Closed Loop Machine Learning:
Complexity of ASE-Progol

Alireza Tamaddoni-Nezhad
Stephen Muggleton

Department of Computing, Imperial College
180 Queen’s Gate, London SW7 2BZ, UK

email: {atn,shm}@doc.ic.ac.uk

January 2002

Abstract

In this report we study the complexity of each implemented com-
ponent of the Closed Loop Machine Learning in ASE-Progol. In the
first part of the report, we review each component of ASE-Progol and
discuss the complexity of each component. In the second part, we
perform an experimentation to compare the average run time of each
component of ASE-Progol in each iteration of the closed loop machine
learning. This experimentation is repeated to measure the average run
time for both phase A and phase B data.

1 Introduction

The purpose of the Closed Loop Machine Learning project has been to
develop a framework for “Automatic Experimentation” which involves Ma-
chine Learning for generating hypotheses and Robotics for devising trials to
discriminate between hypotheses. In this framework there is a closed loop
between the process of forming hypotheses and the collection of data. The
long term goal is to use this framework in Functional Genomics to discover
the function of genes.

According to the project proposal [1], the main objectives of the project
are: “to test whether closed loop Machine Learning Systems can (i) effi-
ciently converge to accurate hypotheses and (ii) be physically realised using
robotics and successfully applied to a discovery task in functional genomics”.

For this purpose a system called ASE-Progol (Active Selection of Experi-
ments with Progol) has been developed. ASE-Progol is an Active Learning
system which uses the Inductive Logic Programming (ILP) system Pro-
gol5.0 [7] for generating hypotheses together with a CART-like algorithm [2]
to select trials which minimise the expected cost of experimentation. More
details about the design and implementation of ASE-Progol can be found
in [3,4].

To date, ASE-Progol has been tested on: a) a small and simplified model
of functional genomics and b) a metabolic pathway from the aromatic amino
acid pathway of yeast. The results of these studies which correspond to phase
A and phase B of the project are reported in [3] and [4] respectively.

In this report we study the complexity of each implemented component
of ASE-Progol. In section 2 we review each component of ASE-Progol and
discuss the complexity of each component. In the second part of the re-
port, we perform an experimentation to compare the average run time of
each component of ASE-Progol in each iteration of the closed loop machine
learning. This experimentation is repeated for both phase A and phase B
data. The experimental settings and the results of the experimentation are
discussed in section 3.

2 Components of ASE-Progol

The Closed Loop Machine Learning (CLML) in ASE-Progol is shown in
Figure 1. This figure shows the components of ASE-Progol and the rela-
tionship between these components. This closed loop machine learning is
implemented as a Unix C Shell script and each component of ASE-Progol is
called within this loop. In this figure two component are not implemented
yet. These components are: a) Robot Instructor which instructs the robot
to perform the next trial and b) Translator Analyser which converts the
result of a trial into a form which can be used by ASE-Progol. The result
of this component is added to the example set which is used by Hypotheses
Generator. In the existing implementation, the result of a trial is deter-
mined by the oracle — a file which contains the results of all possible trials —
rather than by the laboratory. In the following we review each implemented
component of ASE-Progol.

2.1 Hypotheses Generator

As mentioned earlier, ASE-Progol uses Progol5.0 for generating hypotheses
from the examples of an observable predicate and background knowledge.

Hypotheses

/

Hypothesis
Generator

Example Sep Binary
/ Matrix

Translator Trial Trial
Analyser Selector Generator
N }
\
\
\
Robot | Rto bo;[
~ nstructor

~\
~

Figure 1: The Closed Loop Machine Learning (CLML) in ASE-Progol (as
in [3]). The boxes represent components of ASE-Progol and the ellipses
represent information which is passed between these components.

In each iteration of the closed loop learning Progol5.0 is given a training
example-set which is added one example in each iteration of the closed loop
(i.e. the result of a trial). Progol5.0 is also provided a background knowl-
edge which contains the model to be completed. Progol5.0 uses "Theory
Completion using Inverse Entailment’ for induction/abduction of hypothe-
ses. More details about Theory Completion using Inverse Entailment and
Progol5.0 can be found in [7].

Note that unlike experiments in [7], in ASE-Progol it is assumed that the
system is given only one example in each iteration of the closed loop (i.e.
the result of a trial). The result of the hypotheses generator (Progol5.0)
is passed to ASE-Progol by extracting from Progol’s log file, hypotheses
which have a positive compression. ASE-Progol then selects clauses which
have the maximum compression for each predicate and passes them to the
Classifier. This means that in each iteration, ASE-Progol selects each trial
to discriminate the space of 'compressive’ clauses.

Complexity of the Hypotheses Generator Progol constructs a most spe-
cific clause for each example and then performs a A*—like search in
a subsumption lattice which is bounded below by this bottom clause.
This search is repeated for each example and each clause in the fi-
nal theory. For this search to be polynomially tractable, a bound is
required on the length of any hypothesised clause (¢). The Prolog in-
terpreter inside Progol (which is used to compute the coverage of each
hypothesised clause) is also bounded in its number of resolution steps
(r) and its Proof depth (h). Parameters ¢, r and h are controllable by
the user. Given these bounds, the complexity of Hypotheses Generator
increases linearly in both:

1. the number of training examples in each iteration of the closed
loop and

2. the number of clauses in the final theory

A more detailed analysis of Progol can be found in [5]

2.2 Trial Generator

The closed loop learning normally begins with this component which gener-
ates a random sample of maximum 20 trials from the space of possible trials.
It has been suggested that using the upper bound of 20 on the number of
candidate trials ensures that there is a low probability that the sample will
not contain a new trial [4].

In the first iteration of the closed loop, first trial is determined by se-
lecting the cheapest trial in the sample generated by the trial generator. In
the subsequent iterations of the loop, the trial generator removes from the
sample any duplicate trials or trials which have already been performed by
the robot. The result which is a set of maximum 20 trials is then passed to
the Classifier which constructs a binary matrix. This binary matrix is used
by Trial Selector which selects the next trial to be performed by the robot
in the subsequent iterations of the closed loop.

Complexity of the Trial Generator The Trial Generator generates a ran-
dom sample of the space of possible trials. In ASE-Progol version 0.0,
an Stochastic Logic Program (SLP) [6] has been used to sample from
the trials which are represented as Prolog ground facts. Whilst, in
ASE-Progol version 1.0, a Prolog implementation of Knuth’s random
subset algorithm has been used for this purpose. In both sampling
methods, the complexity increases linearly in the cardinality of the
random sample. As mentioned before, in ASE-Progol the cardinality
of this sample is bounded to 20.

2.3 Classifier

The result of the Hypotheses Generator (i.e. a set of hypotheses) and the
result of Trial Generator (i.e. a set of trials) are given as input to the
Classifier. The purpose of the Classifier is to determine whether the outcome
of each trial is consistent with each hypothesis. This is a theorem proving
problem and for this purpose ASE-Progol uses the Progol interpreter inside
Progol5.0.

The result of the Classifier is a binary matrix in which entry ¢j is 1 if
the outcome of the trial i is logically consistent with the hypothesis 7 and 0
otherwise. This binary matrix is then used to determine how the outcome
of a trial partitions the set of hypotheses into ’consistent hypotheses’ and
"inconsistent hypotheses’ with respect to that trial.

Complexity of the Classifier In each iteration of the closed loop, the
Classifier constructs the binary matrix which for each candidate trial
determines whether the outcome of this trial is consistent with each
candidate hypothesis or not. For this purpose, the Classifier repeatedly
calls the theorem prover (i.e. the Progol interpreter) for each candidate
hypothesis (i.e. the output of the Hypotheses Generator) and each
candidate trial (i.e. the output of the Trial Generator). It is assumed

that the Prolog interpreter is bounded in the number of resolution
steps (r) and the proof depth (h). Given these bounds, the complexity
of the Classifier increases linearly in both:

1. the number of candidate hypotheses (i.e. the output of the Hy-
potheses Generator) and

2. the number of candidate trials (i.e. the output of the Trial Gen-
erator)

2.4 Trial Selector

Given the cost of each trial and the binary matrix, the Trial Selector com-
putes the expected cost of experimentation for each candidate trial. The
next trial to be performed by the robot is then selected as the trial which
minimises the expected cost of the experimentation.

Given the set of candidate hypotheses H and the set of candidate trials
T, the expected cost of experimentation for each trial is estimated by the
following heuristic function:

EC(H,T) = minier[Ce + p(t)(meanyeir—oCil) Iy,
+ (1 —p(t)(meanyer) Ct’)JHm]

where
Jg = — Z p(h)[logy(p(h))]
heH

In this formula C} is the cost of the trial ¢, p(¢) is the probability that
the outcome of the trial ¢ is positive, p(h) is the prior probability that the
hypothesis h is correct, meanyer—_y)Cy/ is the mean value of all trial costs
excluding the trial ¢, Hyy is the set of all hypotheses which are consistent
with the trial ¢ and H[ﬂ is the set of hypotheses which are not consistent
with the trial ¢.

It has been suggested that this approximation can be used to minimise
the expected cost of eliminating all but one of hypotheses [3].

Complexity of the Trial Selector The trial selector computes the ex-
pected cost of experimentation for each trial and selects a trial with
a minimum expected cost. In computing the expected costs, it is
required to compute the prior probabilities for consistent and incon-
sistent hypotheses. The complexity of this computation increases lin-
early in the number of hypotheses. Hence, as in the Classifier, the

complexity of the Trial Generator increases linearly in the number of
candidate trials and the number of hypotheses. However, the Trial
selector only involves simple numerical commutation and a lower com-
plexity is expected in comparison to the Classifier which involves a
Prolog interpreter for theorem proving.

2.5 Termination Condition

In the existing implementation of ASE-Progol, the closed loop learning ter-
minates if one of the following conditions is met:

1. all possible trials have been tried or
2. the experimental resources have been exhausted or
3. the number of trials exceeds a limit specified by the user

The number of possible trials for each gene is equal to the number of possible
growth media for that gene. Thus the number of iterations of the closed loop
learning is equal to the number of possible growth media unless either the
experimental resources have been exhausted or the number of trials exceeds
a limit specified by the user.

3 Experiment: Time Complexity of ASE-Progol

The experimentation in this section aims to compare the average run time of
each component of ASE-Progol in each iteration of the closed loop machine
learning. This experimentation is repeated for phase A and phase B data.

In the following sections, we first explain the experimental materials and
method and then represent and discuss the results.

3.1 Materials

In the experiments of phase A and phase B, one approach to functional
genomics, namely the effect of single-gene-deletion growth trials, has been
modeled by logic programs. These logic programs for phase A and phase
B are shown in Table 1 and Table 3 and the relevant metabolic pathways
are shown in Figure 2 and Figure 3 respectively. During these experimen-
tations some of code/2 facts (which correspond to the function of unknown
genes) are removed from the model and the ability of ASE-Progol to ’cost-
efficiently’ recover the performance of the model (or learn the function of the

Table 1: A logic program which represents the functional genomics model
which has been used in phase A experiments.

phenotypic_effect(Gene, Growth_medium):-
nutrient_in(Nutrient, Growth_medium)
metabolic_path(Nutrient, Mi),
enzyme(E, Mi, Mj),
codes (Gene, E),
metabolic_path(Mj, Mn),
essential_molecule(Mn),
not (path_without_E(Growth_medium, Mn

, E)).

nutrient_in(Nutrient, Growth_medium) :- element (Nutrient, Growth_medium).

metabolic_path(A, A).
metabolic_path(A, B):- enzyme(_, A, B).

metabolic_path(A, B):- enzyme(_, A, X), metabolic_path(X, B).

path_without_E(Growth_medium, Mn, E):-
nutrient_in(Nutrient, Growth_medium)
path_without_E(Nutrient, Mn, E).

path_without_E(A,A,).

path_without_E(A,B,E):- enzyme(E2,A,B) ,no

t (E=E2) .

path_without_E(A,B,E):- enzyme(E2,A,X) ,not (E=E2) ,path_without_E(X,B,E).

essential_molecule(ess_mol_1). essential_molecule(ess_mol_2).

essential_molecule(ess_mol_3). essential_molecule(ess_mol_4).

enzyme(enzyme_a, nut_1, metabolite_1).
enzyme (enzyme_b, nut_2, metabolite_2).
enzyme (enzyme_c, nut_3, metabolite_3).
enzyme(enzyme_d, metabolite_1, metabolite
enzyme(enzyme_e, metabolite_1, metabolite
enzyme (enzyme_f, metabolite_1, metabolite
enzyme (enzyme_g, metabolite_2, metabolite
enzyme(enzyme_1, metabolite_6, metabolite

_4).
_5).
_6).
_6).
_N.

enzyme (enzyme_h, metabolite_2, ess_mol_4).
enzyme(enzyme_i, metabolite_3, ess_mol_4).
enzyme (enzyme_j, metabolite_4, ess_mol_1).
enzyme (enzyme_k, metabolite_5, ess_mol_2).
enzyme(enzyme_m, metabolite_7, ess_mol_3).

codes (gene_a, enzyme_a). codes(gene_b,
codes (gene_d, enzyme_d). codes(gene_e,
codes(gene_g, enzyme_g). codes(gene_h,
codes(gene_j, enzyme_j). codes(ggne_k,

codes (gene_m, enzyme_m) .

enzyme_b) .
enzyme_e) .
enzyme_h) .
enzyme_k) .

codes (gene_c,
codes (gene_f,
codes (gene_i,
codes(gene_1,

enzyme_c) .
enzyme_f) .
enzyme_i) .
enzyme_1) .

nutrient_1 nutrient_2

e_bi

metabolite 2
h

e a

metabolite 1

eg
metabolite 4 metabolite 6
ej l metabolite 5

\\e_k
essential

essential
molecule_1 molecule 2

metabolite 7

nutrient_3

i ec

metabolite_3

¢ e

essential_molecule_4

em
essential
molecule 3

Figure 2: A graph which represents the metabolic pathway of the genomics

model in phase A (as in [3]).

Table 2: Cost A and Cost B of Growth Media which has been used in the

experiments in phase A (as in [3]).

Growth medium

Cost of Trial

Costs A Costs B
nutrient_1 10 10
nutrient_2 20 100
nutrient_3 30 1000
nutrient_1, nutrient_2 30 110
nutrient_1, nutrient_3 40 1010
nutrient_2, nutrient_3 50 1100
nutrient_1, nutrient_2, nutrient_3 60 1110
Sum of costs 240 4440

C00631 T @ (03356
4.2.1.20
| 42111 | 4211 C00078
C00065
C00279 C00074
C00661
4.2.1.20
00009 @ C00065
C00082 C00079
Co4691 @ o006 ® cooozs @ C03506
4613 | | 2617 | | 2617 | | 41148
C00009 C00025 C00025@
C00944 @ C01179@ C00166@ C01302 @
C00005
4.2.1.10\] 1313 \]4.2.1.51 \] 5.3.1.24
C00006
C02637 @ 00254 C00013
5.4.99.5
x|
[)
C02652 @ C00251
C00108
C00005 C00009
[)
11.1.25 C0o0022
C00006 ® 00025
00002 C00009
C03175

@ C00008

Figure 3: Part of the aromatic aming acid pathway of yeast which has been
used in the experiments of phase B (as in [4]).

Table 3: Part of the logic program which represents the functional genomics
model which has been used in the experiments of phase B (as in [4]).

phenotypic_effect (ORF, Growth_medium) :-
generated_by_other_pathways (Ubiquitous_metabolites),
union(Ubiquitous_metabolites, Growth_medium, Starts),
connected(Starts, Wild_products),
ends (Ends) ,
subset (Wild_products, Ends),
enz (Enzyme, Reactants, Products),
encodes (ORF, Enzyme, Reactants, Products),
connected_without_this_step(Starts, Mutant_products,

Enzyme, Reactants, Products),

not (subset (Mutant_products, Ends)).

enz(Ec, R2, R1) :- enzyme(Ec, R1, R2).
enz(Ec, R1, R2) :- enzyme(Ec, R1, R2).

encodes (ORF, Enzyme, Reactants, Products):-
codes(ORF, Enzyme, Reactants, Products).

encodes (ORF, Enzyme, Reactants, Products):-
codes (ORF, Enzyme, Products, Reactants).

generated_by_other_pathways([’C00002’, *C00005’, ’C00006’,
’C00014°, °C00025°, ’CO0064°, ’CO0065°, ’CO0074’, ’C001197,
’C00279’, ’C00631’, ’C03356°]).

ends ([’C00078°, ’C00079’, ’C00082°1).

11

genes) is measured. The cost of the experimentation is assumed to be equal
to the total cost of the growth media (nutrients) which have been used in the
growth trials during the experimentation. For example, in the experimenta-
tion in phase A it is assumed that the costs of the growth media are as shown
in Table 2. Tt is also assumed that the result of each trial can be represented
by positive and negative instances of the predicate phenotypic_effect/2.
For example phenotypic_effect(gene_a, [nutrient_1, nutrient_2]) rep-
resents a growth trial in which a mutant strain of an organism is cre-
ated by removing gene_a and the growth media contains nutrient_1 and
nutrient 2. The result of a trial can be positive (growth) or negative
(no growth). For example, — phenotypic_effect(gene_a, [nutrient 2])
shows that no growth is observed for gene_a and nutrient_2.

In the experimentation in phase A, there are only 3 nutrient in the model,
so there are 7 possible growth media for each of the 13 gene in the model.
Hence, we have 91 examples for the predicate phenotypic_effect/2. Ac-
cording to the metabolic pathway in Figure 2, 45 of theses examples are
positive and the other 46 are negative examples. In the experimentation
in phase B, there are 13 optional nutrients which can be added to a basal
medium. Thus there are 2' = 8192 of these optional nutrients, however,
to make the experimentation tractable, only 3 of the possible 13 nutrients
were used in the experimentation of phase B. Hence, the number of possible
media is Z?:o (li?’) = 378. In other words, in the experimentation in phase
B there are 378 examples for each ORF in the model. The class of each ex-
ample (positive or negative) was deduced from the complete model. Table 4
shows the distribution of positives and negatives for each ORF. There are
no positive examples of the phenotypic_effect/2 predicate for the ORFs
YDR254W, YERQ9OW, YGLO26C, YHR174W, and YMR323W. Hence phenotypic
effects can be observed for just 12 of the 17 ORFs in the model. Thus
when conducting rediscovery experiments in phase B, only these 12 ORFs
are used.

More details about the experimentations of phase A and phase B can be
found in [3] and [4].

3.2 Method

As mentioned earlier, the purpose of this experiment is to study the com-
plexity of ASE-Progol when recovering the incomplete genomics models of
phase A and phase B. ASE-Progol uses 'Theory Completion’ which is im-
plemented in Progol5.0. Theory Completion, Progol5.0 and the results of
testing Progol5.0 on the functional genomics model are presented in [7]. Un-

12

Table 4: Distributions of positive and negative examples in the experiments
of phase B (as in [4]).

ORF Number of examples

Positive Negative
YBR166C 232 146
YBR249C 70 308
YDROO7TW 232 146
YDRO035W 70 308
YDR127TW 104 274
YDR254W 0 378
YDR354W 232 146
YERO09OW 0 378
YGL026C 0 378
YGL148W 104 274
YGL202W 366 12
YHR137W 366 12
YHR174W 0 378
YKL211C 232 146
YMR323W 0 378
YNL316C 232 146
YPRO0O60C 151 22

13

like the experiments with Progol5.0, in the experiments with ASE-Progol it
is assumed that ASE-Progol is given one example in each iteration (the re-
sult of a growth trial). In the existing implementation, the result of a trial
is determined by the oracle — a file which contains the results of all possible
trials — rather than by the laboratory.

During the experimentations, the genomics models shown in Table 1 and
Table 3 are made incomplete by randomly removing a number of code/2
facts. In the phase A, this number varies between 5, 9 and 13 in different
experiments. In the phase B, all of code/2 facts are removed from the model.
In the present experimentation, ASE-Progol is executed on the incomplete
model such that trials are selected which minimise the expected cost of
experimentation. The run time is then plotted for each component of ASE-
Progol in each iteration of the closed loop. In addition, the average number
of candidate hypotheses and the average number of the candidate trials, in
each iteration of the closed loop, are also plotted.

4 Results and discussion

The average run time of the Hypotheses Generator in the experimentations
of phase A and phase B are shown in Figure 4. This figure suggests that in
both phase A and phase B, the run time of the Hypotheses Generator has
a roughly linear increase in the iterations of the closed loop learning. This
is because the cardinality of the training examples is incremented in each
iteration and as mentioned in section 2.1, the complexity of the Hypotheses
Generator increases linearly in the number of training examples. The differ-
ence between the average run time in phase A and phase B shows that the
search which is performed by Progol in each iteration of the closed loop (see
section 2.1) in phase B is computationally more expensive than the search
which is performed in phase A.

The average run time of the Trial Generator in the experimentations
of phase A and phase B are shown in Figure 6. This figure shows that in
both phase A and phase B the average run times for the Trial Generator
are relatively low and independent of the iterations of the closed loop. As
mentioned in section 2.2, the complexity of the Trial Generator is linear in
the cardinality of the random sample which has an upper bound of 7 and
20 in the experimentation of phase A and phase B respectively.

The average run times of the Classifier and the Trial Selector are shown
in Figures 8 and 9 respectively. These figures suggest that the average run
time for the Classifier and the Trial Selector follow a similar pattern though

14

Hypotheses Generator Run Time

0034 J | | | | L
fﬁ 0.032 - -
— 003 - -
2 0028 - -
= 0.026 - -
c 0024 - -
x 0.022 - -
o 002 - -
z 0018 -

0.016 - | | | | r

1 2 3 4 5 6

[terations of CLML
(a)
Hypotheses Generator Run Time

18 J | | | | | | | | T|_

8 16 - -
GE) 14 - -
= 12 - -
S 10 - -
£ g- -

4 h | | | | | | | | r

1 2 3 4 5 6 7 8 9 10
Iterations of CLML

(b)

Figure 4: The Hypotheses Generator run time on: a) Phase A data b) Phase
B data.

Avg. No. of Candidate Hypotheses

% 5 J_ | | | | L
.C 4
o)
o
£
Y 4 -
(@]
o
Z
S
< 3 1 | | | | r

1 2 3 4 5 6

lterations of CLML
(a)
Avg. No. of Candidate Hypotheses

% 10 J | | | | | | | | L
e
o)
o
>
T
©
@)
Z - T
)] 1
> 4
< [[

1 2 3 4 5 6 7 8 9 10

Iterations of CLML

(b)

Figure 5: The average number of the generated hypotheses in each iteration
of ASE-Progol on: a) Phase A data b) Phase B data.

Avg. Run Time (sec)

Avg. Run Time (sec)

Figure 6:
data.

Trial Generator Run Time

002 J | | | | L

0.018 - -
0.016 - -
0.014 - -

0012 F—y —F—— 3 5

0.01 5 | | | | r
1 2 3 4 5 6

lterations of CLML

(a)

Trial Generator Run Time

| | | | | | r

| |
1 2 3 45 6 7 8 910
Iteyations of CLML

(b)

The Trial Generator run time on: a) Phase A data b) Phase B

Avg. No. of Candidate Trids

6 . | | | | L
(7))
G
=
©
o
Z
o)
>
<

1 2 3 4 5 6

lterations of CLML
(a)
Avg. No. of Candidate Trials

20 . | | | | | | | | L
(7))
s
=
©
o
Z
o)
>
<

18 -+ | | | | | | | | r

1 2 3 4 5 6 7 8 9 10

Iteratipons of CLML
(b)

Figure 7: The average number of the generated trials in each iteration of
ASE-Progol on: a) Phase A data b) Phase B data.

Classifier Run Time

Avg. Run Time (sec)

1 2 3 4 5 6
lterations of CLML

(a)

Classifier Run Time

32J | | | | | | | | L

30 -
28 - -
26 -
24 -
22 -
20 -
18 -
16 q | | | |

1 2 3 4 5
Iteratipns of CLML

Avg. Run Time (sec)

o — k-4
~
o0 — -4+
(o]
H
o

(b)

Figure 8: The Classifier run time on: a) Phase A data b) Phase B data.

Trial Selector Run Time

0.034 - | | | | L
0.032
0.03 -
0.028 -
0.026 -
0.024 -
0.022 -
0.02 -
0.018 -+ | | | | r

Avg. Run Time (sec)

lterations of CLML

(a)

Trial Selector Run Time

0384 ' 1 1 1 1L
0.36 -
034 - -
0.32 -
03 -
0.28 -
0.26 -
024~ + + v 0 0 0 0 0T

1 2 3 4 5 6 7 8 9 10

Itergfions of CLML

Avg. Run Time (sec)

(b)

Figure 9: The Trial Selector run time on: a) Phase A data b) Phase B data.

the run time of the Classifier is significantly higher than the Trial Selector.
As mentioned in sections 2.3 and 2.4, the complexity of both the Classifier
and the Trial Generator are linear in the number of candidate hypotheses
and the number of candidate trials. The average number of candidate hy-
potheses and the average number of candidate trials in each iteration of
the closed loop are shown in Figure 5 and Figure 7 respectively. According
to these figures, in the experimentation in phase A the average number of
candidate hypotheses has a small change and decreases between 5 and 4
and the average number of candidate trials decreases linearly in the itera-
tions of the closed loop learning. This explains why the average run time
of the Classifier and the Trial Selector in the experimentation of phase A
are roughly linear in the iterations of the closed loop learning. Whilst, in
the experimentation of phase B the average number of candidate hypotheses
decreases exponentially between 10 and 5 but the average number of candi-
date trials has small changes and decrease between 20 and 19. This explains
the decrease in the average run time of the Classifier and the Trial Selector
in the experimentation of phase B.

Even though both the average run time of the Classifier and the Trial
Selector follow a similar pattern, the average run time of the Classifier is sig-
nificantly higher than the average run time of the Trial Selector. This is be-
cause the Classifier involves repeated theorem proving (see section 2.3) which
is relatively more expensive in comparison with the computation which is
needed in the Trial Selector (see section 2.4).

5 Conclusion

In this report we have provided an experimental analysis of each imple-
mented component of ASE-Progol. The experimental results suggest that
the complexity of ASE-Progol is dominated by the Classifier. As discussed
earlier, the complexity of the Classifier increases linearly in the number of
candidate hypothesis and the number of candidate trials which the latter
has an upper bound of 20.

As mentioned earlier, ASE-Progol selects trials to discriminate the space
of ’compressive’ clauses rather than the space of 'consistent’ clauses. It can
be shown that the space of compressive clauses has a slower reduction in the

subsequent iterations of ASE-Progol than the space of consistent clauses !.

!Note that in each iteration of ASE-Progol a compressive clause h with compression
fr = pr— (nn+cn) can repeatedly become compressive and non-compressive in subsequent
iterations where either pp, or ny is incremented in each iteration.

21

However, the space of consistent clauses could be very sensitive to noise
in the training data. Hence, it is likely that introducing a new control
parameter which lets a combination of both compression and consistency of
hypotheses can provide a faster convergence in ASE-Progol.

References

[1]

2]

[3]

[4]

Case for support: Closed loop machine learning. ESPRC Research Pro-
posal GR/M56067, 1998.

L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification
and Regression Trees. Wadsworth, Belmont, 1984.

C. H. Bryant and S. H. Muggleton. Closed loop machine learning. Tech-
nical Report YCS 330, University of York, Department of Computer
Science, Heslington, York, YO10 5DD, UK., 2000.

C.H. Bryant, S.H. Muggleton, S.G. Oliver, D.B. Kell, P. Reiser, and
R.D. King. Combining inductive logic programming, active learning,
and robotics to discover the function of genes. In Machine Intelligence
18. Electronic Transactions in Artificial Intelligence, 2001. (in press).

S. Muggleton. Inverse entailment and Progol. New Generation Comput-
ing, 13:245-286, 1995.

S. Muggleton. Stochastic logic programs. Journal of Logic Programming,
1999.

S.H. Muggleton and C.H. Bryant. Theory completion using inverse en-
tailment. In Proc. of the 10th International Workshop on Inductive Logic
Programming (ILP-00), Berlin, 2000. Springer-Verlag.

