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Abstract

This report aims to present an effort for reproducing phase A re-
sults of the Closed Loop Machine Learning project. In this report the
experimental method which has been used for testing ASE-Progol in
phase A of the project is explained and the results based on this ex-
perimental method are reproduced. The performance of ASE-Progol
is tested using the same testing strategy which has been used in the
previous reports of the project. In addition, we have used a test strat-
egy which uses a different test-set. The results of both test strategies
are presented and discussed.

1 Introduction

The purpose of the Closed Loop Machine Learning project has been to
develop a framework for “Automatic Experimentation” which involves Ma-
chine Learning for generating hypotheses and Robotics for devising trials to
discriminate between hypotheses. In this framework there is a closed loop
between the process of forming hypotheses and the collection of data. The
long term goal is to use this framework in Functional Genomics to discover
the function of genes.

According to the project proposal [1], the main objectives of the project
are: “to test whether closed loop Machine Learning Systems can (i) effi-
ciently converge to accurate hypotheses and (ii) be physically realised using



robotics and successfully applied to a discovery task in functional genomics”.
For this purpose a system called ASE-Progol (Active Selection of Experi-
ments with Progol) has been developed. ASE-Progol is an Active Learning
system which uses the Inductive Logic Programming (ILP) system Pro-
gol5.0 [6] for generating hypotheses together with a CART-like algorithm [2]
to select trials which minimize the expected cost of experimentation. More
details about the design and implementation of ASE-Progol can be found
in [3, 4].

To date, ASE-Progol has been tested on: a) a small and simplified model
of functional genomics and b) a metabolic pathway from the aromatic amino
acid pathway of yeast. The results of these studies which correspond to phase
A and phase B of the project are reported in [3] and [4] respectively.

In this report we have reproduced the results of phase A experiments
using the same experimental method as used in [3]. We have also used a
test strategy for measuring the predictive accuracy of ASE-Progol which is
different from the test strategy used in the previous reports. The experi-
mental settings, test strategies and the results of the experimentation are
discussed in the next section.

2 Reproducing Phase A results

As mentioned earlier, in this report we aim to reproduce the results of phase
A of the Closed Loop Machine Learning project. These results are based on
an experiment which was initially reported in [3]. This experiment aimed to
study the performance of ASE-Progol on an abstract and simplified model
of functional genomics. According to [3] the purpose of this experiment is:
“to investigate whether the cost of converging upon an accurate hypothesis
is significantly reduced if ASE-Progol samples trials at random, rather than
selecting them so as to minimise the cost of experimentation.”

In the following sections, we first explain the experimental materials and
method and then represent and discuss the results.

2.1 Materials

In this experiment one approach to functional genomics, namely the ef-
fect of single-gene-deletion growth trials, has been modeled by a logic pro-
gram. This logic program and the relevant metabolic pathway are shown
in Table 1 and Figure 1 respectively. During the experimentation some of
code/2 facts (which correspond to the function of unknown genes) are re-
moved from the model and the ability of ASE-Progol to ’cost-efficiently’



Table 1: A logic program which represents the functional genomics model
which has been used in phase A experiments.

phenotypic_effect(Gene, Growth_medium):-
nutrient_in(Nutrient, Growth_medium)
metabolic_path(Nutrient, Mi),
enzyme(E, Mi, Mj),
codes (Gene, E),
metabolic_path(Mj, Mn),
essential_molecule(Mn),
not (path_without_E(Growth_medium, Mn

, E)).

nutrient_in(Nutrient, Growth_medium) :- element (Nutrient, Growth_medium).

metabolic_path(A, A).
metabolic_path(A, B):- enzyme(_, A, B).

metabolic_path(A, B):- enzyme(_, A, X), metabolic_path(X, B).

path_without_E(Growth_medium, Mn, E):-
nutrient_in(Nutrient, Growth_medium)
path_without_E(Nutrient, Mn, E).

path_without_E(A,A, ).

path_without_E(A,B,E):- enzyme(E2,A,B) ,no

t (E=E2) .

path_without_E(A,B,E):- enzyme(E2,A,X) ,not (E=E2) ,path_without_E(X,B,E).

essential_molecule(ess_mol_1). essential_molecule(ess_mol_2).

essential_molecule(ess_mol_3). essential_molecule(ess_mol_4).

enzyme(enzyme_a, nut_1, metabolite_1).
enzyme (enzyme_b, nut_2, metabolite_2).
enzyme (enzyme_c, nut_3, metabolite_3).
enzyme(enzyme_d, metabolite_1, metabolite
enzyme(enzyme_e, metabolite_1, metabolite
enzyme (enzyme_f, metabolite_1, metabolite
enzyme (enzyme_g, metabolite_2, metabolite
enzyme(enzyme_1, metabolite_6, metabolite

_4).
_5).
_6).
_6).
_N.

enzyme (enzyme_h, metabolite_2, ess_mol_4).
enzyme(enzyme_i, metabolite_3, ess_mol_4).
enzyme (enzyme_j, metabolite_4, ess_mol_1).
enzyme (enzyme_k, metabolite_5, ess_mol_2).
enzyme(enzyme_m, metabolite_7, ess_mol_3).

codes (gene_a, enzyme_a). codes(gene_b,
codes (gene_d, enzyme_d). codes(gene_e,
codes(gene_g, enzyme_g). codes(gene_h,
codes(gene_j, enzyme_j). codes(ggne_k,

codes (gene_m, enzyme_m) .

enzyme_b) .
enzyme_e) .
enzyme_h) .
enzyme_k) .

codes (gene_c,
codes (gene_f,
codes (gene_i,
codes(gene_1,

enzyme_c) .
enzyme_f) .
enzyme_i) .
enzyme_1) .
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Figure 1: A graph which represents the metabolic pathway of the genomics
model in Table 1.

Table 2: Cost A and Cost B of Growth Media which has been used in the
experiments.

Growth medium Cost of Trial

Costs A Costs B
nutrient_1 10 10
nutrient_2 20 100
nutrient_3 30 1000
nutrient_1, nutrient_2 30 110
nutrient_1, nutrient_3 40 1010
nutrient_2, nutrient_3 50 1100
nutrient_1, nutrient_2, nutrient_3 60 1110
Sum of costs 240 4440




recover the performance of the model (or learn the function of the genes)
is measured. The cost of the experimentation is assumed to be equal to
the total cost of the growth media (nutrients) which have been used in
the growth trials during the experimentation. In this experiment it is as-
sumed that the costs of the growth media are as shown in Table 2. It is
also assumed that the result of each trial can be represented by positive
and negative instances of the predicate phenotypic_effect/2. For exam-
ple phenotypic_effect(gene_a, [nutrient_1, nutrient_2]) represents
a growth trial in which a mutant strain of an organism is created by removing
gene_a and the growth media contains nutrient_1 and nutrient_2. The
result of a trial can be positive (growth) or negative (no growth). For exam-
ple, — phenotypic_effect(gene_a, [nutrient_2]) shows that no growth
is observed for gene_a and nutrient_2. There are only 3 nutrient in the
model, so there are 7 possible growth media for each of the 13 gene in the
model. Hence, we have 91 examples for the predicate phenotypic_effect/2.
According to the metabolic pathway in Figure 1, 45 of theses examples are
positive and the other 46 are negative examples.

2.2 Method

As mentioned earlier, the purpose of this experiment is to study the per-
formance of ASE-Progol and its ability to recover an incomplete genomics
model. For this purpose, ASE-Progol uses 'Theory Completion’ which is
implemented in Progol5.0. Theory Completion, Progol5.0 and the results
of testing Progol5.0 on the functional genomics model are presented in [6].
Unlike the experiments with Progol5.0, in the experiments with ASE-Progol
it is assumed that ASE-Progol is given one example in each iteration (the
result of a growth trial). In the existing implementation, the result of a trial
is determined by the oracle — a file which contains the results of all possible
trials — rather than by the laboratory.

During the experimentation, the genomics model shown in Table 1 is
made incomplete by randomly removing a number of code/2 facts. This
number varies between 5, 9 and 13 in different experiments. ASE-Progol
is executed on the incomplete model such that trials are selected which: a)
minimise the expected cost of experimentation b) sampled at random. The
performance is then measured for the recovered model for both ASE-Progol
and random sampling of trials.

In the present experiment, we use two different strategies for testing the
performance of ASE-Progol:

1. TEST STRATEGY 1. This is the original strategy which has been used



Table 3: The experimental method as in [3]. This has been used in both
TEST STRATEGY 1 and TEST STRATEGY 2.

1 for k in (0, 4, 8) do

2 select k codes/2 facts at random;

3 remove the other 13 — k codes/2 facts from the model;

4  for each one of these 13 — k codes/2 facts do

5 Add the codes/2 fact to the Stochastic Logic Program;
6 for 7 in 1 to 10 do

7 execute ASE-Progol twice such that trials are:

8 1. selected which minimise the expected cost of experimentation.
9 2. sampled at random.

10 for each of (ase random) do

11 determine the accuracy and cumulative cost (CC) of experimentation
12 at each iteration of the CLML cycle.

13 end

14 end

15 for each of (ase random) do

16 for j in (40 80 120 160 200 240) ¢ do

17 for i in 1 to 10 do

18 estimate accuracy when CC = j

20 end

21 end

22 end

23 end

24end

25for each of (ase random) do

26 for j in (40 80 120 160 200 240) do

27 calculate the mean and standard error of the accuracy when CC = j

28 end

29 plot jﬁ% versus accuracy with horizontal error bars, where Maz is

30 the limit on the cost of the experimental resources which may be consumed.
31 for [ in (78 83 88 93 98)° do

32 estimate CC when accuracy = [

33 end

34end

cc —-cc
35plot C—g%‘ﬁ%ﬂ versus [ and A 45E) % 100 versus L.
andom

“for costs B j was assigned the values (1040, 1720, 2400, 3080, 3760, 4440) rather than
(40, 80,120, 160, 200, 240) as shown in Table 2.
*These values were chosen because they fall within the range of accuracy values which
were achieved by both the ASE and Random approaches.
U




to measure the predictive accuracy of ASE-Progol. According to [3]:
“The test-set for any given gene was the seven examples of the observ-
able predicate phenotypic_effect/2 for the gene in question. The
performance measure used was predictive accuracy on the observable
predicate. The performance of the hypothesis with the highest com-
pression was measured”. In this test strategy, the predictive accuracy
of a part of the model, which involves only one gene, is measured on
a test-set which contains only examples of the gene in question (i.e. 7
examples of the observable predicate phenotypic_effect/2).

2. TEST STRATEGY 2. In this test strategy, we measure the predictive
accuracy of ASE-Progol on a test-set which contains all 91 examples
of the observable predicate phenotypic_effect/2. This strategy has
been also used to test Progol5.0 on a natural language data-set as
well as the functional genomics model [6]. The purpose of this test
strategy is to measure the predictive accuracy of the whole model on
the complete set of examples.

The experimental method which has been used for both TEST STRAT-
EGY 1 and TEST STRATEGY 2 is the same as used in [3] and is summarized
in Table 3. In the first part of the method, the predictive accuracy and Cu-
mulative Cost (CC) of the experimentation at each iteration of the Closed
Loop Machine Learning are computed and recorded (line 11). In the sec-
ond part, the predictive accuracy for an specific Cumulative Cost (CC) is
estimated (line 18) by finding the points which correspond to the two CCs
which are closest to 7, fining the line y = ma + ¢ which goes through these
points and then calculating y when x = j. When this leads to extrapolation
above or below the valid range (0 — 100) the estimate is taken to be 100 or
0 respectively. Similarly, the Cumulative Cost for a specific accuracy is esti-
mated (line 32) by finding the costs which correspond to the two previously
interpolated/extrapolated accuracies which are closest to [, fining the line
y = mx + ¢ which goes through these points and then calculating y when
z = [. When this leads to extrapolation above or below the valid range
(0 — Maz) the estimate is taken to be Maz or 0 respectively.

2.3 Results

The results of the experiment which are plotted for both TEST STRATEGY
1 and TEST STRATEGY 2 include:

1. Resources Consumed versus Predictive Accuracy (Tables 4 and 7).



2. The difference in cumulative cost (expressed as a percentage of the
random cumulative cost) versus predictive accuracy (Tables 5 and 8).

3. The ratio of cumulative costs versus predictive accuracy (Tables 6
and 9).

These results are plotted separately based on the number of code/2 facts
which are removed from the model (5, 9 and 13). The results are also plotted
as an average for all executions of ASE-Progol 1.

2.4 Discussion

The results of the experimentation based on TEST STRATEGY 1 are consis-
tent with the results which have been reported in [3]: “the cost of converging
upon a hypothesis with an accuracy in the range 80 —95% is reduced if trials
are selected by Closed Loop Machine Learning (CLML) rather than if they
are sampled at random”.

The results of TEST STRATEGY 1 also show that when all resources are
consumed ASE-Progol always converges to a hypothesis with an accuracy
in the range 95 — 100% (Table 4). However, the levels of the predictive
accuracies, which have been achived by ASE-Progol, are different when TEST
STRATEGY 2 is used. For example, according to Table 7, the maximumm
average accuracy is around 88.5% when 5 code/2 facts are removed from
the model, 71% when 9 code/2 facts are removed and 55% when all 13
code/2 facts are removed from the model. According to the table, the
maximum average accuracy on all executions of ASE-Progol is around 66%.
The results of TEST STRATEGY 2 are consistent with the fact that less
predictive accuracy is expected when more code/2 facts are missing.

As mentioned earlier, the difference between TEST STRATEGY 1 and
TEST STRATEGY 2 is in the number of examples which have been used as
a test set for measuring the predictive accuracy. In TEST STRATEGY 1, the
predictive accuracy of the whole model (with 5, 9 and 13 removed code/2
facts) is measured on a test-set which contains only examples of the gene in
question (i.e. 7 examples of the observable predicate phenotypic_effect/2).
Whilst, in TEST STRATEGY 2 the test-set contains all possible examples (i.e.
91 examples of the observable predicate phenotypic_effect/2).

One possible drawback of these test strategies is that they cannot be
reliable in the case of overfitting the training data [5]. For example, in TEST

!Note that the separate plots are not appeared in [3] and only the average results for
all executions were reported.



Table 4: TEST STRATEGY 1: Resources Consumed vs Predictive Accuracy.
Resources consumed = A(jg’; x 100 where CC' is the cumulative cost of the
trials performed so far during training and M ax is the limit on the cost of the
experimental resources which may be consumed during training. Predictive
Accuracy is measured on the seven examples of the observable predicate

phenotypic_effect/2 for the gene in question.

Costs A Costs B
Avg. Learning Curve when 5 codes/2 facts missing. Avg. Learning Curve when 5 codes/2 facts missing.
(Error bars show standard error.) (Error bars show standard error.)
& 100 - ! ! ! ! ! b & 100 -
Q0 - 9 -
g 80 - ASE P -g 80 -
2 8- P g 10-
8 50 - - g8 &0-
§ 0: i § -
3 20 - - 3 30 -
g 10 1 I I I I I I r ?é 20 1
65 70 75 80 8 90 95 100 70 75 80 85 90 95 100
Predictive accuracy (%) Predictive accuracy (%)
Avg. Learning Curve when 9 codes/2 facts missing. Avg. Learning Curve when 9 codes/2 facts missing.
(Error bars show standard error.) (Error bars show standard error.)
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Avg. Learning Curve when 13 codes/2 facts missing. Avg. Learning Curve when 13 codes/2 facts missing.
(Error bars show standard error.) (Error bars show standard error.)
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Average learning curves for all executions of ASE-Progol. Average learning curves for al executions of ASE-Progol.
(Error bars show standard error.) (Error bars show standard error.)
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Table 5: TEST STRATEGY 1: Saving in Cumulative cost vs Predictive Accu-
racy. Savings in cumulative cost = CCR“C“gORm _dCCASE ) %100 where CC '‘Random
is the cumulative cost when trials are sampfgdogt random and CCygg is the
cumulative cost when trials are selected to minimise the expected cost of
experimentation. Predictive Accuracy is measured on the seven examples

of the observable predicate phenotypic_effect/2 for the gene in question.

Costs A Costs B
" % Saving in Cumulative Cost when 5 codes/2 facts missing. “ % Saving in Cumulative Cost when 5 codes/2 facts missing.
8 30 I I I I I I I L 8 30 I I I I I I I L
2 5- - 2 5- -
B 20 - ® 20 - _
g 15 - - § 15 - -
3 10 - - 3 10 - -
£ 5- - £ 5- -
g 0 - g 0 §
5 -10 1 I I I I I I I r ‘E -10 4 I I I I I I I r
s 88 89 90 91 92 93 94 95 9% = 88 89 90 91 92 93 94 95 96
Predictive accuracy (%) Predictive accuracy (%)
" % Saving in Cumulative Cost when 9 codes/2 facts missing. ” % Saving in Cumulative Cost when 9 codes/2 facts missing.
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Predictive accuracy (%) Predictive accuracy (%)
m% Saving in Cumulative Cost when 13 codes/2 facts missing. 175% Saving in Cumulative Cost when 13 codes/2 facts missing.
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Predictive accuracy (%) Predictive accuracy (%)
= Average for all executions of ASE-Progol. = Average for all executions of ASE-Progol.
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Table 6: TEST STRATEGY 1: Ratio in Cumulative cost vs Predictive Accu-
racy. Ratio of cumulative costs = CJ&}“A&‘J‘EM where CCRrandom is the cumula-
tive cost when trials are sampled at random and C'C4gg is the cumulative
cost when trials are selected to minimise the expected cost of experimenta-
tion. Predictive Accuracy is measured on the seven examples of the observ-
able predicate phenotypic_effect/2 for the gene in question.

Costs A Costs B
Ratio of Cumulative Cost when 5 codes/2 facts missing. Ratio of Cumulative Cost when 5 codes/2 facts missing.
g 15 4 1 1 1 1 1 1 1 L g 15 4 1 1 1 1 1 1 1 L
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Table 7: TEST STRATEGY 2: Resources Consumed vs Predictive Accuracy.
Resources consumed = A(jg’; x 100 where CC is the cumulative cost of the
trials performed so far during training and Max is the limit on the cost of
the experimental resources which may be consumed during training. Pre-
dictive Accuracy is measured on all 91 examples of the observable predicate

phenotypic_effect/2.

Costs A Costs B
Avg. Learning Curve when 5 codes/2 facts missing. Avg. Learning Curve when 5 codes/2 facts missing.
(Error bars show standard error.) (Error bars show standard error.)
& 100 ! ! ! ! L & 100 L
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(Error bars show standard error.) (Error bars show standard error.)
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Table 8: TEST STRATEGY 2: Saving in Cumulative cost vs Predictive Accu-
racy. Savings in cumulative cost = CCR“C“gORm _dCCASE ) %100 where CC '‘Random
is the cumulative cost when trials are sampfgdogt random and CCygg is the
cumulative cost when trials are selected to minimise the expected cost of
experimentation. Predictive Accuracy is measured on all 91 examples of the

observable predicate phenotypic_effect/2.

Costs A Costs B

" % Saving in Cumulative Cost when 5 codes/2 facts missing. “ % Saving in Cumulative Cost when 5 codes/2 facts missing.
§ 100 - ! | | | | [ % 100 ~ | | | | | | | | L
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Table 9: TEST STRATEGY 2: Ratio in Cumulative cost vs Predictive Accu-
racy. Ratio of cumulative costs = %ﬁd‘;ﬂ where CCRrandom is the cumula-
tive cost when trials are sampled at random and C'C4gg is the cumulative
cost when trials are selected to minimise the expected cost of experimenta-
tion. Predictive Accuracy is measured on all 91 examples of the observable
predicate phenotypic_effect/2.

Costs A Costs B
Ratio of Cumulative Cost when 5 codes/2 facts missing. Ratio of Cumulative Cost when 5 codes/2 facts missing.
g 15 - 1 1 1 1 1 1 - g 15 4 1 1 1 1 1 1 1 1 L
g 14 ) g 14 )
8 13- - 8 13- -
=} =}
g 12 - - g 12 - -
3 =
8 11 /// 8 11 - _
o o
g 1- - e 1- -
E 09 - I I I I [ § 09 1 I I I I I I I I r
822 824 826 828 83 832 85.485.685.8 86 86.286.486.686.8 87 87.2
Predictive accuracy (%) Predictive accuracy (%)
Ratio of Cumulative Cost when 9 codes/2 facts missing. Ratio of Cumulative Cost when 9 codes/2 facts missing.
g 15 4 1 1 1 1 1 1 1 L g 15 4 1 1 1 1 1 1 L
g 14 - - g 14 - -
8 13- 8 13- -
=} =}
g 12 - - g 12 - -
3 =
© 11- - O 11- -
o o
g 1- - e 1- -
E 0.9 1 I I I I I I I r § 09 1 i I I I I I r
68.6 68.8 69 69.2 69.4 69.6 69.8 70 70.2 65 652 654 656 658 66 662 66.4
Predictive accuracy (%) Predictive accuracy (%)
Ratio of Cumulative Cost when 13 codes/2 facts missing. Ratio of Cumulative Cost when 13 codes/2 facts missing.
g 15 - ! 1 1 1 1 1 1 [ g 15 4 1 1 1 1 L
g 14 - - g 14 - -
8 13- - 8 13- -
=} =}
g 12 - - g 12 - -
3 =
O 11- - O 11- -
<] 5] -
g 1- - e 1- -
E 09 - I I I I I I I § 09 1 I I I I r
52.4 52.6 52.8 53 53.2 53.4 53.6 53.8 51.5 52 52.5 53 535 54
Predictive accuracy (%) Predictive accuracy (%)
Average for all executions of ASE-Progol Average for all executions of ASE-Progol
0 2]
g 15 J | | | | | | | | L g 15 J | | | | L
o 14 - - o 14 - _
> >
g 13 - - ® 13- -
g 12- g 12- -
3 3
&-_) 11 - - 8 11 - -
o L- - o 1- -
§ 09 A | | | | | | | | r cﬁe 09 A | | | | r
63.263.463.663.8 64 64.264.464.664.8 65 62 62.5 63 63.5 64 64.5
Predictive accuracy (%) Predictive accuracy (%)
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STRATEGY 1 assume that in the sth run of ASE-Progol the gene in question
is gene_m. In each cycle of the closed loop learning, ASE-Progol is given one
example of the observable predicate phenotypic_effect/2 (i.e. the result of
a growth trial). This training example can be one of the 7 possible examples
for gene_m:

phenotypic_effect(gene_m, [nut_1]).
phenotypic_effect(gene_m, [nut_2]).

:- phenotypic_effect(gene_m, [nut_3]).
phenotypic_effect(gene_m, [nut_1,nut_2]).
phenotypic_effect(gene_m, [nut_1,nut_3]).
phenotypic_effect(gene_m, [nut_2,nut_3]).
phenotypic_effect(gene_m, [nut_1,nut_2,nut_3]).

The closed loop learning continues until all trials have been tried (i.e.
there is no more phenotypic_effect/2 facts for gene m). So that after
7 cycles the training-set contains all of the above examples and is exactly
the same as the test set for gene.m which has been used to measure the
predictive accuracy. In other words, we have a small training-set (which is
added one example in each cycle) and a small test-set which are equal after
7 cycles. Hence, the test-set cannot be expected to provide a safety check
against overfitting the training set. This problem is especially important for
ASE-Progol, because the assumption “only one trial per cycle” (or only one
training example per cycle) increases the risk of overfitting the training data.
This could be even worse if we have noise in the training data. To have a
more reliable validation test, one approach is to use a separate test-set which
is distinct from the training-set.

Another drawback of the existing experimental method is that in each
experiment more than one code/2 facts (5, 9 and 13) are removed from
the model while ASE-Progol is given only examples of a single gene. In
other words, in this method we try to measure the predictive accuracy of
ASE-Progol on a model with 5, 9 and 13 missing code/2 facts, while we
know that ASE-Progol can learn at most one code/2 fact each time 2. One
alternative to this method could be removing only one code/2 fact in each
experiment, trying to recover the model by ASE-Progol and then measuring
the predictive accuracy of the recovered model on the complete set of exam-
ples. In this case, the predictive accuracy only reflects the degree of recovery
by ASE-Progol and is not affected by the number of missing code/2 facts.

*Note that in the experiments in [6], Progol5.0 is given examples of different genes and
therefore removing more than one code/2 fact makes sense.
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3 Conclusion

In this report we have reproduced the results of phase A of the Closed
Loop Machine Learning project. According to the previous reports of the
project [1, 3], the main purpose of the experiments in phase A have been to
test whether ASE-Progol can efficiently converge to accurate hypotheses.

In our reproduction of phase A results, we have used the same experimen-
tal method as used in [3] (TEST STRATEGY 1). In addition, we have used
a different test strategy to measure the predictive accuracy of ASE-Progol
(TEST STRATEGY 2).

The results of both TEST STRATEGY 1 and TEST STRATEGY 2 show
that the cost of experimentations is reduced if trials are selected by Closed
Loop Machine Learning (CLML) rather than if they are sampled at random.
The results of experiments using TEST STRATEGY 1 also show that in all
cases ASE-Progol converges to an accurate hypothesis (with an accuracy
between 95-100%).

In this report we also evaluated the existing experimental method and
provided some suggestions for improving this method.
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