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CCS WITH PRIORITY GUARDS

IAIN PHILLIPS

ABSTRACT. It has long been recognised that ordinary process algebra has difficulty deal-
ing with actions of different priority, such as for instance an interrupt action of high priority.
Various solutions have been proposed. We introduce a new approach, involving the addi-
tion of “priority guards” to the summation operator of Milner’s process calculus CCS. In
our approach, priority isinstratified meaning that actions are not assigned fixed levels,
so that the same action can have different priority depending where it appears in a pro-
gram. An important feature is that, unlike in other unstratified accounts of priority in CCS
(such as that of Camilleri and Winskel), we can treat inputs and outputs symmetrically.
We introduce the new calculus, give examples, develop its theory (including bisimulation,
equational laws and logics), and compare it with existing approaches.

1. INTRODUCTION

It has long been recognised that ordinary process algebra [Mil99, Hoa85, BK84] has
difficulty dealing with actions of different priority, such as for instance an interrupt action
of high priority. Various authors have suggested how to add priority to process languages
[BBK86, CH90, HO92, Fid93, Jef93, Pra94, CW95, SS96]. We introduce a new approach,
involving the addition of “priority guards” to the summation operator of Milner's process
calculus CCS. In our approach, priority isstratified meaning that actions are not as-
signed fixed levels, so that the same action can have different priority depending where
it appears in a program. We shall see that existing accounts of priority in CCS are either
stratified [CH90], or else they impose a distinction between outputs and inputs, whereby
prioritised choice is only made on inputs [CW95, CLNOO]. This goes against the spirit
of CCS, where inputs and outputs are treated symmetrically, and we contend that it is un-
necessary. We introduce the new calculus, give examples, develop its theory (including
bisimulation, equational laws and logics), and compare it with existing approaches.

We start with the idea of priority. We assume some familiarity with CCS notation
[Mil99]. Consider the CCS process0+ b.0. The actionsa andb have equal status.
Which of them engages in communication depends on whether the environment is offering
the complementary actiomsor b. By “environment” we mean whatever processes may be
placed in parallel witla.0+ b.0. If the environment offers both, then the choice is nonde-
terministic. We would like some means to favauoverb, say, so that if the environment
offers both, then onlya can happen. This would be useful if, for instanaayas an in-
terrupt action. We need something more sophisticated than simply remwuaitagether,
since, ifa cannot communicate, it should not stogrom doing so. This brief analysis
points to two features of priority: (1) Priority removes (“preempts”) certain possibilities
that would have existed without priority. Thusafcan communicate themis preempted.

(2) Parallel composition plays a crucial réle in priority in CCS.

We now explain our basic idea. LBtbe a process, letbe an action, and I&t be some

set of actions. Then we can form a new prodgsa.P, which behaves like.P, except that
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the initial actiona is conditional on the environment not offering actiondjnthe CCS
“complement” ofU. We callU a priority guard in U :a.P. All actions inU have priority
overa at this point in the computation. We call our calculus CPG (for CCS with Priority
Guards).

As a simple example, if we have a CCS proca$s+ b.Q and we wish to giva priority
overb in the choice, we add a priority guard to geP + a:b.Q (we omit the set braces
arounda). Priority is specific to this choice, since the guard affects only the irfiahd
not any further occurrences bfthere may be Q.

Let us see how this example is handled in two existing approaches to priority. Camilleri
and Winskel proposed a priority choice operator [CW95]. In their notation the example
becomesa.P+)b.Q. Cleaveland and Hennessy [CH90] add new higher priority actions to
CCS. They would write our example ad®+ b.Q (high priority actions are underlined).

In Cleaveland and Hennessy'’s stratified calculus, actions have fixed priority levels, and
aalways has priority ovel, not just in the choice under consideration, but throughout the
system. Furthermore if a third actiaris present in the system, thamlso has priority over
it. The stratification means that only actions at the same priority level can communicate.
In this paper we are interested in an unstratified approach, and so our starting point of
reference is Camilleri and Winskel's work. They make the priorityaadver b totally
specific to the particular choice, so tHatmight have priority overa elsewhere in the
same program. However they limit themselves so prioritised choicapit actions—
only normal choice is allowed on output actions. In our proposal, inputs and outputs are
treated equally, which is more in the spirit of CCS, where they are simply dual. We shall
see that there is an interesting contrast between our system and theirs in the treatment
of preemption. We also note that Camilleri and Winskel's work does not hide silent (
actions, and has never been extended to do so, as far as we are aware. Finally, we contend
that our system is more tractable, both in terms of operational semantics and equational
theory. We shall discuss this further in Section 2.

To end this section, we give an example, involving handling of hidden actions and the
scoping of priority. We wish to program a simple interrupt. [Rebe a system which
consists of two processeés B in parallel which perform actiona, b respectively, while
communicating internally to keep in step with each otlfealso has an interrupt procelss
which shuts dow andB when the interrupt signat is received.

P& newmid,inta,intg (AB]1) A% inta:amid.A+inta.0
| ¥int.(inta.ints.0+ intg.inta.0) B X intg:b.mid.B+ints.0

Without the priority guards i\ andB, P could receive aint and yetA andB could
continue witha andb. Actionsinta, intg have priority over, b, respectively. This only
applies within the scope of the restriction. We can apply the usual techniques of CCS
(including removingr actions) and get

P=aP,+bP,+int.0 Pi=bP+int.0 P,=aP+int.0

which is what we wanted. We consider this example more precisely in Section 8.
It is worth noting that if we merely wanted to interrustwe could have simply defined

A a inta:a.mid.A. As soon asnt occurs,| offersinta, andA cannot performa according
to our rules. The choice ohta.0 in A gives us a way of gracefully recovering from the
interrupt.

The rest of the paper is organised as follows: First we compare our approach with related
work (Section 2). Next we define the language of processes (Section 3). Then we look at
reactions (Section 4) and labelled transitions (Section 5). We then look at bisimulation and
equational theories for both the strong (Section 6) and weak cases (Section 7). We then
return to our interrupt example (Section 8), before examining logics for priority (Section
9). The paper is completed with some brief conclusions.
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2. RELATED WORK

We refer the reader to [CLNOOQ] for discussion of the many approaches taken by other
authors to priority. Here we restrict ourselves to comparison of our work with that of
Camilleri and Winskel [CW95] (referred to as CW for short) and Cleaveland, Luttgen and
Natarajan [CLNOO] (CLN for short).

As we have seen, CW’'s CCS with a prioritised choice ope@9Q allows priority to
be decided in a way which is specific to each choice in a system. The idea of a priority
choice between processes is interesting and natural. The authors present an operational
semantics via a labelled transition relation, and define a bisimulation-based equivalence.
They also give an axiomatisation of this equivalence which is complete for finite processes
(i.e. those not using recursion). However they do not show how to hide-#utions
resulting from communications.

The CW transition relation is parametrised on a set of output adRobust-r P 94 p
means that, in an environment which is ready to perform precisely the aRjitimsprocess
P can perform an action to becomeP’. For examplef-g a.0+)b.0 20 (anyR), while

Fr a.0+)b.0 50 provideda ¢ R. We have adapted the idea of parametrisation on the

environment for our labelled transition system for CPG. FdPuusU P’ means that, in an
environment which offers no action in the $&t(in our parlanceeschews ), process
can performa to becomeP’. Our most basic rule is essentially: a.P 2P, provided
a¢U. We feel that we have obtained a satisfying unity between syntax and transition
relation.

There is a difference in expressiveness between CPG and CW's calculus, in that the lat-
ter cannot express cycles of priority, whereas we can in CPG. CW consider the paradoxical
example

newa, b ((a.0+)b.0)|(b.0+)a0))

The problem is that there is a circularity, wighhaving priority overb, as well as vice
versa. Can the system act? They decide to sidestep this question by breaking the symmetry
in CCS between inputs and outputs, and only allowing prioritised choice on input actions.
We feel that this complicates the syntax and operational semantics, and should not be
necessary. In our approach the example is admitted, though it results in a deadlock. We
consider this example again at the end of Section 5.

Another reason why CW disallow priority choice on output actions is to assist in ob-
taining the normal form they use for proving the completeness of their equational laws for
finite processes. However this normal form is still quite complicated (consisting of a sum
of priority sums of sums). In our calculus CPG we have only one form of choice, and so
completeness is technically simpler.

We now turn to CLN’s work. In their basic approach [CLNOQ], which is derived from
earlier work of Cleaveland and Hennessy [CH90], actions have priority levels. Mostly they
consider just two levels—ordinary actions and higher priority, underlined actions. Only
actions at the same level of priority can communicate, which is really quite restrictive
when one considers that two actions which are intended to communicate may have quite
different priorities within their respective subsystems. The resulting silent actions have
preemptive power over all actions of lower priority, i.e. no action of lower priority, whether
visible or invisible, can take place in the presence of a higher priowgtion. The authors
present both strong and weak bisimulation-based equivalences (drawing on [NCCC94)),
and axiomatise these for finite processes.

In our unstratified calculus CPG, by contrast, actions do not have priority levels—each
priority guard operates independently. This is in the spirit of [CW95].

Even disregarding the issue of priority levels, there is a difference between preemption
in [CH90, CLNOQ] and in CPG, since in CPG preemption is done entirely by the envi-
ronment. Consider the procea®+ 1.0. Here the underlining indicates thats a high
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priority reaction. According to Cleaveland and Hennessy, this process cannot parform
since it is preempted by. However if we translat@a.0+ 1.0 into CPG adJ :a.0+ 1.0
(where the set of actiorld, with a ¢ U, is chosen to be as large as necessary), we find
that by contrast) :a.0+ 1.0 2,4 0. So thea is not preempted, but only downgraded. This

is because performance @flepends on the environment eschewihgAnother example
illustrates the opposite effect: For Cleaveland and Hennag3j}p.0 2 b.0, but the trans-
lationU :a.0|b.0 (with b € U) cannot perforna at all, since the environment (in the form

of b.0) is offering an action which preempas Here we see that, in CPG, a high priority
action can preempt a low priority action in a parallel composition, even without being able
to engage in a reaction.

This difference in the handling of preemption means that there is no obvious translation
of CPG into the framework of CLN, or vice versa.

The development in [CLNOQ] goes far beyond the basic Cleveland and Hennessy calcu-
lus. They consider distributed priorities, where preemption is decided locally rather than
globally. They motivate this by the example of an application which fetches data from two
memory benches alternately. In CCS this can be modelled as

Appl df fetchy.fetcha. Appl

These benches are also connected to a direct-memaory-access (DMA) controller. This DMA
access should have lower priority than the fetch access by the application. However a
straightforward assignment of high priority to application access and low priority to DMA
access fails, since one or other of the fetches is always enabled, so that DMA access never
takes place.

Their example can be encompassed easily in our unstratified approach. Define

Bench a fetchj.Bench;.0+ fetch; :dma.Bench; (i =1,2)

df

Sys newfetchs, fetchy (Appl|Benchi|Bench))

ThenSys has the desired behaviour, since one or otlhes action can always take place.

By the methods to be used in Section 8, we can showSywat P, whereP & dma.P.

The next step in [CLNOO] is to consider extending the distributed priority calculus to
allow communication between actions at different levels. The authors identify a problem
with associativity of parallel composition. Consider the system

(2.0+b.0)|(b.0+¢.0)|C.O

where communication is allowed between complementary actions at different levels. If
this associates to the left, thans preempted by; however if it associates to the right
thenb is preempted by, and soa is not preempted. A similar problem is encountered
when extending the distributed calculus to allow more than two levels.

CLN'’s proposed solution is to follow CW by only allowing priorities to be resolved
betweerinput actions, while treating all output actions as having equal priority. We have
already mentioned our reservations about this. Nevertheless the distinction between in-
puts and outputs gives a workable “mixed-level” calculus (distributed, multi-level, with
communication between different levels). It is particularly nice that CLN show that the
CW calculus can be translated faithfully and naturally into this mixed-level calculus. This
shows that the underlying model of preemption is the same in both cases, and, apparently,
different from that of CPG.

It is striking that both CW and the mixed-level calculus of CLN adopt the same syntac-
tic restriction on inputs and outputs, and also that @tigpngequivalence 1 actions not
hidden) is presented for the mixed-level calculus. We shall present a weak equivalence for
CPG.
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3. THE LANGUAGE CPG

We shall denote our augmentation of CCS with priority guardsCRG (CCS with
Priority Guards). First we define the actions of CPG. In ordinary CCS [Mil99, Part ] there
is a set ohames\( and a disjoint set ofo-names\/, together with a single silent action
1. To these ordinary name¥ we shall add a new disjoint set of nanfésand a dual set
M. These are the actions which can be used in priority guards; they can also be used in the
ordinary way. They need to be kept separate from ordinary actions, since we have to be
careful with them in reasoning compositionally about processes.

To see why we take this approach, consider the Paw t.P, which is valid for CCS
processes. In CPG, & can be a priority guard thea # t.a since there is a context in
which the two sides behave differently. Indeaf: b cannot perfornb (since, as we shall
see,b is preempted by the offer af), whereast.aja: b can performb initially, as a is
not offered untilt has occurred. However if we know thais an ordinary name then we
do havea = t1.a. So we can retain CCS reasoning when processes only involve ordinary
names. _ B

We defineOrd = ALU A, Pri =M UM, Vis = Ord UPri andAct = VisU {1}. We let
u,v,... range overPri, a,b,... overVis anda,f3,... over Act. Also ST,... range over
subsets o¥is, andU,V ... over subsets dPri. If SC Vis, let Sdenote{a: a € S}, where
if ac ALUM thena= a.

Now we define processes:

Definition 3.1. (cf [Mil99, Definition 4.1]) 2 is the smallest set such that wheneRg®
are processes thePcontains

(1) SiaS:ai.R guarded summation inite)
(2) PP, parallel composition

(3) newaP restriction

4) Ala,..,an) identifier

? is ranged over b, Q,R,... We letM, N, ... range over (guarded) summations. We

assume that each identifiégbs, .., b,) comes with a defining equatioN(a, .., an) df P,
whereP is a process whose free names are drawn fipm, a,. We will tend to abbreviate
ai,..,an by & We write the empty guarded summation as 0. It is assumed that the order in
a summation is immaterial. We abbrevifitex by a. Definition 3.1 is much as in ordinary
CCS except for the priority guard$. The meaning of the priority guar@: a is thata

can only be performed if the environment does not offer any actiddriPri. Clearly,

any names ir5— Pri have no effect as guards, and can be eliminated without changing the
behaviour of a process. We allow them to occur in the syntax, since otherwise we could
not freely instantiate the parameters in an identifier. We will allow ourselves to write
instead of{u}:a. Restriction is a variable-binding operator, and we wfitP) for the

free name®f P, defined as follows:

Definition 3.2. By induction onP € P:

1. in(Yig S:ai.R)={neANun:Jiel.ne SU{ai}vne SU{ai}vnefn(R)}
2. fn(P1|P2) = fn(Py) Ufn(P»)
3. fn(newaP) = fn(P) — {a}

4. fn(A()) =fn({D/aIP) if A(m) <P
Two sublanguages of CPG are of interest:

Definition 3.3. Let P54 be the sublanguage ofdinary processes generated as in Defi-
nition 3.1 except that all names are drawn fr@m (i.e. we effectively také1 = 0 and
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S =0in clause (1)). LetPy, be the sublanguage ahguardedprocesses generated as in
Definition 3.1 except that all priority guards are empty (§e= 0 in clause (1)).

Clearly Porg C Pyg C P. Note thatPy,q is effectively normal CCS.

4. OFFERS ANDREACTION

Structural congruence is the most basic equivalence on processes, which facilitates re-
action by bringing the subprocesses which are to react with each other into juxtaposition.
It is defined as for CCS:

Definition 4.1. (cf [Mil99, Definition 4.7]) Structural congruencewritten =, is the con-
gruence or? generated by the following equations:

1. Change of bound names (alpha-conversion)

2. Reordering of terms in a summation

3. Plo=P,PIQ=QIP, P|(Q[R) = (P|Q)|R

4. newa(P|Q) =PlnewaQ if a¢fn(P);

newaO = 0, newanewb P = newbnewa P

5. Aby={D/=}P ifA@) IpP
Recall that a guarded actid@i a is conditional on other processes in the environment not
offering actions inSN Pri. Before defining reaction we must define what it means for the
environment to offer an action. We define for each pro&ebe seoff(P) C Pri of “higher
priority” actions “offered” byP. Note that the offers of a process do not depend on any
guardsSit may contain.

Definition 4.2. By induction onP € P:

L. off(Sig S:ai.R) ={ai:iel,a; €Pri,0; ¢S}

2. off(Py|P2) = off(P1) Uoff(P,)

3. off(newaP) = off(P) — {a,a}

4. off(AD)) = off({ B /& }P) if A(T) L P
In item 1 the reason that we insist ¢ § is that we want to equate a process such:as
with 0, sinceu:u can never engage in a reaction. Note th#& & Po,4 thenoff(P) = 0.

Proposition 4.3. For any P& 2:

1. fn(P) is finite

2. off(P) C fn(P)NPri

3. If P=Qthenfn(P) = fn(Q) andoff(P) = off(Q). O
In CPG, a reaction can be conditional on offers from the environment. Consitie{b.0.
This can react by communication bnb. Howeverb is guarded by, and so the reaction
is conditional on the environment not offering We reflect this by letting reaction be
parametrised on sets of actiddsC Pri. The intended meaning & —y P’ is thatP can
react on its own, as long as the environment does not affer anyu € U. Notice that
the offers ofP to the environment are immaterial here, as are any guarding sets in the
environment.

The environment plays both @ositiveand anegativerole when participating with a
process in reaction: Consider for exampt&.0. In order to participate in a reaction, this
process requires the environment to perfapositive) and not to offeu (negative). We
shall say that the environment shoglschew u

Definition 4.4. Let P € P and letSC Act be finite. P eschews written Peschews ) iff
off(P)NS=0.

Proposition 4.5. Let P © and let SC Act be finite.
1. If PeschewsSandT C SthenPeschewsT.
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2. If Peschews SandQeschews SthenP|QeschewsS.
Proof. Immediate. O
Definition 4.6. (cf [Mil99, Definition 4.13]) Thereaction relationon ? is the smallest
relation— on 2 x 0 (Pri) x P generated by the following rules:
S:T.P+M —gp, P

(S:aP+M)|[(T:aQ+N) —(sur)npi PIQ
providedS:a.P+ MeschewsT andT :a.Q+ Neschews S
P—yP
PIQ—u P'|Q
providedQeschewsU
P—yP
newaP —y_(q5 nNewaP

P—yP
Q—uQ
We abbreviatd® —g P’ by P — P'.

if P=Q and Q=P

The second clause of Definition 4.6 is the most important. In order for an actmreact

with a complementarg, the two sides must not preempt each other (i.e. they must eschew
each other’'s guards). Furthermore the reaction remains conditional on the environment
eschewing the union of their guards. The restriction rule shows how this conditionality can
then be removed by scoping. Notice that if we restrict attention to the unguarded processes
Pug (i-e. we letU = 0) we recover the usual CCS reaction relation. So the new transition
relation is conservative over the old.

5. LABELLED TRANSITIONS

As inordinary CCS, we wish to define a transition relation on procé%s‘"eﬁ meaning
thatP can perform actiom and becomé@’. However a priority-guarded process can only
perform a transition if allowed to by the environment. So, as we did with reaction, we
refine the transition relation so that it is parametrised on sets of adtionsPri. The
intended meaning d® 4,4 PisthatP can performo as long as the environment eschews
U, i.e. does not offeu for anyu € U. Our definition is inspired by the transition relation
in [CW95], which is parametrised on what set of output actions the environment is ready
to perform.

Definition 5.1. (cf [Mil99, Definition 5.1]) Thetransition relationon 2 is the smallest
relation— on? x Act x 0 (Pri) x P generated by the following rules:

(sum) M+S:a.P+N Sgpi P if o ¢ SNPri
Py iul P P iuz P/ PreschewsUs PreschewsU;
(react) < -
P1IP2 —u,uu, PP
(par) PL Sy P, PeschewsU P, 2 P, PpeschewsU
PP Sy PP, P[P, Sy Py|P,
PLyP .
(res) 5 if o ¢ {aa}
newaP >y _(aa
i (B/aPP o g oy OF
(ident) LU jfA(@)=P

AB) Sy P
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We abbreviat® % P’ by P % P and3IP’.P Ly P by P 2.
Proposition 5.2. If P %, P’ thena ¢ U and U is finite. Moreover,
{uePri:3U.P Yy} Coff(P)

To see thabff(P) can be unequal tfu € Pri: 3U.P 2}, consideru:v.0/0.0. We see
thatoff (u:v.0|u.0) = {v,u}, butu:v.0|u.0 cannot perfornv.

As with reaction, note that if we restrict attention to the unguarded procé&ssdse.
we letU = 0) we recover the usual CCS transition relation. So the new transition relation
is conservative over the old. In applications we envisage that the ordinary CCS transition
relation can be used most of the time. The CPG transition relation will only be needed in
those subsystems which use priority.

As an illustration of the design choices embodied in our definitions, consider the fol-
lowing example:

P¥ua0+u:vo Qg vbo+v:go RY newu, Vv (P|Q)

In P actionu has priority over, while in Q actionv has priority over. So theu communi-
cation and thex communication have conflicting priorities, with each above the other. This
paradoxical example was considered in [CW95] (albeit with a different notation), and the
solution adopted there (as we saw in Section 2) was tdbfaom being a process. In our

approach we have 2 a.0,Q-%, 0. For au communication to happen, by rule (react) we
needv ¢ off (P), butoff(P) = {u, v}, so that thes communication cannot happen. Similarly
thev communication cannot happen, andse: 0.

6. STRONG OFFER BISIMULATION

Similarly to ordinary CCS, we define process equivalences based on strong and weak
bisimulation. We consider strong bisimulation in this section and weak bisimulation (i.e.
with hiding of silent actions) in the next.

The intuition behind our notion of bisimulation is that for processes to be equivalent
they must make the same offers, and for a pro€gss simulate a proced3, Q must be
able to do whatevd?P can, though possibly constrained by fewer or smaller priority guards.
For instance, we would expect the process8s-u:a.0 anda.0 to be equivalent, since the
priority guardedu:a.0 is simulated by.0.

Definition 6.1. (cf [Mil99]) A relation § C P x P is astrong offer simulatiorif S(P,Q)
implies both thabff(P) = off(Q) and that for allx € Act,

if P2y P’ then for someQ’ andV C U, we haveQ %y Q' andS(P,Q)

S is a strong offebisimulationif both § ands~* are strong offer simulations.

Definition 6.2. ProcesseR andQ arestrongly offer equivalentvritten P off Q, iff there is

some strong offer bisimulatia such thats (P, Q).

In view of the general theory of bisimulation [Mil99, Section 3.%5ﬁ,is an equivalence
relation, and is itself a strong offer bisimulation.

Proposition 6.3. (cf [Mil99, Prop 5.2) = is a simulation. Hence= implies°~ﬁ.
Proof. (Sketch) We must show that@P] %y P’ andP = Q is a generating case of Defi-
nition 4.1, therC|Q] 4, Q =P, someQ. The proof is by cases on the rules ferand
the generating equations &f. The interesting case i®|Q)|R= P|(Q|R). We consider
two example transitions d¢P|Q)|R, and omit the many other similar cases.

Suppose first tha® moves on its own iffP|Q)|R, so that

(PIQIR%y (PIQIR



CCS WITH PRIORITY GUARDS 9

We haveP %, P’ and soQeschewsU andReschewsU . By Proposition 4.5 we deduce that
Q|ReschewsU. Hence

P(QIR) %y P|(QR)
Now suppose tha® -2y P’ andQ i\/ @, and that

(PIQ)IR=uwv (P|Q)R
We havePeschewsV, QeschewsU andReschewsU UV. By Proposition 4.5 we deduce
thatReschewsV andQ|ReschewsU. ThereforeQ|R->y Q|R, and

PI(QIR) “uwv P'[(QIR)
O

Lemma 6.4. (cf[Mil99, Lemma 5.4) If P —y P’ then PSy=P. O

Lemma 6.5. (cf [Mil99, Lemma 5.5) Let P2y P. Then P and Pcan be expressed, up
to=, as
P=newZ((S:a.Q+M)|R) P = newZ(Q|R)
(somez, S,Q, M, R) with U= SN Pri. O
Theorem 6.6. (cf [Mil99, Theorem 5.6)
PLy=P iff P—yP

Proof. (Sketch) By Lemma 6.4 it is enough to show tiatsy P’ implies P —y= P.

By induction on the proof oP - P’. The interesting case is (react), where we employ
Lemma 6.5. O

Theorem 6.7. (cf [Mil99, Proposition 5.29] Strong offer equivalence is a congruence, i.e.

if P2 Q then

1. Sa.P+MET S0.Q+M 3. PRY QR

2. newaP % newaQ 4. RPYRIQ

Proof. Parallel is the most interesting. Suppcﬁs‘édfF Q. We must shovP|R°~ff QR

Clearly if off(Q) = off(P) thenoff(Q|R) = off(P|R).

SupposeP|R 5y P/|Ris derived fromP %y P. ThenQ Sy Q@ with U’ CU. So
clearlyQR %y Q|R.

Now suppos®|R-5y P|R is derived fronR-%y R. ThenPeschewsU. SoQeschewsU
and we havé®|R %y QIR. )

Now supposé|R Syy P'|R is derived fromP %y P’ andR -3y R. SoPeschewsV
andReschewsU. ThenQ -3, Q' with U’ C U. Sinceoff(Q) = off(P), QeschewsV. Also
ReschewsU’. HenceQ|R Sy v Q|R.

Summation, restriction, identifier are straightforward. O

Note that ifP,Q € Py, thenP off Qiff P~ Q, whereP ~ Q denotes thaP andQ are

strongly equivalent in the usual sense of [Mil99]. %ds conservative over. In fact we
can say more:

Proposition 6.8. Let RQ € Py,. If P ~ Q then GP] R C[Q], for any context (]. O

So we can reuse all the known equivalences between CCS processes when working with
CPG processes.



10 IAIN PHILLIPS

Proposition 6.9. (cf [Mil99, Proposition 5.21) For all P € P,

off

PX S {U:aQ:P=y Q)
Proposition 6.10. (The Expansion Law) For all & O, processesP... ,P, and namesi:
newd (Py|---|P) %
S{(U—{a.a):anewd(Py - [R|-[Py)  1<i<nP Sy P,
U ﬂOfF(P1|--~ ‘P|_;|_|P|+1‘ ---|Pn) = {G,E}ﬂaz @}
+3{((VuV)—{aa):t. newa (PRl +-Pil-[F):
1<|<]<nPHUP- PJHVP
UNoff (P[P 1|Pya| -+ [Pn) =V Noff(Py| -+« [Pj_1|Pj1a] -+ [Pn) = 0}

Proposition 6.11. The following laws hold:
off

(6.1) M+Sia.P % M+ (SNPri):a.P
(6.2) M+U:aP & M if aeU C Pri
(6.3) M+U:a.P+UUV):aP £ M+U:aP

QUiaiR) | (3 Vi:BiQj)
(6.4) TS U (RICTViiB;-Q)) : ViR ¢ Ui}
+ S {V;B (T UitaiR)|Q))) : Vi & Vi}
+ S{UUV):TRIQ) 0 =Bj € Vis, ¥, ".ay ¢V, By ¢ Ui}

(6.5) newa ZU. ai.P )°ff Z((Ui —{a,a}):aj.newaR : 0; # a a}

Definition 6.12. P is in standard formif P = S U;:a;.R wherea; ¢ U;, U; C Pri and each
R is in standard form. Her& means “identically equal’. A CPG processfisite if it
contains no identifiers.

Definition 6.13. Let 4s be the following set of axioms: the axioms of structural congru-
ence= (Definition 4.1) together with the five laws of Proposition 6.11.

Lemma 6.14. For any finite process P there is B standard form such thafisk- P = P'.

Lemma 6.15. If P is in standard form, Fﬂ»U P andUCV then
AsFP=P+V:a.P
Proof. Use law (6.3). O

Theorem 6.16. The set of axiomsls is complete for? on finite CPG processes.

Proof. Given two processeB off Q (which can both be taken to be in standard form by
Lemma 6.14), we prove them equal by addingta new summand for each summand of
P (obtainingN + Q), and adding td® a new summand for each summanddfobtaining
P+ M).

SupposeP = y U;:ai.R. For each, we haveP ﬂu. P. SoQ ﬁ*v. Q/, someV; C U;,

B~ off Q. By Lemma 6.154s+ Q = Q+U;: 0;.Q/. By induction on the total depth &

andQ, we haveds P = Q. LetN = yU;:0;.Q/. Then4st Q=N+ Q. We getM
symmetrically, with4s+ P = P+ M. Now 4s+-P+M =N+ Q and hencedst P =Q as
required. O
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7. WEAK OFFER BISIMULATION
We now investigate weak bisimulation, where reactions are hidden.

Definition 7.1. P=y P'iff PP or3Uy,... ,Un.P—y, --- —u, P’ withU =U;U---UU,
(n>1).
P2y Piff 3U/,U".P=y P’ Sy P withU = U’UU” andoff (P”) C off(P).

Definition 7.2. A relation § C P x ©? is aweak offer simulatiorif S(P,Q) implies both
thatoff (P) = off(Q) and that:
if P =y P’ then for som&) andU’ C U, we haveQ = Q' andS(P',Q'),
and for alla € Vis,
if P2 P’ then for someQ andU’ C U, we haveQ 2 Q' andS(P, Q).
S is a weak offebisimulationif both § and.s~* are weak offer simulations.

As for CCS, there is a characterisation of weak offer simulation which is more efficient
for calculation:

Proposition 7.3. A relation S C P x P is a weak offer simulation iff (P, Q) implies both
that off (P) = off (Q) and that:

if P —y P’ then for some Qand U C U, we have Q= Q andS(P,Q'),
and for all a€ Vis,

if P %y P’ then for some Qand U' C U, we have Q2 @ andS(P, Q).

Proof. (=) is trivial.

(<) Supposes satisfies the condition of the Proposition. We must show shit a
weak offer simulation. Clearlgff(P) = off(Q). It is easy to show

if P=-y P’ then for some&Q’ andU’ C U, we haveQ =/ Q' andS(P',Q)
by repeated application of the property

if P —y P’ then for som&) andU’ C U, we haveQ =» Q' andS(P, Q).
It remains to show

if P2, P’ then for someQ’ andU’ C U, we haveQ 2 Q' andS(P, Q).
Suppose® 2, P'. ThenP =, P’ 2 P with U = U’ UU” andoff(P”) C off(P). So
there areQ”’,Q@,V’,V” such thatQ =, Q" 2y Q with V' CU’, V CU”, S(P",Q"),
S(P”,Q"). We need only establis® 2y y Q. ButQ”’ =y» Q" 2y» Q' with off(Q”) C
off(Q"),V =V"UV"”. Andoff(Q") = off(P”) sinceS(P”,Q"). Finallyoff(P") C off(P) =
off(Q). Sooff(Q") C off(Q). O
In view of Proposition 7.3, on the sublangua@e.q (which corresponds to CCS) weak
offer simulation is almost the same as for CCS [Mil99, Proposition 6.3]. The difference

is that we allow reactions onlgeforethe visible transition, not both before and after. The
definition may also be compared withanchinganddelaybisimulation [vGW96].

Definition 7.4. ProcesseP andQ areweakly offer equivalentvritten P iy Q, iff there is
some weak offer bisimulatios such thats(P, Q).

Proposition 7.5. The following hold:

off . . .

1. = is an equivalence relation
off . .. .

2. =~ is a weak offer bisimulation

3. ForanyP,Q, if P%ﬁchenPgQ.

Proof. 1, 2. Straightforward.
3. One can show that  is a strong offer bisimulation thea § = is a weak offer bisim-
ulation. 0

Theorem 7.6. (cf [Mil99, Proposition 6.17)] Weak offer equivalence is a congruence.
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Proof. Parallel is the most interesting. Supptﬁs(éff Q. We must shov@|R%F QIR

Clearly if off (P) = off(Q) thenoff(P|R) = off (Q|R).

Supposé®|R-3y P'|Ris derived fromP 2, P'. ThenQ =y Q" Sy» Q withU’,U” C
U. So clearlyQR=y Q'|R3y» QR

SupposeP|R —y P'|R is derived fromP —y P'. ThenQ = Q with U’ CU. So
clearlyQR=y Q|R

Now supposé®|R % P|R is derived fromR >, R. ThenU Noff(P) = 0. So since
off(Q) = off (P) we haveQ|R >y Q|R. B

Now supposé®|R —yuy P'|R is derived fromP 2y P’ andR -3y R. ThenQ =
Q" 3yr Q. SoQ|R= Q’|R SinceU” CU andoff(Q") C off(P) we see tha®’|R—yn v
QIR.

|Summation, restriction, identifier are straightforward. O

So we have a congruence which conservatively extends CCS.

It would have been more obvious to have the following for the clausa foiVis in
Definition 7.1:

P2 P iff there existP”,U’,U” such thaP = P” S, P,U =U’uU”

(i.e. omitting the conditionff(P") C off (P)).

We would then have defined weak offer bisimulation and weak offer equivalence based
on this variant and more generous definitiorlPo%U P'. Let Oafzrvar denote this variant weak
offer equivalence.

This would give us a strictly larger equivalence, which would fail to be a congruence.
As an example, let

P~a0+1.(a0+u.0) Q~v:a0+1.(a.0+u.0) R~u:ab.0+v.0
ThenP ?@frvar Q but notP g Q. MoreoverP|RLJO|b.O butQ|R cannot perform a sequence

of 1s and therb, demonstrating that the variant equivalence is not a congruence.
The congruence induced by the variant version is implied by weak offer equivalence:

L. ff . .
Proposition 7.7. For any RQ, PXQ implies for all contexts {3,

off

C[P] =var C[Q]

. . o i ff
Proof. It is straightforward to show thd By QimpliesP Omvar Q, andx is a congruence.
O

We have not determined whether the converse to Proposition 7.7 holds.
We now turn to the equational theory of weak offer equivalence. In CCS we have

the lawP =~ 1.P [Mil99, Theorem 6.15]. However in CPGI,O%Zf T.u.0. This is because
off(u.0) = {u} whereasff(t1.u.0) = 0.

However the usual CCS equivalence laws will still hold for the ordinary proce&ses
(recall that forP € Pg,q4, off (P) = 0).

Proposition 7.8. The following laws hold:

(7.1) tPLP if off(P) =0

This extends the firgtlaw of CCMil99, Theorem 6.15] 1.P ~ P.
(7.2) MENFTNEMETN if off(N) C off(M)
This extends the secondaw of CCS: M+ N+1.N~ M +1.N.
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Note. The thirdt-law of CCS:
M+a.P+a.(t.P+N)~M+a.(t.P+N)

has no analogue in our presentation (since we have a slightly stronger definition of weak
bisimulation).

We stated (7.1) and (7.2) because in many situations it is convenient to use conventional
CCS reasoning. The next result gives the “intringidaws of CPG:

Proposition 7.9. The following laws hold:

M
M+U:T.(N+V:T.P)+ (UUV):1.P

(7.3) M+U:T.M

(7.4) M+U:T.(N+V:1.P)
If off(N+V:a.P) C off(M):

RENRES

(7.5) M+U:T.(N+V:aP) M +U:T.(N+V:aP)+(UUV):aP

Note. We can derive (7.2) from (7.4) and (7.5). Also we can derive the following form of
(7.2):

(7.6) tMZM i off(M) =0

from (7.3), (7.4), (7.5). Recall that every process is strongly equivalent to a summation
(Proposition 6.9), and so (7.6) is effectively as strong as (7.1).

Definition 7.10. Let 4y be the axioms4s (Definition 6.13) together with (7.3), (7.4),
(7.5).

Lemma 7.11. (cf[Mil89, Section 7.4, Lemma 1§) et P be in standard form.

1. fP=y P andU CV then4y FP=P+V:1.F
2. fP2, P andU CV thengy -FP=P+V:aP

Proof. Use (7.4), (7.5), (6.3). O
Theorem 7.12. The axioms4y are complete fo?wfF on finite processes.

Proof. Suppose tha?%zﬁ Q. By Lemma 6.14 we can assurRe@ndQ are in standard form.
We proveP andQ equal much as in Theorem 6.16: For each summénd.P’ of P we
add a new summand @, to form N + Q, and for each summand: a.Q of Q we add a
new summand t®, to formP+ M.

Suppose® = 3 U; :a;.R. For eachi, there are two cases:

If aj =1 we haveP Lui R. SoQ=v Q, someVi CU;, R 4 Q. By Lemma 7.11,
Aw F Q= Q+V;:1.Q.. By induction on the total depth &fandQ, we havedy - R = Q|
(note that? has lower depth thaR, even thougl®Q might have the same depth @}

If aj = a € Vis we haveP -2, P.. Then there i€ such that? & Q andQ/" such that
Q= Q' Sy Q with U/, U/ C U; andoff(Q)') C off(Q). By Lemma 7.11,3w - Q=
Q-+U;:a.Q. By induction on the total depth & andQ, we havedy R = Q..

LetN =Y U;:0;.Q. Then4w F Q = N+ Q. We getM symmetrically, withay - P =
P+M. Now 4y - P+M =N+ Qand hencedy - P = Q as required. O

Proposition 7.13. (cf [Mil99, Theorem 6.19] Unique solution of equations. L&t be a
(possibly infinite) sequence of process variabled g to Osz there is a unique sequenée
of processes which satisfy the formal equations:

off

X =y Uij aij-Xgij)
]
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(notice thatts are not allowed)

Proof. Much as in [Mil99, Theorem 6.19]. O

8. EXAMPLE

We now revisit the interrupt example from Section 1. Recall that we had:

P& newmid,inta,intg (AB]1) A% inta:amid.A+inta.0
| ¥int.(inta.ints.0+ intg.inta.0) B X intg:b.mid.B+ints.0

ff
We want to showP Q, where

0¥ a1 +bQ+int0 Q1 ¥bQ+int0 Q¥TaQ+int0
Clearlyinta,intg € Pri. We takea, b, mid,int € Ord. This means tha@ € Po,4. We can
use the Expansion Law (Proposition 6.10) to get:

P aP +bPtint.Py

p, o

wherePy, P, P3, P, are various states &f. We can use law (7.1) together with law (6.3) to
get:

bPy+intt0 P aP,+int1.0 PsY 1104110 P tPintT.Py

P aP +bP+int.Ps

off off

P bP+int0 P, ar,+int0 P30 P, 1 P+int.0

Then we use law (7.2) to gatP + int.chiwff 1.P. Notice that this needsff(P) = 0, i.e.
a,b,int & Pri. Finally:

P aP +bP+int0 P S bP+int0 PN aP+int.0

By Proposition 7.13 we gé? 2 Q as we wanted.

Our reasoning was presented equationally, but could equally well have been done using
bisimulation. We first used the Expansion Law for CPG to unfold the behaviox of
Since all prioritised actions were restricted, the sysieimad no priorities as far as the
environment was concerned. We could therefore remove silent actions and simplify using
standard techniques of CCS.

Note. In Sections 1 and 2 we used plain equality when talking about equivalence between
.. . ff
CPG processes, for exampfg;s = P. This is to be interpreted as.

9. Loaic

We briefly consider Hennessy-Milner-style logics for specifying properties of CPG pro-
cesses. Such logics have previously been defined for a distributed prioritised process alge-
bra [CLN98, Lt98].

Our starting point is the logic for CCS defined by Hennessy and Milner [HM85, Mil89].
This allows us to describe properties which processes may enjoy. For inggmagould
mean “can do actioa”. In our setting, actions are conditional on the environment eschew-
ing certain actions, and so it is natural to generaisd to (a)y T, meaning “can do action
a provided the environment eschews the 9&t We further augment Hennessy-Milner
Logic (HML) with propositions expressing eschewingsehew(U) means “eschewd”.

Definition 9.1. Strong Prioritised HML.Lg is the smallest class of formulas containing
the following, wherdJ C Pri is a finite set and it is assumed tilaaand are already in
Ls:
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1. eschew(U) (eschewing)

2. (a)u , a € Act (possibility)
3. ¢ (negation)

4. d A (conjunction)

Definition 9.2. Thesatisfactiorrelation=C 2 x Lgis defined as follows:

1. Pl=eschew(U) iff PeschewsU

2. P=(a)y¢ iff IPVCUPL P EOD

3.PE—¢ iff P

4. P=oAY iff P=¢ and PEUW
We let T (true) abbreviate the empty conjunction, which is satisfied by every process.
Incidentally,eschew(0) is also satisfied by every process.

As with CCS [Mil89, Section 10.5], strong offer equivalence is characterisefkpin
the following sense:

Proposition 9.3. Let RQ € 2. Then P Q iff

VoeLs(PEo—=QF9)
Proof. We show thabff(P) = off(Q) iff for all finite U C Pri, P |= eschew(U) <= Q =
eschew(U). The rest of the proof is much as in CCS, and we omit the details. O

We can also characterise weak offer equivalence using Weak Prioritised M his is
defined as in Definition 9.1, except that, in Clauséy ¢ is replaced by{(a))y ¢ (a € Vis),
and(t)u ¢ is replaced by())u¢. We also allow infinitary conjunction in Clause 4—this is
because, unlike in the strong case, the transition system in the weak caseiagefinite
That is, for a given actioa and proces®, the sef{ P’ : 3U.P 20 P’} may be infinite.

Definition 9.4. Weak Prioritised HML .,y is the smallest class of formulas containing the
following, whereU C Pri is a finite set and it is assumed thiaand¢; are already iny:

1. eschew(U) (eschewing)
2. (@)ud , ac Vis (possibility)

ud
3. ¢ (negation)
4. Aici i, | apossibly infinite index set (conjunction)

The satisfaction relation is the obvious modification of Definition 9.2:
Definition 9.5. Thesatisfactiorrelation|=C P x Ly is defined as follows:

1. Pl=eschew(U) iff PeschewsU
2.P={)ud iff IPVCUP=yPE®
PE(@y¢ iff IPVCUPS/ P E®
3.PE—¢ iff PR
4. P':/\i€|¢i iff Vi 6|.P':¢i
Clearly the logicsLs and £y share some formulas, but in these cases the respective satis-
faction relations agree with each other.

Proposition 9.6. Let BQ € P. Then P%ff Q iff
Vo€ Lw.(PEO <= QE=0)

Proof. Much as for Proposition 9.3. O
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10. CONCLUSIONS

We have introduced priority guards into the summation operator of CCS to form the
language CPG. We have defined both strong and weak bisimulation equivalences and seen
that they are conservative over the CCS equivalences, and that they are congruences. We
have given complete equational laws for finite CPG in both the strong and weak cases.
Conservation over CCS has the consequence that in verifying CPG systems we can often
use normal CCS reasoning, as long as we take some care with actions in the set of pri-
oritised action®ri. We have formulated Hennessy-Milner-style logics and seen that they
characterise our bisimulation equivalences.

We have seen that CPG overcomes the asymmetry between inputs and outputs present
both in Camilleri and Winskel's calculus and in the corresponding calculus of Cleaveland,
Lattgen and Natarajan. Also preemption in CPG is handled rather differently from the
calculi just mentioned, in that it depends entirely on the environment.

AcknowledgementWe wish to thank Rajagopal Nagarajan and Philippa Gardner for help-
ful discussions and suggestions.
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