
iccp@doc.ic.ac.uk
Department of Computing
Imperial College
London SW7 2BZ

CCS WITH PRIORITY GUARDS

IAIN PHILLIPS

ABSTRACT. It has long been recognised that ordinary process algebra has difficulty deal-
ing with actions of different priority, such as for instance an interrupt action of high priority.
Various solutions have been proposed. We introduce a new approach, involving the addi-
tion of “priority guards” to the summation operator of Milner’s process calculus CCS. In
our approach, priority isunstratified, meaning that actions are not assigned fixed levels,
so that the same action can have different priority depending where it appears in a pro-
gram. An important feature is that, unlike in other unstratified accounts of priority in CCS
(such as that of Camilleri and Winskel), we can treat inputs and outputs symmetrically.
We introduce the new calculus, give examples, develop its theory (including bisimulation,
equational laws and logics), and compare it with existing approaches.

1. INTRODUCTION

It has long been recognised that ordinary process algebra [Mil99, Hoa85, BK84] has
difficulty dealing with actions of different priority, such as for instance an interrupt action
of high priority. Various authors have suggested how to add priority to process languages
[BBK86, CH90, HO92, Fid93, Jef93, Pra94, CW95, SS96]. We introduce a new approach,
involving the addition of “priority guards” to the summation operator of Milner’s process
calculus CCS. In our approach, priority isunstratified, meaning that actions are not as-
signed fixed levels, so that the same action can have different priority depending where
it appears in a program. We shall see that existing accounts of priority in CCS are either
stratified [CH90], or else they impose a distinction between outputs and inputs, whereby
prioritised choice is only made on inputs [CW95, CLN00]. This goes against the spirit
of CCS, where inputs and outputs are treated symmetrically, and we contend that it is un-
necessary. We introduce the new calculus, give examples, develop its theory (including
bisimulation, equational laws and logics), and compare it with existing approaches.

We start with the idea of priority. We assume some familiarity with CCS notation
[Mil99]. Consider the CCS processa.0+ b.0. The actionsa and b have equal status.
Which of them engages in communication depends on whether the environment is offering
the complementary actions ¯a or b̄. By “environment” we mean whatever processes may be
placed in parallel witha.0+ b.0. If the environment offers both, then the choice is nonde-
terministic. We would like some means to favoura overb, say, so that if the environment
offers both, then onlya can happen. This would be useful if, for instance,a was an in-
terrupt action. We need something more sophisticated than simply removingb altogether,
since, if a cannot communicate, it should not stopb from doing so. This brief analysis
points to two features of priority: (1) Priority removes (“preempts”) certain possibilities
that would have existed without priority. Thus ifa can communicate thenb is preempted.
(2) Parallel composition plays a crucial rôle in priority in CCS.

We now explain our basic idea. LetP be a process, leta be an action, and letU be some
set of actions. Then we can form a new processU :a.P, which behaves likea.P, except that

Key words and phrases.Process algebra, CCS, bisimulation, Hennessy-Milner logic, priority, interrupt.
Partially funded by EPSRC grant GR/K54663.

1

2 IAIN PHILLIPS

the initial actiona is conditional on the environment not offering actions inŪ , the CCS
“complement” ofU . We callU a priority guard in U :a.P. All actions inU have priority
overa at this point in the computation. We call our calculus CPG (for CCS with Priority
Guards).

As a simple example, if we have a CCS processa.P+b.Q and we wish to givea priority
over b in the choice, we add a priority guard to geta.P+ a : b.Q (we omit the set braces
arounda). Priority is specific to this choice, since the guard affects only the initialb, and
not any further occurrences ofb there may be inQ.

Let us see how this example is handled in two existing approaches to priority. Camilleri
and Winskel proposed a priority choice operator [CW95]. In their notation the example
becomesa.P+〉b.Q. Cleaveland and Hennessy [CH90] add new higher priority actions to
CCS. They would write our example asa.P+b.Q (high priority actions are underlined).

In Cleaveland and Hennessy’s stratified calculus, actions have fixed priority levels, and
a always has priority overb, not just in the choice under consideration, but throughout the
system. Furthermore if a third actionc is present in the system, thena also has priority over
it. The stratification means that only actions at the same priority level can communicate.
In this paper we are interested in an unstratified approach, and so our starting point of
reference is Camilleri and Winskel’s work. They make the priority ofa over b totally
specific to the particular choice, so thatb might have priority overa elsewhere in the
same program. However they limit themselves so prioritised choice oninput actions—
only normal choice is allowed on output actions. In our proposal, inputs and outputs are
treated equally, which is more in the spirit of CCS, where they are simply dual. We shall
see that there is an interesting contrast between our system and theirs in the treatment
of preemption. We also note that Camilleri and Winskel’s work does not hide silent (τ)
actions, and has never been extended to do so, as far as we are aware. Finally, we contend
that our system is more tractable, both in terms of operational semantics and equational
theory. We shall discuss this further in Section 2.

To end this section, we give an example, involving handling of hidden actions and the
scoping of priority. We wish to program a simple interrupt. LetP be a system which
consists of two processesA, B in parallel which perform actionsa, b respectively, while
communicating internally to keep in step with each other.P also has an interrupt processI
which shuts downA andB when the interrupt signalint is received.

P
df= newmid, intA, intB (A|B|I) A

df= intA :a.mid.A+ intA.0

I
df= int.(intA.intB.0+ intB.intA.0) B

df= intB :b.mid.B+ intB.0

Without the priority guards inA andB, P could receive anint and yetA andB could
continue witha andb. Actions intA, intB have priority overa, b, respectively. This only
applies within the scope of the restriction. We can apply the usual techniques of CCS
(including removingτ actions) and get

P = a.P1 +b.P2 + int.0 P1 = b.P+ int.0 P2 = a.P+ int.0

which is what we wanted. We consider this example more precisely in Section 8.
It is worth noting that if we merely wanted to interruptA, we could have simply defined

A
df= intA :a.mid.A. As soon asint occurs,I offers intA, andA cannot performa according

to our rules. The choice ofintA.0 in A gives us a way of gracefully recovering from the
interrupt.

The rest of the paper is organised as follows: First we compare our approach with related
work (Section 2). Next we define the language of processes (Section 3). Then we look at
reactions (Section 4) and labelled transitions (Section 5). We then look at bisimulation and
equational theories for both the strong (Section 6) and weak cases (Section 7). We then
return to our interrupt example (Section 8), before examining logics for priority (Section
9). The paper is completed with some brief conclusions.

CCS WITH PRIORITY GUARDS 3

2. RELATED WORK

We refer the reader to [CLN00] for discussion of the many approaches taken by other
authors to priority. Here we restrict ourselves to comparison of our work with that of
Camilleri and Winskel [CW95] (referred to as CW for short) and Cleaveland, Lüttgen and
Natarajan [CLN00] (CLN for short).

As we have seen, CW’s CCS with a prioritised choice operatorP+〉Q allows priority to
be decided in a way which is specific to each choice in a system. The idea of a priority
choice between processes is interesting and natural. The authors present an operational
semantics via a labelled transition relation, and define a bisimulation-based equivalence.
They also give an axiomatisation of this equivalence which is complete for finite processes
(i.e. those not using recursion). However they do not show how to hide theτ-actions
resulting from communications.

The CW transition relation is parametrised on a set of output actionsR. Thus`R P
α→P′

means that, in an environment which is ready to perform precisely the actionsR, the process
P can perform an actionα to becomeP′. For example,̀ R a.0+〉b.0 a→ 0 (anyR), while

`R a.0+〉b.0 b→ 0 provided ¯a 6∈ R. We have adapted the idea of parametrisation on the
environment for our labelled transition system for CPG. For usP

α→U P′ means that, in an
environment which offers no action in the setŪ (in our parlance,eschews U), processP
can performα to becomeP′. Our most basic rule is essentiallyU : a.P

a→U P, provided
a 6∈ U . We feel that we have obtained a satisfying unity between syntax and transition
relation.

There is a difference in expressiveness between CPG and CW’s calculus, in that the lat-
ter cannot express cycles of priority, whereas we can in CPG. CW consider the paradoxical
example

newa,b((a.0+〉b̄.0)|(b.0+〉ā.0))

The problem is that there is a circularity, witha having priority overb, as well as vice
versa. Can the system act? They decide to sidestep this question by breaking the symmetry
in CCS between inputs and outputs, and only allowing prioritised choice on input actions.
We feel that this complicates the syntax and operational semantics, and should not be
necessary. In our approach the example is admitted, though it results in a deadlock. We
consider this example again at the end of Section 5.

Another reason why CW disallow priority choice on output actions is to assist in ob-
taining the normal form they use for proving the completeness of their equational laws for
finite processes. However this normal form is still quite complicated (consisting of a sum
of priority sums of sums). In our calculus CPG we have only one form of choice, and so
completeness is technically simpler.

We now turn to CLN’s work. In their basic approach [CLN00], which is derived from
earlier work of Cleaveland and Hennessy [CH90], actions have priority levels. Mostly they
consider just two levels—ordinary actions and higher priority, underlined actions. Only
actions at the same level of priority can communicate, which is really quite restrictive
when one considers that two actions which are intended to communicate may have quite
different priorities within their respective subsystems. The resulting silent actions have
preemptive power over all actions of lower priority, i.e. no action of lower priority, whether
visible or invisible, can take place in the presence of a higher priorityτ-action. The authors
present both strong and weak bisimulation-based equivalences (drawing on [NCCC94]),
and axiomatise these for finite processes.

In our unstratified calculus CPG, by contrast, actions do not have priority levels—each
priority guard operates independently. This is in the spirit of [CW95].

Even disregarding the issue of priority levels, there is a difference between preemption
in [CH90, CLN00] and in CPG, since in CPG preemption is done entirely by the envi-
ronment. Consider the processa.0+ τ.0. Here the underlining indicates thatτ is a high

4 IAIN PHILLIPS

priority reaction. According to Cleaveland and Hennessy, this process cannot performa,
since it is preempted byτ. However if we translatea.0+ τ.0 into CPG asU : a.0+ τ.0
(where the set of actionsU , with a 6∈ U , is chosen to be as large as necessary), we find
that by contrastU :a.0+ τ.0 a→U 0. So thea is not preempted, but only downgraded. This
is because performance ofa depends on the environment eschewingU . Another example
illustrates the opposite effect: For Cleaveland and Hennessy,a.0|b.0 a→ b.0, but the trans-
lationU :a.0|b.0 (with b̄∈U) cannot performa at all, since the environment (in the form
of b.0) is offering an action which preemptsa. Here we see that, in CPG, a high priority
action can preempt a low priority action in a parallel composition, even without being able
to engage in a reaction.

This difference in the handling of preemption means that there is no obvious translation
of CPG into the framework of CLN, or vice versa.

The development in [CLN00] goes far beyond the basic Cleveland and Hennessy calcu-
lus. They consider distributed priorities, where preemption is decided locally rather than
globally. They motivate this by the example of an application which fetches data from two
memory benches alternately. In CCS this can be modelled as

Appl
df= fetch1.fetch2.Appl

These benches are also connected to a direct-memory-access (DMA) controller. This DMA
access should have lower priority than the fetch access by the application. However a
straightforward assignment of high priority to application access and low priority to DMA
access fails, since one or other of the fetches is always enabled, so that DMA access never
takes place.

Their example can be encompassed easily in our unstratified approach. Define

Benchi
df= fetchi .Benchi .0+ fetchi :dma.Benchi (i = 1,2)

Sys
df= newfetch1, fetch2 (Appl|Bench1|Bench2)

ThenSys has the desired behaviour, since one or otherdma action can always take place.

By the methods to be used in Section 8, we can show thatSys = P, whereP
df= dma.P.

The next step in [CLN00] is to consider extending the distributed priority calculus to
allow communication between actions at different levels. The authors identify a problem
with associativity of parallel composition. Consider the system

(a.0+b.0)|(b̄.0+c.0)|c̄.0

where communication is allowed between complementary actions at different levels. If
this associates to the left, thena is preempted byb; however if it associates to the right
thenb is preempted byc, and soa is not preempted. A similar problem is encountered
when extending the distributed calculus to allow more than two levels.

CLN’s proposed solution is to follow CW by only allowing priorities to be resolved
betweeninput actions, while treating all output actions as having equal priority. We have
already mentioned our reservations about this. Nevertheless the distinction between in-
puts and outputs gives a workable “mixed-level” calculus (distributed, multi-level, with
communication between different levels). It is particularly nice that CLN show that the
CW calculus can be translated faithfully and naturally into this mixed-level calculus. This
shows that the underlying model of preemption is the same in both cases, and, apparently,
different from that of CPG.

It is striking that both CW and the mixed-level calculus of CLN adopt the same syntac-
tic restriction on inputs and outputs, and also that onlystrongequivalence (τ actions not
hidden) is presented for the mixed-level calculus. We shall present a weak equivalence for
CPG.

CCS WITH PRIORITY GUARDS 5

3. THE LANGUAGE CPG

We shall denote our augmentation of CCS with priority guards byCPG (CCS with
Priority Guards). First we define the actions of CPG. In ordinary CCS [Mil99, Part I] there
is a set ofnamesN and a disjoint set ofco-namesN̄ , together with a single silent action
τ. To these ordinary namesN we shall add a new disjoint set of namesΠ and a dual set
Π̄. These are the actions which can be used in priority guards; they can also be used in the
ordinary way. They need to be kept separate from ordinary actions, since we have to be
careful with them in reasoning compositionally about processes.

To see why we take this approach, consider the lawP = τ.P, which is valid for CCS
processes. In CPG, ifa can be a priority guard thena 6= τ.a since there is a context in
which the two sides behave differently. Indeed,a|ā:b cannot performb (since, as we shall
see,b is preempted by the offer ofa), whereasτ.a|ā : b can performb initially, as a is
not offered untilτ has occurred. However if we know thata is an ordinary name then we
do havea = τ.a. So we can retain CCS reasoning when processes only involve ordinary
names.

We defineOrd = N ∪ N̄ , Pri = Π∪ Π̄, Vis = Ord∪Pri andAct = Vis∪{τ}. We let
u,v, . . . range overPri, a,b, . . . over Vis andα,β, . . . over Act. Also S,T, . . . range over
subsets ofVis, andU,V . . . over subsets ofPri. If S⊆ Vis, let S̄denote{ā : a∈ S}, where
if ā∈ N̄ ∪ Π̄ then¯̄a = a.

Now we define processes:

Definition 3.1. (cf [Mil99, Definition 4.1]) P is the smallest set such that wheneverP,Pi

are processes thenP contains

(1) ∑i∈I Si : αi .Pi guarded summation (I finite)
(2) P1|P2 parallel composition
(3) newa P restriction
(4) A〈a1, ..,an〉 identifier

P is ranged over byP,Q,R, . . . We letM,N, . . . range over (guarded) summations. We

assume that each identifierA〈b1, ..,bn〉 comes with a defining equationA(a1, ..,an) df= P,
whereP is a process whose free names are drawn froma1, ..,an. We will tend to abbreviate
a1, ..,an by~a. We write the empty guarded summation as 0. It is assumed that the order in
a summation is immaterial. We abbreviate/0 :α by α. Definition 3.1 is much as in ordinary
CCS except for the priority guardsSi . The meaning of the priority guardS: α is thatα
can only be performed if the environment does not offer any action inS̄∩Pri. Clearly,
any names inS−Pri have no effect as guards, and can be eliminated without changing the
behaviour of a process. We allow them to occur in the syntax, since otherwise we could
not freely instantiate the parameters in an identifier. We will allow ourselves to writeu:α
instead of{u} : α. Restriction is a variable-binding operator, and we writefn(P) for the
free namesof P, defined as follows:

Definition 3.2. By induction onP∈ P :

1. fn(∑i∈I Si :αi .Pi) = {n∈N ∪Π : ∃i ∈ I .n∈ Si ∪{αi}∨ n̄∈ Si ∪{αi}∨n∈ fn(Pi)}
2. fn(P1|P2) = fn(P1)∪ fn(P2)
3. fn(newa P) = fn(P)−{a}
4. fn(A〈~b〉) = fn({−→b /−→a }P) if A(−→a) df= P

Two sublanguages of CPG are of interest:

Definition 3.3. Let POrd be the sublanguage ofordinary processes generated as in Defi-
nition 3.1 except that all names are drawn fromOrd (i.e. we effectively takeΠ = /0 and

6 IAIN PHILLIPS

Si = /0 in clause (1)). LetPUg be the sublanguage ofunguardedprocesses generated as in
Definition 3.1 except that all priority guards are empty (i.e.Si = /0 in clause (1)).

ClearlyPOrd ⊆ PUg ⊆ P . Note thatPOrd is effectively normal CCS.

4. OFFERS ANDREACTION

Structural congruence is the most basic equivalence on processes, which facilitates re-
action by bringing the subprocesses which are to react with each other into juxtaposition.
It is defined as for CCS:

Definition 4.1. (cf [Mil99, Definition 4.7]) Structural congruence, written≡, is the con-
gruence onP generated by the following equations:

1. Change of bound names (alpha-conversion)
2. Reordering of terms in a summation
3. P|0≡ P, P|Q≡Q|P, P|(Q|R)≡ (P|Q)|R
4. newa(P|Q)≡ P|newa Q if a 6∈ fn(P);

newa0≡ 0, newanewb P≡ newbnewa P

5. A〈~b〉 ≡ {−→b /−→a }P if A(−→a) df= P

Recall that a guarded actionS:a is conditional on other processes in the environment not
offering actions inS̄∩Pri. Before defining reaction we must define what it means for the
environment to offer an action. We define for each processP the setoff(P)⊆Pri of “higher
priority” actions “offered” byP. Note that the offers of a process do not depend on any
guardsS it may contain.

Definition 4.2. By induction onP∈ P :

1. off(∑i∈I Si :αi .Pi) = {αi : i ∈ I ,αi ∈ Pri,αi 6∈ Si}
2. off(P1|P2) = off(P1)∪off(P2)
3. off(newa P) = off(P)−{a,a}
4. off(A〈~b〉) = off({−→b /−→a }P) if A(−→a) df= P

In item 1 the reason that we insistαi 6∈ Si is that we want to equate a process such asu:u
with 0, sinceu:u can never engage in a reaction. Note that ifP∈ POrd thenoff(P) = /0.

Proposition 4.3. For any P∈ P :

1. fn(P) is finite
2. off(P)⊆ fn(P)∩Pri
3. If P≡Q thenfn(P) = fn(Q) andoff(P) = off(Q).

In CPG, a reaction can be conditional on offers from the environment. Consideru : b.0|b̄.0.
This can react by communication onb, b̄. Howeverb is guarded byu, and so the reaction
is conditional on the environment not offering ¯u. We reflect this by letting reaction be
parametrised on sets of actionsU ⊆ Pri. The intended meaning ofP→U P′ is thatP can
react on its own, as long as the environment does not offer ¯u for any u ∈U . Notice that
the offers ofP to the environment are immaterial here, as are any guarding sets in the
environment.

The environment plays both apositiveand anegativerole when participating with a
process in reaction: Consider for exampleu:a.0. In order to participate in a reaction, this
process requires the environment to performa (positive) and not to offeru (negative). We
shall say that the environment shouldeschew u.

Definition 4.4. Let P∈ P and letS⊆ Act be finite.P eschews S(written PeschewsS) iff
off(P)∩ S̄= /0.

Proposition 4.5. Let P∈ P and let S⊆ Act be finite.

1. If PeschewsSandT ⊆ S thenPeschewsT.

CCS WITH PRIORITY GUARDS 7

2. If PeschewsSandQeschewsS thenP|QeschewsS.

Proof. Immediate.

Definition 4.6. (cf [Mil99, Definition 4.13]) Thereaction relationon P is the smallest
relation→ on P ×℘(Pri)×P generated by the following rules:

S:τ.P+M→S∩Pri P

(S:a.P+M)|(T : ā.Q+N)→(S∪T)∩Pri P|Q
providedS:a.P+M eschewsT andT : ā.Q+NeschewsS

P→U P′

P|Q→U P′|Q
providedQeschewsU

P→U P′

newa P→U−{a,ā} newa P′

P→U P′

Q→U Q′
if P≡Q and Q′ ≡ P′

We abbreviateP→ /0 P′ by P→ P′.

The second clause of Definition 4.6 is the most important. In order for an actiona to react
with a complementary ¯a, the two sides must not preempt each other (i.e. they must eschew
each other’s guards). Furthermore the reaction remains conditional on the environment
eschewing the union of their guards. The restriction rule shows how this conditionality can
then be removed by scoping. Notice that if we restrict attention to the unguarded processes
PUg (i.e. we letU = /0) we recover the usual CCS reaction relation. So the new transition
relation is conservative over the old.

5. LABELLED TRANSITIONS

As in ordinary CCS, we wish to define a transition relation on processesP
α→P′meaning

thatP can perform actionα and becomeP′. However a priority-guarded process can only
perform a transition if allowed to by the environment. So, as we did with reaction, we
refine the transition relation so that it is parametrised on sets of actionsU ⊆ Pri. The
intended meaning ofP

α→U P′ is thatP can performα as long as the environment eschews
U , i.e. does not offer ¯u for anyu∈U . Our definition is inspired by the transition relation
in [CW95], which is parametrised on what set of output actions the environment is ready
to perform.

Definition 5.1. (cf [Mil99, Definition 5.1]) Thetransition relationon P is the smallest
relation→ on P ×Act×℘(Pri)×P generated by the following rules:

(sum) M +S:α.P+N
α→S∩Pri P if α 6∈ S∩Pri

(react)
P1

a→U1 P′
1

P2
ā→U2 P′

2
P1 eschewsU2 P2 eschewsU1

P1|P2
τ→U1∪U2 P′

1
|P′

2

(par)
P1

α→U P′1 P2 eschewsU

P1|P2
α→U P′1|P2

P2
α→U P′2 P1 eschewsU

P1|P2
α→U P1|P′2

(res)
P

α→U P′

newa P
α→U−{a,ā} P′

if α /∈ {a, ā}

(ident) {−→b /−→a }P α→U P′

A〈~b〉 α→U P′
if A(−→a) df= P

8 IAIN PHILLIPS

We abbreviateP
α→ /0 P′ by P

α→ P′ and∃P′.P α→U P′ by P
α→U .

Proposition 5.2. If P
α→U P′ thenα /∈U and U is finite. Moreover,

{u∈ Pri : ∃U.P u→U} ⊆ off(P)

To see thatoff(P) can be unequal to{u∈ Pri : ∃U.P u→U}, consideru:v.0|ū.0. We see
thatoff(u:v.0|ū.0) = {v, ū}, butu:v.0|ū.0 cannot performv.

As with reaction, note that if we restrict attention to the unguarded processesPUg (i.e.
we letU = /0) we recover the usual CCS transition relation. So the new transition relation
is conservative over the old. In applications we envisage that the ordinary CCS transition
relation can be used most of the time. The CPG transition relation will only be needed in
those subsystems which use priority.

As an illustration of the design choices embodied in our definitions, consider the fol-
lowing example:

P
df= u.a.0+u: v̄.0 Q

df= v.b.0+v: ū.0 R
df= newu,v(P|Q)

In P actionu has priority over ¯v, while inQ actionv has priority over ¯u. So theu communi-
cation and thev communication have conflicting priorities, with each above the other. This
paradoxical example was considered in [CW95] (albeit with a different notation), and the
solution adopted there (as we saw in Section 2) was to banR from being a process. In our

approach we haveP
u→ a.0, Q

ū→v 0. For au communication to happen, by rule (react) we
need ¯v /∈ off(P), butoff(P) = {u, v̄}, so that theu communication cannot happen. Similarly
thev communication cannot happen, and soR= 0.

6. STRONG OFFER BISIMULATION

Similarly to ordinary CCS, we define process equivalences based on strong and weak
bisimulation. We consider strong bisimulation in this section and weak bisimulation (i.e.
with hiding of silent actions) in the next.

The intuition behind our notion of bisimulation is that for processes to be equivalent
they must make the same offers, and for a processQ to simulate a processP, Q must be
able to do whateverP can, though possibly constrained by fewer or smaller priority guards.
For instance, we would expect the processesa.0+u:a.0 anda.0 to be equivalent, since the
priority guardedu:a.0 is simulated bya.0.

Definition 6.1. (cf [Mil99]) A relation S ⊆ P ×P is a strong offer simulationif S(P,Q)
implies both thatoff(P) = off(Q) and that for allα ∈ Act,

if P
α→U P′ then for someQ′ andV ⊆U , we haveQ

α→V Q′ andS(P′,Q′)
S is a strong offerbisimulationif both S andS−1 are strong offer simulations.

Definition 6.2. ProcessesP andQ arestrongly offer equivalent, writtenP
off∼ Q, iff there is

some strong offer bisimulationS such thatS(P,Q).
In view of the general theory of bisimulation [Mil99, Section 3.3],

off∼ is an equivalence
relation, and is itself a strong offer bisimulation.

Proposition 6.3. (cf [Mil99, Prop 5.2]) ≡ is a simulation. Hence≡ implies
off∼.

Proof. (Sketch) We must show that ifC[P] α→U P′ andP≡Q is a generating case of Defi-
nition 4.1, thenC[Q] α→U Q′ ≡ P′, someQ′. The proof is by cases on the rules for→ and
the generating equations of≡. The interesting case is(P|Q)|R≡ P|(Q|R). We consider
two example transitions of(P|Q)|R, and omit the many other similar cases.

Suppose first thatP moves on its own in(P|Q)|R, so that

(P|Q)|R α→U (P′|Q)|R

CCS WITH PRIORITY GUARDS 9

We haveP
α→U P′ and soQeschewsU andReschewsU . By Proposition 4.5 we deduce that

Q|ReschewsU . Hence

P|(Q|R) α→U P′|(Q|R)

Now suppose thatP
a→U P′ andQ

ā→V Q′, and that

(P|Q)|R τ→U∪V (P′|Q′)|R
We havePeschewsV, QeschewsU andReschewsU ∪V. By Proposition 4.5 we deduce

thatReschewsV andQ|ReschewsU . ThereforeQ|R ā→V Q′|R, and

P|(Q|R) τ→U∪V P′|(Q′|R)

Lemma 6.4. (cf [Mil99, Lemma 5.4]) If P→U P′ then P
τ→U≡ P′.

Lemma 6.5. (cf [Mil99, Lemma 5.5]) Let P
a→U P′. Then P and P′ can be expressed, up

to≡, as

P≡ new~z((S:a.Q+M)|R) P′ ≡ new~z(Q|R)

(some~z,S,Q,M,R) with U = S∩Pri.

Theorem 6.6. (cf [Mil99, Theorem 5.6])

P
τ→U≡ P′ iff P→U P′

Proof. (Sketch) By Lemma 6.4 it is enough to show thatP
τ→U P′ implies P→U≡ P′.

By induction on the proof ofP
τ→U P′. The interesting case is (react), where we employ

Lemma 6.5.

Theorem 6.7. (cf [Mil99, Proposition 5.29]) Strong offer equivalence is a congruence, i.e.

if P
off∼ Q then

1. S:α.P+M
off∼ S:α.Q+M

2. newa P
off∼ newa Q

3. P|Roff∼ Q|R
4. R|P off∼ R|Q

Proof. Parallel is the most interesting. SupposeP
off∼ Q. We must showP|Roff∼ Q|R.

Clearly if off(Q) = off(P) thenoff(Q|R) = off(P|R).
SupposeP|R α→U P′|R is derived fromP

α→U P′. ThenQ
α→U ′ Q′ with U ′ ⊆ U . So

clearlyQ|R α→U ′ Q
′|R.

Now supposeP|R α→U P|R′ is derived fromR
α→U R′. ThenPeschewsU . SoQeschewsU

and we haveQ|R α→U Q|R′.
Now supposeP|R τ→U∪V P′|R′ is derived fromP

a→U P′ andR
ā→V R′. SoPeschewsV

andReschewsU . ThenQ
a→U ′ Q

′ with U ′ ⊆U . Sinceoff(Q) = off(P), QeschewsV. Also
ReschewsU ′. HenceQ|R τ→U ′∪V Q′|R′.

Summation, restriction, identifier are straightforward.

Note that if P,Q ∈ PUg then P
off∼ Q iff P∼ Q, whereP∼ Q denotes thatP and Q are

strongly equivalent in the usual sense of [Mil99]. So
off∼ is conservative over∼. In fact we

can say more:

Proposition 6.8. Let P,Q∈ PUg. If P∼Q then C[P] off∼C[Q], for any context C[·].

So we can reuse all the known equivalences between CCS processes when working with
CPG processes.

10 IAIN PHILLIPS

Proposition 6.9. (cf [Mil99, Proposition 5.21]) For all P ∈ P ,

P
off∼∑{U :α.Q : P

α→U Q}

Proposition 6.10. (The Expansion Law) For all n≥ 0, processes P1, . . . ,Pn and names~a:

new~a(P1| · · · |Pn) off∼
∑{(U−{~a,~̄a}) :α.new~a(P1| · · · |P′i | · · · |Pn) : 1≤ i ≤ n,Pi

α→U P′i ,
Ū ∩off(P1| · · · |Pi−1|Pi+1| · · · |Pn) = {α, ᾱ}∩~a = /0}

+∑{((U ∪V)−{~a,~̄a}) :τ.new~a(P1| · · · |P′i | · · ·P′j | · · · |Pn) :

1≤ i < j ≤ n,Pi
b→U P′i ,Pj

b̄→V P′j ,
Ū ∩off(P1| · · · |Pi−1|Pi+1| · · · |Pn) = V̄ ∩off(P1| · · · |Pj−1|Pj+1| · · · |Pn) = /0}

Proposition 6.11. The following laws hold:

M +S:α.P off∼ M +(S∩Pri) :α.P(6.1)

M +U :α.P off∼ M if α ∈U ⊆ Pri(6.2)

M +U :α.P+(U ∪V) :α.P off∼ M +U :α.P(6.3)

(∑Ui :αi .Pi) | (∑Vj :β j .Q j)
off∼ ∑{Ui :αi .(Pi |(∑Vj :β j .Q j)) : ∀ j.β j 6∈ Ūi}(6.4)

+ ∑{Vj :β j .((∑Ui :αi .Pi)|Q j)) : ∀i.αi 6∈ V̄j}
+ ∑{(Ui ∪Vj) :τ.Pi |Q j : αi = β̄ j ∈ Vis,∀i′, j ′.αi′ 6∈ V̄j ,β j ′ 6∈ Ūi}

newa(∑Ui :αi .Pi)
off∼∑((Ui−{a, ā}) :αi .newa Pi : αi 6= a, ā}(6.5)

Definition 6.12. P is in standard formif P∼= ∑Ui :αi .Pi whereαi 6∈Ui , Ui ⊆ Pri and each
Pi is in standard form. Here∼= means “identically equal”. A CPG process isfinite if it
contains no identifiers.

Definition 6.13. Let AS be the following set of axioms: the axioms of structural congru-
ence≡ (Definition 4.1) together with the five laws of Proposition 6.11.

Lemma 6.14. For any finite process P there is P′ in standard form such thatAS` P = P′.

Lemma 6.15. If P is in standard form, P
α→U P′ and U⊆V then

AS` P = P+V :α.P′

Proof. Use law (6.3).

Theorem 6.16. The set of axiomsAS is complete for
off∼ on finite CPG processes.

Proof. Given two processesP
off∼ Q (which can both be taken to be in standard form by

Lemma 6.14), we prove them equal by adding toQ a new summand for each summand of
P (obtainingN + Q), and adding toP a new summand for each summand ofQ (obtaining
P+M).

SupposeP∼= ∑Ui : αi .Pi . For eachi, we haveP
αi→Ui Pi . SoQ

αi→Vi Q′i , someVi ⊆Ui ,

Pi
off∼ Q′i . By Lemma 6.15,AS` Q = Q+Ui : αi .Q′i . By induction on the total depth ofP

andQ, we haveAS ` Pi = Q′i . Let N = ∑Ui : αi .Q′i . ThenAS ` Q = N + Q. We getM
symmetrically, withAS` P = P+M. Now AS` P+M = N+Q and henceAS` P = Q as
required.

CCS WITH PRIORITY GUARDS 11

7. WEAK OFFER BISIMULATION

We now investigate weak bisimulation, where reactions are hidden.

Definition 7.1. P⇒U P′ iff P∼= P′ or∃U1, . . . ,Un.P→U1 · · ·→Un P′ with U =U1∪·· ·∪Un

(n≥ 1).
P

α⇒U P′ iff ∃U ′,U ′′.P⇒U ′ P
′′ α→U ′′ P

′ with U = U ′∪U ′′ andoff(P′′)⊆ off(P).

Definition 7.2. A relation S ⊆ P ×P is a weak offer simulationif S(P,Q) implies both
thatoff(P) = off(Q) and that:

if P⇒U P′ then for someQ′ andU ′ ⊆U , we haveQ⇒U ′ Q
′ andS(P′,Q′),

and for alla∈ Vis,
if P

a⇒U P′ then for someQ′ andU ′ ⊆U , we haveQ
a⇒U ′ Q

′ andS(P′,Q′).
S is a weak offerbisimulationif both S andS−1 are weak offer simulations.

As for CCS, there is a characterisation of weak offer simulation which is more efficient
for calculation:

Proposition 7.3. A relationS ⊆ P ×P is a weak offer simulation iffS(P,Q) implies both
that off(P) = off(Q) and that:

if P→U P′ then for some Q′ and U′ ⊆U, we have Q⇒U ′ Q
′ andS(P′,Q′),

and for all a∈ Vis,
if P

a→U P′ then for some Q′ and U′ ⊆U, we have Q
a⇒U ′ Q

′ andS(P′,Q′).

Proof. (⇒) is trivial.
(⇐) SupposeS satisfies the condition of the Proposition. We must show thatS is a

weak offer simulation. Clearlyoff(P) = off(Q). It is easy to show
if P⇒U P′ then for someQ′ andU ′ ⊆U , we haveQ⇒U ′ Q

′ andS(P′,Q′)
by repeated application of the property

if P→U P′ then for someQ′ andU ′ ⊆U , we haveQ⇒U ′ Q
′ andS(P′,Q′).

It remains to show
if P

a⇒U P′ then for someQ′ andU ′ ⊆U , we haveQ
a⇒U ′ Q

′ andS(P′,Q′).
SupposeP

a⇒U P′. ThenP⇒U ′ P′′
α→U ′′ P′ with U = U ′ ∪U ′′ andoff(P′′) ⊆ off(P). So

there areQ′′,Q′,V ′,V ′′ such thatQ⇒V ′ Q′′
a⇒V Q′ with V ′ ⊆ U ′, V ⊆ U ′′, S(P′′,Q′′),

S(P′′,Q′′). We need only establishQ
a⇒V ′∪V Q′. But Q′′⇒V ′′ Q

′′′ a→V ′′′ Q
′ with off(Q′′′)⊆

off(Q′′),V =V ′′∪V ′′′. Andoff(Q′′) = off(P′′) sinceS(P′′,Q′′). Finallyoff(P′′)⊆ off(P) =
off(Q). Sooff(Q′′′)⊆ off(Q).

In view of Proposition 7.3, on the sublanguagePOrd (which corresponds to CCS) weak
offer simulation is almost the same as for CCS [Mil99, Proposition 6.3]. The difference
is that we allow reactions onlybeforethe visible transition, not both before and after. The
definition may also be compared withbranchinganddelaybisimulation [vGW96].

Definition 7.4. ProcessesP andQ areweakly offer equivalent, writtenP
off
≈ Q, iff there is

some weak offer bisimulationS such thatS(P,Q).

Proposition 7.5. The following hold:

1.
off
≈ is an equivalence relation

2.
off
≈ is a weak offer bisimulation

3. For anyP,Q, if P
off∼ Q thenP

off
≈ Q.

Proof. 1, 2. Straightforward.
3. One can show that ifS is a strong offer bisimulation then≡ S ≡ is a weak offer bisim-
ulation.

Theorem 7.6. (cf [Mil99, Proposition 6.17]) Weak offer equivalence is a congruence.

12 IAIN PHILLIPS

Proof. Parallel is the most interesting. SupposeP
off
≈ Q. We must showP|R

off
≈ Q|R.

Clearly if off(P) = off(Q) thenoff(P|R) = off(Q|R).
SupposeP|R a→U P′|R is derived fromP

a→U P′. ThenQ⇒U ′ Q
′′ a→U ′′ Q

′ with U ′,U ′′ ⊆
U . So clearlyQ|R⇒U ′ Q

′′|R a→U ′′ Q
′|R.

SupposeP|R→U P′|R is derived fromP→U P′. ThenQ⇒U ′ Q′ with U ′ ⊆ U . So
clearlyQ|R⇒U ′ Q

′|R.
Now supposeP|R α→U P|R′ is derived fromR

α→U R′. ThenŪ ∩ off(P) = /0. So since
off(Q) = off(P) we haveQ|R α→U Q|R′.

Now supposeP|R→U∪V P′|R′ is derived fromP
a→U P′ andR

ā→V R′. ThenQ⇒U ′

Q′′
a→U ′′ Q

′. SoQ|R⇒U ′ Q
′′|R. SinceŪ ′′⊆ Ū andoff(Q′′)⊆ off(P) we see thatQ′′|R→U ′′∪V

Q′|R′.
Summation, restriction, identifier are straightforward.

So we have a congruence which conservatively extends CCS.
It would have been more obvious to have the following for the clause fora ∈ Vis in

Definition 7.1:
P

α⇒U P′ iff there existP′′,U ′,U ′′ such thatP⇒U ′ P
′′ α→U ′′ P

′, U = U ′∪U ′′

(i.e. omitting the conditionoff(P′′)⊆ off(P)).
We would then have defined weak offer bisimulation and weak offer equivalence based

on this variant and more generous definition ofP
α⇒U P′. Let

off
≈var denote this variant weak

offer equivalence.
This would give us a strictly larger equivalence, which would fail to be a congruence.

As an example, let

P∼= a.0+ τ.(a.0+u.0) Q∼= v:a.0+ τ.(a.0+u.0) R∼= ū: ā.b.0+ v̄.0

ThenP
off
≈var Q but notP

off
≈ Q. MoreoverP|R τ→ū 0|b.0 butQ|Rcannot perform a sequence

of τs and thenb, demonstrating that the variant equivalence is not a congruence.
The congruence induced by the variant version is implied by weak offer equivalence:

Proposition 7.7. For any P,Q, P
off
≈ Q implies for all contexts C[·],

C[P]
off
≈var C[Q]

Proof. It is straightforward to show thatP
off
≈ Q impliesP

off
≈var Q, and

off
≈ is a congruence.

We have not determined whether the converse to Proposition 7.7 holds.
We now turn to the equational theory of weak offer equivalence. In CCS we have

the lawP≈ τ.P [Mil99, Theorem 6.15]. However in CPG,u.0 6
off
≈ τ.u.0. This is because

off(u.0) = {u} whereasoff(τ.u.0) = /0.
However the usual CCS equivalence laws will still hold for the ordinary processesPOrd

(recall that forP∈ POrd, off(P) = /0).

Proposition 7.8. The following laws hold:

τ.P
off
≈ P if off(P) = /0(7.1)

This extends the firstτ-law of CCS[Mil99, Theorem 6.15]: τ.P≈ P.

M +N + τ.N
off
≈ M + τ.N if off(N)⊆ off(M)(7.2)

This extends the secondτ-law of CCS: M+N + τ.N≈M + τ.N.

CCS WITH PRIORITY GUARDS 13

Note. The thirdτ-law of CCS:

M + α.P+ α.(τ.P+N)≈M + α.(τ.P+N)

has no analogue in our presentation (since we have a slightly stronger definition of weak
bisimulation).

We stated (7.1) and (7.2) because in many situations it is convenient to use conventional
CCS reasoning. The next result gives the “intrinsic”τ-laws of CPG:

Proposition 7.9. The following laws hold:

M +U :τ.M
off
≈ M(7.3)

M +U :τ.(N +V :τ.P)
off
≈ M +U :τ.(N +V :τ.P)+(U ∪V) :τ.P(7.4)

If off(N +V :a.P)⊆ off(M):

M +U :τ.(N +V :a.P)
off
≈ M +U :τ.(N +V :a.P)+(U ∪V) :a.P(7.5)

Note. We can derive (7.2) from (7.4) and (7.5). Also we can derive the following form of
(7.1):

τ.M
off
≈ M if off(M) = /0(7.6)

from (7.3), (7.4), (7.5). Recall that every process is strongly equivalent to a summation
(Proposition 6.9), and so (7.6) is effectively as strong as (7.1).

Definition 7.10. Let AW be the axiomsAS (Definition 6.13) together with (7.3), (7.4),
(7.5).

Lemma 7.11. (cf [Mil89, Section 7.4, Lemma 16]) Let P be in standard form.

1. If P⇒U P′ andU ⊆V thenAW ` P = P+V :τ.P′
2. If P

a⇒U P′ andU ⊆V thenAW ` P = P+V :a.P′

Proof. Use (7.4), (7.5), (6.3).

Theorem 7.12. The axiomsAW are complete for
off
≈ on finite processes.

Proof. Suppose thatP
off
≈ Q. By Lemma 6.14 we can assumeP andQ are in standard form.

We proveP andQ equal much as in Theorem 6.16: For each summandU : α.P′ of P we
add a new summand toQ, to form N + Q, and for each summandV : α.Q′ of Q we add a
new summand toP, to formP+M.

SupposeP∼= ∑Ui :αi .Pi . For eachi, there are two cases:

If αi = τ we haveP
τ→Ui Pi . SoQ⇒Vi Q′i , someVi ⊆Ui , Pi

off
≈ Q′i . By Lemma 7.11,

AW `Q = Q+Ui :τ.Q′i . By induction on the total depth ofP andQ, we haveAW ` Pi = Q′i
(note thatPi has lower depth thanP, even thoughQ′i might have the same depth asQ).

If αi = a∈ Vis we haveP
a→U Pi . Then there isQ′i such thatPi

off
≈ Q′i andQ′′i such that

Q⇒U ′i
Q′′i

a→U ′′i
Q′i with U ′i ,U

′′
i ⊆Ui andoff(Q′′i) ⊆ off(Q). By Lemma 7.11,AW ` Q =

Q+Ui :a.Q′i . By induction on the total depth ofP andQ, we haveAW ` Pi = Q′i .
Let N = ∑Ui :αi .Q′i . ThenAW `Q = N + Q. We getM symmetrically, withAW ` P =

P+M. Now AW ` P+M = N +Q and henceAW ` P = Q as required.

Proposition 7.13. (cf [Mil99, Theorem 6.19]) Unique solution of equations. Let~X be a

(possibly infinite) sequence of process variables Xi . Up to
off
≈, there is a unique sequence~P

of processes which satisfy the formal equations:

Xi
off
≈∑

j
Ui j :ai j .Xk(i j)

14 IAIN PHILLIPS

(notice thatτs are not allowed)

Proof. Much as in [Mil99, Theorem 6.19].

8. EXAMPLE

We now revisit the interrupt example from Section 1. Recall that we had:

P
df= newmid, intA, intB (A|B|I) A

df= intA :a.mid.A+ intA.0

I
df= int.(intA.intB.0+ intB.intA.0) B

df= intB :b.mid.B+ intB.0

We want to showP
off
≈ Q, where

Q
df= a.Q1 +b.Q2 + int.0 Q1

df= b.Q+ int.0 Q2
df= a.Q+ int.0

Clearly intA, intB ∈ Pri. We takea,b,mid, int ∈ Ord. This means thatQ∈ POrd. We can
use the Expansion Law (Proposition 6.10) to get:

P
off∼ a.P1 +b.P2 + int.P3

P1
off∼ b.P4 + int.τ.0 P2

off∼ a.P4 + int.τ.0 P3
off∼ τ.τ.0+ τ.τ.0 P4

off∼ τ.P+ int.τ.P3

whereP1,P2,P3,P4 are various states ofP. We can use law (7.1) together with law (6.3) to
get:

P
off∼ a.P1 +b.P2 + int.P3

P1
off∼ b.P4 + int.0 P2

off∼ a.P4 + int.0 P3
off∼ 0 P4

off∼ τ.P+ int.0

Then we use law (7.2) to getτ.P+ int.0
off
≈ τ.P. Notice that this needsoff(P) = /0, i.e.

a,b, int 6∈ Pri. Finally:

P
off
≈ a.P1 +b.P2 + int.0 P1

off
≈ b.P+ int.0 P2

off
≈ a.P+ int.0

By Proposition 7.13 we getP
off
≈ Q as we wanted.

Our reasoning was presented equationally, but could equally well have been done using
bisimulation. We first used the Expansion Law for CPG to unfold the behaviour ofP.
Since all prioritised actions were restricted, the systemP had no priorities as far as the
environment was concerned. We could therefore remove silent actions and simplify using
standard techniques of CCS.

Note. In Sections 1 and 2 we used plain equality when talking about equivalence between

CPG processes, for example,Sys = P. This is to be interpreted as
off
≈.

9. LOGIC

We briefly consider Hennessy-Milner-style logics for specifying properties of CPG pro-
cesses. Such logics have previously been defined for a distributed prioritised process alge-
bra [CLN98, Lüt98].

Our starting point is the logic for CCS defined by Hennessy and Milner [HM85, Mil89].
This allows us to describe properties which processes may enjoy. For instance〈a〉T would
mean “can do actiona”. In our setting, actions are conditional on the environment eschew-
ing certain actions, and so it is natural to generalise〈a〉T to 〈a〉U T, meaning “can do action
a provided the environment eschews the setU”. We further augment Hennessy-Milner
Logic (HML) with propositions expressing eschewing—eschew(U) means “eschewsU”.

Definition 9.1. Strong Prioritised HML.LS is the smallest class of formulas containing
the following, whereU ⊆ Pri is a finite set and it is assumed thatϕ andψ are already in
LS:

CCS WITH PRIORITY GUARDS 15

1. eschew(U) (eschewing)
2. 〈α〉U ϕ , α ∈ Act (possibility)
3. ¬ϕ (negation)
4. ϕ∧ψ (conjunction)

Definition 9.2. Thesatisfactionrelation|=⊆ P ×LS is defined as follows:

1. P |= eschew(U) iff PeschewsU

2. P |= 〈α〉U ϕ iff ∃P′,V ⊆U.P
α→V P′ |= ϕ

3. P |= ¬ϕ iff P 6|= ϕ
4. P |= ϕ∧ψ iff P |= ϕ and P |= ψ

We let T (true) abbreviate the empty conjunction, which is satisfied by every process.
Incidentally,eschew(/0) is also satisfied by every process.

As with CCS [Mil89, Section 10.5], strong offer equivalence is characterised byLS, in
the following sense:

Proposition 9.3. Let P,Q∈ P . Then P
off∼ Q iff

∀ϕ ∈ LS.(P |= ϕ⇐⇒Q |= ϕ)

Proof. We show thatoff(P) = off(Q) iff for all finite U ⊆ Pri, P |= eschew(U)⇐⇒ Q |=
eschew(U). The rest of the proof is much as in CCS, and we omit the details.

We can also characterise weak offer equivalence using Weak Prioritised HMLLW. This is
defined as in Definition 9.1, except that, in Clause 2,〈a〉U ϕ is replaced by〈〈a〉〉U ϕ (a∈Vis),
and〈τ〉U ϕ is replaced by〈〈〉〉U ϕ. We also allow infinitary conjunction in Clause 4—this is
because, unlike in the strong case, the transition system in the weak case is notimage-finite.
That is, for a given actiona and processP, the set{P′ : ∃U.P a⇒U P′} may be infinite.

Definition 9.4. Weak Prioritised HML.LW is the smallest class of formulas containing the
following, whereU ⊆ Pri is a finite set and it is assumed thatϕ andϕi are already inLW:

1. eschew(U) (eschewing)
2. 〈〈a〉〉U ϕ , a∈ Vis (possibility)
〈〈〉〉U ϕ

3. ¬ϕ (negation)
4.
∧

i∈I ϕi , I a possibly infinite index set (conjunction)

The satisfaction relation is the obvious modification of Definition 9.2:

Definition 9.5. Thesatisfactionrelation|=⊆ P ×LW is defined as follows:

1. P |= eschew(U) iff PeschewsU
2. P |= 〈〈〉〉U ϕ iff ∃P′,V ⊆U.P⇒V P′ |= ϕ

P |= 〈〈a〉〉U ϕ iff ∃P′,V ⊆U.P
a⇒V P′ |= ϕ

3. P |= ¬ϕ iff P 6|= ϕ
4. P |=

∧
i∈I ϕi iff ∀i ∈ I .P |= ϕi

Clearly the logicsLS andLW share some formulas, but in these cases the respective satis-
faction relations agree with each other.

Proposition 9.6. Let P,Q∈ P . Then P
off
≈ Q iff

∀ϕ ∈ LW.(P |= ϕ⇐⇒Q |= ϕ)

Proof. Much as for Proposition 9.3.

16 IAIN PHILLIPS

10. CONCLUSIONS

We have introduced priority guards into the summation operator of CCS to form the
language CPG. We have defined both strong and weak bisimulation equivalences and seen
that they are conservative over the CCS equivalences, and that they are congruences. We
have given complete equational laws for finite CPG in both the strong and weak cases.
Conservation over CCS has the consequence that in verifying CPG systems we can often
use normal CCS reasoning, as long as we take some care with actions in the set of pri-
oritised actionsPri. We have formulated Hennessy-Milner-style logics and seen that they
characterise our bisimulation equivalences.

We have seen that CPG overcomes the asymmetry between inputs and outputs present
both in Camilleri and Winskel’s calculus and in the corresponding calculus of Cleaveland,
Lüttgen and Natarajan. Also preemption in CPG is handled rather differently from the
calculi just mentioned, in that it depends entirely on the environment.

Acknowledgement.We wish to thank Rajagopal Nagarajan and Philippa Gardner for help-
ful discussions and suggestions.

REFERENCES

[BBK86] J.C.M. Baeten, J. Bergstra, and J.-W. Klop. Syntax and defining equations for an interrupt mechanism
in process algebra.Fundamenta Informaticae, 9:127–168, 1986.

[BK84] J. Bergstra and J.-W. Klop. Process algebra for synchronous communication.Information and Com-
putation, 60:109–137, 1984.

[CH90] R. Cleaveland and M.C.B. Hennessy. Priorities in process algebra.Information and Computation,
87(1/2):58–77, 1990.

[CLN98] R. Cleaveland, G. Lüttgen, and V. Natarajan. A process algebra with distributed priorities.Theoretical
Computer Science, 195(2):227–258, 1998.

[CLN00] R. Cleaveland, G. Lüttgen, and V. Natarajan. Priority in process algebra. In J.A. Bergstra, A. Ponse,
and S.A. Smolka, editors,Handbook of Process Algebra. Elsevier, 2000. To appear.

[CW95] J. Camilleri and G. Winskel. CCS with priority choice.Information and Computation, 116(1):26–37,
1995.

[Fid93] C.J. Fidge. A formal definition of priority in CSP.ACM Transactions on Programming Languages
and Systems, 15(4):681–705, 1993.

[HM85] M.C.B. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.Journal of the
Association for Computing Machinery, 32(1):137–161, 1985.

[HO92] H. Hansson and F. Orava. A process calculus with incomparable priorities. InProceedings of the
North American Process Algebra Workshop, pages 43–64, Stony Brook, New York, 1992. Springer-
Verlag Workshops in Computer Science.

[Hoa85] C.A.R. Hoare.Communicating Sequential Processes. Prentice-Hall, 1985.
[Jef93] A. Jeffrey. A typed, prioritized process algebra. Technical Report 13/93, Dept. of Computer Science,

University of Sussex, 1993.
[Lüt98] G. Lüttgen.Pre-emptive Modeling of Concurrent and Distributed Systems. PhD thesis, Universität

Passau, Passau, Germany, May 1998.
[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[Mil99] R. Milner. Communicating and Mobile Systems: theπ-calculus. Cambridge University Press, 1999.
[NCCC94] V. Natarajan, L. Christoff, I. Christoff, and R. Cleaveland. Priorities and abstraction in process alge-

bra.Lecture Notes in Computer Science, 880:217–230, 1994.
[Pra94] K.V.S. Prasad. Broadcasting with priority, 5th ESOP.Lecture Notes in Computer Science, 788:469–

484, 1994.
[SS96] S. Smolka and B. Steffen. Priority as extremal probability.Formal Aspects of Computing, 8:585–606,

1996.
[vGW96] Rob J. van Glabbeek and W. Peter Weijland. Branching time and abstraction in bisimulation seman-

tics.Journal of the Association for Computing Machinery, 43(3):555–600, May 1996.

