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Abstract

Learning is concerned with generalising from examples and improving with experience.
Inductive Logic Programming (ILP) is a modern machine-based approach to learning that
performs first-order theory completion from positive and negative examples. The most so-
phisticated and successful ILP system currently available is widely regarded as Progol5.

By considering the ILP problem in terms of a learning cycle that combines both abductive
and inductive reasoning, this paper proposes extensions to the theory and practice of Progol5.

Omega Ground Entailment ((F) is introduced as an intuitive semantics that makes ex-
plicit one such connection between ILP and the learning cycle just mentioned. Nimble is in-
troduced as an efficient proof system for {F that generalises Progol5 by integrating abductive
and #nductive reasoning to provide a more complete instance of this cycle.

1 Introduction

Since its inception a decade ago Inductive Logic Programming (ILP) [Mug91] has made con-
siderable strides in both theoretical and practical terms. Central to this success has been the
development of efficient ILP systems and their application to real-world problems; and the current
state-of-the-art in this respect is the Progol5 [MB00] system. By considering the ILP problem in
terms of a learning cycle combining abductive and inductive reasoning, the aim of this paper is to
extend the theory and practice of Progol5 and related systems.

Section 2 provides a detailed review of the successful and widely-applied Progol algorithm.
Section 3 introduces the alternative semantics of Omega Ground Entailment (F) and reveals
an avoidable source of incompleteness in Progol5. Section 4 introduces Nimble as an efficient
hybrid abductive-inductive proof system for (,F that subsumes and further generalises Progol5.
All of these claims are illustrated with concrete examples: simple ILP problems that are solved
by Nimble, but not by Progol.

2 Background

This section recalls the problem of Inductive Logic Programming (ILP) and motivates the approach
of Inverse Entailment (IE). The Most Specific Hypothesis (MSH) approach to IE is introduced,
and the efficient technique of Mode Directed Inverse Entailment (MDIE) is reviewed. The popular
Progol4 algorithm is described and the important Progol5 extension is detailed. Finally the
fundamental theoretical arguments that underpin these ideas are discussed.

2.1 Inductive Logic Programming (ILP)

Inductive logic programming (ILP) [Mug91] is an approach to inductive learning that emerged
[MR94] §1 p629 at the intersection of Machine Learning (ML) and Logic Programming (LP). A
familiarity with these fields is assumed, and the starting point of this paper is a widely accepted
formulation of the ILP task [Mug95] §2 p2:



Definition (ILP). Given (B, E, M) € Lrorn X LHorn X Liode, Find H € L such that
1. BAHEE
2. BANH £ L
3. H has Minimum Description Length

Given background knowledge B and examples E, the task of ILP is to determine consistent
hypotheses H that together with B entail F; where B, E and H are sets of Horn clauses and M
is a set of domain-dependent mode-declarations that further constrain the hypothesis space £r
of H. Mode-declarations are discussed further in section 2.4, and for the purposes of this paper
minimum description length means simply that H should contain as few literals as possible.

2.2 Inverse Entailment (IE)

One of the most modern and successful approaches to ILP, and the basis of the state-of-the-art
Progol5 [MBO00] algorithm, is Inverse Entailment (IE). The methodology of IE is motivated
by a simple and well-known classical equivalence which states that inductive hypotheses may be
deduced in their negated form, from background knowledge together with the negation of the
examples:

BAHEE < BA-E}E-H (1)

In reality the situation is just slightly more complicated than this, as it is usual in ILP to distin-
guish between positive examples ET and negative examples E~, and between knowledge
K and integrity constraints ic. And the convention [Mug95] §2 p2 is that negative clauses
are considered to represent negative examples and integrity constraints, while positive clauses
represent positive examples and background knowledge.

What is in fact required, is for B and H to entail all positive examples (called coverage in
equation (2) below), but only to be consistent with all negative examples and integrity constraints
(integrity). In this paper, as elsewhere, negative examples will often be treated as a special case
of integrity constraint, and it will be assumed that in case there are no integrity constraints, then
B and H are consistent with each other. More accurately the criteria for H become:

BA-EYE-H  coverage
B AiclE—-H integrity (2)

Example 2.1 (Fast Food). The following example illustrates the use of positive and negative
examples. B, H and E are expressed as sets of Horn clauses, where each clause is of the form
head « body. The usual conventions apply so that for example offer(mcDonalds) represents a
fact (a clause with an empty body), and L « meal(theRitz) represents a negative example (a
clause with an empty head denoted ‘1’), ‘meal’ is a predicate symbol, and ‘R’ is a variable
symbol. As usual, clauses are implicitly universally quantified and conjoined, and where necessary
terminated by full stops.

meal(R) « getBurger(R), getFries(R).
getBurger(R) « getFries(R), offer(R).

B = getBurger(theRitz).
offer(mcDonalds). offer(burgerKing). offer(wimpy).
5 — meal (mcDonalds). meal(burger King). meal (wimpy).
a 1 « meal(theRitz).

{ getFries(R) « offer(R).



The background knowledge states that to say one has had a meal in a restaurant R, it is enough
that one gets both a burger and french-fries there. One automatically gets a burger if one gets
fries at a restaurant participating in a special offer. It is known that such an offer is available in
the restaurants indicated, and that one has partaken of a burger in the Ritz.

There are three positive examples, which upon negating and abbreviating constant names in
the obvious way yield ~E+ = 1 « meal(md), meal(bk), meal(w). There is one negative example
E~ = 1 « meal(r). There are no other integrity constraints. It is easily verified that H is a valid
inductive hypothesis according to equation (2):

Proof. Coverage: B A —E*T | —H. For assume the contrary, then B A =ET £ —H so that
BA—-E* AH £ 1 which is a certainly a contradiction as the body atoms of the negative clause
—E* are all derivable from B and H. |

Proof. Integrity: BAE~ [~ —~H. For assume the contrary, then BAE~ |= —H so that BAE™ A
H = 1 which is a certainly a contradiction as the body atom of the only negative clause E~ is
not derivable from B and H. |

2.3 Most Specific Hypothesis (MSH)

It is one thing to verify the validity of a given hypothesis, and another to efficiently construct
such a hypothesis given only the background knowledge and examples. Efficient realisations of IE
make use of a key construction referred to as the Most Specific Hypothesis (MSH)! [Mug95]
Def24 p17, or Bottom Set (BS) [Yam96] Eql p2, which is defined as the disjunction of all ground
literals whose negation may be deduced from B together with the negation of a single example
e. A hypotheses h is then found by generalising this construction, which using the notation of
[Yam96] will henceforth be denoted Bot(B,e).

h|= Bot(B,e) = BAhle (3)

where
Bot(B,e) := \/{l € GndLits | B A -e = ~l} (4)

Example 2.2 (Fast Food: revisited). Consider again the problem of example 2.1 and assume
that the first positive example is chosen as the seed. In this case:

meal(R) « getBurger(R), getFries(R).
getBurger(R) « getFries(R), offer(R).

B = getBurger(r).
offer(md). offer(bk). offer(w).
e = { meal(md).

= { getFries(R) « offer(R).

Given B and e as indicated above, Bot(B,e) = meal(md) V getFries(md) V —getBurger(r) V
—offer(md)V—-offer(bk)V-offer(w). At the same time, by universal instantiation h |= getFries(md) «
offer(md) which is logically equivalent to getfries(md) V —offer(md). And so h = Bot(B,e)
by V-introduction. It is also of interest that in this case we have the stronger condition that
h < Bot(B,e), where < denotes #-subsumption.

1The Bottom Set concept was first introduced in [Mug95] Def24 p17 with the terminology ‘Most Specific Clause’
and notation ‘L’. These same conventions are also employed in [MFO01]. In order to avoid confusion with the logical
symbol for falsity, the notation ‘Bot(B,e)’ was introduced in [Yam96] Eql p2, along with the terminology ‘Bottom
Set’. The notation ‘L (B, E)’ is used in [MBO00] and the terminology ‘Most Specific Hypothesis® is used in [FO00].



2.4 Mode Directed Inverse Entailment (MDIE)

Although MSH has a particularly simple formalisation, it non-trivial to realise general mechanisms
for computing efficiently within that formalism. Two immediate obstacles: i) in general Bot(B, e)
may be infinite [Mug95] §8 p16, and ii) there is no effective procedure for constructing all possible
h. Mode Directed Inverse Entailment (MDIE) [Mug95] is currently the most successful means
of addressing these problems. MDIE approaches make considerable use of user-specified mode-
declarations [Mug95] Def20 p16 to construct a finite resource-bounded subset of Bot(B,e), and
then to perform an efficient #-subsumption search for the best h.

Mode-declarations play a fundamental role in MDIE by providing a language in which to
specify syntactic restrictions on the induced hypotheses. Mode-declarations come in two varieties:
head-declarations, which impose restrictions on atoms in the heads of induced clauses, and body-
declarations which apply to body atoms. Mode-declarations not only determine outright the
predicates that may appear in head and body atoms, but through the notion of variable type
also impose a quasi-ordering? on the occurances of variables in induced clauses. And finally the
notion of recall is used to bound the number of solutions investigated in SLD computations.

Definition (Mode-Declaration). 3 A placemaker is one of three things: +type, -type or
#type. A scheme is any ground atom with placemarkers optionally appearing in place of con-
stants. A mode-declaration has one of two forms: a head-declaration modeh(n,s) or a body-
declaration modeb(n,s) where n is a positive integer called the recall and s is a scheme. Given a
set M of mode-declarations, M} and M, will represent respectively the set of head-declarations
and body-declarations in M. If m is a mode-declaration then recall(m) will represent the recall n
of m, and atom(m) will represent the scheme s of m with every placemarker occurance replaced
by a distinct variable.

Example 2.3. Both my = modeh(1, get Fries(+restaurant)) and ma = modeb(1, offer(+restaurant))
are valid mode-declarations and the hypothesis getFries(R) « offer(R) falls within the lan-
guage defined by these declarations (where R is assumed to be of type restaurant). In addition
recall(m1) = 1 and atom(ms) = offer(X).

Notation (X). In order to compact somewhat the following presentation, the notation X will
often be used in place of =X to denote negation.

2.4.1 BottomSet

The algorithm called BottomSet below is essentially that used by (all) Progols to construct their
approximation of Bot(B,e). The presentation below is based on [Mug95] Alg40 p40 and [MFO01]
§4.5 but corrects certain ommissions in the handling of depth* and head-declarations®, and clarifies
certain ambiguities® in the original presentations. BottomSet takes as input four things: i) a set
of body-declarations My, ii) a definite logic program B representing background knowledge, iii) a
definite clause e representing an example, iv) a head-declaration h.

In order to compute with € as required by equation (4), the first step is to add the skolemised
body atoms e~ to B while continuing to work with the Skolemised head et. (This process is
discussed in more detail in section 3.2). BottomSet assumes a function hash(t) that maps each
term to a unigue natural number. Strictly speaking, BottomSet does not return the raw Bot(B,e),
which is defined as a disjunction of ground literals, but instead it introduces variables where so
required by the language bias M. The system parameter Ny is referred to as the maximum
depth [Mug95] Defl10 pll.

2input variables in body atoms must occur either as input variables in the head atom or else as output variables
in preceding body atoms. Output variables in the head atom must occur either as inputs in the head or else as
outputs in the body

3based on Muggleton [Mug95] Def20 p16

4variables of depth n + 1 should only be introduced after all atoms of depth n have been constructed

5Progol investigates all head-declarations, not just the one as suggested in the original presentation

8for example et should not be added to B along with e~



The notation P Fg44 gf means that query 7g succeeds from program P under SLD-resolution
with answer substitution §. In Progol this is determined by an in-built Prolog interpretor. It is
further assumed that any computation performed by the SLD interpreter will be failed after at
most Ny, resolution steps, where Ny, is a system parameter referred to as the resolution bound.
It should be noted that the internal interpreter supports many of the standard in-built predicates
and permits the use of negation-as-failure (although this lies outside the scope of the sematics).

Algorithm 2.4 (BottomSet). ”

0. input given My, B, e, h

1. initialise add e~ to B and replace e by eT
set InTerms = BS =0
let g = atom(h)
if g < e then

2. construct for each replacement v/t in 0
head if v is #type then
replace v in g by ¢
else

replace v in g by Upash(r)
if v is +type then
add t to InTerms

add g to BS
3. construct repeat Ny times
body initialise NextTerms = 0

for each body-declaration b in M,
let a = atom(b)
for each substitution #' of +variables in a by InTerms
repeat recall(b) times
for each substitution 6" s.t. B g4 a6'6"
for each replacement v/t in 6’6"
if v is #type then
replace v in a by ¢
else
replace v in a by Vpasn(¢)
if v is -type then
add t to NextTerms
add @ to BS
add NextTerms to InTerms
4. output return BS

2.4.2 Progol4

Progol [Mug95] was the first algorithm implement the principles of MDIE, and remains today a
state-of-the-art and extremely popular, widely applied and highly successful system. In common
with other ILP systems, the aim of Progol is to find an H that together with B entails E. The
Progol language bias is as follows. B is represented as a set of Horn clauses with negative clauses
being interpreted as integrity constraints and treated internally as having the reserved atom false
in thier head. FE is also represented as a set of Horn clauses with negative clauses standing for
negative examples. H is a set of Horn clauses: i) consistent with any integrity constraints, and ii)
expressed within the language defined by a set of mode-declarations M.

Progol uses a greedy cover set approach to construct hypothesis clauses one-by-one. This
means that while there are outstanding examples, one of them e; is chosen as a seed, and a search

"based on Muggleton [Mug95] Alg40 p40 and [MF01] §4.5



is undertaken for a suitable clause h; that covers this example and achieves maximal compression
with respect to the remaining examples E. The h is then asserted and any covered examples are
retracted.

Early Progols (prior to version 5), in common with most other ILP systems, impose one
significant restriction on h;: namely that the predicate in the head of h; must the same predicate
in the head of the seed example e;. This important restriction is referred to as observation
predicate learning (OPL) [MBO00], and is largely a vestage of early machine learning systems.
We will presently see how Progol5 is able to overcome this restriction by cleverly extending the
core Progol algorithm, but first the review of Progol4 is concluded.

The hypothesis h; is obtained in two steps. In the saturation step the most specific clause
(BottomSet) is constructed (within the specified language bias and resource bounds) that entails
e;- In the reduction step a general to specific Search is performed over the subsumption lattice
bounded below by the BottomSet, and above by the empty clause. The search criteria takes
into account integrity constraints, the number of positive and negative examples covered, and an
estimate of the total number of atoms required in the clause®].

The strategy used by Progol to search the bounded #-subsumption lattice is described in
[Mug95] §D.2 p4l and will not be discussed further here. The presentation below of the core
Progol cover set algorithm is based on Muggleton [Mug95] Alg44 p43 and [MF01] §4.8, but is

closer to the Progol4 implementation in its use of head-declarations®.

Algorithm 2.5 (Progol4). 10

0. input given M, B, E
1. cover set while E not empty
2. seed choose seed example e; from E
3. head-mode for each head-declaration h; in My s.t. atom(h;) < e;
4. saturation construct BS;; = BottomSet(My, B, e;, hj)
5. reduction find C;; = Search(BS;;, E)
6. hypothesis let h; be the most compressive C;; over all j
add h; to B
7. cover removal remove covered examples from E
8. output return

2.5 Theory completion using Inverse Entailment (TCIE)

In many real-world applications the limitations of OPL considerably restrict the applicability of
ILP techniques. Theory completion using Inverse Entailment (TCIE) [MBO0O] is an approach that
addresses these limitations within the methodology of MDIE. The motivation behind TCIE is the
observation that the algorithm BottomSet only computes negative ground literals in Bot(B,e)
(or equivalently the positive ground unit consequences of B A€). TCIE augments the BottomSet
construction with a mechanism (called StartSet below) for computing the negative ground unit
consequences of B Ae. The atoms in StartSet are candidates for the head of the hypothesis, just
as those in BottomSet are candidates for the body.

The approach adopted by TCIE is based on Stickle’s Prolog Technology Theorem Prover
(PTTP) and in particular the technique of contra-positive locking. This essentially involves
rewriting each n-atom definite clause in n logically equivalent indefinite forms and introducing
new predicates in place of negated atoms, to leave n definite clauses. For example the clause
a « b,c would be represented as a « b,c and b* « a*,c and ¢* « a*,b; where a*, b* and c¢*
are newly introduced predicates to represent the negations of a, b and ¢. In effect, this technique
allows negative information to be propagated backwards through the original rules. For example,
given b but not a, under locking it can be correctly concluded by SLD resolution that not b.

8hence it is described as an ‘A*-like search
9see footnote 5
10based on Muggleton [Mug95] Alg44 p43 and [MFO01] §4.8



2.5.1 StartSet

The StartSet algorithm operates by adding temporarily to the knowledge base contra-positives of
B and the negative form of e. Members of StartSet are decided by those atoms g which succeed
as queries in their negative form ?g*. Since all rules with a negative atom in their head have a
negative atom in their body, and since the only negative fact is provided by e, contra-positives
need only be formed for those rules whose head predicate occurs in some path in the call-graph of
B that starts from the predicate in the head of e and ends on query predicate. In order to avoid a
proliferation of contra-positives, the algorithm considers just one head predicate p at a time, and
therefore requires only those head-declarations Mj, (p) defined for that predicate. For convenience,
the algorithm below returns viable head atoms together with their corresponding head-declarations.

Algorithm 2.6 (StartSet). '

0. input given My (p), B, e, p
1. initialise add e~ to B, replace e by et and set SS =0
2. locking B=BU{e*}U{b: « b3y ,b; 1,bi115- - bm | bo <= b1y o,bj, -, by € B}

where m,j > 0 and the prediate in by occurs in some path in the call-graph
of B starting from the predicate in e and ending on p
3. construct for each head-declaration h in Mp(p)
SS let g = atom(h)
for each substitution 8 s.t. B kg4 g*6
add (g0, h) to SS
4. output return SS

2.5.2 Progol5

Progol5 [Mug95] is the latest and most powerful member of the Progol family, and is the first
algorithm to implement the principles of TCIE. Progol5 employs the same cover set approach as
Progol4 and begins by picking a seed example e to generalise. Each possible head predicate p;
is then tried in turn, and a StartSet S.S; is constructed for that example-predicate combination.
Each possible head atom s;; returned is then tried with its corresponding head-declaration. In
order to reuse as-is the BottomSet algorithm, the selected head atom is first grafted onto the body
of the example. The Search algorithm is the same as used by Progol4. Once all possible head
atoms have been tried, the most compressive clause overall is added to B and returned.

Algorithm 2.7 (Progol5). 2

0. input given M, B, E

1. cover set while E not empty

2. seed choose seed example e from E

3. head predicate for each predicate p; mentioned in M}

4. contra-positives construct SS; = StartSet(Mp(p;), B, e, p;)

5. head atom for each atom s;; in S.S; with corresponding head declaration h

6. transform seed form e}; = s;5 « e~

7. saturation construct BS;; = BottomSet(My, B, e;j, h)

8. reduction find C;; = Search(BS;;, E)

9. hypothesis let C' be the most compressive clause over all
add C to B

10. cover removal remove covered examples from E

11. output return

"pased on Muggleton [MB00] §2.1
2based on Muggleton [MBO00] §2.3



2.6 Theoretical Foundations

All of the methods considered so far in this section are refinements of the MSH generalisation

approach and as such they all rest on the claim repeated below from §2.3.

h = Bot(B,e) = BAhlEe

where

Bot(B,e) := \/{l € GndLits | BAe =1}

And the reasoning that underpins this claim is first introduced in [Mug95] §7 p15 and then
elaborated upon in [MF01] §4.1. For convenience this reasoning is repeated below in its latter form.
The argument is presented verbatim, except that the notation L has been replaced by Bot(B,e)

and one footnote and one pair of brackets have been inserted.

Given background knowledge B and examples F find the simplest consistent hypothesis
H such that

BAHEE (M
If we rearrange the above using the law of contraposition we get the more suitable form

BAEEH (8)
If we restrict H and E to being single Horn clauses,

H (and E) above will be ground Skolemised unit clauses (9)

If Bot(B, E) is the conjunction of ground literals which are true in all models'® of
B A E we have

BAE = Bot(B,E) (10)

Since H must be true in every model of B A E it must contain a subset of the ground
literals in Bot(B, E). Hence

BAE | Bot(B,E) = H (11)
and so
H = Bot(B, E) (12)

A subset of the solutions for H can then be found by considering a those clauses which
f-subsume Bot(B, E).

1

3i.e. the conjunction of all ground literals entailed by B and E



3 Omega Ground Entailment ({,F)

This section introduces Omega Ground Entailment!* (Q,E) as an alternative semantics to MSH
generalisation. There are two motivations for doing this: i) to clarify a number of subtleties
that will emerge from a detailed examination of existing arguments, ii) to provide a convenient
framework in which to analyse and generalise existing systems. This section will argue:

,F is a highly intuitive semantics that does not involve negation

,E is provably equivalent to MSH generalisation: the cannonical semantics of Progol5

(,E enforces a clear separation of abductive, deductive and inductive reasoning components

,E is a particularly convenient framework for the analysis of Progol5

o () E suggests an immediate and effective extension to Progol5

The structure of this section is as follows: Section 3.1 performs a detailed analysis of existing
MSH arguments and reveals some subtle issues relating to Skolemisation. Section 3.2 address
these issues by explicitly incorporating Skolemisation into the semantics. Section 3.3 motivates
the Omega Ground Clause (,F as an alternative to the MSH Bot(B,e), and demonstrates their
equivalence.

Section 3.4 performs a detailed analysis of Progol5’s StartSet algorithm with respect to (), F,
and reveals a surprising source of incompleteness. Two simple strategies for removing this incom-
pleteness are presented, and that Progol5 does indeed suffer from this incompleteness is demon-
strated with a simple example input file. Section 3.5 introduces a hybrid abductive-deductive
learning cycle of which Progol is itself a partial instance.

The incompleteness mentioned above will be seen to be isolated in the abductive phase of
Progol5. Considerations based on the learning cycle as a whole will be used in later sections to
achieve still further generalisation over existing algorithms. In particular the Nimble algorithm
will be motivated in section 4 as further strengthening both the abductive and inductive phases
of the cycle.

3.1 Motivaton

The argument presented in section 2.6 above, is not entirely unproblematic. As pointed out by Ya-
mamoto, it is clearly intended to demonstrate: i) the equivalence B,H = E <= H = Bot(B, E),
and ii) only a subset of the H may be found using #-subsumption. That the intended equivalence
is false was first remarked by [Yam96] §1 p2, who went on to show [Yam97] that completeness does
in fact hold for Plotkin’s relative subsumption, but not for entailment in general®. Yet it seems,
perhaps because the incompleteness reported by Yamamoto was somehow attributed to the use
of #-subsumption in the search for H, that no detailed examination of the original argument was
carried out. This is unfortunate as the argument is in fact flawed.

In the forward direction the best way to see the error is to consider equation (11) and the
reasoning that immediately precedes it. The argument rests on two premises: i) that BA E = H
(8), and that ii) H is a set (conjunction) of ground literals (9). The argument then runs that
since Bot(B, E) is the set (conjunction) of all ground literals entailed by B A E, therefore H must
contain a subset of these - or else it could not possibly be itself entailed by B A E.

While this argument is sound, the premises are invalid: specifically, if H is non-ground then
one or other will be falsified. Either H will be an existentially quantified conjunction of non-
ground non-Skolemised literals and (9) will be falsified, or else H must be Skolemised - in which
case (8) will be falsified. This is because after Skolemisation H will contain formulae with Skolem

141t is stated without comment that FE is a special case of a more general semantics that will not be discussed
further in this paper.
155ee also [Mug98]



constants that by definition do not even appear in B AE, and which need not therefore be entailed
by B A E. For consider a trivial example:

B =
E = p(X)
H = p(X)

Clearly B A H & E. But either we accept that H = 3X[-p(X)] in which case it is not a
conjunction of ground literals. Or else we Skolemise and H = —p(a), which is not entailed by
B A E. This is true whether or not E is itself Skolemised. If E is not Skolemised then we can
only conclude that —p holds of some constant - with nothing to suggest that this constant should
be a. If E is Skolemised, then we must introduce a fresh Skolem constant and can conclude only
that —p(b), which again says noting about a.

It is of no consequence that in this example H |= Bot(B, E) happens to be true, for below is
presented a more realistic example due to Yamamoto [Yam96] §4 p6, in which it is not true. In
the following example it is easily verified that B A H = E, but Bot(B, E) = odd(0"") « even(0)
and contrary to (12) H [~ Bot(B, E)

_ (0)
B“{Zﬁ&quamX)

E = { odd(0")
H { odd(X') « even(X)

In the reverse direction the situation is different. Providing it is clearly understood that E is
the Skolemised negation of E'¢ (including where it appears in the definition of Bot(B, E)'7), and H
is the unSkolemised negation of H'®, and H contains no Skolem constants (from the Skolemisation
of E)!9, then the argument is easily recast into a form that is valid:

Given that
H |= Bot(B, E) (13)

by the law of contraposition
Bot(B,E) = H (14)
but from the definition of Bot(B,E)
BAE = Bot(B,E) (15)
so that by transitivity
BAEEH (16)

and by another application of contraposition

BANHEE (17)

1635 will be required for computational reasons

7otherwise (15) may be falsified
8otherwise (14) may be falsified
19as is required by definition

10



3.2 Standard Transformation

Consider the task of adding to a set of definite clauses B a clause h such that the combination
entails some given clause e. Since logically speaking e is a universally quantified formula, to
prove it we must first prove an instance of it € containing arbitrary variables and then apply V-
introduction. And because this ground instance is an implication, by the deduction theorem this
is equivalent to adding the body e~ (which is a conjunction of ground atoms) to B to give B’ and
then proving head e (which is a single ground atom).

As described in previous sections, Progol itself employs precisely this tactic, as do other ILP
algorithms that begin by converting the seed example e to a ground Skolemised form e and
removing the resulting body to B. In order to justify this process a little notation is introduced,
and a proof is given that solutions of the transformed problem are solutions of the orginal problem,
providing a little care is taken over the langauge of h. The utility of this transform in ILP is then
established.

Notation (B' and e'). Let e be a definite clause; let 8 be a substitution that replaces each
distinct variable occurring in X with a fresh (Skolem) constant; and let € represent the ground
clause X 6. Let €T represent the single ground head atom of ¢; and let ¢~ represent the conjunction
of ground body atoms of €. Now let B'=BU{¢"} and e’ = ¢*

Theorem 3.1. B'Ahl=¢€ <= BAh [ e where h contains no Skolem constantst

Proof.
! B'AhlE=é
< BAhAe et definition of B', ¢’
< BAhEe —€" deduction theorem
= BAh[Ee€ definition of et e~
= BAhl=e V-introduction' /instantiation

Remark. The process described above should not be confused with the cannonical process of
Skolemisation which replaces existentially quantified variables by Skolem functions whose argu-
ments are those variables bound by outer universal quantifiers. In a clause all variables are
universally quantified, and yet it is these variables that must be grounded with fresh constants.

Remark. The condition that h contains no Skolem constants (introduced during the Skolemisation
of e) is a precondition of the V-introduction. This condition can be weakened to require that h
be logically equivalent to a clause containing no Skolem constants, and possibly further still. The
reverse argument holds whether this precondition is met or not.

Theorem 3.2. h |= Bot(B',e'’) => B A h |= e where h contains no Skolem constants

Proof. From the previous section h = Bot(B',e'’) = B' Ah |= €¢'. And from above B' A h |
e’ <= BAh|=e. Hence by transitivity h |= Bot(B',e'’) = BAhl=e |

It should be clear that the implication shown above is not simply another approach to IE, it is
the approach actually used by Progol and related systems. The above formulation simply makes
explicit the initial step of converting the seed example e to ground Skolemised form, and then
removing the resulting body to B. The next section motivates an alternative formulation of this
semantics, which will be applied in later sections to the task of analysing and generalising the
Progol5 algorithm.

3.3 Omega Ground Clause

Consider again the task of adding to B a clause h such that the combination entails e. From the
previous section this is equivalent to finding an h that when added to B’ entails e'. If B' already
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entails €' then clearly we are done. Otherwise one way to proceed is by constructing the most
specific ground hypothesis h' that covers e’ relative to B’, and then generalising this.

And in constructing such an b’ we are surely well advised to place in the head of A’ only a
ground atom that will enable us to prove the required e’ from B’, and to place in the body only
ground atoms that we can already prove from B’. For if we place some other atom in the head
then it will not give the consequences required to complete the proof, and if we place some other
atom in the body then we will not be able to use the head at all. Now, atoms of the first sort
are those that may be abduced from B' with goal €', while atoms of the second sort are those that
may be deduced from B'.

This analysis is extremely intuitive and has the advantage that it does not refer to negation and
clearly exposes the abductive and deductive subtasks in the construction of hA’. Once formalised
below in the semantics of Omega Ground Entailment (€,F), these ideas will serve as a convenient
framework in which to analyse Progol5 and reveal a surprising source of incompleteness. The above
intuitions will immediately suggest a strategy for eliminating this incompleteness and achieving
still further generalisation over Progol-based algorithms.

But first, in order to firmly ground these appealing notions in reality, the Omega Ground
Clause is defined and then shown to be equivalent to the MSH!

Definition (Omega Ground Clause).
Q,(B,e) := V{a € GndAtms | B ANafEe'} « /\{6 € GndAtms | B' =6}

Theorem 3.3. h |= Q,(B,e) <= h|= Bot(B',e') where h contains no Skolem constants
Proof.

h = Q,(B,e)

h E V{a € GndAtms | B'Aa €'} « A{6 € GndAtms | B' E 6}

h = V{a € GndAtms | B' A€’ Ea} + A\{6 € GndAtms | B’ Ae' = 6}

hE V{a|a€ GndAtms, B' A€ =a} Vv V{d|d € GndAtms, B' Ae' |= 6}
h = V{l € GndLits | B' A€l =1}

h |= Bot(B',€')

17711

Remark. A few comments are in order: The penultimate step can be seen as breaking the set
{l € GndLits | B' A€’ =1} into two subsets: one containing the positive literals o, and the other
containing the negative literals §. In the preceding step use is made of the deduction theorem on
the left, and the following equivalence on the right: B’ A€/ = § <= B'A = §, where €' and §
are both ground atoms and B’ is a set of definite clauses. (One direction uses monotonicity and
the other the redundancy of the negative clause e’ in proving a positive consequence & from the
definite clauses B'). Use is made in the previous step of the equivalence A + B = AV B.

It should be clear that fundamentally the StartSet algorithm aims at constructing a finite
approximation to the set {« € GndAtms | B’ A« [ €'}?°, while the BottomSet algorithm aims at
constructing a finite approximation to the set {§ € GndAtms | B’ |= §}?!. Of course in order to
do this efficiently the two process must interact with each other and with the mode-declarations.
The learning problem is thus seen to consist of four distinct tasks:

the standard transformation of Skolemising e and removing the body to B
e the abductive or backward reasoning task of generating candidate head atoms
e the deductive or forward reasoning task of generating candidate body atoms

e the inductive task of constructing the best hypothesis clause from these atoms

20cannonically: the negations of the negative consequences of B and the negation of e
21cannonically: the negations the positive consequences of B and the negation of e
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3.4 Relation to Progol5

While ,F is motivated simply and independently of MSH, the two semantics were shown in theo-
rem 3.3 above to be equivalent. The advantage of ,F is that it does not introduce counter-intuitive
negations into the semantics??, and it clearly exposes the abductive and deductive subtasks in the
construction of the MSH. In particular it provides a clear separation of the semantics for StartSet
and BottomSet algorithms, and this property is now used to effect a detailed analysis of Progol5.
First recall the precise relationship between {},F and Progol5:

{a € GndAtms | B ANa|=e'} =D A = {6 € GndAtms | B' |= 6}
|

ground atoms abducible ground atoms deducible

|
from B’ and €’ are | from B’ are
candidates for head | candidates for body

|
|
|
(StartSet) J J (BottomSet)
HEAD « BODY

It should be clear that the soundness and resource-bounded flounder-free completeness of
BottomSet with respect to the set D is guaranteed by the use of SLD resolution. What is less
clear, however, is the relation of StartSet to the set A. The following analysis will show that while
StartSet is abductively sound, it suffers from an incompleteness that is easily remedied by existing
abductive logic programming (ALP) [KKT92] techniques.

Theorem 3.4 (Soundness of StartSet).
a € StartSet(M,B,e,p) = B'Aa =€

Proof. For convenience let € = €' and II = B' U €e* U {b] « bg,...,bj-1,0j41,---,bm | bo «
bi,...,bj,...,bm € B, for j,m > 0}. (The selective call-graph optimisation employed by Start-
Set in its formation of contrapositives is ommitted without consequence, for none of the contra-
positives ommitted by StartSet can participate in any computation). Given that the appropriate
language constraints are met « can appear in StartSet(M, B, e, p) only if II F44 a*. But since:
i) every rule with a *atom in the head has exactly one *atom at the first position in the body, ii)
and no other rules contain *atoms, and iii) there is only one *fact and this is €*, for the query ?a*
to succeed from II then it must be because either o = € or else because a* resolved with the head
of a rule a* « b}, O; and the call 7b7, O; succeeded. By induction the call stack must assume the
following form:

?7 o
? bt 0,
? b§702701
? b5 1,0k-1,-..,01
? 6*5Oka0k—17"'701
? Ok, Ok-1,---,01
? Ok-1,---,01
O

And for this computation to have succeeded, two things are necessary: i) there must be a call
path in IT from o* to €*

22gee footnotes 20 and 21
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a* « 01,01

bl « 03,0,

by, « €,0;
so that B must contain the corresponding clauses

b1 “«—  Q, 01

b« b1,0:

€ « bp_1,0

and ii) the calls O, Ok_1,-...,01 must have succeed from B’, since every O; is *free. Hence
b +~ «
by <« b
B'E ) Ea—e
€ — bp_1
so that
B'AafkEe
and
B'AaEeé
as required |

Theorem 3.5 (Incompleteness of StartSet).

a € Ly and B'ANa = € # a € StartSet(M, B, e, p)

Proof. Proof is by either of the following counter-examples

Example 3.6.
w2,y
My ={ modeh(1,2) } Bi={ z+ 2 er={w} p=ar={z}
Yz
Example 3.7.

M, = { modeh(1,z) } B2:{§:g’z} ee={z} p=a={z2}

in both cases B' = B and ¢’ =e and B' Aa =€’ and a € Ly, but

( 3

w4 T,y
¥ — w*,y Ty, 2
y* — w*, Ytz

_ Tz . 2* 1z y

Hl — < Z* (—.’L'* > H2 — y(_z
Y&z z* —y*
2 =yt Tk

\ w* Vs
and II Hgq 2* so a & StartSet(M, B, e, p) |
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Remark. The incompleteness of StartSet is exposed whenever a must be used more than once in
a SLD proof of e’ from B'. Intuitively StartSet determines if « is an abducible by querying ?a*.
But if « really is abduced then calls to a should succeed, which is where the StratSet algorithm
falls short. This situation is shown in the search trees below, both of which fail on the intended
abducible z and therefore fail to abduce that atom.

7z* 7z*
* * * *
x y T,y y
w*y w*,x Y T*, 2
y T z z
Z z | |
|| ||
search tree from II; search tree from Il

Remark. In the ground case completeness may be recovered by adding the unstarred form of the
query to II. But this scheme is less efficient than the naive approach of adding every possible
ground head atom in turn to B’ and querying e’ to see if it succeeds under SLD resolution.

a € StartSet(M, B,e,p) < ITU{a}tuqsa* and a € L

Remark. If backtrackable dynamic clause assertion and retraction is available in the underlying
SLD engine, then a better solution is obtained by adding the following meta-program to II in the
original StartSet algorithm.

:-dynamic bound/0.

:-dynamic delta/1.

q(X) - \+bound, typex (X), assert(bound), assert(delta(X)).
q(X) :- bound, delta(X).

Here it is assumed that the intended query is q*(X), and for simplicity q has been shown with
only one argument. Clearly this program must be generalised in the obvious way by adding the
necessary arguments and type calls for q. It must be understood, however, that this solution relies
on the cooperation of the type system to ensure that X is grounded before assertion. If this is not
the case then the approach is potentially unsound.

Example 3.8 (Fast Food: revisited). That Progol5 does indeed exhibit the incompleteness
described above, is demonstrated by the following formalisation of the Fast Food example. When
confronted with this input, Progol fails to discover any hypothesis:

% CProgol5.0

:- observable(haveMeal/1)?

:- set(h,500)?

:- set(inflate,500)?

% Types

restaurant(mcDonalds).

restaurant (burgerKing).
restaurant(wimpy).

restaurant(theRitz).

% Modes

:- modeh(1,getFries(+restaurant))?

:- modeb(1,special Offer (+restaurant))?

% Background

haveMeal(R) :- getBurger(R), getFries(R).
getBurger(R) :- getFries(R), specialOffer(R).
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getBurger(theRitz).
special Offer(mcDonalds).
special Offer (burgerKing).
specialOffer (wimpy).

% examples
haveMeal(mcDonalds).
haveMeal(burgerKing).
haveMeal(wimpy).

:- haveMeal(theRitz).

CProgol Version 5.0

[-- observable(haveMeal/1)? - Time taken 0.00s]

[- set(h,500)7 - Time taken 0.00s]

[- set(inflate,500)7 - Time taken 0.00s]

[- modeh(1,getFries(+restaurant))? - Time taken 0.00s]
[- modeb(1,specialOffer(+restaurant))? - Time taken 0.00s]
[Testing for contradictions]

[No contradictions found)]

[Generalising haveMeal /1]

[Generalising haveMeal (mcDonalds).]

[Generalising haveMeal (burgerKing).]

[Generalising haveMeal (wimpy).]

[Total time taken 0.000s]

Remark. This output shows that Progol5 repeatedly fails to find any hypothesis for each example
in turn. Incidentally, haveMeal(R) : —getBurger(R), getFries(R) is not treated as an example
(as it would in Progol4) because the current implementation of Progol5 only considers ground
examples.

Remark. That the input is not syntactically flawed and that Progol is operating correctly is
easily demonstrated, for example, by adding the clause get Burger(mcDonalds) to the background
knowledge: in that case the correct hypothesis will be found by progol5.

Remark. This incompleteness is related to, but distinct from the incompleteness reported by
Yamamoto, or that due to the use of #-subsumption in the search procedure. Instead it is a
less pernicious manifestation that lies within the semantics of MSH and can be avoided using
conventional ALP mechanisms - as will be shown in section 4.

3.5 Relation to Learning Cycle

The diagram below attempts to visualise the interaction of the abductive, deductive and inductive
components of the reasoning cycle. Rectangular components denote body atoms, angled com-
ponents denote head atoms, and a juxtaposition of such components is denotes a clause. The
m’s denote mode-declarations, the e’s examples, the b’s background knowledge, and the h’s hy-
potheses. Dotted lines indicate a flow of information between the knowledge base and reasoning
mechanisms.

In step 1 the selected seed example e; is Skolemised and the resulting body atoms are added
temporarily to the current background (including any previously induced hypotheses). In step 2
candidate head atoms « are abduced from the augmented background when given the Skolemised
head of e; as the goal. In step 3 candidate body atoms are deduced from the augmented back-
ground. In step 4 the optimal hypothesis is found by selecting among the candidate atoms in
some systematic way. During this process use may be made of the mode-declarations, and the
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coverage of the current hypothesis may be tested. In step 5 the optimal hypothesis is added to the
background. A redundancy check should be performed to remove any covered examples or other
background clauses, before the next iteration of the cycle is commenced.

4 Nimble

This section further develops the process of generalisation begun in the previous section. Initially
a simplified abductive proof procedure is used to simply replace StartSet in the abductive phase of
Progol5 to yield Nimblel. Then a fully general ALP mechanism is introduced into the abductive
phase and the inductive phase is correspondingly generalised to yield Nimble2. This strategy
begins to go beyond the semantics of {},F and allows the algorithm from a single example to
construct multiple hypotheses that would be missed by algorithms such as Progol5 and Nimblel.
The additional computation required to find this hypothesis is discussed and a concrete example
of such a hypothesis is given. It should be pointed out the contents of this section is of a somewhat
preliminary nature.

4.1 Nimblel

Progol is itself a partial realisation of the learning cycle described in the previous section. As a
first attempt to create a more general instance of this cycle, Nimblel simply replaces the StartSet
algorithm used by Progol5 with a custom algorithm based on ALP principles. Since only single
atoms are required by Progol5 a simplified residue-based ALP procedure is sufficient. One example
of such a procedure is the algorithm called Nimblel below.

As is usual in ALP, the algorithm begins by introducing without loss of generality?® auxilary
predicates in order to ensure that all abducibles are undefined, as this considerably simplifies
proceedings. This is accomplished in step 2. We treat as abducible any ground atom that conforms
to some head-declaration. The idea is that A will contain the abduced atom. Initially A is
empty and it is assumed that assignments are undone upon backtracking. The usual Prolog-like
backtracking and search procedures are assumed along with a selection rule R.

23see [KKT92] §5.1 p31
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Algorithm 4.1 (Nimblel).

0. input given M, B, e
1. initialise A=85=10
A is the set of ground atoms subsumed by some scheme in M}
2. abductive for each predicate p € A that is defined in B’
transform add p(X,Y,...) « §p(X,Y,...) to B
replace p by 6, in A
3. query initialise call stack with e’
4. evaluate % Begin Goal Reduction Loop

select next goal g using selection rule R
if g is abducible then

if A =0 then
check integrity if B'U g Fgq false fails finitely then
adbuce g set A = g, succeed on g and continue with next goal
else

fail on g and backtrack
else if A = g then
succeed on g and continue with next goal
else
fail on g and backtrack
else
perform 1 step of standard SLD goal reduction
if computation fails then backtrack
else if computation succeeds then add A to SS and backtrack
else continue with next goal
% End Goal Reduction Loop
5. output return SS

Remark. Nimblel is complete with respect to 2E, in the sense that there exists some selection rule
R to compute every possible abducible, however if R is fixed once and for all then the algorithm
may flounder on non-ground abducibles or become trapped in infinite computations. These are
precisely the same limitations from which Prolog itself is known to suffer.

Remark. Nimblel solves all of the examples presented so far in this report. In case of examples 3.6
and 3.7, the new search trees are shown below. In both cases the z is correctly abduced. Nimblel
is then be able to use this atom in the head of the MSH. This would for example enable the system
to discover the correct hypothesis in the Fast Food example that defeated Progol5.

Tw A ?x A
T,y {3 Y, 2 {
ZY {} Z, % {}
y {=} z {=}
z {=} o {=}
o {=}
new search tree for example 3.6 new search tree for example 3.7

Remark. The algorithm presented above is only intended to give a high-level overview of the
computation: as stated above the search and backtracking details have been deliberately left
unspecified. This algorithm replaces only the abductive phase of Progol5: the deductive and
inductive components remain the same.
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4.2 Nimble2

Nimblel generalised only the abductive phase of Progol5 with a simplified ALP algorithm. Further
benefits are possible if one is prepared to use a fully general ALP procedure in the abductive phase
while correspondingly generalising the inductive phase - and Nimble2 does precisely this. The key
difference is that while Nimblel only considers single abducibles in its abductive phase, Nimble2
considers sets (conjunctions) of atoms. In this way Nimble2 can learn multiple clauses from a
single seed example. Consider the following scenario:

( roadTax(P) « hasMOT(P),isInsured(R).
gotService(ali).gotService(bob).gotService(chris).
B = % gotService(dov).gotService(eve)
paidUp(bod).paidUp(chris).paidUp(dov).
paidUp(eve).paidUp( frank).
( roadTax(bob).roadT az(chris).
roadT ax(dov).roadT az(eve).
1 « buyRoadT ax(ali).
| L « buyRoadTax(frank).
hasMOT (P) « gotService(P).
{ isInsured(P) « paidUp(P).

H =

All of the algorithms discussed so far in this report fail to find any hypothesis. This is because
no single ground atom may abduced that would explain any example. Instead it is necessary
to abduce two (or in general n) atoms simultaneously and therefore to jointly construct two (or
more) MSH clauses with these atoms as the respective heads. The bodies of the MSH will of
course be the same, but the bodies of the resulting hypotheses need not. But having strengthened
the abductive phase, the inductive phase must be correspondingly strengthened so that these two
MSH may be correctly generalised together.

Algorithm 4.2 (Nimble2).

0. input given M, B, E

1. cover set while E not empty

2. seed choose seed example e; from E

3. abduction for each A; s.t. (B', Mp) Fasidic (€,6,A;)

for each abduced atom d;; € A;
for each hy € My, s.t. atom(hy) < 0i;

4. deduction construct BS;;, = BottomSet(My, B', 6;5, hi)

5. induction % find most compressive set of clauses CC' by generalising the BS;jy
add CC to B

6. cover removal remove covered examples from E

7. output return

Remark. The notation (II, A) Fys4ic (9,0, A) means that the goal g succeeds from program II
under abductive SLD resolution with integrity constraints, returning the substitution 8 and the
set of abducibles A. Each abducible is a ground atom whose predicate appears in .A. The number
of resolutions performed is assumed to be bounded by N, and the number of atoms in A is
assumed to be bounded by N,.

The increase in expressivity of Nimble2 over existing Progol-based systems is of course paid for
by the additional computation required by the multiple clause search algorithm. This is necessary
because the two clauses interact with each other. It is not acceptable to generalise individually?*
the components of a multi-clause-hypothesis (resulting from a single seed example) because the

24for example after adding the ground abducibles temporarily to the background knowledge
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combination may turn out to be overly general and violate integrity. While the required search is
clearly less efficient than a single clause search, the standard pruning mechanisms are still fully
applicable.

In a multi-clause search, for each node visited in the subsumption lattice of a given MSH, the
optimal node in the lattice of the next must be determined by another search. But fortunately
pruning is applicable in all such searches. A naive analysis suggests that the costs grow exponen-
tially with the number clauses, but it should be pointed out that compression decreases with the
number of clauses considered and this in turn increases the chances of pruning.

A more serious complicating factor is caused by the fact that in general more than one head-
declaration may subsume a given abducible, resulting in different input/output patterns of con-
stant propagation and multiple BottomSets. If this is the case every possible permutation must
be investigated, which is clearly computationally intensive. It is not yet clear whether this will
prove to be a problem in real applications.

As stated above, the maximum number of clauses considered in a multi-hypothesis is bounded
by the user-defined system parameter. N,. If this parameter is set to 1 Nimblel behaviour will
result, while higher values will result in the investigation of multiple-clause hypotheses. A sensible
strategy would be to begin searching for 1-clause-hypotheses and then to consider progressively
increasing n-clause-hypotheses only as a last resort.

5 Conclusion

It has been known for some time that Most Specific Hypothesis (MSH) generalisation is incom-
plete with respect to Inverse Entailment (IE), and that this semantic incompleteness is only the
most fundamental sense in which algorithms based on MSH generalisation are incomplete. At
the computational level additional incompleteness is inevitably introduced, firstly as a result of
computing only a finite subset of the MSH, and secondly by considering only the #-subsumption
subset of entailment.

This paper identified an additional source of incompleteness in existing algorithms, and pre-
sented an novel algorithm that remedies this incompleteness and further generalises existing algo-
rithms. These benefits were realised by considering the ILP problem in terms of a learning cycle
that integrates abductive and inductive reasoning mechanisms. There appears to be considerable
potential in the algorithm presented in this paper, although a more thorough analysis is clearly
required.
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