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Abstract

Thispaperstudiesnormalizationof typeabletermsandtherelationbetweenapproximationsemantics
andfilter modelsfor CombinatorSystems.It presentsnotionsof approximantsfor terms,intersection
typeassignment,andreductionontypederivations;thelastwill beprovedtobestronglynormalizable.
With this result,it is shown that,for every typeableterm,thereexistsanapproximantwith thesame
type,anda characterizationof the normalizationbehaviour of termsusingtheir assignabletypesis
given. Then the two semanticsare definedand compared,and it is shown that the approximants
semanticsis fully abstractbut thefilter semanticsis not.

Intr oduction

In this paperwe will focuson the relationbetweentwo approachesfor semanticsin the framework
of CombinatorSystems(CS), beingthe filter semantics, obtainedby interpretingtermsby the setof
intersectiontypesthat can be assignedto them, and the approximantssemantics, wheretermsare
interpretedby thesetof theirapproximants,andtheir interrelation.Approximantsaredefinedasrooted
finite sub-treesof the(possiblyinfinite) normalform, basedon thenotionof -normalformsof Huet
andLévy [16] (seealso[18]).

Therelationbetweenthefilter semanticsandtheapproximationsemanticshasbeenstudiedexten-
sively in thesettingof theLambdaCalculus(LC) [6] (see[8, 7, 1, 3]), whereit hasbeenproved that
they coincide[19, 3]. But, perhapssurprisingly, this hasnever beenstudiedfor moregeneralnotions
of rewriting, suchasTermRewriting Systems(TRS) [12, 17].

Within theframework of orthogonalfirst-orderTRS, a term-like modelandanappropriatesemantics
aredefinedin [21], interpretingtermsby thesetof theirapproximants.For theseTRS it is alsopossible
to definea semanticswheretypesareinterpretedasmulti-sortedalgebras[12]. Althoughthesetypes
are enoughto describemanipulationsof objectsof an algebraicdata-type,they do not provide an
accountfor polymorphism,or higherorderfunctions,which arestandardin functionalprogramming
languages.A moregeneralandexpressive typesystem,usingintersectiontypes,hasbeendeveloped
in [5] for CurryfiedTermRewriting Systems(CuTRS, first-orderTRS extendedwith application).This
typesystemis inspiredby theIntersectionTypeDisciplinedefinedin [8] (seealso[7, 1]), anextension
of Curry’s system[10, 11] in that, essentially, termsareallowed to have morethanonetype (using
the typeconstructor‘ ’). By introducingalsothe typeconstant‘ ’ a typesystemfor LC is obtained
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that is closedunder -equality, andinterpretingtermsby their assignabletypesgivesa filter lambda
model[7, 3].

In this paper, basedon the approachof [21], we will definea notionof approximationfor CS and
show the following approximationresult: for all termsthatcanbeassigneda type in the intersection
system,thereexistsanapproximantthatcanbeassignedthesametype.For LC, suchanapproximation
resultis relatively easyto obtain,becauseof thepresenceof explicit abstraction,but in orderto prove
theseresultsfor abstraction-freecalculi, like CS, anew techniquehadto bedeveloped.This technique
is thatof definingreductiononderivationsasageneralizationof cut-elimination,thatwill beprovento
bestronglynormalizing.Thissametechniquecanthenalsobeappliedto otherformalisms,asdonefor
examplein [4] for TRS. Strongnormalizationof cut-eliminationhasbeenstudiedin thepastfor several
systems,but in thecontext of intersectiontypesthis topichadnotyetbeentackled.

Using the approximationresult,we will show the following normalizationpropertiesof typeable
termsin theintersectionsystemfor CS:

termstypeablewithoutusing arestronglynormalizable,
non-Curryfiedtermsthataretypeablewith from abasis , suchthat doesnotoccurin and

, arenormalizable,and
termstypeablewith type have ahead-normalform.

Thischaracterizationof thenormalizationpropertiesof termsusingtypesin theintersectionsystem
is well-known in thecontext of theLC, andit alsoholdsin TRS, providedthattherewrite rulessatisfy
certainconditions[5]. Perhapslessknown is the fact that thenotionof approximantcanbeusefulto
studytherelationbetweentypeabilityandnormalization:in this paperwe will show that theapprox-
imationresultallows for a relatively easyproof of thesespropertiesin CS (a similar resultfor LC was
shown in [3], andanabbreviatedproof for TRS appearedin [4]).

Inspiredby the approximationresult,we will thenfocuson approximationandfilter semanticsof
CS, asa preparationfor futurestudiesof thesamesemanticsin thecontext of moregeneralrewriting
systems,suchasTRS. Thereareseveraladvantagesto keepingthecomputationalframework relatively
easyat first: confluencecomesfor free,anda directrelationbetweenCS andLC facilitatesdefinitions
and insight. However, note that the normalizationpropertiesof LC do not translatedirectly to CS,
sincethemappingsbetweenLC andCombinatoryLogic (a particularCS definedby Curry [9]) do not
preserve normalformsor reductions(seeExample1.9).

Although TRS are very popular in languagedesignand their normalizationpropertiesare well-
studied,thereis still no thoroughsemanticanalysisof TRS. As we have alreadymentioned,there
exists somework in this direction,eithersupportedby types[14] or not [21], but, for example,the
relationbetweenthesemodelshasnot beenstudied.This paperis a first steptowardsfilling thatvoid,
by studyingtwo approachesto semanticsfor CS, theapproximationsemanticsandthefilter semantics,
andcomparingtheir expressiveness.We aim to bring theseapproachesto thecontext of TRS in future
work.

Summarizing,themaincontributionsof thispaperare:

astrongnormalizationresultfor cut-eliminationfor asystemwith intersectiontypes,
acharacterizationof normalizationpropertiesof typeablecombinatorsystems,
thedefinitionof a filter semanticsfor CS wheretermsareinterpretedby their assignabletypes,

andanapproximationsemanticswheretermsareinterpretedby their approximants,
aproof thatthesesemanticsareadequate,and
astudyof theconditionsneededto obtaina full-abstractionresult.
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Outline

In this paper, we will, in Section1, definethe CombinatorSystems,for which we will, in Section
2, develop a notion of type assignmentthat usesintersectiontypes;the intersectiontype assignment
systemwe usein this paperis a variantof theessentialtypeassignmentsystemfor CuTRS[5]. We will
show asubjectreductionresultin Section3.

In Sections4 to 8, we presentthe formal constructionneededto show that any typeableterm in a
typeableCS hasanapproximantof thesametype(Theorem8.2). In [3], this approximationresulthas
beenobtainedfor LC, by a computabilitytechnique[20]. A particularproblemto solve in this paper
is that the approachof [3] cannotbeautomaticallytranslatedto a techniqueto usein CS, becauseof
the absenceof abstractionin CS. In orderto prove the approximationresult for CS, we will modify
the typesystemslightly andintroduce,in Section5, a notionof reductionon type-derivationsin this
modifiedsystem.We will show thatderivation reductionis stronglynormalizing(Theorem6.5), and
thispropertyhastwo directconsequences:theapproximationresultandastrongnormalizationtheorem
for termsthataretypeablewithoutusingtheuniversaltypeconstant (Theorem8.7).

The combinatorialequivalent of the characterizationof normalisationin LC no longerholds (see
Section8). However, usingtheapproximationresult,we will obtaintwo normalizationpropertiesof
typeablecombinatorsystems:a head-normalizationtheorem(Theorem8.4) for typeableterms,and
a normalizationtheoremfor the classof typeablenon-Curryfiedterms,asdefinedin Definition 1.2
(Theorem8.5).

Section9 presentsthe definition of a filter semanticsfor CS, wheretermsare interpretedby their
assignabletypes,andanapproximationsemantics,wheretermsareinterpretedby their approximants.
Theapproximationsemanticsgivesa fully abstractmodelfor CS, whereasthefilter semanticsgivesa
semi-modelonly, exceptfor specialcases.

Thepaperfinishesin Section10, whichcontainstheconclusions.

1 Combinator Systems

In this section,CombinatorSystems(CS) will bepresentedasa specialkind of applicative TRS [17]
whereformal parametersof functionsymbolsarenot allowed to have structure,andright-handsides
of term rewriting rulesareconstructedof term-variablesonly. We have chosento usethis kind of
presentationratherthan the one normally used(see,for example,[17] or [6]), in view of a future
extensionof theresultsof thispaperto full TRS, in thespirit of [5].

Definition 1.1 (Combinatorterms) i) An alphabetor signature consistsof acountable
infinite set of variablesrangedoverby , anon-emptyset of combinators, ranged
overby , eachequippedwith anarity greaterthan , andthebinaryfunctionsymbol
Ap (application).

ii) ThesetT of terms, rangedover by , is definedby:

Ap

As usual,since‘Ap’ is theonly functionsymbol,wewill write insteadof Ap , and
outermostbracketswill beomitted.

In Section8, anormalizationresultis provedfor termswhereall subtermsof theform are
suchthat arity . Thesetermsarecalled‘Non-Curryfied’.
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Definition 1.2 (Non-Curryfiedterms) ThesetTNC of non-Curryfiedtermsis definedby:

arity

NoticethatTNC is asubsetof T .

Definition 1.3 (Term-substitutions)A term-substitutionR is amapfrom T to T ,
determinedby its restrictionto afinite setof variables,satisfyingR = R R . Wewrite R

insteadof R . If R maps to , for , wealsowrite for R, and
write for R.

CombinatorSystems,andthenotionof rewriting oncombinatorterms,aredefinedby thefollowing:

Definition 1.4 (CombinatorSystems) i) A combinatorrule on is apair of terms
in T , suchthat:
a) Thereare anddistinct , suchthat , where arity .

b) Thevariablesoccurringin arecontainedin , and containsnosymbolsfrom .

ii) A CombinatorSystem(CS) is apair R of analphabet andasetR of combinatorruleson
, suchthatthereis exactlyonerule in R for eachcombinator . This rule is

calledthecombinatorrule for ; wewill usethesymbol alsoasnamefor this ruleandwrite
.

iii) A combinatorrule determinesasetof reductions R R for all term-substitutionsR.
Theleft handside R is calleda redex; it maybereplacedby its ‘contractum’ R insideany
context C[ ]; thisgivesriseto reductionsteps: C R C R .

iv) Wewrite R if thereis a rule in R suchthat , andcall R theone-step
rewrite relationgeneratedby R, and R (respectively R ) thetransitive (respectively reflexive
andtransitive) closureof R (theindex R will beomittedwhenit is clearfrom thecontext). If

, then is a reductof .

Example1.5 (CombinatoryLogic) Thestandardexampleof a CS is CombinatoryLogic (CL) –
definedby Curry independentlyof LC [9] – thatis, in ournotation,formulatedasfollows:

S
K
I

(Thelastrulewasnotpartof theoriginaldefinition,but is nowadaysnormallyadded.)

We will assumethatno two combinatorshave thesameinterpretationin LC (seeDefinition1.7), so
a CS like

I
J

is excluded,sinceit would give animmediatecounterexampleagainstany full-abstractionresultwith
respectto thefilter semantics(seeSection9).

This notionof reductionon combinatortermsasin Definition1.4 is alsoknown asweakreduction
andsatisfiestheChurch-RosserProperty(see[6]).

Property1.6 (Church-Rosser)Let R bea CS. If and , thenthere existsa such
that and .

Wenow focuson therelationbetweenreductionin CS andin LC.
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Definition 1.7 , theinterpretationof combinatortermsover in LC, is definedby:

for all

where is therule for

Noticethat,sinceweassumethesetof termvariablesfor CS andLC to bethesame,aswell asthetwo
notionsof term-application, for every thatis theright-handsideof acombinatorrule.

Proposition1.8 If , then .
Proof: By inductionon thedefinitionof . Weonly considerthecaseof R R,
whereR . Let R . Then

R

R

R

Theproof is completedby inductionon thenumberof stepsin .

Although this interpretationin LC of a CS, , respectsreduction,in general,the lengthof the
reductionsequenceincreasessignificantly. Only for particularCS it is alsopossibleto defineaninter-
pretationof LC, [[ ]] ; thestandardexampleis thatof CL (for detailssee[11, 6, 13]). Oneimportant
propertyof thesetwo translationsis that

[[ ]]CL

for all . Thereexistsnoconverseof thisproperty;moreover, themapping doesnotpreserve
normalformsor reductions:

Example1.9 ([6]) i) SK is anormalform, but SK ,

ii) S K SI I K SI I is anormalform, but , whichdoesnot
have a -normalform,

iii) SK SI I SI I hasnonormalform, while .

For thesereasons,normalizationresultsof LC donot transfereasilyto CS. Therefore,in thispaper, we
will studythenormalizationpropertiesof CS directly in theCS framework.

We now define(head-)normalforms, (head-)normalizability, stronglynormalizability, unsolvable
andneutralterms.

Definition 1.10 ((Head-)normalforms) Let R bea CS.
i) A termis in normalform with respectto R if it is irreducible.

ii) A term is in head-normalform with respectto R if either
a) thereareavariable andterms suchthat , or

b) thereareacombinator andterms suchthat , and arity .

iii) A termis (head-)normalizableif it canbereducedto a termin (head-)normalform. A rewrite
systemis stronglynormalizing(or terminating)if all therewrite sequencesarefinite; it is
(head-)normalizingif every termis (head-)normalizable.

iv) A termis calledunsolvableif it hasnohead-normalform.

v) A term is neutral if thereareavariable andterms ( ), suchthat .
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2 Intersection type assignment

It is well-known that in thestudyof normalizationof reductionsystems,thenotionof typesplaysan
importantrole,andthatmany of thenow existingtypeassignmentsystemsfor FunctionalProgramming
Languages(FPL) arebasedon (extensionsof) theCurry typeassignmentsystemfor LC [10, 11]. The
IntersectionTypeDiscipline(ITD) aspresentedin [8] (seealso[7, 1]) is anextensionof Curry’ssystem,
in that, essentially, termsare allowed to have more than one type (using the type constructor‘ ’).
By introducingalso the type constant‘ ’ a systemis obtainedthat is closedunder -equality, and
interpretingtermsby their assignabletypesgivesafilter lambdamodel[7, 3].

In this section,we will developa notionof typeassignmenton CS thatusesintersectiontypes.It is
inspiredby similar definitionspresentedin, for example,[13] and[5]. Theextensionwith respectto
[13] is thatin thatpaperonly combinatorycompleteCS areconsidered.Thechangemadewith respect
to [5] is thatCS areconsideredinsteadof arbitraryTRS.

As donein [13], we will assumethat, for every combinator , thereis a basictypefrom which all
typesneededfor an occurrence in a term canbe obtained.Otherthanin that paper, however, we
will not limit ourselvesto basictypesthataretheprincipaltypeof thecorrespondinglambdaterm(see
[19, 2]).

As in [5], we will usestrict intersectiontypes(see[1]), which have the sameexpressive power as
the generalintersectiontypesdefinedin [7] andusedin [13]. Strict typesarethe representatives for
equivalenceclassesof thetypesconsideredin thesystemof [7]. In thesetof strict types,intersection
typeschemesandthetypeconstant play a limited role: they only occurassubtypesat theleft hand
sideof anarrow typescheme.

Definition 2.1 (Strict intersectiontypes) i) Let beacountableinfinite setof type-variables,
rangedoverby . s, thesetof strict types, rangedover by , is definedby:

Theset of strict intersectiontypesis definedby:

s

Wewill usetheconventionthat is thesameasanintersectionof zerostrict types:if ,
then , so doesnotoccurin anintersectionsubtype.As usualin thenotationof
types,right-most,outermostbracketswill beomitted,and,asin logic, bindsstrongerthan .

ii) On , therelation is definedasthesmallestpreordersatisfying:

iii) Wedefinetherelation by: .

Wewill work with typesmodulo .

Lemma2.2 ([3]) For all , if andonly if there are such that
, , and,for every , there is a such that .

Notice that,by definition, in , all arestrict; sometimeswe will deviate from
thisby writing alsofor not in s.

Definition 2.3 (Bases) i) A statementis anexpressionof theform , where is thesubjectand
is thepredicate.
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ii) A basis is asetof statementswith (distinct)variablesassubjects,and,if , then .

iii) If arebases,then is thebasisdefinedasfollows:

if andonly if and is thesetof all statementsthathave assubjectthat
occurin .

iv) Therelations and areextendedto basesby:

Wewill oftenwrite (or ) for thebasis , when doesnotoccurin .
Noticethat,in part(iii) , if , then , andthat , for all .

Our typeassignmentsystemwill derive judgementsof the form , where is a basisand
a type. A triple will beusedasa representationof thetypederivation, beingthesetof

typesusedfor thecombinatorsappearingin .
We will now recall threeoperationson typesandtriples that areneededin the definition of type

assignmentandarestandardin intersectionsystems.Substitutionis the operationthat instantiatesa
type (i.e. that replacestype-variablesby types). The operationof expansionreplacestypesby the
intersectionof a numberof copiesof that type. Theoperationof lifting replacesbasisandtypeby a
smallerbasisanda largertype,in thesenseof .

Thesethreeoperationsareof usein Definition 2.13, whenwe want to specifyhow, for a specific
combinator, a typerequiredby thecontext canbeobtainedfrom thetypeprovidedfor thatcombinator
by theenvironment(Definition2.12). It is possibleto definetypeassignmentwith fewer of lesspow-
erful operationson types,but in orderto obtainenoughexpressive power to proveTheorem2.18(i), all
threeoperationsareneeded.

Definition 2.4 (Type-substitution) i) Thetype-substitution( ) , where and

s , is definedby:

( )

( ) if

( ) if ( )

( ) ( ) ( ) if ( )
( ) ( ) ( ) where

( )

ii) If and aretype-substitutions, thensois , where .

iii) .

iv) .

For type-substitutions,thefollowing propertieshold:

Lemma2.5 ([2]) LetSbea type-substitution.If , then , andif , then
.

Our operationof expansionis similar to theonedefinedin [19] for thefull intersectionsystem,we
justneedto make someminorchangesto make surethatthetypeobtainedis alwaysin . For this,we
have to checkthe last type-variablein arrow types(for a detaileddiscussionof thecomplexity of this
operation,see[2]).
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Definition 2.6 Thelast type-variableof astrict type,last , is definedby:

last

last last

Definition 2.7 (Expansion) An expansionEx is definedby apair where and . In
orderto expanda type-derivation wewill expandeachtypeoccurringin it, for whichwe
first needto computethesetof affectedvariables.
(Affectedvariables): Theset of type-variablesis definedby:

a) If occursin , then .

b) If last , with s and (asubtype)in , thenfor all
type-variables thatoccurin : .

(Renamings): Let . Choose differenttype-variables
, . . . , , suchthateach doesnotoccurin , for and

. Let besuchthat .

(Expansionof a typein thederivation ): Ex is inductively definedasfollows:

Ex Ex Ex

Ex if last

Ex if

Ex Ex Ex if last

(Expansionof thebasis ): Ex Ex .

(Expansionof thetype-derivation ): Ex Ex Ex Ex .
An expansionoperationEx canalsobeappliedto a type outsidethecontext of a type-derivation. In
thatcase,wedefineEx suchthatEx .

Theoperationof expansionis in factanextensionof thatof [2] and[19], in that theset of types
usedfor combinatorsis consideredwhencomputingthe effect of an expansionon a type-derivation.
Theproofsof thefollowing propertiesaresimilar to thosein [2].

Lemma2.8 LetEx betheexpansiondefinedby .
i) a) For , there are and such that andEx , or

b) Ex s.

ii) a) For , there are , and such that , and
Ex , or

b) Ex , with s.

Lemma2.9 LetEx betheexpansiondefinedby with respectto .
i) If appears in , or , and , thenEx Ex .

ii) If , thenEx Ex .

Definition 2.10 (Lifting) A lifting L is anoperationdenotedby apairof pairs
suchthat and , andis definedby:

L if L if

L otherwise L otherwise

L L L L .
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Definition 2.11 (Chains) A chain is anobject , whereeachO is anoperationof
type-substitution,expansionor lifting, and

O O

O O

Wewill use to denotetheoperationof concatenationof chains,andCh to denoteachain.

To completethedefinitionof thetypeassignmentsystem,wepresentnow thetypeassignmentrules
thatareusedto assigntypesin to termsandcombinatorrules. In orderto typethecombinators,we
useanenvironmentthatprovidesa type in s for every , andusechainsof operationsto obtain
thetypefor anoccurrenceof thecombinatorfrom thetypeprovidedfor it by theenvironment.

Definition 2.12 (Environment) Let R bea CS, with .
i) An environmentfor R is amapping s.

ii) For , s, and anenvironment,theenvironment is definedby:

if

otherwise.

Sinceanenvironment mapsall to typesin s, nocombinatoris mappedto .

Wedefinenow typeassignmenton termsandcombinatorrules.

Definition 2.13 (Typeassignment)Let R bea CS and anenvironmentfor R .
i) Typeassignmentandderivationsaredefinedby thefollowing naturaldeductionsystem(where

all typesdisplayedarein s, exceptfor in rules( ) and( E)):

Ch Ch
( ): ( E):

( ): ( I): ( )

If is derivableusinga derivationD, wewrite D , andif is thesetof types
usedfor thecombinatorsin thisderivation,we representit by . Wewrite to
expressthatthereexistsaderivationD suchthatD . Wewrite if is not
usedin thederivation.

ii) Let , arity . Thecombinatorrule R is typeablewith respectto ,
if thereare and s, suchthat , and

.

iii) R is typeablewith respectto , if every rule in R is typeablewith respectto .

Noticethat if , then cancontainmorestatementsthanneededto obtain . Moreover,
by part(ii) of thisdefinition,also . However, just stating

‘The combinatorrule is typeablewith respectto theenvironment , if andonly if there
exist basis andtype , suchthat and .’

would give a notion of type assignmentthat is not comparableto intersectiontype assignmentfor
LC. For an example,take the combinatorrule . Let . Take

, thenboth and areeasyto derive. Noticethatthis
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combinatorrule for correspondsto thelambdaterm , but is not a correcttype
for this term.

Example2.14 Therulesof CL aretypeablewith respectto theenvironment CL :

CL S

CL K

CL I

ThetermSK SI canbetypedwith thetype with respectto CL : take

Ch

Ch

Ch

then

Ch CL S

CL S

Ch CL K

CL K

CL SK CL S

CL SK S

Ch CL I

CL I

CL SK SI

The definitionof typeassignmenton CS aspresentedin this paperallows for the formulationof a
preciserelationbetweentypesassignableto terms,andthoseassignableto equivalentlambdaterms.In
fact,a resultsimilar to partof thefollowing propertyhasalreadybeenprovedin [13].

Definition 2.15 Let standfor thenotionof intersectiontypeassignmenton LC, asdefinedin [3]
by thefollowing derivationrules(whereall typesdisplayedarein s, exceptfor in rules( I), ( E)
and( )):

( I): ( E):

( ): ( s) ( I): ( )

Let [[ ]]CL S K I , be the interpretationof lambdatermsin CL (for details,see
[11, 6, 13]), thenthefollowing statestherelationbetweentypeassignmentin CS andin LC.

Property2.16 If , then CL [[ ]]CL .
Proof: Similar to Theorem3.7of [13].

A moregeneralformulationof Property2.16, of course,only holdsfor CS thatareexpressiveenough
to encodeLC. However, even for thosethepropertyis only provableif theenvironmentusedassigns
thosetypesto thecombinatorsymbolsthataretheprincipaltypes[19, 2] of thecorrespondinglambda
terms.For example,take andnoticethat [[ ]]CL I . If I ,
thenit is notpossibleto assign to I in (seealsoSection9).

However, wecanshow thefollowing two resultsfor CS equippedwith principalenvironments.
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Definition 2.17 Theenvironment is calledprincipal for , if for all , is theprincipal
typefor in .1

Theorem2.18 Let R bea CS.
i) If is principal for , then implies .

ii) implies .
Proof: i) By inductionon thestructureof termsin T . Theonly casethatneedsattentionis that

of , so . Since is principalfor , is theprincipaltypefor in
andthereexists(see[2]) achainof operationsCh suchthatCh . But then

by rule .

ii) By inductionon thedefinitionof ; theonly alternative thatneedsconsiderationis thatof
wherethelastrule in thederivationfor is . Thenthereis achainCh such

thatCh . Let betherule for . Then,by Definition2.13(ii) , thereare
and s, suchthat

and .

Then,by induction, (noticethat ). Then,by rule ( I) of
, ; since is closedfor all threeoperationsof

substitution,expansion,andlifting (see[3]), wealsohave , so
.

3 Subject reduction

In this sectionwe will show thatthenotionof typeassignmentdefinedhereon CS satisfiesthesubject
reductionproperty(Theorem3.7). In order to achieve this, we first show that the threeoperations
(type-substitution,expansion,andlifting) definedin theprevioussectionaresoundontypedterms.We
will alsoshow thatderivationrule ( ) is soundin thefollowing sense:if thereis anoperationO such
thatO , then,for every type s suchthat , thecombinatorrule for is typeable
with respectto thechangedenvironment .

Proposition3.1 (Soundnessof type-substitution) LetSbea type-substitution.
i) If , thenS S .

ii) If is a combinatorrule, typeablewith respectto theenvironment , thenit is
typeablewith respectto S .

Proof: i) By easyinductionon thestructureof derivations.

ii) By Definition2.13(ii) , therearetypes , suchthat , and
. By part(i), weobtainS S , soalso

S S S , andS S S S .

Thefollowing essentiallyshows thatlifting is sound:

Lemma3.2 i) If and , then .

ii) If and , then , where is therestrictionof to -freetypes.

iii) If and , then .

1It is possibleto definethenotionof principalenvironmentdirectly for CS, without side-steppingto LC, but thatwould
significantlyincreasethecomplexity of theproofsof this paper. It would not affect any of theresults;in fact,thedefinition
above wouldbecomeaprovableproperty.
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iv) If if andonly if there is such that .
Proof: Wewill only give theproof for thefirst part;thesecondis similarandtheothertwo are
straightforward. Wewill first consider bothin s, then in .
( s): This is provenby inductionon thestructureof terms.

( ): Thenthereexists suchthat . Sincealso , .

( ): Thenthereis achainCh suchthatCh . Since , L is a
lifting, thenCh L is achain,thereforealso .

( ): So , and , for acertain . Since , also ;
noticethatboth and s. Then,by induction, , soby ( E),

.

( ): Then,for every , . Thenby Lemma2.2, for
every , thereis a suchthat , andnoticethat s. Therefore,
for every , . Thenby ( I), .

Proposition3.3 (Soundnessof lifting) LetL bea lifting such thatL .
i) If , then .

ii) If is a combinatorrule, typeablewith respectto theenvironment , it is typeable
with respectto L .

Proof: i) By Lemma3.2.

ii) By Definition2.13(ii) , thereare , suchthat , and
. Since L , becauseof

Definition2.1(ii) , thereare , suchthatL , and
for , , and . SoL is a
lifting, andby part(i), weobtainL L , so

.

Proposition3.4 (Soundnessof expansion) LetEx beanexpansionsuch that
Ex .

i) If , then .

ii) If is a rule, typeablewith respectto , andEx
, then,for every , therule is typeablewith respectto .

Proof: i) By inductionon . Wewill only show thepart s. Then,by Lemma2.8either:
a) , , andfor every , thereis a type-substitution

SsuchthatS . Then,by Proposition3.1(i), for every ,
. Therefore,by Proposition3.3, since for every ,
, andby ( I), .

b) s. Thispartis provedby inductionon thestructureof terms.
( ): Then,by ( ), thereis , suchthat . By Lemma2.9(i), Ex , so

.

( ): Then,by ( ), thereis achainCh suchthatCh . Let Ex betheexpansion
definedby where is theintersectionof thetypesaffectedby Ex. Notethat

. SinceCh Ex is achainandCh Ex , weobtain .

( ): Then,by ( E), thereis suchthat and . Let Ex bethe
expansiondefinedby , where is theintersectionof thetypesaffectedby Ex. By
induction,Ex is soundfor thederivations and , thatis,
Ex Ex andEx Ex . NotethatEx and
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Ex , andsince s, Ex Ex . Therefore, .

ii) Since s, by Lemma2.8either:
a) . By Definition2.7, for every , thereis a type-substitutionSsuchthat

S . Theproof is completedby Theorem3.1(ii) .

b) . By Definition2.13(ii) , thereare , suchthat ,
, andEx . By theresultin part(i), we

obtainEx Ex , soalso
Ex Ex Ex . Since s, also
Ex Ex Ex .

Combiningtheabove resultsfor thedifferentoperations,wehave:

Theorem3.5 (Soundnessof chains) i) Let andCh bea chainsuch that
Ch , then .

ii) Let bea combinatorrule typeablewith respectto theenvironment . If
Ch , then,for every s such that , is typeablewith respectto

.
Proof: By Propositions3.1, 3.4, and3.3.

Usingthis soundnessresult,we will now show that thenotionof typeassignmentasdefinedin this
papersatisfiesthesubjectreductionproperty:if , and canberewritten to , then .
Of course,this resultcanbeobtainedthroughthemappings[[ ]] and , usingtherelationsbetween
the systemsmentionedin the previous section,but only for combinatorycompleteCS andprincipal
environments. For other CS, we must give a direct proof, for which we needthe following term-
substitutionresult.

Lemma3.6 i) If , then,for everyterm-substitutionR andbasis , if for every ,
R , then R .

ii) Let bea combinatorrule, typeablewith respectto . For everyterm-substitution
R, basis andtype : if R , then R .

Proof: i) By inductionon .
( ): Then . Thenthereis , suchthat . Then,by Theorem3.3, R

implies R .

( ): Then . Immediate,since R , and doesnotdependon thebasis.

( E), ( I ): By induction.

ii) If is a typeablecombinatorrule, thenby Definition2.13(ii) , thereare
, suchthat and . Also,

R R R. From R R , weknow thatthereare ,
andachainCh suchthatCh , and,for , R .
Since , by Theorem3.5(i), . Then,by part
(i), also R .

Usingthis result,thefollowing becomeseasy.

Theorem3.7 (Subjectreduction) If and , then .
Proof: By inductionto thelengthof thereductionpath;thecaseof length1 is provedby inductionon
thestructureof . Of this doubleinduction,only thecasethat itself is theterm-substitutioninstance
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of a left-handsideof acombinatorrule is of interest;all othercasesarestraightforward. Then,let
andR besuchthat , R, and R. Theresultfollows from Lemma3.6(ii) .

Oneshouldremarkthatasubjectexpansiontheorem,i.e. theconverseof thesubjectreductionresult,

If , and , then ,

doesnothold in general.Take for exampletheCS

K
I

thatis typeablewith respectto theenvironment

K
I

Theterm I K reducesto the(head-)normalform K , but canonly be typedby with respectto . Of
course, is not theprincipal typefor I in . In fact,we have the following
result:

Theorem3.8 (Subjectexpansion) Let R bea CS, and beprincipal for . If and
, then .

Proof: If , thenby Lemma2.18(ii) , also . Since , by Propostion1.8also
. Since is closedfor -expansion,wehave . Then,by Theorem

2.18(i), wehave .

4 Restrictedtype assignment

Our aim is to define,in Section5, a notionof reductionon typederivations(Cut Elimination)which
is stronglynormalizing. For this, reductionwill be,ascanbeexpected,guidedby theappearanceof
typeableredexesof R in theconclusionof thetypederivation. Eachoccurrenceof a redex will be
treatedindependently, sincethetypesassignedto eachoccurrenceof thesameredex mightdiffer.

Sincederivation reductioncreatesa new type derivation, somecareis neededto make surethat
all necessarysub-derivationsarecontracted,andno reductionis attemptedwhereit is not possible.
Moreover, derivation reductionis not a ‘Cut and Paste’ operationasin the LC, in the sensethat, for
combinatorsystems,thederivationthatis createdfor thecontractumis notcompletelyconstructedout
of partsof thederivationfor theredex: additionalstructureneedsto beintroduced,extendingthesize
of thederivation.

In order to simplify the definition of the reductionrelation,we will first definea notion of type
assignmentontermsin T (denotedby ) thatis aslightvariantof thenotionof typeassignment
in Definition2.13. Thevariationconsists,essentially, of restrictingbasesto their relevantcontents,i.e.
to containonly the typesactuallyusedfor thevariablesof a term. In thenext section,we will prove
thatderivationsin this systemarestronglynormalizable;for this we will usethewell-known method
of ComputabilityPredicates[20]. Then,in Section8, wewill show thattheapproximationtheorem

If , thenthere exists such that ,

aswell asthethreenormalizationpropertiesstatedin theintroductionof this paper, areconsequences
of this strongnormalizationresultfor .
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Definition 4.1 (Restrictedtypeassignment)Let R bea CS and anenvironment.Restricted
typeassignmentandrestrictedderivationsaredefinedby thefollowing naturaldeductionsystem
(whereall typesdisplayedarein s, exceptfor in rule ( E)):

Ch Ch
( ): ( E):

(Ax): ( I): ( )

Wewrite D if andonly if thereis a restrictedderivationD thathas as
conclusion,andwrite if thereexistsaD suchthatD .

Notice that, in rule ( I), if , then and . Notice also
thatthemaindifferencebetween and lies in thefact thatrule ( ) hasbeenreplacedby (Ax).
Also, in rule ( E) for , thebasesusedin left- andright-handsubderivation have to be thesame,
whereasfor that rule in , this neednot be the case:the respective basesarecombined,usingthe
operation . We couldhave usedthis restrictedsystemthroughoutthis paper, without losingany
importantresult(seealsothenext lemma). But sinceoneof the objectiveswasto obtainat leastthe
expressive power of theintersectiontypeassignmentsystemfor LC (Theorem2.18(i)), thechoicefor
the full systemhasbeento allow alsotypesin basesthat arenot relevant to the type assignedto the
term,i.e. for derivationrule ( ) ratherthan(Ax).

Therelationbetweenthetwo notionsof typeassignment and is strong,andformulatedby:

Lemma4.2 i) If , then .

ii) If , thenthere is a such that and .

iii) If withoutusing , thenthere is a such that and withoutusing .
Proof: By straightforward inductionon thestructureof derivations.

Usingtheserelations,thefollowing lemma,thatshows a subject-reductionresultfor restrictedtype
assignment,becomeseasy.

Theorem4.3 If and , thenthere exist such that and .
Proof: If , by Lemma4.2(i), also . Since , by Theorem3.7, also .
Then,by Lemma4.2(ii) , thereexistsa suchthat and .

Example4.4 Let Ch besuchthatCh K , then,usingCh, wehave
K , K , and . Noticethat .

Wewill useashort-handnotationfor derivations.

Definition 4.5 i) Wewrite D Ax , if andonly if thetypederivationD consistsof nothingbut an
applicationof (Ax), i.e. thereare and , suchthatD .

ii) Wewrite D , if andonly if D consistsof nothingbut anapplicationof rule , i.e. there
are and , suchthatD .

iii) Wewrite D D D E , if andonly if D is obtainedfrom D andD by applyingrule ( E),
i.e. if thereare , and suchthat

D D andD
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iv) Wewrite D D D I , if andonly if D is obtainedfrom D D by applyingrule
( I), i.e., for every , thereare and suchthatD , and

D .

Below, in thedefinitionof derivationreduction,wewill needthefollowing result.

Lemma4.6 If D and , thenthere areD and , such that and
D .
Proof: Wewill prove, like for Lemma3.2, this lemmain two stages:first for bothin s, thenfor

in .
i) s. This is provenby inductionon thestructureof terms.

a) . Then Ax . Noticethat , and
D Ax .

b) . ThenD , sothereis achainCh suchthatCh . Since
, L is a lifting, Ch L is achain,andthereforealso .

c) , soD D D E , for
a certain . Since , also ; noticethatboth and s. Then,by
induction,thereexists suchthat andD . Then

, and,by ( E), thereexists

D D D E

ii) . Then,by ( I), and,for every ,
. Thenby Lemma2.2, for every , thereis a suchthat . So,

by part(i), for every , thereis a suchthat andD . Then
, and,by ( I), thereexists

D D D I

Noticethat is aspecialcaseof (ii) ; then,by construction, .

5 Derivation reduction

In thissection,wewill introduceanotionof reductiononderivationsD . Theeffect of this
reductionwill bethat thesubderivation for a redex occurringin (with typedifferentfrom ) will be
replacedby the derivation for an instanceof the right-handsideof the appliedrewrite rule. We will
show thatthis notionof reductionis stronglynormalizing.

Beforeformally definingreductiononderivations,wewill definea notionof substitutiononderiva-
tions,thatwill consistof replacinga typederivationfor avariableby anotherderivation.

Definition 5.1 (Derivationsubstitution) For D andD , theresultD of
substitutingD in D, denotedby D D D , is inductively definedas
follows:

i) D Ax . If , then , andD D ; otherwise,D D.

ii) D . ThenD D.

iii) D D D E . In
particular, where s, suchthat.

D D D I .
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Assume,without lossof generality, that and , andlet
D D D I , andD D D I . Let

D D D and

D D D

ThenD D D E .

iv) D D D I . For , thereare suchthat
, andD . Since

D , reasoningasabove in part(iii) , for every , thereareD ,
suchthatD . Let D D D , then

D D D I .

Beforecomingto thedefinitionof derivation-reduction, weneedtodefinetheconceptof ‘theposition
of a sub-derivationin aderivation’.

Definition 5.2 Let D beaderivation,andD beasub-derivationof D. Theposition of D in D is
definedby:

i) If D D, then .

ii) If thepositionof D in D is andD D D E , then .

iii) If thepositionof D in D is andD D D E , then .

iv) If thepositionof D in D , for some , is , andD D D I , then .

Notice that if is thepositionof a sub-derivation D in D , then is also
thepositionof anoccurrenceof in .

Remark5.3 Let D D I . Noticethat,if is a
sub-derivationof D ( ) atposition , then,for , either:

thereis nosub-derivationin D at position , or

D hasasub-derivation I atposition , or

D hasasub-derivationD (with s) atposition .

We cannow give a definition of reductionon derivationsin ; noticethat this reductioncorre-
spondsto contractinga redex in thetermthatappearsin theconclusion,andbuilding a derivation for
thecontractum.

Definition 5.4 (Derivationreduction) WedefinereductiononD by inductionon . We
saythatD reducesto D atposition if either:

i) s. Therearethreecasesdependingonwhether reducesat therootpositionor not.
a) If R andthereis acombinatorrule , thenD has

theform:
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Ch Ch D

D

Then,by Definition2.13(ii) andTheorem3.5, . By Lemma
4.2(ii) , thereareD and , suchthat,for every , ( mightbe ),
and

D .

Then,by Lemma4.6, for every , thereareD suchthatD .
Let R , R, and

D D D D ,

thenD reducesto D at position .

b) If D D D E , andD reducesatposition
to D , thenD reducesto D D D E at

position .

c) If D D D E , andD reducesatposition to
D , thenD reducesto D D D E atposition

.

ii) , . If D , thenthereareD D , such
that , and,for every , D , andD D D I .
If thereis some suchthatD reducesat position to D , then,by
Remark5.3, for , either
a) thereis nosub-derivationin D at position , or D hasa sub-derivation I at

position ; thentake D with thesamestructureasD , and .

b) D hasasub-derivationat position , andD reducesto D at position .
ThenD reducesto D D D I atposition .

Wewrite D D if thereis a suchthatD reducesto D atposition , andwrite for its
reflexive andtransitive closure.

NoticethatD is reducibleif andonly if thereis asubderivationD , with s

and arity . Wewrite SN D to indicatethatD is stronglynormalizablewith respectto .
Thefollowing propertieshold:

Lemma5.5 i) If D D , then , and .

ii) LetD D D E . Then:SN D impliesSN D andSN D .

iii) If SN D andSN D , thenSN D D E .

iv) If D D D I , and
D D thenthere are such that , and

D D or D D

v) If D D D I , then:
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SN D if andonly if SN D andSN D .
Proof: Straightforward.

6 Strongnormalization

In this section,we will prove that derivationsin the restrictedtype assignmentsystemarestrongly
normalizablewith respectto the notionof reductiondefinedin the previous section;for this we will
usethewell-known methodof ComputabilityPredicates[20].

Definition 6.1 (Computabilitypredicate) i) Let beabasis, T , and a type.Wedefine
Comp D recursively on by:
a) Comp D SN D .

b) Comp D
Comp D Comp D D E .

c) Comp D D I
Comp D .

ii) Wesaythata term-substitutionR is computablein a basis if, for every , therearebasis
andderivationD suchthatComp D R .

NoticethatComp I holdsfor all by (i.c) when .

Wewill prove thatCompsatisfiesthestandardpropertiesof computabilitypredicates.

Lemma6.2 i) Comp D SN D .

ii) SN D Comp D .
Proof: By simultaneousinductionon thestructureof types.Thecase is immediate,

follows from Definition6.1(i.c) andLemma5.5(v), andfor :
i) Let beavariablenotappearingin and .

Comp D (IH (ii) )

Comp D Comp D (6.1(i.b))
Comp D D D E (IH (i))

SN D (5.5(ii) )

SN D .

ii) SN D (IH (i))

Comp D SN D SN D (5.5(iii) )

Comp D SN D D E (IH (ii) )
Comp D Comp D D E (6.1(i.b))

Comp D .

Wewill now cometo theterm-substitutiontheorem,thefinal constructionin theproofof ourstrong
normalizationresult,for whichweneedthefollowing ordering:

Definition 6.3 i) standsfor thewell-foundedencompassmentordering: if modulo
renamingof variables,and R for someposition in andterm-substitutionR.

ii) Wedefinetheordering onpairs– consistingof anaturalnumberanda term– astheobject

IN lex, wherelex denoteslexicographicextension.
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iii) Givena term anda term-substitutionR, theinterpretation R of R is definedasthepair
where is thenumberof combinatorsappearingin .

Notethattheencompassmentorderingcontainsthestrict supertermrelation(denotedby ).

Wecannow prove theterm-substitutiontheorem.

Theorem6.4 If D andR is computablein , thenthere existsa D R such
thatComp D .
Proof: Wewill considertheinterpretationof R, andprove thetheoremby Nötherianinductionon
(which is well-founded).If is avariable,then , andsinceR is assumedto becomputable
in , thereexistsaD suchthatComp D R . Also, thecase is trivially
computable.So,without lossof generality, wecanassumethat is notavariable(soneitheris R).
Also, if , thenthelastruleappliedis ( I), andwecanreasononeach separately, so
wecanfocuson thecasewhere s.
Wedistinguishthefollowing casesfor R:
( R is neutral): Thenthereare ( ) suchthat R ; also is neutral,so

thereexist and ( ) suchthat , and R

( ). Since , thereexist D D suchthat

D , andD ,

for every , and . Since R R , by induction,thereexist
D suchthatComp D R , for every . Also, sinceR is computablein

, thereexistsD suchthatComp D R . Then,by
Definition6.1(i.b),

Comp D D E D E R .

( R is notneutral): Thenthereare ( ) suchthat R = . Now, three
casesarepossible:
a) ( ), or , andat leastoneof the is notavariable.

Since R R , by induction R is computable,for every , or ,
respectively. Let bea freshvariable,andR R R . Then R R , and

R R . Then R is computableby induction.

b) ( ). Then R ( ). In this casewecanproceedas
for thecasethat R is neutral.

c) .
( ): Then R R , andD , for certain ,

and,by induction,Comp D . SinceR is computablein ,
for every thereis D suchthatComp D R , soby Definition
6.1(i.b), alsoComp D D E D E R .

( ): Then andD . Let ; in orderto prove thatthere
existsaD suchthatComp D it is sufficient to prove

D Comp D
Comp D D E D E .

Take D D D E D E , thenby Definition6.1(i.a) it sufficesto prove

D Comp D SN D .

Wewill proceedby inductionon thesumof themaximallengthsof thereductionpathson
thederivationsD to their normalforms(noticethatthesederivationsare
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stronglynormalizableby Lemma6.2(i), sincethey arecomputable).
Considerall possiblerewrite stepsoutof D .
A) D D at theoutermostlevel. Thenthereare and

variables suchthat , theruleappliedis , so
arity arefreshterm-variables,andR is theterm-substitution

. SinceComp D for all , R is
computablein . Then R R1 ,
soby inductionComp D , andSN D by Definition6.1(i.a).

B) D D , andthereductiontookplace
insideoneof the , thenby inductionSN D .

So,for all D suchthatD D , wehave provedSN D , so,in particular, SN D .

Themainresultof this sectionthenis thestrongnormalizationtheoremfor derivationreductionin
.

Theorem6.5 (Strongnormalisationof derivationreduction) If D , thenSN D .
Proof: If D , then,takingR suchthat R = , by Theorem6.4, Comp D .
Then,by Lemma6.2(i), SN D .

7 Approximants

Now wewill develop,essentiallyfollowing [22] (seealso[6]), anotionof approximantfor combinator
terms.This will bedoneby introducinga specialsymbol into thedefinitionof terms.Thegeneral
ideais thataterm directlyapproximatesaterm if they areidenticalbut for thoseplaceswhere has
anoccurrenceof .

Definition 7.1 (Combinatortermswith ) i) ThesetT is definedby:

Ap

ii) Thenotionof rewriting of Definition1.4extendsnaturallyto termsin T , andwewill use
thesamesymbol‘ R ’ to denotetherewriting relationinducedby R onT .

Therelation on terms,asgivenin thefollowing definition,takes to bethesmallestterm.

Definition 7.2 i) Wedefinetherelation onT inductively by:

ii) and arecalledcompatibleif thereexistsa suchthat and .

Definition 7.3 (Approximatenormalforms) i) , thesetof approximatenormalformsof
T , rangedover by , is inductively definedby:

arity

ii) , thedirectapproximantof with respectto R is definedby:
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if or

, andarity

otherwise

Noticethateverynormalform in T is alsoanapproximatenormalform.

For , thefollowing propertieshold:

Lemma7.4 i) .

ii) is a head-normalform .

iii) If and , then .
Proof: By inductionon thedefinitionof .

Therelationbetweenreductionand is expressedby:

Lemma7.5 i) .

ii) .
Proof: By inductionon thestructureof terms.

Wewill now introduceanotionof ‘join’ ontermscontaining , thatis of usein theproofof Lemma
8.1.

Definition 7.6 OnT , thepartialmapping T T T is
definedby:

Thelastalternative definesthejoin onapplicationsin amoregeneralway thanthatof [15], which
wouldstatethat , sinceit is notalwayssureif a join of two
arbitrarytermsexists.However, wewill useourmoregeneraldefinitiononly on termsthatare
compatible,sotheconflict is only apparent.So,whenwewrite a termas , weassume and to
becompatible.

Thefollowing lemmashows that actsasleastupperboundfor compatibleterms.

Lemma7.7 If and , then is defined,and: , , and .
Proof: By inductionon thestructureof terms.

Approximantsof termsaredefinedby:

Definition 7.8 (Approximants) is thesetof approximants
of .

In Section9, usingthisdefinition,wewill defineasemanticsfor CS, andwewill needthefollowing
propertiesrelatingapproximantsandreduction.
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Lemma7.9 i) .

ii) .
Proof: i) )

(1.6)

(7.5(i))

) .

ii) (7.8)

(1.6& 7.5(i))

(7.7)
.

Lemma7.10 If , then is unsolvable.
Proof: If , then,for all suchthat , and , if , then . So,in
particular, thereis no suchthat and is of theshape , with or
with arity , sinceotherwise or . Therefore, doesnot reduceto a
termin headnormalform (it is unsolvable).

Thefollowing resultis crucialfor theproofof Lemma9.4:

Lemma7.11 If, for T and , there exists such that and , then
there exist , and such that and .
Proof: Thecase is trivial. For : if , theneither:

i) , and , for . Since , thereare suchthat , and
, for . Noticethat , andtake .

ii) Thereexist suchthat ,

andnoneof thereductionsin thefirst partof thissequencetake placeat therootposition.Since
someof thereductionsthattake placeaftercontractingtheredex arein factresiduals
of redexesalreadyoccurringin , wecantake thereductionsequencethatfirst contracts
all relevantredexes(andtheir residuals)occurringin . Then,sincetherewrite system
is orthogonal(i.e. rulesareleft linearandwithoutsuperpositions),thereexists and
suchthat

and
suchthatin thereductionsequence only redexesarecontractedthatarecreatedafter the
redex wascontracted.Take , for , thentheredexesthatare
erasedhave norelevanceto thesequence ; moreover, thereis only oneredex in

, beingthattermitself, andboth and arein . Noticethat
, and , andthat and .

Wenow focuson thereductionsequence

Noticethat,by theconstructionsketchedabove,only redexesthatarenewly createdare
contracted,andthatany redex createdin thissequencecorrespondsto a redex beingcreatedfor a
sequencestartingwith , therefore

andeachtermcreatedin this reductionis smallerthan(in thesenseof ) thecorrespondingterm
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in thereductionsequenceabove (hence ), andeachredex in correspondsto a redex in .
Take , then , andall redexesaremaskedby . Since by maskingall the
‘old’ redexes,wealsohave that . Since , also andtherefore . We
thendeduce .

To cometo a notionof typeassignmentonT , thedefinitionof typeassignmentasgivenin
Definitions2.13and4.1 neednot bechanged,it sufficesthatthetermsareallowedto bein T .
In particular, doesnotproduceatypefor ; since , andbecauseof Definition2.13, this implies
that canonly appearin (sub)termsthataretypedwith .

Thefollowing propertyis neededin theproofof Theorem8.5:

Lemma7.12 If , where are -free, and is combinator-free, then is -free.
Proof: By inductionon . Weconsiderall possiblecases:
( , ): Impossible,since .

( , ): Without lossof generality, wecanassume s. Then
, and , for . Therefore,thereare such

that , all are -free, for , and
. Then,by Lemma3.2(i), , for . Then,by induction, doesnot

contain , for .

In Lemma8.1, wewill needthefollowing result.

Lemma7.13 i) If D , and , thenalsoD , where hasthesame
structure asD.

ii) If D , and , thenalsoD .
Proof: i) By inductionon thestructureof derivations.

( E): D D D E . Thenthere
are suchthat , and,D andD by
induction.Thereforethereexists D D E , whichhasthe
samestructureasD.

( I ): D D D I ,
with . Then,by induction,for , D , soalso

D D I

Noticethattheonly interestingcaseis hiddenin thelastpart: . Then,in particular, canbe
, and canbeany term.Thecases(Ax) and areimmediate.

ii) If D , then,by Lemma4.2(ii) , thereis a suchthatD . Since
, by thefirst partalsoD . ThenalsoD .

8 Approximation and normalization

Theapproximationresultthatwill beprovedin thissectionhasbeenreachedalsoin [3] for theessential
systemfor LC, . Thatresult,however, cannotbetransferredto typedCS, andneithercanthethere
usedtechnique.Thecrucialpoint in theproblemis thattheproperty

‘there is an such that ’
implies

‘there is an such that ’.
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when doesnotoccurin , is relatively easyto prove,sincethefollowing holds:

If and , theneither:
with and , or .

Thefirst of thesepropertiesis hardto prove in arbitraryCS, becausethereis noknown way to express
abstractionadequatelyin CS thatarenot combinatorycomplete.Moreover, evenin combinatorycom-
pletesystemslike CL, usingtheexistenceof a bijectionthroughthemappings and[[ ]]CL , it is not
possibleto prove this first propertyusingthesecond.Take, for example,the termSK , ,
and

Ch

thenwecanderive thefollowing:

Ch CL S

CL S

Ch( CL (K )) =

CL K

CL SK CL

CL SK CL

CL SK

Notice that CL SK andalso CL . Following the above property, since
noneof theapproximantsof SK is anapplicationterm,wewould thenlike to obtainsomethinglike
[[ ]]CL CL SK and CL [[ ]]CL . However,

[[ ]]CL I and CL SK S SK S SK

This problemis overcomein this paperusingthe strongnormalizationresultproved in the previous
sectionfor derivationreductionin .

Wewill needthefollowing intermediateresult.

Lemma8.1 If D is in normalformwith respectto , thenthere existsan such
that andD .
Proof: By inductionon thestructureof derivations.
( E): Let D D D E . Then,by

induction,thereare in suchthatD , andD ,
and D D E . By Definition7.2
weknow that .
Now if thereis a suchthat andarity . But thenthere
are suchthat , and . In particular, by theremark
afterDefinition5.4, D is reducible,which is impossible.So .

( I ): Let D D D I . By
induction,for , thereis an in suchthatD . Takenow

. Since,for , , by Lemma7.13alsoD , soweget
D D I . Since

for all , by Lemma7.7also .
Thecases and(Ax) areimmediate.

Noticethattheonly realcaselieshiddenin part( I): if , then .

Theorem8.2 (Approximation) If , thenthere existsan such that .
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Proof: For everyD suchthatD , thereareD and suchthatD , and
, by Lemma4.2(ii) . Then,by Theorem6.5, SN D . Let D beanormalform of

D with respectto , thenby Lemma8.1, thereis an suchthat andD .
Then,by Lemma5.5 (twice), , and , so . Also, by Lemma4.2(i) andLemma
3.2(iii) , .

For principalenvironmentswecanshow thattheconverseof this resultalsoholds.

Theorem8.3 Let R bea CS, and beprincipal for . If there is an such that
, then .

Proof: If suchthat , thenthereexistsa suchthat and . But then,by
Lemma7.13, also . Since is principalfor , by Theorem3.8, also .

Theorem8.4 (Head-normalisation)Let T . If , and , then hasa
head-normalform.
Proof: If , thenby Theorem8.2, thereis an suchthat . Since ,

, andsince , thereare or , andterms suchthat , or
with arity . Also, since , thereis a suchthat and .

Since , thereare suchthateither , or , with arity .
But then is in head-normalform, so hasahead-normalform.

The combinatorialequivalentof anotherwell-known resultfor intersectiontypeassignmentin the
LC, i.e. theproperty

If , and are -free, then hasa normalform

no longerholds.Take for exampletheCS

Z
D

thenZ DD is typeablewith a typenot containing , but thetermZ DD hasnonormalform. How-
ever, wecanprove this resultfor theclassof typeablenon-Curryfiedterms.

Theorem8.5 (Normalisation) Let TNC . If , and are -free, then hasa
normalform.
Proof: By Theorem8.2, thereis an suchthat . Noticethatif TNC , and
is a reductof thenalso TNC . Therefore, cannotcontainany . Then ,
whereeach containsonly variablesandeventually . But, by Lemma7.12, doesnotcontain .
Now, since , thereexists T suchthat and . Since doesnotcontain

, , andsince is in normalform, hasanormalform.

Wewill now show that,usingTheorem6.5, all termstypeablein thesubsystemof thatdoesnot
use ( ), arestronglynormalizable.

Lemma8.6 i) If D is a derivationin , andD D , thenalsoD is a derivationin .

ii) D D , if andonly if .
Proof: By Definition5.4andLemma(ii) .

Thus,in thetypesystem , mimics andvice-versa.Thisobservationimmediatelyleads
to thefollowing result.
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Theorem8.7 Let T . If , then is stronglynormalizable.
Proof: Let D besuchthatD . SincealsoD , by Lemma4.2(iii) , thereare
D suchthat , andD . By Theorem6.5, D is stronglynormalizablewith
respectto . By Lemma8.6(ii) , all derivationredexesin D correspondto redexesin and
vice-versa,apropertythatis preservedunderreduction.Soalso is stronglynormalizable.

It is worthwhileto noticethat,unlike for LC with , thereverseimplicationof thethreetheorems
doesnothold in general.For this, it is sufficient to notethatasubjectexpansiontheoremdoesnothold
(seealsothelastremarkof Section3).

Another aspectworth noting is that, unlike in LC, no longer every term in normal form is ty-
peablewithout in basisandtype. Take for example S K SI I K SI I , andnotethat, by
Property2.18 every type assignableto (regardlessof the environmentused)is a typeassignableto

in . Sincethis lasttermhasno head-normalform, only canbeassignedto
it.

9 Semantics

In this section,we will definetwo semanticsfor CS. The first is a filter model,wheretermswill be
interpretedby thesetof their assignabletypes;thesecondanapproximationmodel,wheretermswill
beinterpretedby thesetof theirapproximants.

Definition 9.1 (Filters) i) A subset of is afilter if andonly if:
a) If , then .

b) If and , then .

ii) If is asubsetof , then is thesmallestfilter thatcontains , and .

iii) is afilter .

Noticethata filter is never empty, sinceby part(i.a), for all , . is a cpoandhencefor-
wardit will beconsideredwith thecorrespondingScotttopology.

Noticemoreover that,by rule I andTheorem3.3, .

Definition 9.2 i) Applicationon , , is definedasfollows:

ii) Applicationon , , is definedasfollows:

Wewill definetwo interpretationsof terms:

Definition 9.3 i) Theinterpretationof termsin thedomainof approximantsover is definedas:
.

ii) Let beavaluationof termvariablesin ; wewrite if andonly if, for all ,
. [[ ]] , theinterpretationof termsin via and is definedby:

[[ ]] .

Bothapplicationsarewell-defined,in thesensethatthey respectapplicationon terms.

Lemma9.4 i) [[ ]] [[ ]] [[ ]] .



TechnicalReport2000/10 Departmentof Computing,ImperialCollege 28

ii) [[ ]] [[ ]] [[ ]] .

Proof: i) ) [[ ]] [[ ]] (Definition9.2(i))

[[ ]] [[ ]]

(Lemma7.5(ii) )

[[ ]]

) [[ ]] (Lemma7.11)

[[ ]] [[ ]] [[ ]] [[ ]]

ii) [[ ]] [[ ]] [[ ]] [[ ]]

[[ ]]

As seenabove in Lemma7.9(i), if , then , which implies that, at least,if
, then[[ ]] [[ ]] . Theconversedoesnot hold, sinceunsolvabletermsthatarenot in ,

still have thesameimageunder[[ ]] , namely .
Thefollowing relationexpressesthattermsareequivalentif they shareacommonreduct.

Definition 9.5 Wedefinetheequivalencerelation R T T by:

R R

R R

R R R

Lemma9.6 If R , thenthere exists such that R and R .
Proof: By inductionon thedefinitionof R . If R R R , then,by induction
thereare and suchthat R and R , and R and R . Since R and

R , by Property1.6, thereexist a suchthat R and R . But then,in particular,

R and R .
Theothercasesarestraightforward.

Theapproximantsemanticsis adequate,in thatit equatestermsthathave acommonreduct.

Theorem9.7 (Adequacy of theApproximationModel) If R , then[[ ]] [[ ]] .
Proof: Consequenceof Lemmas9.6and7.9(i).

Theconverseof this result,‘ If [[ ]] [[ ]] , then R ’ doesnothold.

Example9.8 Take
D
W

NoticethatSK DD andSK W W bothhave only oneredex, andthatthis propertyis preserved
underreduction.Then

SK DD SK DD SK DD
and

SK W W SK W W W SK W W W W
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so
[[SK DD ]] [[SK W W ]]

but thereis no suchthatbothSK DD andSK W W .

Wecouldidentify all unsolvableterms,asto obtainSK DD R SK W W , asis usedalsofor LC.

Definition 9.9 Wedefinetheequivalencerelation R T T by:

R R

areunsolvable R

R R

R R R

R R R

NoticethatSK DD R SK W W .

Theorem9.10 If R , then[[ ]] [[ ]] .
Proof: By inductionon thedefinitionof R. Thecase R follows from Lemma7.9(i). If are
unsolvable,then[[ ]] [[ ]] . Thelastcaseis aconsequenceof Lemma9.4. Theothertwo
casesaretrivial.

Although,by R , termsareequatedthatareunsolvable,still wedonotgeta full-abstractionresult,
sinceit canbethatsolvabletermshave thesameinfinite setof approximants,whilst sharingno terms
duringreduction.

Example9.11 Take
T
Y
X

Thenwehave thefollowing reductionsequences:

Y X X X
X X

X X

T T T T
T T

T T

In particular,
[[Y X ]] [[T T ]]

but notY X R T T .

Wecanobtaina full-abstractionresultfor theapproximationsemanticsusingthefollowing relation:

Definition 9.12 Therelation hnf
R is definedco-inductively asfollows: hnf

R if andonly if either
i) and arebothunsolvable,or

ii) if is thehnfof , thenthehnfof is , and,for , hnf
R , or

iii) if is thehnfof , thenthehnfof is , and,for , hnf
R .

Theorem9.13 (Full Abstractionof theApproximationModel) hnf
R if andonly if [[ ]] [[ ]] .

Proof: (only if) By coinduction.It is sufficient to show thatif [[ ]] [[ ]] theneither
i) areunsolvable,or
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ii) if is thehnfof then is thehnfof and[[ ]] [[ ]] for , or

iii) if is thehnfof then is thehnfof and[[ ]] [[ ]] for .
This is astraightforwardconsequenceof thefactthat and have thesamesetof approximants.

(if) Wetake [[ ]] andshow [[ ]] by inductionon thedepthof .
( ): Trivial.

( ): Thenhnf , thereforehnf and hnf
R for

. Since [[ ]] andits depthis smallerthanthatof , by inductionweconclude
that [[ ]] . Therefore [[ ]] .

( ): Similar.

Thefilter semanticsgivesasemi-modelwith respectto R .

Theorem9.14 If R , then[[ ]] [[ ]] .

Proof: Take [[ ]] . Then , and,since R , by Theorem3.7, also
, so [[ ]] .

In view of thefact that typeassignmentin is not closedfor subject-expansion(seetheremark
at the endof Section3), it is, in general,not possibleto show a strongerresult like ‘ If R , then
[[ ]] [[ ]] ’. However, whenusingaprincipalenvironment,theresultholds.

Theorem9.15 (Adequacy of theFilter Model) Let R bea CS, and beprincipal for ,
then R implies[[ ]] [[ ]] .
Proof: By Theorem3.7and3.8.

Weevenhave thefollowing resulteasily.

Theorem9.16 Let R bea CS, and beprincipal for , then R implies[[ ]] [[ ]] .
Proof: By inductionon thedefinitionof R. Thecase R is coveredby Theorem3.7and3.8. If

areunsolvable,thenby Theorem8.4, [[ ]] [[ ]] . Thelastcaseis aconsequenceof
Lemma9.4. Theothertwo casesfollow by straightforward induction.

Theconverseof theseresultsdonothold.

Example9.17 TakeT Y X asin Example9.11, andlet

T
Y
X

then
[[Y X]]

[[T T]]

(noticethatthesetypescorresponddirectly to theapproximantsof Example9.11) but neither
Y X R T T, norY X R T T.

For thefilter semantics,wehave,ascanbeexpected:

Theorem9.18 Let R bea CS, and beprincipal for , then hnf
R implies

[[ ]] [[ ]] .
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Proof: If hnf
R , then,by Theorem9.13, [[ ]] [[ ]] . Let [[ ]] (theothercaseis similar),

thenthereexistsa suchthat . Then,by Theorem8.2, thereexistsan
suchthat . Since [[ ]] [[ ]] , , andby Theorem8.3,

, so [[ ]] .

Perhapssurprisingly(in LC theapproximationandthefilter semanticscoincide),we do not have a
full-abstractionresultwith respectto filter semantics.

Example9.19 Take

E
I

and
E
I

Then
[[EI ]] [[I ]]

but neitherEI R I , norEI R I , norEI hnf
R I .

Therelationbetweenthetwo semanticsis formulatedby:

Theorem9.20 [[ ]] [[ ]] .

Proof: If [[ ]] , thenthereis a suchthat and . Then,by Theorem8.2, thereis
an suchthat .

Notethattheinclusionis strict,sincetheSubjectExpansionpropertydoesnothold in general.Also,
ascanbeexpected:

Theorem9.21 Let R bea CS, principal for , then [[ ]] [[ ]] .

Proof: If [[ ]] , thenthereexists [[ ]] , and suchthat . Then,by

Theorem8.3, also , so [[ ]] .

10 Conclusions

Theapproximationresulthasimportantconsequencesbothfrom a computationalpoint of view, since
it allowsusto characterisethenormalizationpropertiesof typeableterms,andfrom asemanticpointof
view, sinceit allows usto studytherelationsbetweenfilter modelsandapproximantionmodels.This
is truebothfor theLC andfor CS, but thecharacterizationsof normalizationandtherelationsbetween
themodelsaredifferentin eachcase.Themoststrikingdifferenceis probablythefactthatthemodels
do not coincidein generalin thecaseof CS (thefilter modelis only a semi-modelin general)whereas
they do coincidefor the LC. Of course,the lack of SubjectExpansionin CS explainsthe fact thatwe
only have a semi-model.However, the fact that for CS theapproximationmodelis fully abstract,but
thefilter modelis not, is relatedto thefact thatwe have a “weak” form of reductionin CS, compared
with thereductionin LC.

Theproofof theapproximationresultusesanotionof CutElimination(DerivationReduction)which
is new in thecontext of intersectiontypes. It canbeadaptedto otherrewriting systems(in particular,
the LC and TRS), whereit alsohelpsto obtaineasierproofsof the characterisationof normalisation
propertiesof typeableterms(for TRS theproof wassketchedin [4]). In thefuturewe hopeto beable
to extendthesemanticstudypresentedin thispaperto themoregeneralTRS studiedin [4].
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