirm that the use of multiple interface layers 885 

allows a more realistic representation of the distributed shear-sliding failure mode, where no 886 

notable differences between 2-Interface and 3-Interface models can be observed. 887 

Finally, the efficiency of the proposed hybrid modelling strategy is evaluated against the 888 

mesoscale results. In the case of the bare arch, the computing times required by the macroscale 889 

1-Interface, 2-Interface and 3-Interface models are respectively 0.55%, 0.17% and 0.22% of 890 

the wall clock time required by the mesoscale model (Figure 27a). In the case of the arch bridge 891 

specimen, the corresponding computing times of the hybrid models are respectively 3.4%, 892 

9.8% and 10.0% of the mesoscale time. These results confirm the much enhanced efficiency 893 

guaranteed by the proposed modelling strategy for realistic simulations of large arch bridges, 894 

where the use of the mesoscale modelling approach may become computationally prohibitive. 895 

In the main, the introduction of multiple interface layers does not lead to a significant increase 896 

of the computing time which is, for the analysed cases, always less than 10% of that required 897 

by the mesoscale model. 898 
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(a)  (b) 899 

(c) (d) 900 

(e) (f) 901 

(g) (h) 902 
 903 
Colour map for stress (MPa) and damage index (-)  

 >1.0  1.00  0.833  0.677  0.500  0.333  0.167  0.00 
 

Figure 26. Deformed shape at collapse with von-Mises stresses in the solid elements and damage in 904 

tension contours on the interface elements for the bare arch (a,b) 2-Interface and (c,d) 3-Interface  905 

models, and for the (e,f) 2-Interface and (g,h) the 3-Interface models for the arch bridge specimen. 906 

(a)  (b) 907 

Figure 27. Computing time for the simulation of the (a) bare arch and (b) the arch interacting with 908 

backfill. 909 
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6 CONCLUSIONS 910 

In this study, a hybrid continuum-discrete macro-modelling description for brick-masonry 911 

multi-ring arches and arch bridges is proposed. According to this modelling approach, the arch 912 

and backfill domain are modelled by 3D continuum solid elements, while layers of 2D zero-913 

thickness nonlinear interfaces arranged along the circumferential direction of the arch simulate 914 

potential ring separation and the interaction between the arch and backfill.  915 

Two advanced damage-plasticity constitutive models are employed for the 3D solid and 916 

interface elements. An effective and robust multi-level calibration procedure, based on 917 

minimisation of stress power error solved by means of Genetic Algorithms is developed to 918 

evaluate the model mechanical parameters employing the results from detailed mesoscale 919 

models on virtual experiments. These parameters can be easily calibrated from non-destructive 920 

or low-destructive in-situ tests on masonry units and mortar joints, which renders the proposed 921 

calibration procedure suitable also for practical assessment of historical bridges.      922 

The accuracy and potential of the proposed modelling strategy and calibration procedure is 923 

demonstrated by analysing 2D-strip medium and long span masonry arch specimens, also 924 

interacting with backfill and characterised by different failure mechanisms. The results of the 925 

proposed hybrid model are compared to those obtained by detailed mesoscale and continuum 926 

finite element macroscale descriptions. It has been found that the proposed modelling strategy 927 

provides accurate predictions of the ultimate strength and displacement capacity of multi-ring 928 

masonry arches and the corresponding failure mechanisms. It allows for potential shear sliding 929 

between adjacent rings, where the use of only one circumferential interface layer is suitable for 930 

medium span arches but at least two layers are required for long span arches and bridges.  931 

Additionally, the proposed modelling strategy guarantees superior computational efficiency 932 

especially for the analysis of long span arches and bridges, where the use of detailed mesoscale 933 

modelling can become infeasible.  934 
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Importantly, the numerical results identified some drawbacks associated with the use of 935 

conventional isotropic finite element macromodels, which can be summarised as following:  936 

- The use of continuum finite element macromodels, without a rigorous calibration 937 

of the mechanical parameters, can lead to an inaccurate and non-objective 938 

prediction of the arch response.  939 

- Continuum finite element macromodels, even when calibrated by means of rigorous 940 

procedures, can fail in simulating the ultimate arch behaviour when it is driven by 941 

sliding between adjacent rings.    942 

Both these limitations may significantly affect the results of safety assessments of masonry 943 

arch bridges, leading to a crudely approximated or completely misleading prediction of the 944 

effective safety level of the bridge and its mode of failure. In this regard, the proposed hybrid 945 

modelling strategy offers the possibility to significantly improve the accuracy of the numerical 946 

predictions without requiring a significant increase in the computational effort associated with 947 

the nonlinear analysis.  948 
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