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Abstract

Many computational techniques borrow ideas from nature in one way or another.
Neural networks imitate the structure of our human brain, genetic algorithms
simulate evolution and swarms of insects inspired algorithms for stochastic com-
binatorial optimisation. These techniques are characterised by inherent paral-
lelism, adaptivity, positive feedback and some element of randomness.

This report details the investigations into certain features of one such technique:
the Ant System meta-heuristic proposed by Dorigo. The algorithm is applied
to several variations of the well-known Travelling Salesman Problem, including
asymmetric and dynamic ones. Furthermore, different approaches to parallelise
the algorithm are investigated.

Good parameters are needed to instantiate the generic algorithm efficiently and
research to find optimal parameter settings has been conducted in the course of
this project. An ontology to classify instances of the TSP is introduced and a
thorough analysis of the dependency between parameters and classes of problems
is presented. During this analysis, optimal parameters have been found for a
given problem instance that led to the discovery of a new shortest tour for this
instance.

A novel algorithm, the Genetically Modified Ant System(GMAS), is then pro-
posed that employs ideas from the field of genetic algorithms to eliminate the
need to set parameters for a given problem explicitly. An implementation is
described and the new system is evaluated with respect to the standard Ant
System and also compared to other more specialised heuristics.

The project source code and executables together with all documentation, meet-
ing minutes, outsourcing and final report can be found at:

www.doc.ic.ac.uk/∼dg00
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Chapter 1

Introduction

1.1 Overview

Social insects, like ants, bees or termites are generally conceived as simple,
non-intelligent animals. However, collectively they exhibit impressive problem-
solving skills. Inspired by these insects research in the past decade has led to
some fascinating progress in the field of natural algorithms.

These algorithms imitate nature in one way or another. Neural networks im-
itate the structure of our human brain and genetic algorithms simulate evolution
to name just two. They are characterised by inherent parallelism, adaptivity,
positive feedback and some element of randomness.

Research led by Marco Dorigo produced a new member of this class of algo-
rithms: the ‘ant system’ algorithm. Here, the way these insects find the shortest
path from a food source to their nest is imitated in an attempt to solve hard
combinatorial optimisation problems.

The research undertaken during the course of this project is motivated by
the opportunities and shortcomings of this natural algorithm. Certain aspects,
like optimal parameterisation, have not been studied sufficiently and others, like
the inherent parallelism have not been exploited enough, leaving much room for
further investigations.

While the ant algorithm has been applied to a variety of optimisation prob-
lems there are still important variants of the Travelling Salesman Problem(TSP)
that are not covered.The TSP describes the problem of finding a closed tour
through a given set of cities where every city is visited by the salesman exactly
once. Especially the dynamic version with changing city landscapes promises
good result when tackled with this new algorithm.

The ant system algorithm, the TSP and genetic algorithms are introduced in
Chapter 2 to set the scene for the remaining chapters in this report. Chapter 3
then describes the various implementations before the experimental results are
presented.

1



2 Introduction

1.2 Parameters and genes

This project will try and disprove Dorigo’s claim that intuition, experience and
luck are required to find the right rules and parameters for a given problem.
The widely applicable TSP was chosen as the problem to be considered in de-
tail mainly because it has been analysed by many researchers in the past and
benchmarks of other algorithms exist.

The standard ant system proposed by Dorigo in [DMC96] has to be parame-
terised to control the way solutions are generated and to prune the search space
efficiently. All the sensible, potential settings for most of these parameters for
a well-known thirty-city problem instance were analysed exhaustively using six
weeks of high performance computing power.

The optimal parameters thus found are presented in Chapter 5 and tested on
other problem instances to determine whether they are problem independent.

While experimenting with a well-known fifty-city problem instance, the algo-
rithm with my optimised parameters found a new shortest tour for this problem
that was not known before. This result has been reported to TSPLIB - the
keeper of all famous TSP instances and their shortest known solutions.

Having found a problem dependency between certain parameters and classes
of problems, an ontology of problem instances was developed. It was hoped that
this would help to specify correlations between certain types of problems with
respect to the optimal parameters. Some weak correlations were found but
not all parameters had statistically relevant dependencies between them and
attributes of the ontology.

A new hybrid algorithm is therefore proposed in Chapter 6 combining ideas
from the ant system with methods from genetic programming. Parameters are
encoded as genes and evolved over time in order to breed ants that can find
high quality solutions to the TSP. This allowed the algorithm to run without
any manual parameterisation.

This revolutionary algorithm is tested on several well-known problem in-
stances as well as some randomly composed ones. Its performance is then
compared to that of the standard ant system and other heuristics from the
literature. This work is to be submitted for the Fifth International Workshop
on Ant Colony Optimisation and Swarm Intelligence.

1.3 Parallelisation

A secondary aim of this project was to investigate how ideas from parallel com-
puting could be incorporated into the algorithm to speed up the computation.
Several existing and novel strategies have been employed. These range from
separating ants and environment onto different machines to using sub-colonies
with sparse inter-colony communication. The results of these experiments can
be found in Chapter 4.
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An increase in performance of more than 90% over the standard ant system
running on one machine was finally found using just six machines. Furthermore,
the optimal ratio between local computation and inter-process communication
was found thus limiting the number of machines needed for the fastest version
of the algorithm.

Figure 1.1: Improvement for one of the parallelisation strategies

1.4 Objectives

The aims of this research can be stated as follows:

• To find the optimal parameters for an ant algorithm for a given problem
instance of the Travelling Salesman Problem.

• To find correlations between certain classes of problem instances and the
optimal parameters associated with them or show that such correlations
do not exist.

• To find a way to eliminate the need to find optimal parameters.

• To exploit the inherent parallelism of the ant algorithm as much as possi-
ble.

• To investigate the applicability of the ant algorithm to variations of the
TSP.

• To visualise the workings of the ant algorithm.
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1.5 Applications

A side effect of the research undertaken for this project was the development
of several applications visualising different variants of the Travelling Salesman
Problem. While the original description of the TSP used intercity distances
and hence Euclidean geometry other metrics are possible, too. Using travel
time rather than distance one can eliminate the Euclidean constraint and arrive
at the so-called Asymmetric Travelling Salesman Problem (ATSP).

Taking this metaphor one step further the travel time between cities could
change dynamically e.g. due to a traffic jam on the highway that connects two
cities. This additional complexity is found in instances of the so-called Dynamic
Travelling Salesman Problem (DTSP).

All three variants (Euclidean, asymmetric and dynamic) were visualised by
applications implemented using the agent programming language APRIL and
the HCI server DialoX.

Figure 1.2: Screenshot of the ant system for the asymmetric TSP



Chapter 2

Background

This background chapter will provide the necessary knowledge needed to com-
prehend the remainder of this report. In particular it will introduce the following
concepts:

• swarm intelligence

• the Travelling Salesman Problem

• ant system algorithms

• genetic algorithms

In the late 1940s John Von Neumann and his friend Stanislaw Ulam wanted
to design a machine capable of reproduction. Finding it impossible to actually
build such a machine they created it ‘on paper’ and thereby invented what was
later termed ‘cellular automaton’. The implication of this work is revolutionary.
The basis of life is information.

This discovery led to fascinating new research. John Horton Conway in-
vented a game with very simple rules and called it ‘Life’1. It is a two-dimensional
version of the ‘cellular automaton’ where the state of each cell depends on the
state of its neighbours. Less than two or more than three ‘live’ neighbouring
cells cause a cell to die and exactly three ‘live’ neighbours cause a dead cell to
be reborn. These simple rules lead to complex implications. Astonishing pat-
terns like oscillators, gliders and never-ending growths instances emerge from
seemingly simple start states of the board.

Craig Reynolds used this notion of artificial life in 1986 to make a computer
model of animated bird motion, called ‘boids’. Similar to the cells in the ‘Game
of Life’ birds in a flock base their behaviour only on neighbouring birds. Their
manoeuvres are based on separation (don’t get to close to other birds), alignment

1The author of this report implemented this ‘Game of Life’ using April and DialoX as a
preparation for this project. Screenshots can be found in Appendix A

5
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(steer towards the average direction your local flock-mates are heading into) and
cohesion (move towards average position of local flock-mates).

Many people believed that birds in a swarm follow a leader. However, with
his ‘boids’ simulation Reynolds could prove that flocks of birds are ‘decentralised
systems’ characterised by the lack of central control. Colonies of ants, traffic
jams, market economies and segregation in cities are all examples of systems
organised without an organiser.

It remains to define a swarm. In the context of this research we use the stan-
dard definition where ‘swarm’ is taken to mean a set of agents that collectively
solve a distributed problem through direct or indirect communication.

Indirect communication can be achieved through manipulation of the local
environment. Ants (fairly blind insects) for example can leave pheromones on
the path they walk on for other ants to follow. They can also deposit objects
(leaves, corpses of other ants or dust particles) and other ants can then per-
ceive this modified environment and adjust their actions accordingly. This is
termed stigmergy and is used by social insects as an almost exclusive form of
communication.

An excellent book - that goes far beyond the ‘ant algorithms’ described
in this report - is Swarm Intelligence: from natural to artificial systems by
Bonabeau, Dorigo and Theraulaz. It provides an overview of the state of the art
in swarm intelligence as well as proposing further directions for the application
of biologically inspired algorithms. It is centred around the concept of stigmergy,
the indirect form of communication which will be explained in Section 2.3.1.

Steven Johnson provides another take on the subject of emergent behaviour
in [Joh01]. He describes how the whole can sometimes be smarter than the sum
of the parts and focused especially on the development of cities. His book is cen-
tred around the self-organisation of neighbourhoods that emerge without central
control out of disconnected groups of shopkeepers, bartenders and tenants.

The research undertaken by the author of this report focused on ‘swarms of
ants’ and their intelligent behaviour. This chapter will present the necessary
background knowledge needed to understand the body of the report.

Firstly, the concept of Swarm Intelligence as found in nature is presented
together with some possible applications in computer science. Then the biolog-
ically inspired algorithm Ant System is described and certain perceived weak-
nesses highlighted.

The third section provides a quick introduction to the TSP before the final
section describes the field of Genetic Algorithms.
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2.1 Swarm intelligence

Swarm intelligence: the collective intelligence of groups of simple
agents.

At first sight, Dictyostelium discoideum is a rather unsophisticated organism.
On warm summer days the reddish slime can be found on pieces of bark and
fallen leaves. But the primitive fungus is capable of performing an astonishing
metamorphosis: it can seemingly disappear. If one looks for it at the same place
on a cooler day one will be disappointed since the creature is gone.

Dictyostelium discoideum has gone foraging. It has transformed itself into
a miniature hunting community. It consists of billions of unicellular organisms,
which will form a super-organism when there is a shortage of food. However,
if there is enough food the super-organism will break up and the amoebae will
forage individually. Dictyostelium is somewhat schizophrenic in that sometimes
it is an organism and at others times it is a swarm.

Scientists have tried to understand this fungus for years. The individual
amoeba does not possess any reasoning capabilities and still Dictyostelium dis-
plays intelligent behaviour. Rather than starving to death individually, the
unicellular organisms unite to fight for survival.

This is just one example of self-organisation in biology. Life forms with
limited capabilities solve complicated problems in unison. This so-called swarm
intelligence works without a central planner or genetically hardwired master
plan. Individuals follow simple local rules, unaware of the swarm’s behaviour
and probably even unaware of the swarm as such. Only on the global level,
intelligent behaviour emerges.

Other examples are the blind termites that can build domes up to seven
meters high, where different floors are connected via staircases and rain is led
away in gutters. Ant colonies find the shortest path to a food source and bees
regulate the temperature in their breeding chamber to pretty much exactly 35
degrees.

Computer scientists are studying these self- organising species to try to un-
derstand how simple rules can lead to complex emergent behaviour. They use
abstract models for different applications of this principle. Virtual swarms opti-
mise routing in networks, control sensors, mobile robots and even the work flow
in companies.

For several decades now scientists are fascinated by the collective behaviour
of ant colonies. In the late fifties the Harvard educated biologist Edward O. Wil-
son showed that the insects communicate with the help of so-called pheromones.

The role of these chemical scents in the cooperation of ants is seen to be
the key to understanding the swarm intelligence found in nature. Foraging ants
leave a pheromone trail which can be detected by other ants. If they find food
and return home they reinforce the trail and thereby encourage other ants to
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Figure 2.1: Matabele ants: warriors following a pheromone trail laid by scout
worker ants (copyright Dr. B. Marcot)

follow this path. The shorter the path, the stronger the pheromone level, since
ants will return faster along the shorter path.

Over time this positive feedback effect, also called stigmergy, will lead to
more and more ants following the shorter and stronger smelling path thus rein-
forcing it even further. So in case there are multiple paths to the food source, the
ants will collectively find the shortest, solving a hard combinatorial optimisation
problem.

The behaviour of these ants gives a more general template for emergent
cooperation. In computer simulations virtual ants are given simple instructions
to control their local behaviour. Probabilistic processes ensure that ants are
distributed over different food sources.

One of the rules could be that ants should follow the path with the most
intense level of pheromone with a high probability. Another rule could ensure
that, with a smaller probability, other paths are chosen. These rules lead to the
exploitation of the food source by a majority of ants and the discovery of other
food sources for the colony by a few.

Software engineers used this principle in a routing algorithm for network
traffic for example. The ’Ant Based Control’ algorithm imitates nature quite
precisely. Virtual ants travel the network on randomly chosen paths. Start
and end point of each journey are determined randomly, too. Each node has
a routing table, indicating the probabilities with which a neighbouring node is
chosen next. While the virtual ants are crawling through the network, they drop
virtual pheromone. This increases the probability that the ants arriving at the
same node in the future will choose the same path, simulating the stigmergy
effect found in nature.
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This routing problem is just one member of the class of combinatorial op-
timisation problems, a class which is of interest to many scientists since its
computational demands increase dramatically with increasing complexity.

A classical example of such a problem is the famous ‘Travelling Salesman
Problem’ (TSP). How can a salesman visit N cities on the shortest possible path
without visiting a city twice? For small instances of this problem, exhaustive
search will give the optimal path. However, even for moderately sized examples
iterating through all possible paths is infeasible as there are more than 60,822
trillion different tours through twenty cities!

Algorithms based on the positive feedback mechanism found in the ant world
are capable of finding surprisingly good solutions to instances of the TSP with
1,000 and more cities. Again, ants travel from city to city leaving a pheromone
trail for others to follow short paths.

Practical applications of these algorithms are the routing of truck fleets, the
layout optimisation of highly integrated electrical circuits and search algorithms
for web pages to name just a few.

Generally swarm intelligence seems to follow some basic principles. Swarms
need a certain size to exhibit intelligent behaviour. Random interactions be-
tween members of the swarm are necessary to change the system globally. This
requires that individuals are able to communicate locally as demonstrated by
the pheromone- dropping ants. Similarly, the primitive amoeba Dictyostelium
discoideum emits cAMP - a signalling chemical - which plays a central role in
the building of the super-organism.

Bees, in contrast communicate via a waggle dance which tells idle bees the
direction and distance in which a food source is located. The more often the
dance is performed, the bigger the food source. Even though individual bees
usually only watch a single dance before starting their foraging activity and even
without a central food source ranking, the swarm is quite capable of adopting
to changes in the environment and optimising the collection of food.

Scientists at Oxford University used the ideas found in the animal kingdom
to devise an algorithm for optimal load distribution in web server clusters.

Some kinds of swarm are furthermore capable of intelligent task allocation
using only local information. Certain ant species build a chain to transport
food from the source to their nest - a method that is successfully implemented
to solve work flow problems.

Swarm intelligence is also a hot topic in the robotics community. Since the
early nineties it has been thought that a swarm based system is much more
reliable and robust then a single highly complex machine. Scientists at the AI
laboratory of the MIT started in 1995 to experiment with micro robots. They
taught them how to communicate and how to behave socially.

In August 2002 researchers at the Idaho National Engineering and Envi-
ronmental Laboratory presented interesting experimental results involving so
called GrowBots. These robots could locate toxic waste in an unknown envi-
ronment and analyse the size and composition of the spillage. Figure 2.2 depicts
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Figure 2.2: Swarming robots forming a perimeter around a spillage (copyright
INEEL)

a swarm of these robots surrounding a spillage. The more robots were involved,
the quicker the task was achieved.

Recently, even the military has become interested. Swarms of Unmanned
Aerial Vehicles (UAVs) could be used in dangerous scenarios to replace con-
ventional communication infrastructures. Only last year DARPA financed a
project for a battalion of 120 military robots that were equipped with swarm
based software. These robots are to be used in search-and-rescue missions in-
volving minimum human intervention.

Swarm intelligence and self-organisation can neither be described nor con-
trolled with our usual way of thinking. The dependency on randomness makes
these systems appear particularly suspicious. However, there exist self-organising
systems like the Internet that work fine.

The term swarm intelligence was first used in 1988 by Gerardo Beni in
[Ben88] to describe cellular robotic systems where simple agents organised them-
selves through nearest-neighbour interaction. Bonabeau et al. in [BDT99] gen-
eralised the definition to:

Swarm intelligence is any attempt to design algorithms or distributed
problem-solving devices inspired by the collective behaviour of social
insect colonies and other animal societies.

In theory, every possible problem can be solved using a swarm-based system.
Less than a decade ago, the mathematician Michael Lachmann proved that a
swarm of infinitely many individuals is Turing-complete. That is any Turing
machine and therefore any computable function, can be translated into a swarm
system.
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But there is no general theory on how to design and parameterise a swarm to
solve a given problem. Marco Dorigo, one of the pioneers of swarm-based com-
putation, even predicts that such a theory may never be found. He claims that
finding the right rules and parameters requires a ‘mix of intuition, experience
and luck’.

The next section will present the Travelling Salesman Problem, a hard combi-
natorial optimisation problem that has been tackled by swarm-based algorithms.
It has been chosen from a pool of combinatorial problems of equal difficulty since
it is the benchmark problem in this area and many statistics and comparative
results exist.
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2.2 Travelling Salesman Problem

This section will first provide a formal description of the Travelling Salesman
Problem (TSP) as well as the Euclideaness constraint applied to most of the
problem instances used in this project.

Then a look at the aspects of complexity theory needed to understand the
difficulty of the TSP is taken and the relevance of this problem in the world of
complexity is analysed.

This is followed by brief justification for the need of approximation algo-
rithms and some famous examples of this class of algorithms are presented. This
section then concludes with a look at several variants of this famous problem.

2.2.1 Description

The origins of the Travelling Salesman Problem (TSP) are somewhat mysterious
but have been traced back via [AW83], [BN68] and [AS61] until 1961.

It is a classical combinatorial optimisation problem and can be describe as
follows: a salesman, who has to visit clients in different cities, wants to find the
shortest path starting from his home city, visiting every city exactly once and
ending back at the starting point. More formally:

Given a set of n nodes and costs associated with each pair of nodes,
find a closed tour of minimal total cost that contains every node
exactly once.

In computing terms the problem can be represented by a graph where all
the nodes correspond to cities and the edges between nodes correspond to direct
roads between cities. Throughout this report the terms road and edge as well
as city and node will be used interchangeably.

Of particular interest is the Euclidean TSP, where the distance between
cities is defined as the Euclidean distance. This means that for two cities with
coordinates (x1,y1) and (x2,y2) we have d12 =

√
(x1 − x2)2 + (y1 − y2)2.

The Euclidean TSP has the advantage that a set of cities together with their
spatial coordinates provide us with a set of edges between nodes that are always
sufficient to build a fully connected graph.

Furthermore it is metric, so the triangle inequality from geometry holds,
and symmetric, which is to say, the distance between A and B is equal to the
distance between B and A.
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Figure 2.3: Travelling Salesman tours for a 10-city problem.

The problem instance depicted in Figure 2.3 represents a random 10-city
problem. On the left hand side, a sub-optimal tour is shown, which can be
improved significantly by re-routing the salesman as illustrated on the right
hand side.

2.2.2 Complexity

The material in the next two subsections is based on a final year course at Im-
perial College called Complexity which was taught by Iain Phillips. His lecture
notes were privately circulated.

Complexity theory divides the space of all problems into complexity classes.
Two fundamental classes are called polynomial-time (P) and nondeterministic
polynomial time (NP). Problems in the P class can be solved by an algorithm
that runs in polynomial time w.r.t. the size of the problem. NP-problems on
the other hand are characterised by the fact that we can check a solution in
polynomial time.

The term nondeterministic stems from the original definition in terms of
Turing machines. A problem is in NP if there exists a nondeterministic Turing
machine that solves it. Such a machine has many choices at each step in the
computation and is able to randomly choose a branch of the computation tree.
Its running time is measured for the case where all the guesses turn out to be
correct.

By definition, P is a subset of NP since we can envisage the polynomial
Turing machine for the P-problem to be a nondeterministic one which only ever
has one choice at each step. However, it is believed that NP is bigger than P
(using set inclusion as an ordering). That is, there exist problems that are in
NP but not in P.

While this has not been proven without a doubt2, one can use a property of
the NP class to identify the hardest problems in NP - the so-called NP-complete
problems(NPC). These are problems in NP that are more difficult than any other

2In fact, it is one of the seven famous open problems, solutions to which are rewarded
with a prize of $1,000,000 each by the Clay Mathematics Institute. For a detailed problem
description see [URLl].
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problem in NP. This requires a polynomial-time translation from any problem
in NP to the NP-complete problem. In 1971 Stephen Cook showed that the
satisfiability problem (SAT) is NP-complete.

Also, if one has a polynomial-time translation from problem A to problem
B and another polynomial-time translation from B to problem C, then one
also has a polynomial-time translation from A to C since the class P is closed
under composition. The process of translating one problem to another is called
reduction and is transitive.

Both P and NP are downwards closed under reduction as is illustrated in
Figure 2.4.

Figure 2.4: Complexity classes P, NP and NPC together with the problem SAT

So to show NP-completeness of a given problem A, all one has to do is
show that the problem is in NP and reduce a problem that is known to be
NP-complete (e.g. SAT) to the problem A.

The difficulty of NP-complete problems stems from the following character-
istics:

• they have a number of different local optima (so local search techniques
like steepest-ascent hill-climbing won’t work)

• they can’t be broken into sub-problems and solved separately (e.g. can’t
solve sections of the TSP independently)

• they appear statistically random (so statistical methods won’t work)

The problems classified into P and NP are all ‘decision’ problems, that is
problems that can be answered with Yes or No.
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A related type of problem are ‘function’ problems which are concerned with
finding something. For example, the decision problem SAT mentioned earlier
just asks whether there exists a satisfying truth assignment for a given set of
clauses. The functional variant FSAT in contrast tries to find such a truth
assignment.

A further type of problem are called ‘optimisation’ problems, which are
concerned with finding the best solution to a given problem.

In order to measure the strength of the Travelling Salesman Problem we
need to define three more classes:

FNP is the class of all function problems that can be stated as follows:

Given a problem instance x, find a solution y such that RL(x, y).
If there is no such y then return ‘no’. RL is a polynomially bal-
anced (length(y) ≤ (length(x))k for some k) and polynomially
decidable.

FP is the subset of problems on FNP that can be solved in polynomial-time.

FPNP is the class of all problems that are in FP with the help of on NP oracle.

An oracle is an imaginary Turing machine which knows the answer to a given
problem. For example an instance of FSAT with n variables can be solved by
querying a SAT-oracle n+ 1 times, fixing each variable in turn. So FSAT is in
FPNP .

A consequence of a paper by Stephan Mertens[Mer00] on the similarity be-
tween finding the smallest element in an unordered list and the NPC problem
of number partitioning is that there is no way of telling how close any given
solution to a problem is to the optimal solution of the problem.

No possible metric (like the tour length of a solution S to the TSP) will hint
at how much of that solution S will be part of the optimal solution. This gives
an indication that optimisation problems will be at least as hard and almost
always harder than the corresponding function problem.

2.2.3 Relevance

In terms of complexity, one has to distinguish between three different versions of
the Travelling Salesman Problem. The decision version, TSP(D) can be stated
as follows:

Given a set of cities, the distance between them and a bound B,
does a path exist such that a salesman travelling along that path
will visit each city exactly once and return to the start with a total
distance travelled ≤ B?

FTSP(D) is the functional variant of the TSP(D) and can be formulated as:
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Given a set of cities, the distance between them and a bound B,
find a path such that a salesman travelling along that path will visit
each city exactly once and return to the start with a total distance
travelled ≤ B.

The original TSP is an optimisation problem and can be stated as:

Given a set of cities and the distance between them, find the shortest
path such that a salesman travelling along that path will visit each
city exactly once and return to the start.

TSP(D) can be shown to be NP-complete. It is clearly in NP - just guess an
enumeration of the cities and check that the total path length does not exceed
the given bound. One can prove completeness by reducing SAT to 3-SAT, 3-SAT
to HP (using ingenious gadgets) and HP to TSP(D). For details of these proofs,
the interested reader is pointed to [Pap94]. So we have:

SAT ≤ 3-SAT ≤ HP ≤ TSP (D)

where ≤ denotes reduction.

Since these nondeterministic Turing machines that guess the right choice at
every computation step do not exist in real life, we cannot hope to solve TSP(D)
in polynomial time. The best known algorithms are exponential, since in the
worst case one has to check all possible tours to realise that all of them exceed
bound B. For a given problem with N cities, there are (N − 1)!/2 possible
paths if one eliminates identical and mirrored paths. Therefore approximation
algorithms are needed to find optimal or at least very good solutions.

FTSP(D) can be shown to be in FPNP . It is a function problem that can
be solved in polynomial time with the help of an NP oracle. For n cities, there
are n(n− 1)/2 roads connecting two cities and the algorithm to solve FTSP(D)
tries to eliminate each one of them in turn. To find a route with bound B one
proceeds as follows:

1. take as an oracle the Turing machine for the NP-complete problem TSP(D)

2. adjust the distance between two particular cities a and b to B + 1

3. run the oracle on the modified problem; if it still succeeds then the ‘road’
from a to b was not in the optimal tour, otherwise set the distance back
to what it was originally

4. repeat O(n2) times (for each road)

5. read off the optimal tour which will consist of all roads with a distance of
less than B + 1
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Since this polynomial algorithm uses the Turing machine for the NP-complete
problem TSP(D), it cannot be easier then NP-complete. However, FTSP(D) can
theoretically be solved without the help of an oracle. Using a nondeterministic
Turing machine one could guess a solution and check in polynomial time that it
is an instance of a polynomially balanced and polynomially decidable relation
RL. Hence FTSP(D) is in the class FNP.

TSP can also be shown to be in FPNP . All one has to do is find the length
L of the optimal path and then run the Turing machine for the FTSP(D) with
bound B set to L. We know that 0 ≤ L ≤ 2k where k is the length of the binary
input to the Turing machine. Now we ask the NP oracle TSP(D) whether there
exist a solution with bound B set to 2k−1. If this is the case we call the oracle
again with B set to 2k−2. Otherwise, the length of the optimal path lies between
2k−1 and 2k and we call the oracle with B set to 3 ∗ 2k−2.

Using binary search one can find the optimal length L within log(2n) (or
O(n)) moves by continuously bisecting the search space. So we can find the
optimal length L in polynomial time using an NP oracle and then find the
optimal path using the algorithm for FTSP(D) which also uses an NP oracle.
Hence TSP is in FPNP .

We cannot hope to show that TSP is in FNP since a relation containing just
the one pair (x,y) - where x is the problem instance and y is the best path -
would not be polynomially decidable.

In fact, Papadimitriou in [Pap94] showed that TSP is FPNP -complete, mak-
ing it one of the hardest computable problems.

Many other combinatorial problems like Quadratic Assignment, Scheduling,
Vehicle and Network routing, Graph Colouring and Multiple Knapsack have
been solved using variants of the ant system. The subtle differences lie in the way
the problem is formalised to allow the application of the ACO meta-heuristic.
One needs to have a solution space so that the ants can travel this space leaving
pheromone trails to gear other ants towards good and finally optimal solutions.

All these variations of the ant system share the same parameters that will
be looked at in Section 5. Hence finding a way to set these parameters without
having to ‘guess’ them, is a desirable objective.

2.2.4 Approximation algorithms

Exact algorithms such as cutting-plane or facet-finding are very complex and do
not run in polynomial time. Hence they are infeasible to use for larger problem
instances (those with thousands of cities). The previous section justified the
need for approximation algorithms, we now look at some of them more closely.

There are three types of approximation algorithms:

1. greedy heuristics that provide a sub-optimal solution used to study theo-
retical optimality (they generally perform rather poorly)
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2. specialised heuristics like Lin-Kernighan or the 2-OPT algorithm that use
domain specific knowledge. Their disadvantage is that they can only be
applied to one problem, the TSP in this case (they outperform all other
approximation algorithms)

3. generic heuristics based on local search such as Simulated Annealing or
Tabu Search that continuously try to improve on a solution (they perform
fairly well)

Examples of all three types of approximation algorithms are presented.

The greedy heuristics all restrict the TSP to Euclidean instances only. That
is, for any three cities A, B and C we have δ(A,C) ≤ δ(A,B) + δ(B,C) where
δ is the distance. This is a reasonable restriction to make since it allows for
greedily picking the best solution locally.

Nearest-Neighbour - Start anywhere and always visit the nearest city that
has not yet been visited. A solution thus obtained has been proved to be
≤ (1 + dlg(n)e)/2 times the optimal solution. This is quite significantly
worse than the optimal solution for large problems. The reason for this
poor performance lies in the algorithm’s dependency on local information
only. It may find a good path for n − 2 cities say, but is then forced to
use inappropriately long connections between the last few cities.

Minimal-Spanning-Tree - Find a minimal spanning tree(MST) of the city-
graph in polynomial time. Then double the edges and find an Eulerian
circuit of the ‘doubled MST’ (again, in polynomial time). Visiting all
cities using the MST is optimal since removing one link from the optimal
tour yields a MST. However, the salesman has to end up where he started,
so ‘travelling home’ along the unused edges of the Eulerian circuit would
make the path twice as long as the optimal one. Also, using the Eulerian
circuit the salesman would visit some cities more than once. So the algo-
rithm requires to follow the Eulerian circuit but instead of going to the
next city, skip to the next unvisited city along the Eulerian circuit.

Others like Clarke-Wright, based on a central hub, with savings for avoiding
the hub city or the more complicated Christofides heuristic

Specialised heuristics involve a local search. That is, given a sub-optimal
tour, improve this tour by small local changes. First, one needs to find an
initial, sub-optimal tour. This can be done in a variety of ways. One could
pick a random permutation of the n cities or use greedy heuristics like the ones
mentioned above. Having found an initial tour one can then apply a local search
algorithm. The most famous ones are:

2-OPT - an exhaustive exploration of all permutations obtained by exchanging
two edges. Choose two non-adjacent edges in a tour, call them a− b and
c−d in such a way that they have the same direction on the tour (otherwise
we would get two unconnected tours), remove a−b and c−d and add a−c
and b − d. This can be extended to three edges, resulting in the 3-OPT
algorithm.
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Lin-Kernighan - generally considered to be one of the most effective algo-
rithms to find optimal or near-optimal solutions to the symmetric TSP. It
is a generalisation of the 3-OPT algorithm that borrows heavily from the
tabu search (described below). From 1973, when it was first published,
until 1989 it was the ‘world champion heuristic’.

Both of these local search heuristics are very specialised and only applicable
to the travelling salesman problem. There are, however, general algorithms that
are useful to finding solutions for a much wider range of optimisation problems.
Affected areas range from graph theory (minimum graph colouring, maximum
clique, maximum common subgraph), logic (maximum satisfiability), scheduling
(job shop scheduling) to network design (TSP, maximum quadratic assignment).

Figure 2.5: Simulated Annealing trying to find the global optimum

Some of the better known general heuristic optimisation techniques are
neighbourhood search methods such as:

Simulated Annealing is metaphor related to physics. Hot, molten metal is
left to cool down slowly. This allows the atoms to slide progressively to
their most stable positions, rather than ‘freezing’ them in their current
position. This makes the resulting metal much stronger. The metaphor
of minimising the energy of a block of metal is used in this algorithm
to minimise the cost (distance) for the travelling salesman. Simulated
Annealing is derived from the search method of steepest local descent
(which can similar to the well known ‘hill-climbing’ result in local optima
as shown in Figure 2.5). Rather than generating all neighbouring solutions
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and picking the best only one neighbouring solution is generated. If this
new solution is better than the old one accept it, if it is worse accept it
with a certain probability. Or more formally:

1. Start with an initial solution i

2. Generate one neighbouring solution i∗

3. If f(i∗) < f(i) then set i = i∗ (f is the cost function)

4. If f(i∗) > f(i) and (rand(1) < prob) then set i = i∗

The probability with which worse solutions are accepted decreases over
time T and is defined as:

prob = e−[f(i∗)−f(i)]/T

Tabu Search uses a memory mechanism to diversify the direction of search.
It prohibits certain actions (makes them ‘taboo’) for a limited time and
forces the search to proceed in another direction. The algorithm can be
outlined as follows:

1. Choose an initial solution i.

2. Generate set V of possible improved solutions, excluding ‘taboo’ so-
lutions and including ‘aspiration’ solutions (solutions that are taboo
but still desired)

3. Choose the best solution i∗ from set V

4. If f(i∗) < f(i) then set i = i∗ (f is the cost function)

5. Update tabu and aspiration conditions

6. If stopping condition is met then stop, else go to step 2

Figure 2.6: Execution flow for tabu search, ‘B’ stands for ‘solution good enough’
and ‘A’ stands for ‘solution not good enough’
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2.2.5 Variations

Having described the Travelling Salesman Problem in Section 2.2.1 and dis-
cussed its complexity thereafter, several variations are now described. Firstly
the symmetry constraint is removed resulting in the asymmetric TSP. Then
various notions of dynamic TSPs are presented.

Furthermore a related problem called Black-and-White TSP adds additional
constraints to the problem making certain tours invalid. This and its generali-
sation, the RATSP, are introduced below.

Asymmetric TSP (ATSP)

The symmetry constraint in the standard Euclidean Travelling Salesman Prob-
lem requires that the distance between A and B is the same as the distance
between B and A. Removing this constraint opens up the TSP to many more
applications.

While ‘distance’ in a symmetric TSP is usually taken to be the geographic
distance between two points, it can now represent many other things. For
example, it could represent the time it takes the salesman to travel between two
points. A traffic jam or an uphill struggle could mean that it takes significantly
longer to get from B to A than vice versa.

The TSPAnt application developed during the research undertaken for this
project proved to be easily extensible to handle this variation of the TSP.

Dynamic versions of the TSP (DTSP)

Dorigo, in a variety of his publications, suggested that the real strength of the
ant system algorithm (to be presented in the following section) would show in
applications to dynamic problems. However, he never investigated this claim
further.

Two different notions of dynamic have been described by researchers in Ger-
many and The Netherlands. The first one keeps the number of cities constant
but varies the distance between them. This could model traffic jams on motor-
ways connecting the cities. A solution that was optimal before the traffic jam
occurred may no longer be optimal and the salesman needs to be re-routed.

A different approach has been taken by Guntsch and Middendorf in [GM01].
They inserted and deleted cities into a given problem instance and proposed
strategies on how to modify the pheromone levels on the edges. Generally only
edges in the vicinity of the inserted or deleted city need to be modified since
remote parts of the tour are unlikely to be affected.

Both approaches will be further investigated in Chapter 3.
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Black-and-White TSP (BWTSP)

This variant of the standard TSP adds two extra constraints allowing for more
realistic modelling of behaviour in the real world. The set of cities is split into
two subsets: black cities (B) and white cities (W). The salesman still has to
visit all cities exactly once ending up in the city he started in and the optimal
solution is still the shortest one.

A black-to-black path is defined as a sequence of cities c1, c2, ..., ck where
c1, ck ∈ B and ci ∈W for all i such that 1 < i < k.

Now, the two additional constraints are:

cardinality constraint: the number of white cities in any black-to-black path
can not exceed a certain number Q

cost constraint: the total distance between the two black cities in an black-
to-black path can not exceed a certain limit C

Both Q and C are parameters supplied with the problem instance.

TSP with Replenishment Arcs (RATSP)

The RATSP is a more general form of the BWTSP. It is formulated as follows:
the set of arcs is split into normal arcs and replenishment arcs. Also each node
has a non-negative weight associated with it. The problem still searches for the
shortest closed tour through all the nodes.

However, the tour can not accumulate more than a certain limit C of to-
tal weight before a replenishment arc must be used where C is supplied as a
parameter.

This problem was first formulated by Natashia Boland et al. in [NLG00] as
an instance of the Asymmetric TSP. Her student Vicky Mak from the University
of Melbourne then presented new and efficient solution techniques for solving it
in her PhD thesis On the Asymmetric TSP with Replenishment Arcs[Mak01].

She used mathematical concepts like polyhedral results and a Lagrangean
Relaxation heuristic to analyse the problem theoretically and also implemented
a simulated annealing algorithm.

The practical relevance of this problem comes from the aircraft rotation
problem. An aircraft can fly a tour between multiple airports but needs to have
a maintenance inspection before flying more than a certain number of miles.
This maintaining can only be done at certain airports so that flight legs to and
from these maintenance airports can be represented by replenishment arcs.
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2.3 Ant System

This section will present the entomological motivations for an algorithm, the
algorithm itself, variations of it and its perceived weaknesses.

In 1992, when Marco Dorigo wrote his PhD thesis[Dor92] at the Politecnico
di Milano in Italy, he took ideas from robotics and used them for algorithm
design.

Four years later he and two colleagues published the ‘ant system’[DMC96],
the de facto standard work on ant based algorithms. In this paper they propose
a model of positive feedback, distributed computation and a constructive greedy
heuristic to solve stochastic combinatorial optimisation problems. They apply
this model to the TSP and compare it with other general purpose heuristics.

Based upon his work researchers from all over the world have tried to take
the metaphor of self-organising behaviour of social insects and apply it to many
problems in computer science.

2.3.1 Entomological background

In 1989 Goss et al. [GADP89] undertook an experiment with ant species
Iridomyrmex Humilis, more commonly known as Argentine ants. They used
these ants to demonstrate the intriguing ability of social insects to find the
shortest path to a food source.

They set up an experiments containing a food source and the nest of an
ant colony linked by bridge with two branches of different length. Foraging
ants have to choose between the two branches and two interesting findings were
made:

• after an initial period most ants will choose the shorter branch

• the probability of choosing the shorter path is proportional to the differ-
ence between the two branches

This shortest path selection behaviour is the result of positive feedback (auto-
catalysis) and the differential path length. It is achieved through stigmergy, an
indirect form of communication described below.

Stigmergy is defined as local modifications of the environment. This modifi-
cation is caused by ants depositing a chemical called pheromone wherever they
go.

At each choice point the ants make a decision which is biased by the pheromone
levels they detect on each branch. This process is auto-catalytic, since the fact
that an ant chooses a path will in turn increase the likelihood of this path being
chosen by other ants in the future.
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Figure 2.7: The experimental setup used by Goss et al. in their 1989 experiment
with Argentine ants.

In order to help understanding this phenomenon Figure 2.7 shows a stream of
ants leaving the nest of the colony. ‘Ant 1’ and ‘Ant 2’ are the first ones to leave
and start the foraging activity at the same time. They arrive at ‘Choice Point 1’
together and make a 50/50 decision as neither branch smells of pheromone.

‘Ant 1’ which chose the shorter branch reaches the food source first (via
‘Point A’), picks up some food and starts the journey back to the nest. On the
way back it has to make another decision at ‘Choice Point 2’. It detects some
pheromone on the shorter branch (the chemical deposited there by itself on the
outward journey) and with a high probability it picks that branch again.

The longer branch does not contain any pheromone near the branching
point, since the ants that chose it (including ‘Ant 2’) have not yet arrived at
‘Choice Point 2’.

Picking the shorter branch again will reinforce that path even further. In the
future, ants both on the way to and from the food source will pick the shorter
path with a higher probability and the pheromone on the longer branch that
has not been reinforced for a while, will eventually evaporate and all ants will
travel along the shortest path.

2.3.2 Algorithm

In this subsection, the ‘ant system’ algorithm (AS) for the travelling salesman
problem, as originally described in [DMC96] is outlined and then presented in
pseudo code notation. It is heavily based on the behaviour described in the
previous section.

At each time (t), an ant (in city i) has to choose the next city j it goes to
out of those cities that it has not already visited. The probability of picking a
certain j is biased by the distance between i and j and the amount of pheromone
on the edge between these two cities.
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Let τij denote the amount of pheromone (also called trail) on the edge be-
tween i and j and let ηij be the visibility of j from i (equivalent to 1

distance(i,j) ).

Then the bigger the product of τij and ηij is the more likely j is going to be
chosen as the next city. The trail and visibility are now weighted by α and β
and we arrive at the following formula (where pij(t) is the probability of ant k
choosing city j from city i at time t):

pij(t) =

{
[τij(t)]

α∗[ηij ]βP
k∈allowedk

[τik(t)]α∗[ηik]β
ifj ∈ allowedk

0 otherwise
(2.1)

After all the ants have completed their tour, the trail levels on all the arcs
need to be updated. The evaporation factor ρ ensures that pheromone is not
accumulated infinitely and denotes the proportion of ‘old’ pheromone that is
carried over to the next iteration of the algorithm. Then for each edge the
pheromones deposited by each ant that used this edge are added up, resulting
in the following pheromone-level-update formula:

τij(new) = ρ ∗ τij(old) +

m∑

k=1

∆τkij (2.2)

where m is the number of ants.

The following now presents the AS algorithm in pseudo code notation:

// Initialisation phase:

num_of_cycles = 0

set all pheromone levels to 0

place an ant in each city

put the start city of each ant in its tabulist

// Main algorithm:

if num_of_cycles < MAX_cycles and not stagnation_behaviour then

// One tour cycle

empty all tabulists

for all ants do (in parallel)

while there are unvisited cities (not in its tabulist) do

pick a city probabilistically according to formula 1

add this city to the tabulist

calculate tour_length using order of cities in the tabulist

if tour_length < best_tour_length_so_far then

best_tour_length_so_far = tour_length

best_tour = content of tabulist

calculate & accumulate pheromones dropped during this cycle

re-calculate pheromone levels according to formula 2.2

increment num_of_cycles

else

print best_tour

terminate
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Since the choice of city at each step is partially dependent on the trail
level of the connecting edge and this trail level fluctuates (reinforcement adds
pheromones to it and evaporation decreases it) this algorithm moves towards
good solutions.

However, since the choice is probabilistic it can not be guaranteed that the
optimal solution will be found. Perhaps a slightly worse than optimal solu-
tion is found at the very beginning (with all trail levels being equal) and some
sub-optimal arcs will be reinforced. This reinforcement can lead to stagnation
behaviour with the algorithm never finding the best solution.

2.3.3 Ant Colony Optimisation

An improvement called Ant Colony System (ACS) has been suggested in [DG97b]
that reduces this phenomenon and finds good solutions even faster. Here an ad-
ditional parameter q0 with 0 ≤ q0 ≤ 1 is used to control the level of exploration
undertaken by the ants.

If a random number q that is uniformly distributed over [0,1] is less than q0

then we just use rule 2.1 as before. However, if q ≥ q0 then we deterministically
pick the city j for which the weighted product of trail level and visibility is
highest.

Following the successful application of the ant system and the ACS to the
travelling salesman problem, other optimisation problems such as the multi-
ple knapsack problem [Fid02], job-shop scheduling [CDMT94] and quadratic
assignment problem [MC99] [GTD98] were tackled by various researchers.

All these variations on the original ant system led to the development of the
Ant Colony Optimisation Meta-Heuristic. This meta-heuristic, stated by Dorigo
et al. in [DC99], describes a class of ant-inspired algorithms. It abstracts away
from particular implementations both of the algorithm and the problem instance
under consideration. This meta-heuristic was so successful that it was included
as ‘Chapter 2’ in David Corne’s book ‘New ideas in optimisation’ [Cor99].

Figure 2.8: Ants and the Travelling Salesman Problem
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2.3.4 Problems and opportunities

The ant algorithms presented so far are all parameterised by up to ten param-
eters. This allows for a lot of fine-tuning and specialising for different appli-
cations. However, this is also the weakest point of the presentation since very
little research has been conducted into finding optimal parameters.

Dorigo et al. in [DMC96] did a rough analysis suggesting some ‘robust’
parameters which they found to lead to good performance of the ant algorithm.
These parameters have been used in all further research on the ant system and
its extensions by everyone without questioning.

Dorigo admitted that the parameters he proposed are less than optimal
and that optimal parameters are very likely to be problem dependent. Sub-
sequently the ant system for the quadratic assignment problem by Maniezzo
and Colorni[MC99] used slightly different parameter values supporting Dorigo’s
claim that the parameters are problem dependent.

Part of the research described in this report was motivated by the belief that
the optimal parameters are not just dependent on the problem but even depen-
dent on the problem instance. That is to say, one needs different parameters to
find the best tour in a set of cities that are lined up to form a grid than to find
the best tour in a set of cities that are placed randomly.

Another interesting aspect of the ant system algorithm and its successor, the
ant colony optimisation algorithm, is the inherent parallelism. This feature
has not been analysed sufficiently. Bullnheimer et al. in [BKS97] presented
two obvious parallelisation strategies and noted, that there is a lot of room for
further research. Nobody has picked up on this so far.

This report presents a variety of parallelisation strategies in Chapter 4. The
strategies from [BKS97] are analysed in detail, improvements are suggested and
two new strategies are presented.

Further opportunities lie in the adoption and application of the ant algorithm
to other variations of the Travelling Salesman Problem. The author of this
report has implemented several applications that visualise variations of the TSP
such as the asymmetric TSP and the dynamic TSP.

To perform well on dynamic instances of the TSP, the algorithm needs to
be able to change the ratio between exploitation and exploration on the fly.
This can be achieved by the shaking operator introduced in [CS02] or the η- or
τ -strategies presented in [GM01].

In Chapter 3 these variations are discussed further together with the changes
needed to adopt the ant system to variants of the TSP such as those described
in Section 2.2.5.
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2.4 Genetic Algorithms

Inspired by observation of natural processes in the real world John Holland
invented the first genetic algorithm in the 1960s. He imitated the insight he got
by studying Darwin’s theory of evolution which can be summarised as:

• the traits found in the parents are passed on to their offspring during
reproduction

• new traits are produced by variations or mutations that are naturally
present in all species

• a process termed natural selection chooses those individuals that are best
adapted to the environment

• variations can accumulate and produce new species over long periods of
time

According to Darwin, natural selection can be rephrased as survival of the
fittest. The characteristics of the fittest individuals, encoded in their genes, are
passed on to their offspring and keep on propagating into new generations.

In sexual reproduction, the chromosomes of the offspring are a mix of their
parents’ genes. But an offspring’s characteristics are only partly inherited from
parents and partly the result of new genes created during the reproduction
process.

Genetic algorithms (GAs) in their most general form are methods of moving
from one generation of chromosomes to another. Each chromosome can be
thought of as a bitstring, representing the encoding of one particular solution
to a problem. Other encodings are also possible and will be looked at later.

computing term biological term
solution to a problem individual
set of solutions population
quality of a solution fitness
encoding of solution chromosome
part of the encoding of a solution gene
search operators crossover and mutation
reuse of good solutions natural selection

Table 2.1: Comparison of terms used in computer science and biology

These algorithms can be applied to machine learning, complex optimisation
problems or to simulations of real-life phenomena as has been done in projects
like ALife. Other simulation experiments involve ecological concepts such as
symbiosis and host-parasite co-evolution.
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In machine learning, GAs can be used to evolve weights in neural networks
or in general classification tasks. They have been applied to weather prediction,
aircraft landing scheduling and stock market analyses.

A further field where evolutionary principles are used in a computer science
context is genetic programming, the automatic creation of computer programs.
This field researches the ability of programs to evolve given a specific task.

Genetic algorithms were used heavily for approximations to optimisation
problems such as scheduling or the Travelling Salesman Problem described in
Section 2.2. However, Dorigo et al. in [DMC96] showed that the ant system
algorithm presented in Section 2.3.2 outperforms the genetic algorithm in all
the problem instances of the TSP that were investigated.

Problem instance GA AS AS with local search
Nugent15 1160 1150 1150
Nugent20 2688 2598 2570
Nugent30 6784 6232 6128
Elshafei19 17640548 18122850 17212548
Krarup30 108830 92490 88900

Table 2.2: Comparison between GAs and ant system from [DMC96]

The results in Table 2.2 above represent the lengths of the shortest tours
for each problem instance and were averaged over 5 runs. The ant system with
local search found the best known solution in all cases but one (for the problem
instance Nugent30, the best known solution is 6124). It clearly was superior to
the genetic algorithm for every problem instance considered.

Figure 2.9: Evolution of homo habilis to homo sapiens
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2.4.1 Basic structure

The basic structure of a standard genetic algorithm found in [Mit96] is given by
the following five steps:

1. start with a randomly generated population of n individuals (bitstrings)
that each represent a solution

2. calculate fitness(x) for each individual x in the population

3. repeat dn2 e times, each time generating two individuals:

(a) select a pair of parents (put them back after selection); the probabil-
ity of selection increases with fitness of the individual

(b) with crossover probability pc, do crossover to create two offspring,
otherwise just clone parents (take an identical copy of each parent)

(c) mutate both offspring at each gene with mutation probability pm

if n is odd, discard one member of new generation at random

4. replace current population with new population

5. if best individual is not fit enough, go to step 2

This basic genetic algorithm displayed above models the generational ap-
proach found in nature. Once the new generation is created it replaces the old
generation (step 4) which then ceases to exist. This is desirable in nature, where
the objective is to establish healthy populations.

However, this model is not always suitable for optimisation problems. In
optimisation one wants to find a single superior individual representing the
optimal solution to a given problem.

Another disadvantage of this basic genetic algorithm lies in the representa-
tion of individuals. Bitstrings, as used most often, imitate the DNA structures
from nature very well. However, if the parameters that the GA is going to opti-
mise are not binary, the algorithm performs poorly, since the natural distances
between individuals are destroyed when transforming them to bitstrings.

Both of these problems arise from following the evolutionary process found
in nature too closely. There are several improvements that can be applied to
the basic algorithm where the analogy with natural evolution breaks.

For example, the generational approach from step 4 of the basic genetic
algorithm can be replaced with a steady state algorithm. Rather than computing
a whole new generation, one could just create one offspring . If this new offspring
is better (fitter according to the fitness function) than the worst member of the
parent generation, then just replace this worst member. Otherwise discard the
new offspring.
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Figure 2.10: Flow diagram of a basic genetic algorithm

Generally, genetic algorithms differ from traditional approximation methods
like hill-climbing in four aspects:

• they work with encodings of the parameters rather than travelling the
parameter space directly

• search proceeds from sets of solutions to sets of solutions rather than from
one individual solution to the next

• they use probabilistic transition rules rather than deterministic ones

• fitness is used directly rather than derivatives of the objective function

Alternative encodings and selection methods will be looked at in the follow-
ing two subsections.
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2.4.2 Encodings

Candidate solutions need to be encoded appropriately. This is one of the most
important steps during the design of a genetic algorithm for any kind of problem.

The most common encoding is that of fixed-length, fixed-order bitstrings.
A binary parameter can be represented as a string of zeros and ones like this
example of length 25:

0101110101010101010000111

This encoding is popular because of its history as well as information theoretic
superiority. Holland, when he first proposed genetic algorithms in [Hol75], used
a binary encoding. He used an argument involving schemata that is beyond the
scope of this introduction. A lot of further research has been conducted using
bitstring encoding and it remains the most popular encoding. A comprehensive
summary of this research can be found in [Mit96].

One big advantage is the close distance between neighbouring individuals. In
most cases, the next individual in a sequence can be created from its predecessor
by toggling one bit.

Translated real values do not have this property. The real number 175 is
represented by 10101111. The next number, 176, is 10110000 which differs from
the predecessor in more than half of the bit locations.

However, real-valued encodings are more natural for many problems though
much harder to implement. Some real-valued representations have been used
by researchers in the past but not many results are known. Another experimen-
tal representation is that of trees used mainly in genetic programming, where
computer program are evolved.

There are no guidelines for predicting which encoding is most appropriate
for a given problem and the consent in the GA community is that one should
pick the encoding that most naturally fits the problem at hand and then design
the genetic algorithm based on the chosen encoding.

2.4.3 Selection methods

Similar to the problem of finding a good encoding is that of choosing the right se-
lection method. There are several possibilities and again, no rigorous guideline.
The most common methods will be described presently.

Note, that all selection methods emphasise the fitter members of the popu-
lation in order for the offspring to be of equal or higher fitness. Here, a balance
has to be found between restricting selection to too few fittest parents (which
results in early stagnation) and too little restriction (in which case evolution
will be very slow).
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Selection methods choose a number of individuals, some repeatedly, to make
up the pool of parents, also called intermediate population. During the mating
process, individuals from this pool will be chosen, so this pool should contain
multiple copies of the fit individuals and no copies of the unfit ones.

Fitness-proportionate selection is used in Holland’s original presenta-
tion. It says that the number of times an individual is expected to reproduce
is the individual’s fitness divided by the average fitness of the population. The
same scheme is found in nature and biologist refer to it as Viability Selection.

There are two sampling methods for this selection known as Roulette Wheel
Sampling and Stochastic Universal Sampling. The former assigns slices of a
wheel to each individual. The size of each slice is proportionate to the indi-
vidual’s fitness. Spinning this wheel N times will select N individuals (with
repetitions) which will make up the pool of possible parents.

However, due to the stochastic nature of the sampling, it is possible, that
the wheel stopped on the small slice of the worst individual (in the worst case,
this happened N times). Also, the big slice of the fittest individual could have
been missed every time.

This led to the proposal of the stochastic universal sampling method. Here,
the roulette wheel will be split up as before, but instead of spinning the wheel N
times with one marker, it is spun once only but with N equally spaced markers.
This ensures that good individuals can’t be missed in the pool by a freak of
nature.

If the fitness of an individual divided by the average fitness of the population
is denoted by x and xi is the integer part of x, then stochastic universal sampling
guarantees to pick this individual at least xi and at most xi + 1 times.

Figure 2.11 shows the pictorial representation of the roulette wheel sampling
on the left and the stochastic universal sampling on the right. One can clearly
see two very fit individuals, six fit ones, five less fit ones and seven unfit ones.
The left wheel will have to be spun 20 times in order to get an intermediate
population of size 20, whereas one spin of the right wheel suffices.
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Figure 2.11: Roulette Wheel and Stochastic Universal Sampling

There universal stochastic sampling could easily be implemented like so
(note, this sample algorithm does not guarantee a fixed size for the interme-
diate population but this has no negative effect on the genetic algorithm):

for each individual i do

x = fitness(i) / average_fitness_of_population;

x_i = integer_part_of(x);

x_f = fractional_part_of(x);

put x_i copies of it into the intermediate population

with probability of x_f add an extra copy

A problem with fitness-proportionate selection is that normally it converges
too quickly. A few very fit individuals are creating many offspring and their
genes dominate the population after a few generations. The lack of diversity
that occurs essentially halts the evolution.

In Rank Selection, all individuals are ranked by their fitness. The number
of times an individual is expected to reproduce is no longer proportionate to
their fitness but instead proportionate to their rank. This ranking can be simply
based on a linear ordering of fitness values or on more sophisticated orderings
as required.

Tournament Selection is another widely used selection method. It’s ad-
vantage is efficiency. The fitness-proportionate selection had to do two passes
through the individuals, one to calculate the mean and one in the main loop.
Rank selection had to rank all individuals which again is quite a computationally
expensive operation.

In tournament selection, two individuals are chosen at random. A copy
of the fitter one is put into the intermediate population and both individuals
are returned to the original population so that they can be selected again.
A modification of this scheme is to pick the less fit individual with a small
probability which may be a parameter to the system.
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2.4.4 Genetic operators

The main distinguishing feature of genetic algorithms over other stochastic
methods is the use of genetic operators. Recombination, a combining of genes
different from what they were in the parents, is most often done using crossover.
A second standard genetic operator is mutation which will also be described
presently.

Crossover

The four most popular recombination operators will be presented in this section,
starting with one-point crossover. One position in the chromosome is chosen
randomly and the parents are split in a front and a back part. Then two
offspring are generated by using the front part from one parent and the back
part of another and vice versa.

00111 01010101 10100 01110111

? ?

```````````

           

00111 01110111 10100 01010101

The advantage of this operator, is that large sequences of genes are kept
in the order they are found in the parents. Another useful way of combining
two parents is two-point crossover. Here, two locations in the chromosome are
chosen randomly and the middle parts are exchanged to create two offspring.

00111 010 10101 10100 011 10111

? ?? ?

hhhhhhhhhhhhhh

((((((((((((((

00111 011 10101 10100 010 10111

The need for this operator arises from an argument based on schemata which
is beyond the scope of this introductory chapter. Essentially, it allows for a
more varied population, since sequences can be replaced that are neither at the
beginning nor at the end of the chromosome but somewhere in the middle.

The two recombination methods presented so far produce two offspring
whereas the next methods only produce one. Rather than exchanging whole
sequences of genes, uniform crossover selects one of the parents for each gene
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separately. So, if both parents agree for a certain bit location then the offspring
will have the same value at this bit location.

However, if the parents differ (i.e. one of them has a zero and the other
has a one) at a certain bit location then the offspring will be assigned zero or
one randomly. This method destroys any sequence found in the parents and is
therefore only applicable for certain problems.

The last recombination operator is called reverse or inversion and is hardly
ever used. It uses only one parent which is split in two random locations.
The middle part is then removed and the order of genes in that middle part is
reversed before it is placed back.

001 11010 10101

? ? ?

001 01011 10101

This keeps some of the fit parent chromosome intact while shuffling some of
the genes.

Mutation

Another important genetic operator is known as mutation. It is a process of
making small changes to genes in a chromosome. In binary chromosomes, this
is done by flipping the bit. In the example below, the 6th bit from the left has
been flipped.

0011101010101

A
AAU

�
���
6th bit flipped

0011111010101

This mutation leads some members in the next population having different
genes than any of the members of the previous population. For example, if all
members of the population have a value of zero for the third bit position, say,
then thanks to the mutation it is still possible to get an offspring with a value
of one at the third bit position.
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2.4.5 Example

In 1975, Kenneth Alan De Jong in his PhD thesis[Jon75] on the parameterisation
of genetic algorithms presented some optimal parameters for a variety of genetic
algorithms. He found that to get good results for the problems he looked at,
the following settings are recommendable:

1. population size of 50 to 100 individuals

2. use of single-point crossover as a recombination operator

3. crossover probability of of 0.6

4. mutation probability of 0.001 per bit

Further research involved a genetic algorithm to evolve the parameters for
another genetic algorithm. The result of this experiment were similar to De
Jong’s. However, it has been shown that there are genetic algorithms, for which
De Jong’s parameter settings are sub-optimal.

This introduction to genetic algorithms concludes with a simple example.
Assume the problem is to find the value for x that maximises the following
function f(x) = x3 where x is an integer varying from 0 to 63 inclusive.

The obvious encoding for each individual is a bitstring of length six. A
population is chosen to contain five individuals which is very small for a genetic
algorithm, but suffices for presentation purposes. The fitness function is just
taken to be f(x). The initial population is generated randomly.

individual 1 2 3 4 5
generation 1 001011 110000 101101 000100 011100
fitness of generation 1 1331 110592 91125 64 21952
reproduction probability 0.006 0.491 0.405 0.0003 0.098

Table 2.3: First generation of example genetic algorithm

Using roulette wheel sampling, the intermediate population is made up of two
copies of individual three and one copy of individual two, four and five. Note,
that individual four was ‘really lucky’ to get picked. From this intermediate
generation we now pick two parents and a crossover point at random five times.

Individual two and three cross over after bit two to give offspring 111101
and 100000. Then individual five and two are chosen to cross over after bit one
to produce offspring 111100 and 010000. Finally individual three and five cross
over after bit three giving 011101 and 101100.
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Note, that one of them is dropped at random since only five individuals make
up a population and 011101 is randomly chosen not to be in the population.
Now the next generation looks like this:

individual 1 2 3 4 5
generation 1 111101 100000 111100 010000 101100
fitness of generation 1 226981 32768 216000 4096 85184
reproduction probability 0.402 0.058 0.382 0.007 0.151

Table 2.4: Second generation of example genetic algorithm

The average fitness of the five individuals from the first generation in Table
2.3 was 45012.8 which improved to 113005.8 in the second generation. The third
generation is then generated from the second generation in the same manner.

Note, that no individual has been mutated so far. With a mutation proba-
bility of 0.001, the expected probability of a mutation in an individual is 0.006
and the expected probability of mutation in a generation is 0.03, since there
are five individuals in a generation. So one can expect a mutated individual in
average every 33 generations.

Eventually, the best individual, 111111, is bred or mutated. This individual
has a fitness score of 250047 which is the highest possible fitness.

This example was easy for many reasons. Firstly, the encoding was very
obvious and the search space was very limited. More importantly, the fitness
function was very steep and had no local optima. With a sufficiently large
population, the answer is found within very few iterations. The population
needs to be large to avoid the following problem.

In the given example, after the second generation, all individuals have a
value of zero at the fifth bit location. So mutation is needed in order to find the
best individual. Otherwise, the algorithm would never produce an individual
with a value of one at bit location five. Mutation on average occurs every 33
generations and not necessarily at bit position five.

This shows, that a small population size may lead to a longer execution time
since more generations are needed to find the optimal solution.

2.5 Summary

This chapter provided the necessary background knowledge needed to compre-
hend the research undertaken for this project. It started with the history of
swarms in computer science and an introduction to the emerging field of swarm
intelligence.
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In addition, the Travelling Salesman Problem was described, its complexity
analysed and its relevance compared to combinatorial optimisation problems.
This was followed by a description of some famous approximation heuristics and
several variants of the TSP.

Furthermore, an introduction to genetic algorithms has been provided, de-
tailing the basic structure, famous encodings, selection methods and genetic
operators. This section was concluded with a simple example illustrating the
workings of a typical genetic algorithm.
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Chapter 3

Software architecture

Real ants find the shortest path between their nest and a food source with the
help of indirect communication. They modify the environment they are situated
in by dropping pheromone, a signalling chemical. The ants choose where to go
next based on the pheromone level they detect on potential paths.

Pheromone levels on a trail increase with the number of ants using the trail
but since this pheromone evaporates over time, bad paths will gradually disap-
pear. This leaves a track from the nest to the food source in the environment
that will be used by most ants, allowing them to go straight from the nest to
the food source and making the whole colony of ants more efficient.

This metaphor from the animal kingdom was used by Dorigo for the ant sys-
tem algorithm which is described in Section 2.3.2 of this report. Its application
to the Travelling Salesman Problem which was introduced in Section 2.2 is used
as the prime example of a combinatorial problem where this algorithm excels.

This project looked into improving various aspect of the standard ant system.
Therefore, a basic implementation needs to be provided which is then tweaked
to handle several requirements. April[CM94a] was used as the programming
language of choice for various reasons that will become clear during the course
of this chapter.

3.1 Methodology

Before the different implementations and applications are introduced, a few
general comments are deemed to be helpful for the comprehension of the next
chapters.

The TSP tries to find the shortest closed tour through a given number of
cities without using any city more than once. The ant system algorithm sends
ants around the city space, one starting in each city. They drop pheromone

41
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proportional to the reciprocal tour length and their stigmergy behaviour helps
them to find short tours.

This ant system algorithm which was introduced in Section 2.3.2 is very
generic. It has to be instantiated with various parameters to control certain
aspects of the algorithm. A detailed description of the parameters and associ-
ated experiments is given in Chapter 5 but some of the more important ones
are mentioned presently.

When the algorithm was introduced, what was most important was the
ability of the ants to either explore the environment or exploit a food source
which was already discovered by other ants. The activity of any given ant is
determined probabilistically but their tendency to exploit or explore can be
regulated.

Parameters β and q0 are instrumental for this task. Others like ρ are re-
sponsible for controlling the way the pheromone level on each edge is updated.

The main work undertaken for this project was two-fold. On the one hand,
applications have been developed in a symbolic programming language that help
visualising the working of different variants of the ant system algorithm.

On the other hand, scientific research has been conducted trying to paral-
lelise the algorithm and solving the problems related to the parameters of the
system. The results of the parallelisation shortly described in Section 3.3 can
be found in Chapter 4 and a detailed analysis of all issues involving system
parameters is given in Chapter 5.

A novel approach to finding these parameters is then proposed in Chapter
6 which combines the ant system with ideas from evolutionary computing. It
also contains the evaluation of this new algorithm.

For most of the experiments described in the next chapters, well-known and
well-researched problem instances have been used. The most famous one is a
thirty city problem instance called Oliver30 after its inventor. Further popular
instances are Eilon50 and Eilon75 with fifty and seventy-five cities respectively.
The coordinate data for these three instances can be found in Appendix D
together with the optimal tour for one of them.

3.2 Multi-threaded single processor version

April facilitates the invocation and management of multiple threads. It also
comes with a sophisticated communication infrastructure employing the In-
terAgent Communication Model(ICM) for communication between distributed
processes. A more detailed presentation of the language and the ICM can be
found in Appendix C.

Trying to simulated the real ants, the most obvious decision is to represent
each ant by a separate thread. The diagrams below symbolically represents five
ant threads, although more can be used for bigger problem instances.
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Another thread is used to implement the environment and message passing is
used between ant and environment threads to implement ’pheromone dropping’
and the ’sensing of the environment’.

Figure 3.1: Basic ant algorithm architecture with five ant threads and an envi-
ronment thread within one April process on one machine

The environment thread is invoked in April using the spawn command as
illustrated below:

envHandle = spawn environment(numOfCities,cityList,tau,initTrail,maxCycles);

The environment thread receives a number of arguments such as parameters
and initialised trails. Some have been omitted here for the sake of clarity. The
return value of this spawn operation is a so-called handle which can be used to
address the thread in future communication. Similarly, a thread is created for
each ant and the handle of each ant thread is added to a list.

for antNumber in 1 .. numOfCities do

antHandle = spawn ant(environment,antNumber,numOfCities,distances);

handleList := [antHandle,.. handleList];

;
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This code snippet spawns of one thread per city since as many ants are used
as there are cities. Each ant thread receives four arguments upon invocation.
The environment handle (used to identify the environment process for commu-
nication), its number in the ant colony, the total number of cities it has to visit
and a static array of distances1.

The environment process has a message receive loop scanning the message
queue for incoming messages. The skeleton below shows the three kinds of
messages that the environment can receive.

The first and most important one arrives from an ant after it found a tour.
It contains the symbol ’UpdateEnvironment to indicate the type of message
together with the length of the tour and the tour itself in form of a list.

repeat

(’UpdateEnvironment,length,list) ->> {
do housekeeping

if updateCounter == numberOfAnts then {
remember best tour of iteration if it is an improvement

...

reset all variables that are local to the iteration

iterationCounter +:= 1;

do pheromone updates

if iterationCounter > maxIteration then {
for antHandle in handleList do

’DieAnt >> antHandle;

;

} else {
tell all ants to find another tour and inform them of

changes to the environment

};
}

} |

’StopEnvironment ->> {
display and log the best solution found

’sio_end_Env >> self();

} |

(’listOfAntHandles,X) ->> {
upon receipt of their handles, start all ants

}
until ’sio_end_Env;

The environment records the result from this ant, increments the update-
Counter variable and waits for the next message. After receiving one message
from each ant (they should all take roughly the same time to find a tour), it
updates the pheromone levels on all the trails in the environment according to
the procedure described in Section 2.3.2.

1Arrays to not exist in April as such and needed to be implemented by the author using
theta environments. See Appendix C for more details on the implementation language.
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If the required number of iterations has been exceeded, it then tells all ant
threads to terminate. Otherwise it initiates the next iteration by telling the ant
threads to find another tour. In this initiating message, the environment also
informs each ant about the changes to the environment.

This has been found to improve efficiency over the ’real world way’, where
each ant would request the local pheromone level each time it wants to ’smell’
something.

It remains to show how each ant finds a tour. According to their parameter-
isation, they either tend to exploit a given food source or explore the environ-
ment for other food sources. This attitude is controlled by parameter q0 and β
as described in Section 3.1. These parameters are more closely analysed in the
forthcoming Chapter 5.

The ant threads have message receive loops, too. When an ant receives a
message from the environment thread asking it to find a tour, it starts in the
start city which is unique for each ant. Then it continues to pick a next city from
those not yet in the tour and move to this next city until the tour is complete.

The decision where to move next is made according to the formulae intro-
duced in Section 2.3.2 and is implemented like so:

pickNextCity(city,numOfCities,tabuList,distances,tau,beta,q0) => valof {
initial housekeeping

for x in 1 .. numOfCities do {
if !(x in tabuList) then {
trail = tau.get(city,x);

visibility = 1 / distances.get(city,x);

score = trail * pow(visibility,beta);

keep track of maximum score

...

build up list with options and probabilities

theOptions := [(denom,denom+score,x),..theOptions];

denom +:= score;

};
};
use q0 to either exploit or explore

randomQZero = rand(1);

if randomQZero < qZero then {
theResult := maxScoreCity;

} else {
probabilistically pick a city from the options

};
valis theResult;

};

From a given city, all other cities that are not in the tabuList (i.e. already
visited) are assigned a score depending on the distance (between the current
city and the city in question) and pheromone level (on the connecting path).
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Then with a probability of q0 the highest scoring city is chosen as the next
city. Otherwise, a city is randomly selected from all theOptions where better
scoring cities are more likely to be picked.

3.3 Parallel algorithm on multiple processors

Having described how the basic algorithm is implemented in April, several con-
tinuative experiments are outlined below. The first part of this project con-
cerned itself with ways of exploiting the inherent parallelism in the algorithm.
Since April is very suitable for programming in a distributed environment, the
following experiments have been conducted. Note, that quantitative and quali-
tative evaluation of these experiments are presented in Chapter 4.

Initially, it was decided to move the environment thread to another machine.
This promises a speed-up, since the ant processes would not preempt the CPU
while the environment is updating. During this period they cannot do anything
anyway until the environment is finished and has sent them the ’go ahead’
messages.

Figure 3.2: Splitting up ant threads and environment thread onto different April
processes running on different machines

The experimental setup involved two machines represented by the two big
boxes above, each running an invocation of April. The left one contains an April
process with five ant threads and the one on the right contains another April
process with the environment thread. In order for a thread on one machine to
send a message to a thread on the other machine, they have to use the ICM2.

2described in Appendix C
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The message sent by a thread is forwarded by the April process to the ICM
on the sender’s machine and from there to the ICM on the receiver’s machine as
depicted in Figure 3.2. This ICM forwards the message to the April process of
the receiving thread which then delivers it to the corresponding April process.
This April process places the message in the message queue of the receiving
thread as specified by the sender.

This setup can be extended to include more machines. The five ant threads
in the previous two diagrams are used symbolically for all fifty ants used in the
parallelisation experiments. In theory, one can use fifty machines each running
an April process containing a single ant thread.

However, communication cost considerations detailed in Chapter 4 limit the
number of machines that yield an speed improvement. The following figure
illustrates how the approach is extended to three machines (one hosting the
environment and two that host the ants).

Figure 3.3: Using three machines to parallelise the ant system algorithm
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This was found to improve the time it takes to complete a given number
of iterations of the algorithm significantly. Further experiments have been con-
ducted and detailed results will be presented in Chapter 4. Another concept
that improves the performance of the algorithm with respect to the time it takes
to complete 100 iterations is that of sub-colonies.

Figures 3.2 and 3.3 indicated how each ant thread communicates with the
environment thread. Every iteration involved 50 messages (one from each ant)
that went over the network to arrive at the environment process. Using a sub-
colony thread reduces the message flow over the network dramatically.

Each ant sends a message to the local sub-colony thread which is done very
fast without involvement of the ICM. This sub-colony thread then sends a cu-
mulative message over the network.

Similarly, when the environment thread informs the ants about changes to
the pheromone levels on the paths, it only sends one message to the sub-colony
thread on each machine, which then forwards the information locally to the ant
threads.

Figure 3.4: Using sub-colonies to reduce overall traffic across the network

This should just give a flavour of the experiments done to utilise the inherent
parallelism found in the ant system algorithms. A total of nine different parallel
variants have been investigated, both lossless and lossy ones with respect to
solution quality.

Reductions of more than 85% of the execution time have been found and a
complete description of these experiments and evaluation of the accompanying
results are presented in Chapter 4.
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3.4 Asymmetric variant

The standard algorithm used for the parallelisation experiments was applied to
Euclidean problem instances of the TSP. These instances are all symmetric since
the distance between two cities is just the geographic distance between them.
So the distance between A and B is exactly the same as the distance between
B and A.

However, there are applications where this Euclidean distances do not apply.
For example, the ’distance’ between two cities could represent the time it takes
to travel from one to the other. This time can be different depending on the
direction in which the salesman travels due to traffic jams on the motorway.

This has an influence on the optimal tour length as illustrated below:
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Figure 3.5: Symmetric vs. asymmetric problem instance

For the asymmetric version on the right only the shortest distance is dis-
played. This means that the distance between A and C is 5 (as depicted) but
the distance between C and A is more than 5. If one ignores the direction on
the arrows, the total tour length is 12 as it is for the symmetric example on the
left.

However, to complete a tour without ignoring the direction of the arrows is
not possible with a length of 12. It either involves CA (which is longer than 5)
or CB and BA which are longer than BC and AB.

This flavour of the TSP required some changes to implementation of the ant
system algorithm. Most notably the finding of a tour by the ants and to the
updating of the environment needs to take the concept of direction into account.

for (lengthOfTour,pairListOfCoordinates) in resultsFromAnts do {
for (i,j) in pairListOfCoordinates do {

deltaTau.add(i,j,... some amount );

deltaTau.add(j,i,... some amount ); /* remove for ATSP */

};
};

This fragment of code is used by the ant system for the Euclidean version
of the TSP. It drops pheromone on each road that was travelled for each of the
ants.
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Note, that it drops the same amount of pheromone on the edge between i
and j as it does for the edge between j and i. In fact, there is only one edge
connecting i and j, but implemented in such a way that it can be accessed from
both ends.

In the implementation for the asymmetric TSP variant, the second of the
two lines in the inner loop is removed, since pheromone is only dropped on one
of the edges (only in the direction of travel).

Figure 3.6: Screenshot of the ant application for the Asymmetric TSP

The screenshot in Figure 3.6 shows the ant application ATSP-Ant3 running
for the asymmetric problem instance of a 6 by 6 grid. The straight lines represent
the distance in one direction (normal euclidean distance) and the bend lines
represent the distance in the other direction which is taken to be 1.2 times the
euclidean distance between the two cities.

This ratio is a parameter to the application and chosen to be 1.2 in order to
discourage the ants from using diagonals for this screenshot.

3implemented by the author
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3.5 Different kinds of dynamic behaviour

Another interesting variation is to apply the ant system to dynamic problem
instances. Dorigo in [DMC96] predicted that the real strength of his algorithm
will only come to the fore when it is applied to dynamic instances.

The reason why the ant system should be better suited to dynamic problems
is that pheromone information can be re-used without restarting the computa-
tion from scratch. On the other hand, this might bias the ants too much in their
behaviour, so that no good solution is found after the problem instance changed.
A compromise can be found by smoothing the pheromone levels somewhat as
proposed in [CS02].

Taking the TSP as the problem of choice, one can think of two different
notions of dynamic. One is to change the distances between cities on the fly.
This could be used to model the traffic on motorways as in the asymmetric
example from above. Traffic jams would dynamically appear and disperse.

Variations of the ant system have been proposed in [GM01]. During the
course of this project a modification of this ant system for the dynamic TSP
has been implemented that allows users to change the distances interactively by
moving cities around during execution time.

This changes the inter-city distances and might result in changes to the
optimal tour. However, after several hundred iterations the pheromone levels
are too pronounced. The change in the distance-based heuristic visibility will
not have any effect.

Therefore, the pheromone levels should be normalised. Resetting them to
zero would result in the loss of domain knowledge accumulated so far. In con-
trast, subtly smoothing the pheromone in the area where the change took place
results in a setting where good solutions can be found fast.

A second dynamic variant allows the user to dynamically add or remove
cities from the TSP instance. This could represent the metaphor of a salesman
who is already travelling but changes his mind and adds or removes some of his
destinations.

This has been implemented, too. Several experiments have been conducted,
indicating that adding or removing a city should mostly affect the optimal tour
in the local area where the change happened. Other parts of the tour remain
unchanged.

Unfortunately, due to the lack of benchmarks no reasonable comparison with
other heuristics was possible.

The application which visualises the behaviour of the ant system in dynamic
settings, can be found as an April executable in the project directory of the
author. Source code, both in April and XML is also available from this resource.
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3.6 Summary

This chapter introduced April, the ICM and DialoX by means of examples.
The general software architecture and the methodology used for most of the
experiments were described. A mixture of April and pseudo code was employed
to illustrate the working of the main components of the system.

Block diagrams gave an indication of some of the parallelisation strategies
(like distributing the ants, reducing the communication or using sub-colony
threads) that will be looked at in the next chapter. The main result, a speed-up
of more than 85% was hinted at.

Moreover, the asymmetric variant of the TSP has been explained and the
changes to the ant system application have been highlighted.

The chapter concluded with a brief digression on the dynamic version of the
TSP and the issues that the ant system faces when applied to this dynamic
TSP.



Chapter 4

On the parallelisation of the
ant algorithm

Parallelisation - the rewriting of an existing program or algorithm to run on
a system with multiple processing units - can result in a speed-up of an exist-
ing algorithm as long as communication cost between processing units are not
prohibitive.

This chapter will introduce several ways of exploiting the inherent parallelism
in the standard ant system and propose variations of the algorithm that allow
for even more parallelism. The ant system operates many individual agents that
find solutions to a given problem via indirect communication.

The structure of the algorithm lends itself to a parallel implementation us-
ing separate processes for each ant rather then ‘sending’ each ant on a tour
sequentially. However, running each process on a different machine would result
in highly increased communication between machines and hence, a communica-
tion cost that makes this kind of parallelisation infeasible.

In a technical report, Bullnheimer et al. [BKS97] describe two parallelisation
strategies for the ant system. Firstly, a straight-forward synchronous algorithm
is presented and then a partially asynchronous version is suggested. This second
approach reduces the need for communication which provides a further speed-
up.

This part of the project first looked at what degree of improvement can be
achieved by separating the ant processes and the environment process. Then
synchronous as well as several asynchronous variants of the algorithm are anal-
ysed and compared.

The trade-off between parallelism and communication cost is then investi-
gated and a compromise between them is sought. We conclude with the pre-
sentation of two versions of the notion of sub-colonies and a summary of all the
results, both quantitative and qualitative, presented in this chapter.

53
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4.1 Experimental setting

For the quantitative experiments undertaken by the author, six identical high
performance computers have been used. It needed to be ensured, that the ex-
periments had sole control over the CPU, which limited the number of machines
that could be used. However, an inconsistent share of the processor due to other
users’ demands would render any result useless.

Identical machines were employed to avoid influencing the results by differ-
ences in hardware. Each experiment was run several times and the findings were
averaged in order to obtain statistically significant results.

Also, different runs used different machines wherever possible in order to
cancel out differences in network routing delays.

The machines named media01 up to media06 in the project lab were used in
their idle times on weekends with permission from other project students who
had been allocated these machines. They each have a Pentium IV chip which
clocks at 2.8GHz and 1GB of RAM. In all the following tables, the machine
names will be abbreviated (m04 represents media04.doc.ic.ac.uk).

All experimental runs involved 100 iterations of the algorithm augmented
with a variation of the local search procedure 2-OPT introduced in Section
2.2.4. This was done to lengthen the time each iteration of the algorithm takes
and spread out the results. Local optimisation is performed by each ant before
it reports back to the environment and is therefore done in parallel.

The variation of the 2-OPT search procedure used here, takes the tour found
by the ant and attempts to improve it by swapping over any pair of adjacent
cities. The best tour thus obtained is used as the tour for the ant in question
at this iteration.

All parameters to the standard algorithm (to be introduced in Chapter 5)
were fixed for all experiments at:

Parameter Value
α 1
β 7
γ 0
ρ 0.4
q0 0
τ0 0.0001
number of ants number of cities
number of iterations 100

Table 4.1: Parameters used for the parallelisation experiments

Note, the last parameter changed slightly in the experiments on sub-colonies
where each colony ran some iterations independently. However, the overall
number of iterations was fixed at 100 throughout.
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Running the environment process and the ant agents on the same machine,
the next table shows the impact of the local search procedure on the running
time of the algorithm. The problem instance Eilon75 was used in this experi-
ment, details of which can be found in Appendix D.

The four columns represent whether or not local optimisation 2-OPT was
employed, the time taken in seconds, the tour length found and the percentage
off the best known solution for this problem instance. More details can be found
in Appendix E.1.

2-OPT Time Length Percent off best known tour
No 1628.80 555.226 2.38
Yes 1981.26 550.096 1.434

Table 4.2: Influence of local search on execution time

The mean running time without the local search procedure 2-OPT was
1628.8 seconds compared to 1981.26 seconds when the local search was enabled.
So, on average, each run took 21.64% longer to complete when local search was
added.

The quality of the tour found by the algorithm using the extra local search
is slightly better than without 2-OPT. However, the quality of solution is of no
concern for the analysis in this chapter. We are only concerned with the time
it takes to perform 100 iterations of the algorithm.

All experiments that follow use this local search procedure to spread out the
resulting times.

4.2 Separating environment and ant processes

A first step to improve the execution speed of the algorithm, is to separate
the housekeeping operations of the environment from the active searching of
the ants. Each ant has to find a tour by picking n cities (for a n-city problem
instance), calculating the length of this tour and then running the local optimiser
2-OPT, checking n swaps of adjacent cities.

After all ants have reported their best tour together with the best length to
the environment process, this process has to update the pheromone levels on
each road between two cities for each ant according to the equations described
in Section 2.3.2.

While this updating is taking place, the environment process is the only pro-
cess ready to run, since all the ant processes are waiting for a message telling
them to start their next iteration. This message will only arrive after the envi-
ronment process has finished updating the pheromone levels. The ant processes
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need this message to continue execution, since they need to be informed of the
changes to the environment.

But when only one machine is used for all processes, control is switched to the
ant processes for them to check their message queue, even when the environment
is still not finished updating. This does not happen, if the environment process
is the only process running on the machine and is proved by the following
experiment.

Firstly, all ant processes and the environment process ran on the same ma-
chine. Several runs were made using different machines depending on available
idle machines and to allow for a good average.

Secondly, media04 was chosen to be the machine on which the environment
process will run. This choice was arbitrary from a computational point of view,
but based on the fact, that it was allocated to the author for the duration
of this project. The 50 processes representing the ants, were then run on a
different machine in order to avoid the superfluous switching of processor control
mentioned above.

Environment Time
on same machine as ants 607.5

on separate machine 347.1

Table 4.3: Separating ants and environment processes

The Table 4.3 shows average results for this experiment detailed results can
be found in Appendix E.2. It can be seen, that using two machines instead of
one already gives a very significant improvement. Separating the environment
process from the ant processes gives a speed-up of more than 40%. It is impor-
tant to understand, that this experiment still ran all ant processes on the same
machine.

So, the real parallelism inherent in the algorithm has not been utilised at all
so far.

4.3 Distributing ants over multiple machines

This parallelism can be made use of by distributing the ants across several
machines. For the experiments in this section, again the machine media04 was
used to run the environment process and the local search 2-OPT was employed.

The last section showed that the time taken for 100 iterations can be reduced
from 607.5 seconds to 347.1 seconds by using a separate machine to run the ant
processes on.
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This section illustrated how this time can be further improved to 261.2 sec-
onds by using four machines to run the ant processes on. It is interesting to see,
that even the use of just two extra machines gives a significant improvement on
the time taken by the algorithm.

Figure 4.1: Time taken for 100 iterations given a number of processors

It is expected that using five or six extra machines would speed up the
execution even further, although the extra speed-up gained will be minimal.
However, due to the lack of more idle machines, this could not be tested.

It is comforting to know that the curve flattened out dramatically for even a
small number of machines and so the need to use more than two or three extra
machines is not given. This can be seen in the plotted diagram in Figure 4.1.

In fact, two extra machines seem to give sufficient speed-up and any further
parallelisation will only result in a minimal improvement. However, this result
is dependent on the problem instance chosen. Any other problem instance with
a similar number of cities will yield the same result. But if the number of cities
are increased by an order of magnitude, using more machines will clearly be
desirable.

Over all the 25 runs for the problem instance Eilon50 from this and the
previous section, the mean length was 434.44 which is just 1.51% off the optimal
solution. This result was achieved in 100 iterations with every ant informing
the environment after each iteration. Detailed results can be found in Appendix
E.3.

The next section will demonstrate how to improve the time taken for these
100 iterations even further by reducing the communication between the ants
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and the environment. This will lead to a loss of quality of the solution found
whereas the parallelisation described so far was lossless in this respect.

4.4 Reduced communication

The costly communication between processes can be reduced by limiting the
number of times an ant is allowed to update the environment. Since the ants
find their tours probabilistically, it is likely that the same ant will find different
tours on repeated attempts in the same environment.

Only the best of these tours needs to be reported to the environment process
and the next experiment is trying to establish an optimal balance between the
number of repeated local attempts and updates send to the environment process.

Clearly, if there is too little communication between the ants and the envi-
ronment, then the ants cannot learn from each others attempts and the positive
feedback, stigmergy, cannot take effect. Too much communication on the other
hand will lead to sub-optimal performance with respect to execution time.

This experiment used the problem instance Eilon50. For all runs, the en-
vironment process executed on machine media04 and the ant processes were
distributed over two extra machines, since the last section revealed that this is
optimal for this particular problem instance. The local optimiser 2-OPT was
used again.

It is worth remembering a result from the last section, namely that doing
just one local attempt (i.e. reporting each tour to the environment) with the
ant processes distributed over two extra machines took 274.8 seconds for 100
iterations.

Local Attempts Time Length Percent off best known tour
2 143.4 431.32 0.786
5 70.08 433.78 1.362
10 62.28 434.06 1.432
14 64.06 434.32 1.498
20 63.68 436.92 2.094

Table 4.4: Results of reduced communication experiments

This table shows that this time can almost be halved to 143.4 seconds by
allowing each ant to find two tours probabilistically and only reporting back
to the environment the better of these two. Experimental runs have been con-
ducted with x set to 2, 5, 10, 14 and 20 where x is the number of tours each
ant has to find before reporting the best to the environment (detailed results in
Appendix E.4).
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Total iterations were 100/x so that the total number of tours per ant does not
change. Note, that for x=14, seven total iterations have taken place, meaning
that the number of tours per ant was only 98. The average time of 62.78 seconds
has been scaled by a factor of 100

98 to get the accurate result displayed.

The following graph shows, that for any x > 10, the communication overhead
is negligible in the system used for these experiments (i.e. the DoC network and
machines with Pentium IV processors). The improvement from x = 1 to x = 2
is largest, but values of five or ten for x are also reasonable.

Figure 4.2: Time taken for 100 iterations given a number of local updates

It remains to check what influence the reduced communication has on the
quality of the solution returned after each ant has found 100 tours. We would
expect the quality for x = 20 to be rather poor, since 20 local attempts mean,
that the environment only got updated five times.

This does not allow for much collaboration between the ants and the stig-
mergy effect described in Section 2.3.2 cannot take place.

Indeed, the graph in Figure 4.3 shows that reducing the communication too
much, results in solutions of poor quality. Interestingly, the graph reveals an
improvement in quality when two attempts are undertaken locally by each ant
instead of one.

This could be explained by the fact that fewer updates initially prevent
disadvantageous paths to be marked with a lot of pheromone. Also, the quality
of the tours reported to the environment is better, since every ant has two
attempts and only the better one is sent to the environment.
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Figure 4.3: Quality of solutions given a number of local updates

Looking at both of the last two graphs, it is obvious, that using x = 2
instead of x = 1 is preferable. It improves both quality and time by almost
50%. However, using x = 5 or x = 10 is also feasible. While these last two
values result in a small loss of quality, they improve the time it takes to execute
100 iterations of the algorithm.

A compromise has to be made between the desired quality and the time one
is willing to wait for the completion of the 100 iterations. If solution quality is
most important, then x = 2 should be chosen. Otherwise, if execution speed
is more important, values of five or ten for x are more appropriate. Figure 4.4
shows that the optimal number of local updates lies between 2 and 5.

Figure 4.4: Tradeoff between execution time and accuracy
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4.5 Sub-colonies

This section will introduce the notion of sub-colonies for the ant system algo-
rithm. The reduction in communication described in the previous section still
left room for improvement. After all the ant processes reported their best tour
to the environment process, this process updated the pheromone levels on all
edges before sending a message to each ant process, informing them about the
changes.

Now, these messages are identical for each ant, since they contain the new
pheromone levels of the environment. Section 4.2 described, why it is desirable
to run the environment process on a different machine than the ant processes.
The number of messages passed between these machines, should be minimal.

A first step in this direction is to run a sub-colony thread on each machine
that host ant processes. The environment process then only has to send one
message across the network to each machine’s sub-colony thread which forwards
it locally to all ant processes running on the same machine.

This reduces the number of messages that have to be sent across the network.
Local messages can be transmitted much faster resulting in a significant speed-
up of the execution time of the algorithm.

This sub-colony metaphor has no impact on the quality of the solution, since
the same number of iterations and the same number of pheromone trail updates
are performed. The only difference is in the amount of communication that
takes place over the network.

In a similar experiment without sub-colony threads described in Section 4.3
the execution time was 274.8 seconds on average. Using the idea of limited cross-
network traffic reduces the time the algorithm takes to complete 100 iterations
to 189.2 seconds, which is an improvement of 31%.

But even now, each ant tells the environment directly about its findings.
The sub-colony thread is only used for communication in one direction. This
leaves still room for improvement.

The proposed idea is to use the sub-colony thread for communication in both
directions. This thread will collect the tours found by all ants in this sub-colony
and then only send the best ant from this colony to the environment.

# of Machines Time without sub-col Time with sub-col Improvement
2 274.8 169.62 38.0%
3 267.7 118.3 55.8%
4 216.2 86.12 67.0%

Table 4.5: Two-way sub-colony communication and ants on two, three and four
machines
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It can be argued that this is somewhat flawed, since the environment does
pheromone level updates for each ant. Remember, the ants ’use’ some of the
pheromone while walking along a path as described in Section 2.3.2.

A possible solution is to use local environments. However, updating and
synchronising between these local environments was found to be really messy.
So just the best tour from each sub-colony is sent to the environment and we
change the metaphor of the ant system. The best ant is allowed to walk its walk
again in the global environment.

The thus modified environment is then sent to the sub-colony threads which
forward it to every ant and a new global iteration can begin.

Table 4.5 shows the averaged results of experiments with two-way sub-colony
communication. Note, that he average running time of 169.62 seconds using two
machines is now an improvement of 38% over the algorithm without sub-colony
threads and an improvement of more than 10% over the algorithm with one-way
communication via the sub-colony threads.

The graph in Figure 4.5 compares two parallel variants of the ant algorithm.
One, where no sub-colony threads were used and the ant processes were dis-
tributed over two, three and four machines. The second algorithm, the one with
superior performance, uses two-way communication via sub-colony threads as
explained earlier.

Figure 4.5: Comparison of performance with and without sub-colony threads

Again, detailed results for these experiments can be found in Appendix E.5.
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4.6 Aggregated results

This chapter investigated several approaches and proposed new ones to paral-
lelise the ant system algorithm. Throughout most of this chapter, the Eilon50
problem described in Appendix D has been used to compare the different ap-
proaches.

Some of the parallelisation strategies that are lossless with respect to the
quality of the solution are summarised in table 4.6 together with the time it
takes each of them to execute 100 iterations. These 100 iterations equal 5000
total tours (50 per iteration) which is an infinitesimal fraction of the more than
3 ∗ 1062 possible tours for this problem.

One of these possible tours has the optimal length of 427.96 and can only
be found by exhaustive search. However, all the experimental runs that were
mainly concerned with speeding up the ant system algorithm, found tours within
4.07% of this optimal tour. Most of them were even within 1% of the length of
the optimal tour.

These high quality solutions were found after 100 iterations of the algorithm
which takes roughly ten minutes if no parallelisation is used. However, compar-
ing the time it took the first experiment (607.5 seconds in Table 4.6) with the
time it took the fastest strategy (86.1 seconds for experiment nine in the same
table) to complete these 100 iterations, a total speed-up of 85.8% was achieved.

# of Experiment # of Machines Strategy Time

1 1 no parallelisation 607.5 secs

2 2 Split env. from ants 347.1 secs
3 3 Distribute ants 274.8 secs
4 4 Distribute ants 267.7 secs
5 5 Distribute ants 261.2 secs

6 3 Sub-colony one-way 189.2 secs

7 3 Sub-colony both ways 169.6 secs
8 4 Sub-colony both ways 118.3 secs
9 5 Sub-colony both ways 86.1 secs

Table 4.6: Summary of different parallelisation strategies

Note, that this improvement of 85.8% can be achieved without the solution
quality being affected. If one is willing to sacrifice a small amount of quality
then the strategy to reduce communication between the environment process
and the ant processes gives a further improvement of 77.3% as described in
section 4.4. However, this does not directly translate to the other experiments.

The problem tackled by the strategy in section 4.4 is the high number of
messages flowing between the machine hosting the environment process and the
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machines hosting the ant processes. The same problem has been tackled by
the introduction of the notion of sub-colonies. However, a further improvement
can be found by combining both strategies and reducing the communication
between the environment process and the sub-colony threads.

This improvement was found to be statistically irrelevant. This can be ex-
plained by the fact that the sub-colony strategy sends only one message per
iteration which clearly cannot be the bottleneck. Reducing this to one message
for every two, five or ten iterations saves only fractions of a second.

4.7 Summary

This chapter investigated several parallelisation strategies. First, the experi-
mental setting was described and tests conducted without parallel execution to
obtain a benchmark for the ant system implemented in April.

The environment was then separated from the ant processes yielding an
improvement of more than 40%. This was extended to 57% by using multiple
machines to run the ant processes. It was found that a number of machines of
two or three is satisfactory for a thirty-city problem instance of the TSP.

A notion of reduced communication has that been subject of this study and
was found to improve the execution time even further. However, reducing the
communication too much led to a loss of solution quality since without sufficient
communication no stigmergy, the positive feedback via the environment, can
take place.

The concept of sub-colonies was then established and presented as a one-way
or two-way communication variant. It was found to provide an improvement
over the ant system without parallelisation of more than 85%. This speed-up is
achieve lossless in that the solution quality is not affected by the parallelisation.

Finally, the results are aggregated and put into perspective.



Chapter 5

On optimal parameters

In the previous chapter, the way how execution speed is affected by different
parallelisation strategies has been analysed. Now, the choice of parameters will
be subject of the research described.

Using good parameter values for the algorithm described in Section 2.3.2 is
important both with the respect to efficiency and effectiveness. Inappropriate
values will certainly slow down the discovery process of the best solution to a
given problem instance but may even prevent the algorithm from finding the
best solution at all. This has been shown since using optimal parameters a new
best tour was found for the Eilon50 problem instance.

Dorigo and Stützle in [DS03] suggested that the exact values of the parame-
ters are often problem dependent. Throughout the literature one can find many
different values used in many variations of the original ant system algorithm.
However, the author of this report predicts, that even within one particular
problem (the Travelling Salesman Problem is chosen here) optimal parameters
may vary for different instances of the problem.

This chapter will introduce the parameters that one has to specify to instan-
tiate the ant colony meta-heuristic together with a justification for the range of
sensible values for each of them. A classification for instances of the Travelling
Salesman Problem is then proposed.

One particular problem instance is then analysed in detail, before the best
parameters found for this instance are tested on other instances. A speed-up of
execution time of more than 90% was found over the use of parameter settings
from the literature. The generalised results are reported and the need for an
automatic method to set parameters is justified.

65
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5.1 Description of parameters

pij(t) =

{
[τij(t)]

α∗[ηij ]βP
k∈allowedk

[τik(t)]α∗[ηik]β
ifj ∈ allowedk

0 otherwise
(5.1)

τij(new) = ρ ∗ τij(old) +

m∑

k=1

∆τkij (5.2)

where m is the number of ants. These equations are repeated here from
section 2.3.2 for ease of reference.

α - controls the relative importance of pheromone. Since it is used in equation
2.1 as an exponent for the trail (pheromone) level, it should have a value of
at least 1. A value of zero would turn the algorithm into a standard greedy
one, since no pheromone information would be used.Further inspection of
the equation however tells us, that one can ignore either alpha or beta.

This is possible, since the ratio α
β can still be controlled by fixing one of

the two parameters at 1 and varying the other parameter. It was decided
to fix alpha and vary beta (though this choice is arbitrary) and hence this
parameter was set to 1 for all other experiments.

β - controls the ratio between importance of pheromone and importance of
distance between cities. In equation 5.1, beta is the exponent of visibility
ηij , which is defined as 1/distance. So visibility ranges between 0 (very
big distance) and 1 (small distance).

The higher the value beta will adopt, the smaller will be the component
that takes distances into account. So a high beta value means, a lot of
exploration will happen during the execution of the algorithm. A beta
value of zero means, that distance is completely irrelevant and only the
(initial) trail level τ0 is used to choose which path to take.

Since τ0 is the same for every edge, this does not appear to be sensible.
Hence a range of 0 < β < 15 is proposed. The upper limit is solely there
to facilitate computation. In fact, the highest sensible value for beta in
any combination of parameters was found to be 13.

If beta is small, we get more of a greedy algorithm, since we put more
emphasis on distance then pheromone. Ants in the real world probably
uses a high beta value, since they can’t really measure the distance but
only smell pheromone around them. In order to find the optimal tour, we
have to ’help’ the ants a bit by providing distance information, but still
employ their exploration behaviour by setting beta to some reasonably
small number.

γ - controls the importance of the best solution from the current iteration (it-
eration best) compared to the best solution found over all solutions so far
(global best). As described in section 2.3.2, all ants ’use up’ some of the
pheromone on the trails they travel on. But only certain ants can ’drop’
pheromone to reinforce the tour they took.
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Gamma represents the number of times the iteration best ant is allowed to
’drop’ pheromone for every time the global best ant is used in the update
procedure. A first constraint on this parameter is 0 ≤ γ ≤ numAnts since
we do not update the environment more than once for each ant.

Early experiments showed, that after the initial three or four iterations,
the global best and iteration best solutions coincide. The sample execution
trace in Appendix F can be consulted to check this. Hence, this parameter
was set to zero for all other experiments. Only the globally best solution
is used to reinforce the pheromone levels.

ρ - controls the evaporation of pheromone in the environment. It is intuitively
limited by 0 ≤ ρ ≤ 1. Equation 5.2 from the original algorithm shows,
that ρ = 0 means we ’wipe clean’ the environment after every iteration.

A value of 1 would lead to continually increased pheromone levels since
pheromone would never evaporate. Clearly this is undesirable and a sen-
sible range of 0 < ρ < 1 is proposed.

q0 - is a parameter introduced by the ant colony optimisation meta-heuristic.
It controls explicitly the ratio between exploitation and exploration. Its
range is 0 ≤ q0 ≤ 1 where a value of 1 means that always the highest
scoring city from equation 5.1 is chosen next.

A value of zero forces the algorithm to choose a city according to the
probability distribution defined by equation 5.1. Values between these
two extremes enable the system to probabilistically do one or the other
where q0 is the probability of choosing the highest scoring city next.

τ0 - specifies the initial pheromone level on all edges. Intuitively, one would start
with no pheromone and τ0 = 0. However, for computational purposes, a
small but non-zero value is preferable. Bonabeau, Dorigo and Theraulaz
in [BDT99] suggest a value of 1/(n*best greedy length) where n is the
number of cities in the problem instance.

numAnts - represents the number of ants used by the algorithm. Clearly, the
more ants we use, the slower the algorithm will be. However, using too
few ants means, that no meaningful pheromone matrix is created and the
search will take more iterations to find the best solution.

With the possibilities of parallelising the algorithms described in Chapter 4,
speed is no longer such an issue. Ants can be distributed over several ma-
chines and hence the upper limit is not fixed.

Initial experimentation showed that the product of ants and iterations
needed to find the optimal solution is fairly constant and so this parameter
is irrelevant. For computational purposes, the number of ants used in the
algorithm is set equal to the number of cities in the problem instance and
each ant starts in a different city to achieve diversity with respect of tours
generated.

max cycles - controls the number of iterations of the algorithm. A range of
10 ≤ max cycles ≤ 1000 is suggested. Fewer iterations will not be enough
to produce decent solutions and after 1000 iterations improvements will
rarely be found.
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To summarise this section, we propose that half of the parameters are kept
constant:

Parameter Constant Value
α 1
γ 0
τ0 1/(n*best greedy length)

numAnts number of cities

Table 5.1: The constant parameters

The remaining four parameters vary in the ranges displayed in the following
table:

Parameter Value Range
β 0 < β < 15
ρ 0 < ρ < 1
q0 0 ≤ q0 ≤ 1

max cycles 10 ≤ max cycles ≤ 1000

Table 5.2: The variable parameters

The last parameter in this table has no influence over how many iterations
the algorithm takes to find the optimal solution. However, it is a hard bound
limiting the time the algorithm runs. It can be softened by modifying the
algorithm to terminate whenever no improvement to the currently best solution
has been found for a certain number of iterations.

5.2 Classification for TSP instances

Instances of the Travelling Salesman Problem come in many different forms.
There are different types such as symmetric-euclidean, symmetric-non-euclidean,
asymmetric, dynamic, special (BWTSP, RATSP and others) as described in
Section 2.2.5.

But even within the class of euclidean instances differences can be found.
Most obviously, these instances vary in the numbers of cities involved. But even
if two problem instances have the same number of cities, one can distinguish
between them in many different ways.
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Before we look at the characteristics used to make these distinctions, we
have to make two restrictions:

1. the distance between two cities is taken to be the geometric distance be-
tween them. This ensures that the problem is an instance of the Euclidean
TSP described earlier.

2. the graph representing the problem instance must be fully connected. That
is, there is a direct road from any given city to any other city.

The usual statistics like mean, median or modes are of little use when classi-
fying problem instances. Scaling an instance will change all these three metrics
but should not affect any of the metrics in the proposed classification.

The first property indicating the complexity of a problem instance is the
number of cities involved. The bigger that number, the less feasible exhaustive
search of the space of all tours will be. For twenty cities, the number of possible
tours exceeds 60,822 trillion.

Applying the ant algorithm to problems of different sizes makes a difference
in terms of speed. Generally, the bigger the problem, the longer it takes to find
good, very good or optimal solutions. However, a seven by seven grid with 49
cities may be solved faster than a 40-city problem where the cities are placed
randomly.

Note, that throughout this section, ’speed’ refers to the number of iterations
the algorithm takes to find a solution of a specified quality.

A second property that takes the uniformity of the problem instance into
account is termed normalised nearest-neighbour distances (nNNd) by the au-
thor of this report. The standard deviation of the nNNd’s is taken as an
indication of how uniform the problem is.

In the above mentioned seven by seven grid, the distances between each of
the 49 cities and their nearest neighbours are equal. In a randomly generated
problem this will not be the case and the nNNd’s will follow a normal distribu-
tion.

The standard deviation of the nNNd’s is calculated as follows:

1. find the nearest neighbour for each city and calculate the distance between
city and nearest neighbour

2. divide them by the mean distance of all edges in the graph to take into
account scaled instances of the same problem; call these numbers (one for
each city) the normalised nearest-neighbour distances (nNNd)

3. calculate standard deviation of the nNNd’s

A final property that looks beyond the nearest neighbours is the coefficient
of variation (also called variation coefficient in some books on statistics). It



70 Parameters

takes all distances into account. This is important, since for a problem instance
with n cities, there will be (n∗(n−1))/2 inter-city distances but only n nNNd’s.

The coefficient of variation of a set of numbers X is defined as their standard
deviation divided by their mean. It gives an indication of the relative magnitude
of variation in relation to the mean of set X.

Some authors equate the coefficient of variation with the absolute relative
deviation w.r.t. the mean expressed in percentage (V ariationCoefficient =
100 ∗ |Std.dev./mean|percent).

It is independent of the actual distances involved as can easily be seen in the
example below:
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Figure 5.1: Two identical problem instances of the TSP modulo scaling

Now clearly, our classification should not distinguish between them. Problem
instances that can be made identical by scaling one of them, should be treated
as being identical. The next table shows that indeed all metrics have the same
values for the two problem instances that differ only by a scaling factor:

Metric left-hand problem right-hand problem
Number of cities 3 3
nNNd’s ( 3

4 , 3
4 ,1) ( 6

8 , 6
8 ,1)

std. dev. of nNNd’s 0.144338 0.144338
mean 4 8
std. dev. 1 2
variation coefficient 0.25 0.25

Table 5.3: Metrics for two scaled problem instances

However, the following two problem instances should be distinguished by the
classification. The one displayed on the right hand side has a longer distance
between A and C while all other distances are equal.

�
�
�
�

3

4

5

A B

C

A B

C

��
��

��

�
�
�
3

4

6

Figure 5.2: Two different problem instances of the TSP

If this triangle would be a subpart of a bigger problem instance, then in the
example on the left, the algorithm is more likely to choose ’road’ AC then in
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the example on the right. A length of 6 on this ’road’ makes it advantageous
to use AB and BC instead. While this is marginally longer than using AC, it
visits an extra city.

In the example on the left however, the advantage is smaller, since AB and
BC combined are significantly longer than AC.

Both problem instances have the same number of cities, but the other two
metrics distinguish between them. The table below shows the differences:

Metric left-hand problem right-hand problem
Number of cities 3 3
nNNd’s ( 3

4 , 3
4 ,1) ( 9

13 , 9
13 , 12

13 )
std. dev. of nNNd’s 0.144338 0.133235
mean 4 4.333333
std. dev. 1 1.527525
variation coefficient 0.25 0.352506

Table 5.4: Metrics for two different problem instances

This classification seems to distinguish problem instances in the desired way.
The table below displays the values of all three metrics for several well-known,
random and uniform problems. For visual presentations of the problem instances
in question, please consult the Appendix D.

Problem num. of cities std. dev. of nNNd’s variation coefficient
Oliver30 30 0.1684230131 0.4800819555
Eilon50 50 0.0448722591 0.4625115236
Eilon75 75 0.0540639830 0.4723591767
Random 40 0.0832759984 0.4709384165
Grid 16 0 0.4048511937
Grid 36 0 0.4424179773

Table 5.5: Metrics for a variety of standard problem instances

5.3 Optimal parameters for instance Oliver30

One of the results of the research undertaken in the course of this project was
that finding better parameters will reduce the time taken by 90%.

The well-known problem instance Oliver30 was chosen as the standard in-
stance, since many benchmarks exist for it. It was first defined in [SWF89] and
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heavily analysed over the past 15 years. Exact definition and visualisation can
be found in Appendix D.

Dorigo et al. in [DMC96] found the best known solution to this problem
to be 423.741 for real-valued tour lengths (and 420 if distances are rounded
to the nearest integer). They instantiated the algorithm with α = 1, β = 5,
ρ = 0.5 and q0 = 0 and obtained this optimal solution after 342 iterations of
the algorithm.

Note, that they used the ant system algorithm which did not feature the
parameter q0. This parameter was later introduced by Dorigo and Gambardella
in [DG97b]. Setting q0 to zero in the improved algorithm would simulate the
original ant system.

The shortest tour visiting each city exactly once was measured to be
423.7405630. This agrees with Dorigo’s findings but is slightly more precise.
However, using optimal parameters, it was found after 32 iterations on average,
an improvement of 90.6%.

Section 5.1 concluded with the realisation, that four out of eight parameters
can be fixed for a given problem instance. These are given in the following table
for the problem instance Oliver30 :

Parameter Constant Value
α 1
γ 0
τ0 0.0001

numAnts 30

Table 5.6: Constant parameters for the Oliver30 instance

Furthermore, we noted that the remaining four parameters had ranges of
feasible values associated with them. The following experimental set-up was
chosen to find optimal parameters.

Parameter Value Range Step Size
β (2,13) 0.5
ρ (0,1) 0.1
q0 [0,1) 0.1

Table 5.7: Variable parameters and their ranges for Oliver30

Note, that all ranges are specified exclusively, with the exception of q0 where
the range includes the value zero.

The fourth parameter, the number of iterations, was said to range from ten
to a thousand. This parameter was used as a measure of the quality of each
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parameter combination. The fewer iterations it took to find the optimal path
for a given combination of parameters, the better this combination was ranked.

There are 21 distinct values for beta, nine for ρ and ten for q0 giving a total
of 1890 different combinations of parameters. Each of these combinations was
employed in ten runs of the algorithm resulting in 18900 runs.

Each run was terminated if the best known solution was not found within
1000 iterations. Total running time on cpu3, a shared server with two dual
2.2GHz processors and 2GB RAM was more than eight weeks.

The average time per run was below ten minutes, which is pretty good seeing
that a lot of runs used 1000 iterations, due to infeasible parameter combinations.

The next table will show the ten best combinations of parameters ρ, β and
q0 together with the average number of iterations it took to find the optimal
solution.

ρ β q0 number of iterations
0.9 6.0 0.1 32.2
0.6 6.0 0.2 34.2
0.6 7.5 0.7 37.4
0.6 4.5 0.1 39.899
0.4 7.0 0.4 41.899
0.3 5.5 0.4 42.9
0.8 6.0 0.2 43.3
0.6 7.0 0.6 44.0
0.6 7.0 0.5 44.199
0.9 5.5 0.0 44.7

0.63 6.2 0.32 N/A
0.1946 0.9189 0.2347 N/A

Table 5.8: Parameters for optimal solutions for Oliver30

The last line two lines are mean and standard deviation of the parameter
values for the ten best combinations. Both of these are meaningless for the last
column.

Note, that only 60% of the parameter combinations found the optimal tour
on all ten runs. This made 40% of the 18900 runs ineligible for the mean
calculation. The mean number of iterations over all eligible runs is 118.82.

The parameter combination suggested and used by Dorigo ranked 298th
out of all possible combinations and averaged 89.6 iterations over ten runs.
It ranged from 50 iterations to 165 iterations and it is unclear why Dorigo’s
implementation took 342 iterations.

This analysis was performed for parameter combinations that allow the algo-
rithm to find the best known solution. However, in many situations sub-optimal
solutions of a high quality are sufficient.
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We will now look at the ten best parameter combinations if solutions are
required to be within 1% and 5% respectively, of the best known solution.

Clearly, the algorithm will take fewer iterations to achieve this. The next
table list the combinations that found solutions within 1% of the best one in
the fewest number of iterations.

ρ β q0 number of iterations
0.4 11.0 0.4 4.799
0.3 6.0 0.7 5.599
0.8 10.0 0.6 6.299
0.6 10.0 0.3 6.5
0.8 11.0 0.0 6.7
0.4 9.0 0.4 6.9
0.5 12.0 0.3 6.9
0.8 9.5 0.1 7
0.5 11.0 0.1 7
0.6 10.0 0.0 7.099

0.57 9.95 0.29 N/A
0.1829 1.6406 0.2424 N/A

Table 5.9: Parameters for very good solutions for Oliver30

Finally, the Table 5.10 shows parameter combinations that enable the algo-
rithm to find good solutions (within 5% of best solution) fastest.

ρ β q0 number of iterations
0.8 12.0 0.2 1.6
0.9 8.5 0.2 1.9
0.8 9.0 0.0 1.9
0.5 12.0 0.4 2
0.1 10.0 0.3 2
0.6 10.5 0.4 2.1
0.5 9.5 0.1 2.1
0.1 9.0 0.2 2.1
0.5 12.0 0.3 2.2
0.9 12.0 0.0 2.2

0.57 10.45 0.21 N/A
0.2946 1.4424 0.1449 N/A

Table 5.10: Parameters for good solutions for Oliver30

It is worth noting, that none of the parameter combinations featured in more
than one table with the exception of (0.5,12,0.3) which was ranked 7th in the
second table and 9th in the third table. This exception is due to the randomness
of the algorithm and can be ignored.
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It is also interesting to point out that none of the 18900 runs failed to find a
solution that is within 5% of the best known one. The worst possible parameter
combination for this task was (0.1,3.0,0.0) which averaged 218.5 iterations.

The same parameter combination was ranked last when it came to the task
of finding a solution within 1% when it failed to do so in seven of its ten runs
(in no more than 1000 iterations).

Ten percent of parameter combinations failed this task in at least one of
their ten runs. In comparison 40% of the parameter combinations failed to find
the optimal solution in at least one run (as mentioned above).

Looking at the best value for ρ in Table 5.8 for optimal parameters, one
can find the value 0.6 six times amongst the best nine combinations. Also, the
average for this value is 0.63 with a low deviation. Even in the other two tables
an average of 0.57 indicates that ρ is pretty robust at 0.6.

This is not much different from Dorigo’s intuition, who proposed ρ = 0.5 as a
good parameter value in [DMC96]. Parameter β however, varies a lot depending
on how accurate results one requires. The more accurate a result is wanted, the
smaller value for beta should be chosen. Optimal solutions are found fastest
with β set to 6 or 7 (seven of the nine best combinations have one of these
values for β). If one only requires solutions within 1% or 5% off the best known
solution, than a value between 10 and 12 will be more appropriate for β.

All these results for β are higher than the value 2, ’guessed’ by Dorigo in
[DG97a]. In the same paper, he uses a value of 0.9 for the parameter q0, limiting
the exploration dramatically. Remember, q0 ranges between zero and one and
a high value favours exploitation over exploration.

Such a high value for q0 was not found to be optimal in any of the experiments
undertaken. The optimal value varies between 0.2 and 0.3 with quite a high
deviation for optimal solutions. So summarising the results, the author picks
(β = 6, ρ = 0.6, q0 = 0.2) as optimal parameters for this problem instance.
Other combinations are also possible and may even be preferable if one is willing
to compromise on accuracy.

5.4 New optimal solution for instance Eilon50

The previous section described an experiment that took eight weeks of execution
time in total. A similar experiment was to run for different problem instances to
see whether the optimal parameters found for the Oliver30 instance are optimal
for other instances, too.

Another famous instance is called Eilon50 which contains 50 cities. The
fact that the optimal tour will involve 66% more cities than the instcance used
in the previous section hinted that it would run for about 12 weeks. This was
unfeasible given the time constraints of the project and the number of runs
needed to be reduced.
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Using the experience gained from the Oliver30 instance, the ranges of all
parameters where reduced to exclude the extreme values that never featured
in any good parameter combination before. Also, the number of trial runs
per parameter combination was reduced from ten to five and the number of
iterations per run was reduced from 1000 to 500. Knowing that this might stop
the algorithm from finding the optimal solution in some case, this sacrifice was
excepted to obtain results before the project ran out of time.

The best known solution from Dorigo for the Eilon50 problem instance was
427.965. Using this intelligent, semi-exhaustive search through the parameter
space, the author of this report improved this solution to 427.855. This new
best known solution was found twice for the parameter combinations (β = 5, ρ =
0.6, q0 = 0.1) and (β = 5, ρ = 0.6, q0 = 0.2).

The problem instance and the new best solution are depicted in Figure 5.3.
The former best known tour is indicated by the numbering on the cities which
are represented by the red dots. Unsurprisingly, the new best tour does not differ
much from the old best tour. The change is non-trivial which is expected since
otherwise local optimisation such as 2-OPT would have found it in Dorigo’s
experiments.

The change is limited to cities from 37 to 45 inclusive. Instead of 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46 one ant decided to explore the following sub-path
36, 38, 39, 37, 42, 43, 41, 40, 45, 44, 46 and found this to be shorter.

5.5 Generalised results

The optimal values for the parameters β and q0 are problem dependent since
they vary substantially between problem instances (the well-known Oliver30
instance and a random one have been used here).

They are also goal dependent in that different parameter values are optimal
for different accuracies. Remember, that Tables 5.8 and 5.9 showed that even for
the same problem instance, optimal parameters vary depending on the required
accuracy.

The parameter ρ on the other hand seemed to be very stable at a value of
0.6.

This was found by running a similar experiment for a random problem with
30 cities, the best parameter combination was (β = 11, ρ = 0.6, q0 = 0.4).
This combination was best both for the task of finding the optimal solution
and for the task of finding a solution within 1% off the best known one. For
the task of finding a solution within 5% off the best known one, it was ranked
11th. It is also close to the average of the ten best combinations, which is
(β = 11, ρ = 0.58, q0 = 0.44)

The worst possible combination of parameters was (β = 5, ρ = 0.9, q0 =
0.6) which was the only combination which failed to find the best solution to
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Figure 5.3: Improved solution to the Eilon50 problem instance of the TSP

the random problem. This best solution has been established previously by
running the standard algorithm for 5000 iterations. None of the test runs in
this experiment improved this best solution.

Comparing the best and worst parameter combinations for this random prob-
lem with their equivalent combinations for Oliver30, an interesting discovery is
made. Remember, that 1890 combinations were tested for Oliver30. The best
combination to the random problem is ranked 837th for the Oliver30 problem
and the worst solution to the random problem is ranked 606th.

Both between problem instances and within the same problem for different
accuracies, the optimal parameter value for ρ never deviated much from 0.6. The
averages of the best ten values for ρ for optimal, very good and good solutions
for Oliver30 and the random 30 city problem are 0.63, 0.57, 0.57, 0.58, 0.54 and
0.65 respectively.
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5.6 Summary

This chapter described all the parameters needed to instantiate Dorigo’s ant
system. A classification of TSP instances was proposed using three metrics: the
number of cities, the variation coefficient and a novel metric proposed by the
other.

This novel metric - the standard deviation of the normalised nearest-neighbour
distances - gives an indication of how uniform or regular the cities are spread
out. The smaller this metric, the more ordered the city landscape (a grid of
cities has a value of zero for this metric).

Then the optimal parameters for the Oliver30 instance are found by ex-
haustive search. These optimal parameters were tested for optimality on other
problem instances.

While doing so, a new shortest tour for the Eilon50 instance was found.

The problem and goal dependency of some of the parameters of the algo-
rithm justify the need for an automatic way of setting these parameters. Dorigo’s
claim, that ”intuition, experience and luck are required to find the right param-
eters for a problem” supports our results.

Hence, the author of this report tried to combine ideas from genetic al-
gorithms to evolve the parameters of the ant algorithm. Since both of the
parameters that exhibited the dependencies are related to the ants themselves
(remember, ρ is the parameter controlling the evaporation of pheromones in the
environment), the novel algorithm that is proposed here is termed Genetically
Modified Ant System.



Chapter 6

On genetically modified
ants

6.1 Motivation

The previous chapter investigated the optimal parameters for the ant system
algorithm, finding that some of them are dependent on the problem instance
and the required solution quality.

Since no strong correlation between the classification attributes from Section
5.2 and the optimal parameter values were found, a novel approach was needed.
The concept of genetic algorithms introduced in Section 2.4 is advantageous for
the evolution of solutions.

In this new algorithm, this concept is not utilised to evolve solutions, but to
evolve the ants that find the solutions. Each ant is characterised by a number
of parameters, two of which vary highly for different problem instances. These
parameters, β and q0, will be evolved over a number of generations to create
fitter ants.

Figure 6.1: Family tree of ants
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The metaphor from the animal kingdom could be modified thus:

A population of ants with different characteristics forage for food.
They drop and smell pheromone wherever they go. Some ants are
explorers, ignoring most of the pheromone signals while other ants
are exploiters who follow the pheromone trails to the known food
sources. Other ants do both, exploring and exploiting.

Every so often, the ants also mate and generate offspring which
inherits the characteristics from the parents. Some young ants are
subject to mutation by environmental influences and after a certain
number of days, old ants finally die.

The size of the ant population stays pretty constant with offspring
being created and older, less fit ants dying. However, the average
fitness of the whole population increases from generation to gener-
ation, since only the successful, well nurtured ants will proliferate
and their characteristics are spread in the gene pool of the next
generation.

This is taken as a paradigm for a system which combines the ant system
algorithm and genetic algorithms. It is termed Genetically Modified Ant System
or GMAS for short.

6.2 Implementation

This section will present the issues that arose and the decisions that were made
during the implementation process. The main elements of a genetic algorithms
are the encoding of a solution, a selection method for the mating process, a form
of mating or recombination and the mutation that individuals are subjected to.

There are several different options for each of these elements and the design
decisions are crucial for the performance of the system.

Figure 6.2: Simplified design of the Genetically Modified Ant System
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The general design of the system is simplified in Figure 6.2. Many ant pro-
cesses communicate with the environment process as before but the environment
process now uses a genetic engine to breed ants and replace the old generation
of individuals with a new one.

Conceptually, the genetic engine operates on the population of ants. How-
ever, for efficiency reasons, the environment process mediates between the ant
threads and the genetic engine.

6.2.1 Encoding

Encoding is the design task in which one decides how to represent a solution
to the problem. This is the most difficult part because the way one encodes a
solution implicitly defines the solution space. Therefore it also defines how a
solution looks like. Note, that the term solutions is used here for the individuals
in the population of a genetic algorithm.

Since the GMAS evolves ants and more specifically, the parameters of the
ants, an individual could be represented by the pair (β, q0).

However, the favourite encoding used in most genetic algorithms is the rep-
resentation of solutions as bitstrings similar to the way DNA is encoded. This
is of little use for the evolution of our parameter pair. One could concatenate
the bit representations of both parameters to obtain a bitstring, but crossover
would not work very well.

Imagine, each parameter is represented by four bits allowing for 16 different
parameter values. Concatenating both parameters one gets eight bit parents,
say 00011000 and 00000111. This means, that both parents have average values
for q0 (namely, 1000 and 0111 representing very close real parameter values).
Crossover after bit location five would yield offspring 000000000 and 00011111.

Now the two offspring have values of 0000 and 1111 for their respective q0

parameter, which does not resemble either of the parents. Also, both siblings are
as different as only possible, which does not agree with the metaphor we used.
We therefore propose to use a real-valued encoding, representing the parameter
pair. There is little information on real-valued encodings as mentioned in Section
2.4.2 but it seems the most natural encoding for the problem at hand.

Figure 6.3: DNA double helix encoding instructions for components and pro-
cesses of all living things
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6.2.2 Selection

The general principle underlying fitness-proportionate selection is that fit indi-
viduals should be selected for reproduction more often than individuals who are
less fit. This is widely used and chosen for the GMAS, too.

In order to decide just how fit an individual is, one needs to calculate its
fitness f(i) according to the following formula:

f(i) =
g(i)

g

where

g =
n∑

k=1

g(k)

n

So, g(i) is the worth of an individual and g is the average worth in the whole
population. Clearly, g(i) should be higher than g(j) if i represents a better
solution than j. Defining function g is the trickiest aspect of selection and will
be discussed in detail later on. For now, we take the worth of a solution (TSP
tour) g(i) to be

best greedy length - tour described by i

This ensures, that shorter tours are rewarded with a higher function value
for g and therefore with a higher fitness than longer tours. It is also sufficiently
fast calculated which is important since this calculation takes place fairly often.
One characteristic that this definition of fitness does not possess is a broad
spread of individual fitness values.

All ants will find tours that are in the same order of magnitude. Initial
experiments even showed that the worst tour found is not more than twice as
long as the best tour. So individual values for the worth g are all pretty close
and the fitness values f range only between 0.5 and 1.5. It is desirable for this
range to be as big as possible and the influence of scaling this range will be
investigated in Section 6.3.

Having calculated the fitness value for every individual in the population,
we can build an intermediate population (IP) from which parents are chosen for
reproduction. This intermediate population should contain proportionally more
copies of the fitter individuals to increase their chances of mating.

If an individual is exactly as fit as the average of the population, then a
copy of this individual is placed in the IP. If the individual is twice as fit as the
average, then two copies of it will go into the IP. And if f(i) is has a fractional
part, then this part will give the probability of another copy of i being put into
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the IP (so for f(i) = 2.7 we have two copies of i in the IP for sure and with a
probability of 70% we also have a third copy).

This intermediate population represents the pool of individuals from which
parents are chosen for the recombination process. Note, that some unfit indi-
viduals may not be in this IP and therefore not eligible to proliferate. On the
other hand, very fit individuals will feature several times in the IP increasing
their chances of reproduction. After two parents are chosen and recombined in
a way described shortly, they are replace into the IP as is standard in all GAs.

/* sort population by tour length & calc. mean value for g */

intermPopu : [];

popuList = sort(popuList);

numOfAnts = listlen(popuList);

(maxLengthIn,_,_) = popuList#numOfAnts;

maxLength = maxLengthIn + 1;

mean = maxLength - averageLengthIn;

for x in popuList do

(Length,Beta,QZero) = x;

gValue = maxLength-Length;

fitness = gValue / mean;

(fitnessInt,fitnessFrac) = modf(fitness);

/* add the copies that go into IP for sure */

for y in 1 .. fitnessInt do

intermPopu := [(Length,Beta,QZero,fitness),..intermPopu];

;

/* probabilistically add an extra copy */

if fitnessFrac > rand(1) then

intermPopu := [(Length,Beta,QZero,fitness),..intermPopu];

;

;

The code snippet above shows how the intermediate population intermPopu
is created from a list of individuals that make up a generation. The variable
maxLengthIn holds the longest tour found by any member of this generation.
Empirically, this is always shorter than the length of the best greedy tour and
therefore sufficient to ensure that g is always positive.

Figure 6.4: Selection and recombination for the GMAS
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6.2.3 Recombination

After the intermediate population has been put together, recombination takes
place. For this we use a tournament method where two individuals are picked
and the fitter one is chosen as a parent, then two more individuals are picked
and the fitter one of those is chosen as the second parent.

The two parents then mate using uniform crossover. This is the only sensi-
ble way to recombine non-bitstring encoded individuals which have very short
chromosomes. Each gene of the single offspring is selected randomly from the
corresponding genes of the parents. Since there are only two genes in the chosen
encoding, any two parents can only produce one of four possible offspring.

Experiments have also taken place with a variant of uniform crossover. The
average value from both parents for a gene is taken for the offspring’s gene.
This proved unsuccessful, since characteristics that control the fitness of an
individual were smoothed. Hence values around the midpoint of the allowed
ranges dominated the population after few iterations.

Figure 6.5: Acromyrmex versicolor looking for mating partners

6.2.4 Mutation

Each gene of the offspring is then subjected to mutation with a small probability
pm. This was set to 0.1 which is much higher than the standard 0.001 but
justified by the short chromosomes used for the encoding of the parameter pair
(β, q0).

If a gene was chosen to be mutated, then the parameter value that is repre-
sented by the gene was increased or decreased by about 5%.
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6.2.5 Generation gap

Another decision that crucially affects the quality of the GMAS is the transition
from one generation to the next. Initially, the generational approach was taken,
replacing the whole generation by an equal number of generated offspring. This
is an area for ample experimentation.

Replacing the whole generation at once can be negative, if the fittest offspring
are less fit than the best individuals from the parent generation. Therefore, a
steady-state approach was investigated, too. This involved replacing only some
percentage r of the least fit individuals by offspring and various tests have been
conducted for r set to 10%, 20% and 30%.

It promises to keep selective pressure on the population to continuously im-
prove. However, the problem of early stagnation described in the next section
still persisted. Attempts to counter that stagnation were made, but failed to
show an improvement initially. One such attempt was to generate the next gen-
eration in three stages. One third was kept from the parent generation (the best
third of parental individuals), one third was generated offspring recombined as
explained before and the last third was a set of randomly generated individuals.

Figure 6.6: The three stages in a variant of the steady-state approach

It was hoped, that this would lead to more variety and counter the stagnation
behaviour, but failed to prove its effectiveness.

On the other hand, scaling the fitness values reduced the problem of prema-
ture convergence. Different scaling methods will be presented shortly after the
stagnation problem is described in more detail.
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6.3 Stagnation problems

The following stagnation problem was observed when running the GMAS on the
well-known problem instance Oliver30. The individuals with the lowest values
for β and the highest values for q0 dominated the population very quickly.

This is not unsurprising, since these individuals avoid exploration and focus
only on exploitation. A low β value ranks distance higher than pheromone
information. Also, a high value for q0 means that the locally best option is
chosen rather than any option probabilistically.

This leads to relatively short tours, since no exploration takes place. Ex-
ploration generally results in longer tours and therefore individuals who favour
exploration will be seen as less fit and their genes will vanish from the gene
pool. In rare cases exploration successfully finds a shorter tour, but generally
’exploration favouring’ gene values will be eradicated before they get a chance
to prove their worth.

’Exploitation favouring’ genes on the other hand come to dominate the pop-
ulation due to this premature convergence. One would really like to defer the
selection for a few iterations in order to give the ’exploring’ ants a chance to
find an improved tour.

β q0 shortest tour iterations
5.0 0.95 431.99 17
3.4 0.95 433.73 25
9.0 0.95 448.95 8
6.0 0.95 438.29 31
3.0 0.90 430.85 7
Averages: 436.76 17.6

Table 6.1: Five runs of the GMAS with breeding after each iteration

The table above shows the results of five runs of the GMAS for 400 iterations
each. Interestingly, in its original form it performed worse than the standard
ant system (remember, in Chapter 4 the average tour length was 434.44 after
100 iterations for the standard ant system).

The first two columns display the dominant parameter values which was
almost constant at the indicated value after a few iterations. The parameter q0

was very high for all runs as expected and β varied a lot. Remember, the valid
ranges for these two parameters are 0 ≤ q0 ≤ 1 and 2 ≤ β ≤ 13.

Stagnation set in after 17.6 iterations on average leading to the low quality
solutions and the variation in values for β. It shows that some individuals that
are fit early on in the execution dominate the population and reduce selection
pressure.
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A first attempt to counteract this premature convergence was done by run-
ning the normal ant system five times before using the genetic engine. The
fitness of each ant was dependent on the best of these five runs, eliminating the
randomness somewhat. An ant that randomly chose a bad path in one iteration
of the algorithm can subsequently perform better and hence increase its chances
of reproduction.

β q0 shortest tour iterations
3.0 0.90 429.86 32*5
5.0 0.80 430.54 24*5
6.2 0.65 428.10 39*5
3.0 0.95 433.68 54*5
3.8 0.75 432.71 65*5
Averages: 430.97 42.8*5

Table 6.2: Five runs of the GMAS with breeding after every five iterations

The experiment in Table 6.2 was run for 80 iterations, since each iteration
involved five tours generated per ant and a total number of 400 iterations was
needed to be able to compare the results with those in Table 6.1.

Firstly, the table reveals, that the solution quality has improved by roughly
1.5% on average. Also, the best tour was found after more than 200 iterations
on average, indicating that there is less stagnation (remember, the previous
experiment stagnated after 17.6 iterations on average). This was confirmed by
inspection of the actual individuals of the population.

While the previous experiment saw all members of the population to be
almost equal after 20 iterations, this did not happen for the second experiment.
Even after 200 iterations there was some variation in the population. The values
displayed for β and q0 in Table 6.2 represent rough averages of all individuals.

The literature describes other alternatives to the stagnation problem. All
these alternatives increase the selection pressure on the population. This pres-
sure ensures that the individuals keep evolving. The most famous ones are linear
scaling, sigma scaling and power law scaling where each of them scale the fitness
values of all individuals in the population in order to spread them out more.

As mentioned before, all ants will find tours that are in the same order of
magnitude and the fitness values f range only between 0.5 and 1.5. This means,
that all ants are almost equally likely to proliferate (or at least to go into the
intermediate population). Scaling their fitness values will mean that the least
fit individuals have an infinitesimal chance of reproducing whereas the fittest
ones are almost certain to mate.

Three scaling methods are described presently.
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6.3.1 Scaling methods

Scaling ensures, depending on the scaling function, that certain individuals or
groups of individuals increase or decrease their reproduction probability.

Having calculated the fitness value f(i) for each individual i and the average
fitness of the population f one can use one of the three methods below to obtain
f ′ as follows:

Linear scaling

f ′ = a · f + b

where a and b are chosen to make f ′ = f . The second constraint on a and
b defines the actual range. The highest value for f ′ is set to be a multiple of f .

Sigma scaling

f ′ = f − (f − k · σ)

where σ is the standard deviation of the population and 1 ≤ k ≤ 3.

Power law scaling

f ′ = fp

where p is application dependent and may need to be changed dynamically
during the execution.

Out of these three, power law scaling is the least popular. Linear scaling has
a flaw in that some scaled fitness values can be negative for very bad individuals.
While one can theoretically just assign zero to all negative scaled fitness values,
a better solution is to use sigma scaling.

Sigma scaling has been implemented and tested with parameter k set to 1,
2 and 3 in different test runs. Note, that sigma scaling can in some cases lead
to negative fitness values, too. This is the case especially for small values of k.

The graph in Figure 6.7 shows how sigma scaling effects the fitness of the
population. A typical generation from a run of the algorithm on the Eilon50
problem instance has been taken and sorted according to fitness values. It is
obvious, that scaling does not affect the relative order of the individuals in a
population, but their reproduction likelihood.

For example, using the original fitness values, all but the worst individual
can theoretically produce offspring. Individuals 41 to 49 as depicted in Figure
6.7 have small but non-zero probabilities of selection (remember, reproduction
probability is calculated as fitness of individual divided by average fitness of
population).
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Figure 6.7: Effects of sigma scaling on the fitness values of an ant population in
the GMAS

Using sigma scaling with parameter k set to 1, the same individuals have
no chance of creating offspring. Sigma scaling with k set to 3 even assigns a
small probability to the worst individual. This leads to the conclusion, that
the smaller a value for k is chosen, the more selection pressure is put on the
population.

An improvement to the algorithm could be achieved by dynamically changing
the selection pressure. Initially, there should not be too much selection pressure
because this would lead to premature convergence. However, after half of the
scheduled iterations have been executed, the value of k could be lowered to
increase the pressure on the individuals to perform.

In Table 6.3 the results of experiments with varying parameter k are dis-
played. Its influence on the performance of the GMAS is significant. In the
literature on genetic algorithms and sigma scaling in particular, the range for k
is given by one to three.

Smaller values of k would lead to the exclusion of too many individuals from
the recombination process. Choosing too high values for k would eliminate the
desired scaling effect.

All 15 runs have been executed for 200 iterations and all but one converged
to the highest possible value for parameter q0. Values for β on the other hand
remained varied throughout all runs. This may be due to the stronger influence
of q0 on the exploration/exploitation ratio. It seems as if the scaling attempts
successfully avoided premature convergence for parameter β.
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k β q0 shortest tour iterations
1 5.6 0.9 434.82 140
1 3.0 0.95 432.95 163
1 2.8 0.95 433.70 131
1 3.4 0.95 437.04 123
1 7.6 0.95 436.66 185

Averages: 435.03 148.4
2 7.2 0.95 430.96 177
2 3.0 0.95 433.68 174
2 5.0 0.95 432.28 95
2 5.2 0.95 435.29 71
2 3.6 0.95 435.45 176

Averages: 433.53 138.6
3 5.6 0.95 430.83 127
3 7.2 0.9 432.92 14
3 4.0 0.95 429.59 87
3 9.4 0.4 429.59 78
3 2.6 0.95 433.32 191

Averages: 431.25 99.4

Table 6.3: Results of the GMAS with sigma scaling for different k

However, q0 resisted the effects of scaling since a high value forces all ants to
exploit rather than explore and this is advantageous for the ants when it comes
to selection for the reproduction process.

The previous experiment allowed each ant to find five tours and only the best
one was used in the fitness calculation. This approach led to some variability
even of q0 and hence it is proposed to combine this approach with the sigma
scaling presented here.

To establish the justification of this claim an experiment was designed exe-
cuting five runs of 40 iterations each. In each iteration, each ant found 5 tours,
resulting in a total number of 200 iterations to allow for comparison with the
experiment from Table 6.3. The parameter k that controls the sigma scaling
of the fitness values was set to 3 since this seemed most promising given the
previous experiment.

It outperformed the previous experiments were either sigma scaling or less
frequent breeding was used. Combining these two procedures, the solution qual-
ity was 430.8 on average and was found after about 100 iterations (with 20
breeding operations).

This indicates that stagnation did not set in as early as before (remember,
in the experiment without modification, stagnation set in after 17.6 iterations).
Table 6.4 shows the results of five runs of this new algorithm.
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run number shortest tour iterations
1 431.48 24*5
2 429.33 13*5
3 430.59 24*5
4 433.46 21*5
5 429.33 22*5

Average: 430.838 20.8*5

Table 6.4: Results of the GMAS with sigma scaling and less frequent breeding

6.4 Comparison with the standard ant system

Comparing this novel Genetically Modified Ant System with the standard ant
system introduced by Dorigo in [DMC96], one can conclude that both systems
have a raison d’être.

Both systems achieve roughly the same accuracy or quality of solution. How-
ever, this assumes that feasible and appropriate parameters are supplied to the
standard ant system. Given sub-optimal parameters, the ant system will not
find the best solution as the author demonstrated in Section 5.4.

The GMAS is preferable in so far as it does not require the manual setting of
crucial parameters. Starting from random parameters, a genetic engine evolves
them to values that enable the system to find good solutions to the TSP instance
provided.

If on the other hand the optimal parameters are known then the standard
ant system should be used since in this case, it performs faster than the GMAS.
However, optimal parameters are only known for the few problem instances
investigated

Below one can find a comparison between the standard ant system and the
improved algorithm proposed by the author. The average tour length for the
Eilon50 problem instance after about1 100 iterations is displayed.

Algorithm Average tour length after 100 iterations
Dorigo’s ant system 434.44

GMAS 430.84

The runs for Dorigo’s standard ant system used the parameters that he
suggested. Remember, in Section 5.3 we showed that these parameters are
sub-optimal.

1the result from Table 6.4 is used here
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6.5 Summary

This chapter introduced the novel Genetically Modified Ant System. Firstly, the
motivation and changed metaphor from the animal kingdom are described.

This is followed by a walkthrough of the proposed implementation explaining
which encoding, selection method and recombination procedure is chosen. The
way mutation and the transfer from one generation to the next are handled is
the laid out.

Furthermore, the stagnation problem is described and different solutions to
this problem have been detailed. One of them, the so-called sigma scaling is
investigated more closely and found to counteract stagnation sufficiently.

The new system was then compared to and evaluated with respect to the
standard ant system. Its main advantage is that it eliminates the need of expert
domain knowledge and guess work to set the parameters of the ant system
algorithm. The system will automatically evolve parameters to help finding the
shortest tour for a given TSP instance.



Chapter 7

Conclusions

7.1 Contributions

Ant algorithms have first been proposed a decade ago by Marco Dorigo. Ant like
agents use indirect, positive feedback in a process called stigmergy to collectively
find good solutions to a given problem.

Since his PhD thesis[Dor92] was published, many researchers applied these
algorithms to a variety of combinatorial optimisation problems. However, the
algorithm itself did not undergo any major changes even though Dorigo was
aware of some of its shortcomings.

This project has demonstrated that the research field of ant algorithms is
far from matured. While this year marks the fourth repetition of the biennial
International Workshop on Ant Colony Optimisation and Swarm Intelligence,
many questions remain unanswered.

Research undertaken as part of this project succeeded in answering some of
them. The following points are the major achievements:

• Optimal parameters for the ant algorithm applied to a famous TSP in-
stance have been found.

• These optimal parameters led to a new shortest tour previously unknown.

• A classification for instances of the TSP has been defined.

• Problem dependency of optimal parameters has been shown by comparing
the optimal parameters for a number of problem instances. Furthermore,
goal dependency of optimal parameters has been shown in that differences
in required solution quality lead to differences in optimal parameters.

• A novel algorithm has been developed combining the ant algorithms with
ideas from evolutionary computing. This algorithm, the Genetically Mod-
ified Ant System has been compared to the standard ant system both in
terms of efficiency and quality.
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• Several parallelisation strategies have been proposed and tested and led
to an improvement in execution time of 85% over the standard version of
the ant system without loss of solution quality.

• An even higher speed-up has been found when a slight loss of solution
quality was accepted.

• Applications have been developed in April and DialoX to visualise and
experiment with different versions of the ant algorithm.

7.2 Future work

This project answered some of the open questions about ant algorithms. How-
ever, there is considerable potential for further research, both in new areas and
in the areas touched by the author.

More parallelisation This project was restricted to the use of six identical
computers from the DoC labs. Future work could attempt to employ one
of the most powerful computing resources in the UK, namely the Imperial
College Parallel Computing Centre.

Their systems provide a peak performance of nearly 50 GFlops/s allowing
for larger TSP instances to be tackled with the parallel versions of the ant
system presented in this report.

More TSP variants The Black-and-White TSP and the TSP with replenish-
ment arcs presented in Section 2.2.5 could be tackled with modified ant
algorithms. The author did promising initial experiments for the TSP
with replenishment arcs, but due to time constraints no results can be
reported yet.

Other optimisation problems The ant system and its variants have been ap-
plied to a variety of discrete and continuous optimisation problems ranging
from Quadratic Assignment Problems and Multiple Knapsack Problem to
Set Covering and Partitioning.

However, some famous optimisation problems have not been tackled with
ant algorithms yet. This is most often due to difficulties in finding a repre-
sentation of the solution space that can be travelled by ants. Researchers
continue to find solutions to these difficulties and apply the ant system to
an ever increasing range of problems.

Further analysis of the GMAS The analysis of the Genetically Modified Ant
System has been restricted to its application to the Travelling Salesman
Problem. It is believed, that the GMAS will be equally successful on other
optimisation problems. A first step would be to apply it to the Quadratic
Assignment Problem since there exist quite a few benchmarks for it.

While adopting the GMAS to other combinatorial optimisation problems
one could experiment with different aspects of the genetic engine used
in the GMAS. Concepts like encoding, scaling and selection offer various
options not explored during the course of this project.
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Teaching tools While all applications that have been developed for this project
focused on functionality rather than beautiful graphical user interfaces, it
should be straightforward to implement a program that can be used to
teach students the concepts and subtleties of ant algorithms. The appli-
cations presented should suffice as prototypes for this matter.
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Appendix A

Game of Life

Figure A.1: GameOfLife application depicting the fifth iteration of the pattern
known as Queen Bee Shuttle

97



98 Game of Life

As a preparation for this project, this implementation of the Game of Life
was used to experiment with thread creation and management. 400 threads
have been created to represent every cell on the game board.

It was found that this number of threads leads to a very slow execution of
the program. It was therefore decided to use TSP instances of no more than
100 cities for the ant system experiments.



Appendix B

Swarm platforms and
modelling environments

The recent research into swarm intelligent systems led to the development of
tools that facilitate the modelling of such systems. Particularly the domains of
social and economic studies lend themselves well to such a simulation. Here,
model building tools and swarm-alike modelling environments are presented.

StarLogo, NetLogo and Agentsheets are relatively simple products designed
to facilitate the understanding of decentralised systems especially for students.
They allow the creation of models through graphical user interfaces and do not
require extensive programming knowledge.

Swarm, Ascape and RePast on the other hand are advanced research ap-
plications. They are used extensively to explore social, economic and ecologic
behaviour in complex adaptive systems.

Only the six most wide-spread applications are introduced in detail. How-
ever, there are some less well known platforms and models, that are briefly
mentioned below:

Echo is a simulation tool derived from a general model of ecological systems.
It was conceived and designed by John Holland (the pioneer in the field of
genetic algorithms) in 1994 at the Santa Fe Institute[URLi]. The entities
and interactions in this model are highly abstract and Echo makes specific
commitments about agent types and interactions. It is highly correlated
to nature since an agent in Echo replicates as soon as it as acquired enough
resources to copy its ‘genome’. Echo also specifies structural features of
the environment in which the agents evolve, making it suitable to model
complex adaptive systems.

IMT (short for Integrating Modelling Toolkit) is the engine of the Integrated
Modelling Architecture (IMA) proposed in 1999 by Ferdinando Villa from
the University of Maryland. He observed that modelling requires:
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• paradigms for generating hypotheses

• specific semantics for describing scenarios subject to predictions of
these hypotheses

• techniques to ground the semantics with validation on real data

• modular tools (ideally designed by domain experts)

Its development seems to be in a somewhat paused state since Dr. Villa left
the University of Maryland. He is still conducting foundational research on
IMA semantics and is building a web presence[URLg] for the IMA which
is now a project of the Eco-informatics collaboratory at the University of
Vermont.

MadKit [URLh] is multi-agent platform built in Java. It provides general agent
facilities and allows many customisations. However it does not seem to be
very suitable for simulations involving thousands of agents that execute
in parallel.

Figure B.1: A very crowded screenshot of the MadKit platform
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B.1 StarLogo

StarLogo[URLa], developed at the Media Laboratory, MIT, Cambridge, Mas-
sachusetts was designed to help people to build their own models of complex,
dynamic systems. It was conceived by Mitchel Resnick and is a specialised
version of the Logo programming language.

Logo is both a philosophy of education and an evolving family of program-
ming languages. Developed more than 28 years ago as a dialect of Lisp, it is a
tool for learning. It is modular, extensible, interactive and very flexible. Requir-
ing little programming knowledge, it is suitable even for young children, while
also allowing sophisticated projects by advanced users.

The Logo environment is based around a ‘turtle’ that a user can control
by issuing commands to it. This ‘turtle’, originally a robotic creature, soon
appeared on graphical computer screens and can move around on a canvas,
using a pen to draw shapes and pictures.

StarLogo, a programmable modelling environment for exploring the workings
of decentralised systems, extends Logo by allowing thousands of these ‘turtles’ to
run around and draw on the canvas in parallel. They can carry out independent
actions and interact with each other. Their environment is made up of ‘patches’,
which are programmable themselves and can be modified by the ‘turtles’. The
‘turtles’ can sense their environment and base their actions upon what is sensed.
The third ingredient in StarLogo is the ‘observer’, which provides a bird’s eye
view, allowing the user to monitor and analyse the system. It furthermore
enables the creation of new ‘turtles’ and modification of the environment by the
user.

‘Turtles’ can represent anything from ants in a colony to antibodies in an
immune system. They are used to draw sophisticated mathematical images like
Sirpinski fractals and Gaussian distributions, simulate physical phenomenons
like diffusion limited aggregation and sinusoidal motion and analyse social sys-
tems like traffic jams or segregation in cities.

In Figure B.2 below, one can see how hundreds of termites gather randomly
distributed wood chips and pile them up nicely in clusters.

Figure B.2: Termites gathering wood chips simulated with StarLogo

Mitchel Resnick, StarLogo’s inventor, describes how all this is done in [Res94]
and demonstrates the applicability of StarLogo to simulations of swarm intelli-
gence.
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A main advantage of using StarLogo especially for children is the fact that
one does not require advanced mathematical or programming skills. The user
employs templates or writes simple rules for individual behaviour and then
watches many ‘turtles’ simultaneously follow these rules and the patterns that
arise in the system. It helps students and researchers to understand that birds
flock without a leader and ant colonies do not have a coordinator.

It is markedly well suited for ALife projects and many examples from biol-
ogy have been implemented using StarLogo. These examples range from bees
building honey combs and fireflies synchronising their flashing to termites piling
up wood chips and predator-prey behaviour.

B.2 NetLogo

The Centre for Connected Learning and Computer-Based Modelling at North-
western University took StarLogo a step further and developed NetLogo[URLe].
It is a cross-platform agent based parallel modelling and simulation environment
and fully programmable.

Similar to StarLogo, it is a Logo dialect extended to support unlimited num-
ber of agents and parallelism and is extremely well suited for modelling complex
systems. The user gives instructions to thousands of ‘agents’ (similar to the
‘turtles’ in StarLogo) that operate in parallel. NetLogo enables exploration of
micro-level behaviour of individuals and emerging macro-level behaviour that
results from the interactions of the individuals. It is simple enough for students
to run and build simulations but also advanced enough for use as a research
tool.

NetLogo is written in Java to be platform-independent and runs as a stand-
alone application. However, models generate by this application can be saved
as applets to embed them in a web-page. This allows the sharing of individual
models within a wide community of researchers and is a step forward from the
portability problems that plagued StarLogo.

An interesting novelty in NetLogo is a feature called HubNet, which allows
users to run ‘participatory simulations’. Each student controls an agent in a
simulation through networked computers or handheld devices. A classroom of
students could simulate the traffic in a virtual city where each student controls
a traffic light with the objective to make the traffic flow smoothly.

NetLogo provides extensive documentation, tutorials and a model library as
well as workshops organised by Northwestern University.
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B.3 AgentSheets

While most other platforms are available as open source software, AgentSheets
is a commercial product[URLf]. You can buy a single-user license for this agent
based Web authoring tool on-line for $120.

AgentSheets allows users, from children to professionals, to build appli-
cations through a graphical user interface. You can create agents with be-
haviours and missions and see how they interact. With the help of the unique
Visual AgenTalk r© tactile and a rule-based language, users can interact with
their agents via different modalities such as music, speech recognition and syn-
thesis.

Using this technology, a wide range of applications, from SimCity-like, inter-
active simulations to games and intelligent web agents can be built. However,
AgentSheets does not appear to be well suited for large-scale parallel simulations
due to the high maintenance cost of each individual agent.

Figure B.3: A ‘school of fish’ applet implemented using AgentSheets 1.4
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B.4 Swarm

Leaving the relatively simple products behind, a presentation of the more sophis-
ticated research applications follows now. The first on the list is Swarm[URLc],
originally developed at the Santa Fe Institute in New Mexico in 1994. Chris
Langton, Swarm’s inventor wanted to create a shared simulation platform for
agent based models that allows the study of spatial interaction, adaptive, hetero-
geneous agents and nested subsystems like economies, firms or markets. Swarm
should facilitate the development of these models and promote the study of
complex nonlinear systems.

This software package for multi-agent simulation of complex systems is in-
tended to be a useful tool for researchers in a variety of disciplines. According
to [SBD03], some scientific domains that use multi-agent based simulations are
sociology, biology, physics, chemistry, ecology and economy.

The basic architecture of Swarm is a of collection of concurrently interacting
agents. This architecture allows the implementation of a large variety of agent
based models. The Swarm project’s main contributions are:

• event management via swarms and activity library

• information management via probes

• graphical input and output via GUI objects

• memory management

• support for multiple languages

In the Swarm system, a swarm is a collection of agents together with a
schedule of events for these agents. It represents a model and allows construction
of hierarchical models whereby an agent is composed of swarms. The task of
observing the model is separated from the actual model and is implemented
using special ‘observer’ agents. This allows to change the model and observer
independently and makes Swarm stand out among its competitors.

Swarm is a collection of object oriented software libraries which provide
support for simulation programming. These libraries are written in Objective C
(a superset of C) and to write a simulation users needed to be able to program
in ‘Objective C’ and ‘Swarm’ to incorporate the libraries in their own programs.
However, in 1999 with the release of Swarm version 2.0, it became possible to
use Java to utilise the libraries, which made Swarm much more accessible for
researchers from non-computing backgrounds.

The software is available to the general public under GNU licensing terms
for multiple platforms. Note that Swarm is experimental software, so while it
is complete enough to be useful, it will always be under development. For this
purpose the Swarm Development Group (SDG) was founded in September 1999.
It aims to advance the state of the art in multi-agent based simulations, support
the Swarm community and promote the free interchange of simulation models
between computing specialists and the public.
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B.5 Ascape

Ascape[URLb] was developed at Brookings Institute to support agent based
research. It is designed to be a powerful (allow model interaction without pro-
gramming), expressive (enable users to define complete models with small de-
scriptions), flexible, abstract and high-level software framework for developing
and analysing complex model designs.

In Ascape, an agent object exists within scapes, which are collections of
agents such as arrays and lattices and these scapes are themselves agents. A
typical Ascape model is made up of collections of collections of agents. The
scapes provide a context for agent interaction and sets of rules that govern
agent behaviour. The management of graphical views, parameter control for
scape models and collection of statistics are some of Ascape’s features.

Advanced end user tools make it possible for people with little programming
experience to explore many aspects of model dynamics and give Ascape its
‘easy-to-use’ predicate.

Ascape follows some of the ideas behind Swarm. For example, the fact that
agents exist in scapes, which are themselves agents is similar to the hierarchical
models in Swarm. However, with the multitude of different tools to gather
statistics, create graphs and influence the simulation, Ascape is slightly easier
to use. It also provides the user with the ability to create movies of running
models.

The framework is written in Java, which makes it platform independent but
requires the user to possess some Java knowledge to code the models.

There is little written documentation, but a well maintained mailing list.
There are some biological, anthropological and economic models available at
The Centre on Social and Economics Dynamics at the Brookings Institute which
developed Ascape and is also responsible for the well known Sugarscape simu-
lation.

Figure B.4: A simulation of the well known Prisoner’s Dilemma as a Java applet
implemented using Ascape
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B.6 RePast with SimBuilder

The final application under consideration is called RePast[URLd] and was devel-
oped at the Social Science Research Computing lab at the University of Chicago.
It is a software framework for creating agent based simulations and both in phi-
losophy and appearance very ‘Swarm’-like. In addition to borrowing a lot from
the Swarm simulation toolkit, it also possesses some of Ascape’s features such
as run-time model manipulation with the help of GUI widgets.

RePast, which is an acronym for REcursive Porous Agent Simulation Toolkit,
provides a library of classes for creating, running, displaying and collecting
data from agent based simulations. It is written in Java and hence platform
independent.

RePast envisions a simulation as a state machine with two components:
infrastructure and representation. The infrastructure is similar to what Swarm
calls ‘observer’. It is responsible to run the simulation, display and collect data
and so forth. The actual simulation model however is termed ‘representation’.
All changes to the simulation occur through a schedule to provide clarity and
extensibility.

Two of the main aims of RePast’s developers are:

• to support the modelling of belief systems, agents, organisations and in-
stitutions as recursive social constructions

• to allow situated histories to be replayed with altered assumptions

However, neither of these aims has been achieved so far. On the bright side,
RePast can take snapshots of running simulations, and create Quicktime movies
of simulations.

SimBuilder, a rapid application development environment for RePast simu-
lations shall not be forgotten. It is a visual drag’n’drop editor that allows the
user to compose a simulation out of component pieces and specify the behaviour
of these pieces using a subset of Phyton, called ‘Not Quite Phyton’.

Without achieving its two main goals, there is no advantage in using RePast
over Swarm. The fact that RePast uses Java and has a visual simulation building
tool is no longer an argument since Swarm extended its list of languages one
can use.
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Implementation languages
and technologies

According to the Network Agent Research group at Fujitsu Labs, the develop-
ment of a multi-agent application demands the following characteristics of an
implementation language. It should:

• facilitate symbolic programming in a distributed environment

• possess the ability to define processes easily

• support easy inter-process communication

• have some macro processing features to extend the language

• support powerful data structuring to store the state of the environment

It is decided to use April, the Agent PRocess Interaction Language, devel-
oped by Clark and McCabe[CM94a] since it fulfils all the above listed require-
ments. April is a strongly typed, higher-order language that is ideal for building
multi-agent systems. It is implemented on top of the language C and uses a
standard TCP/IP protocol to pass messages between different April invocations.
It gives a very fast and portable foundation upon which multi-agent applications
can be built.

To allow agents on different machines to converse with each other, April em-
ploys the InterAgent Communication Model (ICM). This asynchronous commu-
nication model developed by Francis McCabe at Fujitsu Laboratories of America
is based on a store-and-forward message architecture that allows messages to
be sent (and later delivered) to agents even when they are offline.

April comes along with DialoX, a distributed HCI server, especially designed
for symbolic programming languages. DialoX, also created by Francis McCabe
at Fujitsu Labs provides window primitives and graphics capabilities to enable
the user to create graphical user interfaces easily. Since DialoX is a server that
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runs as a separate process, the application that utilises it has to communicate
with it through means of message passing.

These three technologies, April, ICM and DialoX are the main components
of all applications developed during the course of this project and will now be
presented in more detail.

C.1 April

April is a process oriented, symbolic programming language which combines
many of the features needed to implement a multi agent application. It is
distributed and has strong support for problem solving and knowledge repre-
sentation. Amongst its syntactic features are a strong type system, certain
higher order features and a macro processing sub-language, which can be used
to extend April by building layers on top of the basic language.

April was first released in 1994 and is in its fifth version currently. There is
ample documentation available as well as sample programs and HowTos describ-
ing how certain things can be achieved with April. Nevertheless it is only used
in academic and industrial research. It is currently maintained and supported
by Francis McCabe at Fujitsu Labs.

April is chosen as an implementation language for this project due to its
cheap forking of large numbers of processes. Agents are created by forking a
code closure as a processes either from the command line or as part of the
execution cycle of another agent.

Agents have their own thread of execution and communicate via message
passing. Their state is private and protected in that external sources can only
influence the state of an agent via a message and the agent can choose to ignore
that message. Some key features of April are presented below:

Publicly named processes - all April processes have names associated
with them. These names, also called handles, are a quartet of

• the target destination within the process (used for multi-threaded agents)

• the name of the process

• the home location of process

• the list of locations where the process may be found (current node, home,...)

The name and home fields combined give the agent an unique, global identifier.
Both the home and the locations field can be specified as DNS addresses, IP
addresses or URLs. A template for a handle is thus:

Target:Name@Home/[Location1, Location2, ...]
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For example:

comThread:theAntEnv@sync04.doc.ic.ac.uk/[146.169.50.134,127.0.0.1]

This denotes the communication thread within the agent that represents the
‘ant environment’ which registered with the communication server on machine
sync04 which can be found either there or on the local machine (note, sync04’s
and localhost’s IP addresses are in the location field).

These handles can be passed around as arguments to function or procedure
calls. Also, to send a message to a process P, one has to send it to the P’s handle.
Handles assigned by the programmer, such as comThread in the example above,
are local to the April invocation in which the process runs. However, they
can be made public by registering them with April communication servers that
operate just like Internet domain name servers. This allows for global April
applications.

Communication - is based on message passing. It uses the ICM described
in section C.2 to send a message between two processes. If the processes reside
on different host machines, then the message gets forwarded from the commu-
nication server (CS) of the sender to the communication server of the receiver.
This can be depicted as:

- - -
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�Process A local CS remote CS Process B

send forward receive

Figure C.1: The message flow between processes on different host machines

April’s communication is one-way asynchronous. That means, no event is
generated upon receipt of a message. Synchronous communication could be
achieved, if the sender blocks after the sending of the message and the receiver
immediately acknowledges the receipt.

Each process has a unique message receive buffer, in which a message is
put, if the process is identified as the receiver in a message send statement.
The message itself can be an arbitrarily complex symbolic structure and even
executable code (a prerequisite for mobile agents).

message >> handle_of_receiver;

The complement of the message send is the message receive. It comes in two
forms. A process can either receive a message from an unnamed process like so:

message <<;
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or from a named process like so:

message << handle_of_expected_sender;

The previous two statements require the term message to be a variable. One can
also restrict the types of messages a process can receive by using patterns. Pat-
terns in April are combinations of literals and variables. For example, suppose
a process only ever wants to receive pairs of the form (”Age”, 23) for varying
values of age. Then the message receive would use a pattern like so:

("Age",number?theAge) <<;

Note, that this requires the string ’Age’ to be spelt exactly as defined in the
pattern. So a message containing (”AGE”, 23) would not be matched and
remain in the message buffer.

Messages can also be received repeatedly like so:

repeat {

"FindTour" ->> actions1

| "DropPheromone" ->> actions2

| _ ->> "Unknown message received\n" >> stdout;

} until ’quit;

Note, the underscore on the third line matches everything. If an incoming mes-
sage is not the symbol ’quit and does not match either of the strings ”FindTour”
and ”DropPheromone”, then the underscore rule matches by default. The ac-
tion taken in this case in the above example would be to print an error message
(by sending another message to the process handle stdout).

If a message receive statement finds no message that matches its pattern in
the message buffer, then the process will suspend. Every time a new message
arrives for this process, it will be reactivated to check whether the new message
matches the pattern. If this is not the case, it will suspend again.

Another noteworthy point is, that messages are ordered by time of arrival
not by time of transmission except when they were sent from the same thread.

Environment - April is designed to be used in a heterogeneous environ-
ment. Applications written in other languages can communicate with an April
application using TCP/IP and functions and procedures developed in languages
other than April can be linked into April applications.

The other application will see the April system as some kind of intelligent file
while the April system treats the other application just as an ordinary process.
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Real-time - April has constructs in it which allow for synchronisation with
real-time events. Time-outs allow control over the length of time waited for a
message to avoid being suspended forever. For example, the repeat loop in the
previous example could be extended like so:

repeat {

pattern1 ->> actions1

| pattern2 ->> actions2

| _ ->> "Unknown message received\n" >> stdout;

| timeout 5 secs ->> actions3

} until ’quit;

This ensures that whenever the process does not receive any message for five
seconds, the actions specified as actions3 will be executed. This could just be
writing a warning on the screen, but it may also contain a leave statement, that
terminates the repeat loop.

Note however, it is very hard to guarantee exact timely behaviour in a multi-
tasking environment (since the garbage collected might use the CPU at exactly
the moment of the timeout), but April guarantees that the timeout will take
place as soon as possible after the specified time.

Higher-order features

April provides two higher-order features allowing anonymous definitions for
funcitons and modules. Lambda abstractions are anonymous functions that are
defined and executed in line as opposed to named functions which are pre-defined
and called in line.

Theta environments are anonymous (or named) programs or modules and
they are referred to as environments because they can contain local variables and
local functions and procedures. In the macro layer, the ‘program’ and ‘module’
statements are converted into theta environmetns like so:

‘ var; fun/proc; fun/proc.fun/proc’

where the ‘.’ operator executes the specified function or procedure when the
theta environment is elaborated.

Macro language - April’s syntax is extensible. It has an operator prece-
dence grammar that enables programmers to define new operators and incor-
porate them into a program. The semantics of the operators defined in such a
way can be specified using macro definitions.

These macro definitions are just rewrite rules that are applied to the program
text. Their general form is:
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#macro pattern ==> replacement

where pattern is very similar to the normal patterns used for matching in April
and replacement is a template describing the text that will replace the part
of the program that matched the pattern. Variables in the definition of the
replacement will have to be bound by the pattern matching operation that
precedes the replacement.

Note, that these rewrite rules have no information on the true type of an
expression but operate solely on the text of the program.

The order in which macro definitions are applied to the text of a program is
important, since several patterns from different macro definitions may overlap.
April’s macro language uses a inner-outer-last-first order. Inner expressions are
matched preferably over outer expressions, so that the smallest subexpression
that can be rewritten, will be chosen. If more than one macro definition applies
to the same subexpression, then the one defined last will be chosen.

The results of the application of all possible rewrite rules can be inspected
by running the April compiler with the -E option on the command line.

Mobility Since procedures and functions are first class data values (from
code fragments to whole agents), April lends itself naturally for mobile agent
implementations.

Mobility is achieved by sending these first class data values as closures to
other processes which can then either incorporate them (in the case of code frag-
ments) or launch them as a new process (in the case of agents). This increases
the interoperability between heterogeneous systems.

The execution stack is not serialised, so the agent starts at the beginning
of the code when it is re-launched at another location. Also, the original agent
(the sender) remains in place and can still receive messages as before (it could
forward them, for example).

Note, that no distinction is made by April between agent stations and mobile
agents themselves. Each agent can receive another agent and then travel to some
other place if it wishes to do so.

The interested reader is referred to references such as Jonathan Dale’s PhD
thesis on mobile agents for distributed information management[Dal97].

C.2 InterAgent Communication Model

When talking about how communication works in April, we mentioned the ICM
briefly. The InterAgent Communication Model is based on a store-and-forward
message architecture which is quite similar to the email protocol. The receiving
agent need not be on-line when a message is sent to it, since the message will
be stored until the agent goes on-line. This allows for implementations of truly
asynchronous applications.
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The ICM consists of three components:

1. A low-level encoding mechanism that formats arbitrary messages into a
more suitable form for transport across the network.

2. Communication servers (CS) that handle message routing, transportation
and delivery (minimises the use of system resources when communicating
with a large number of different host computers). CS run on a well-known
port on each machine.

3. A library of primitives enabling agents to send and receive messages asyn-
chronously, manipulate messages and converse with the communication
server. These primitives are programming language-independent and APIs
exist for April, Java, C, Prolog and Perl.

Each process has a handle (as described above) which is globally unique.
This allows the ICM to route messages easily between different agent platforms.
These messages contain structured content of the form of strings, numbers,
records, list or even executable code.

Since the ICM possesses the mechanism that encodes and decodes the mes-
sages, applications do not have to use predefined message format information.
This makes the ICM extensible since additional message oriented services can
be added to it. However, this is also considered a security hole and hence the
ICM was removed from April in its latest version.

The ICM specifies how messages are constructed and transported between
agent platforms. It sits logically ‘below’ an agent communication language.
KQML-style messages can be built in terms of the ICM’s simpler components.

C.3 DialoX

With the invention of DialoX, Francis McCabe tackled the well known user
interface problem that states that 70% of the development time of commercial
applications is spend solving user interface issues. Multiple windows and mouse-
driven interaction require tedious programming and DialoX aims to eliminate
this tedium. The goal of DialoX is to reduce the time it takes to program the
GUI of an application to 30%, leaving more time for the actual functional issues
and the correctness of the program.

For the project undertaken by the author of this report, DialoX was in-
strumental in the fast prototyping of applications to visualise the effects of the
ant algorithms. DialoX facilitate the GUI development enormously since it au-
tomates the layout of the user interface. On the other hand, this makes it
unsuitable for applications where the GUI needs to be laid out precisely by the
programmer.

At Fujitsu Laboratories of America, McCabe created this XML-based dis-
tributed HCI server called DialoX which interacts with applications via a special
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purpose protocol. The user interface is specified in an external XML file and the
application only invokes the top level window and then reacts to user interaction
which arrives at the application in form of a message.

In its initial version, DialoX was based on Gtk/Gnome but is now imple-
mented in Java to allow programmers of platform-independent applications to
use it. Currently, Twidle and McCabe are working on a new version which
will see DialoX extended by a scripting language to shift some of the compu-
tation from the application-side over to DialoX and thereby reduce the number
of messages flowing between the application and the DialoX server.

However, DialoX is not restricted to window primitives. It also has graphics
capabilities in form of the graph-widget, which can be specified in XML just
like buttons, labels and scroll boxes. We will now have a look at how a window
containing a graph widget and two buttons can be specified:

<window title="Blue Square and Two Buttons">

<col>

<row>

<graph var="theGraphVar" height="900" width="900">

<picture key="theSquare">

<poly thickness="2" color="blue">

<pt x="20" y="20"/>

<pt x="880" y="20"/>

<pt x="880" y="880"/>

<pt x="20" y="880"/>

</poly>

</picture>

</graph>

</row>

<row>

<button msg="okClicked">

OK

</button>

<button msg="cancelClicked">

CANCEL

</button>

</row>

</col>

</window>

This window represents a column in which two rows are stacked on top of each
other. The top row contains the graph widget and the bottom row contains
two buttons, labelled OK and CANCEL. If the user clicks the OK button, a
message containing the string okClicked is sent to the user. We will look at the
protocol in more detail shortly.
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Figure C.2: Example of a DialoX window with graph widget and two button
widgets

The graph widget in the example above specifies a drawing canvas of 900 by
900 pixels. It contains only one picture element, which contains a polygon. The
poly object itself contains four points which represent the corners of a square
which is to be drawn in blue.

The graph widget has a variable, namely theGraphVar, associated with it to
allow for future updates to the canvas. One could add other picture elements,
or even modify the picture element that contains the blue square. This modi-
fication requires the key of the picture element (theSquare in the example used
here) and instructions on how to change picture.

The interaction protocol mentioned above will be described now using Di-
aloX’s interfaces with April. Note however, that a standard TCP connection to
the server would be sufficient to send and receive XML tags as ASCII text.

Imagine the example with the graph widget and the two buttons from before
is saved in a file called blueSquare.xml. Then the following command will show
the window:

sio_term(1,xmlNode("open",[("url","./blueSquare.xml")],[])) >> DX;

The first argument to sio term is the message number to keep track of what
messages have been sent and received. The second argument is an XML descrip-
tion of what we want DialoX to do. The whole sio term construct is sent as a
message to the handle of the process that represents the DialoX server (denoted
DX in this example). If, after the window with the blue square is displayed, the
user presses the OK button, a message of the following form will arrive at the
April application that launched the window:
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sio_term(2,xmlNode("clicked",[],[xmlText("okClicked")]))

Using the message receive loop from section C.1 one can distinguish between
the buttons pressed and react accordingly:

repeat {

sio_term(_,xmlNode("clicked",[],[xmlText("okClicked")])) ->> act1

sio_term(_,xmlNode("clicked",[],[xmlText("cancelClicked")])) ->> act2

X ->> "Unknown message received: " ++ X^0 >> stdout;

until ’quit;

Upon receiving a message of the second type, the actions specified in act2 could
be something like:

’quit >> self();

which would send the quit symbol to itself and hence terminate the message
receive loop. Receipt of a message of the first type, on the other hand, might
result in a message send from the application to the DialoX server asking it to
update the graph widget.
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Oliver30 and other instance
data

Figure D.1: Best known solution to the Oliver30 problem instance of the TSP

117



118 Instance data

The enumeration of the cities indicates the formerly best known solution to
this problem instance from [SWF89]. The ant system found an improvement by
swapping over cities 1 and 2 and also cities 24 and 25.

Problem cities best length coordinates of cities
Oliver30 30 423.74 (2,99) (4,50) (7,64) (13,40) (18,54)

(18,40) (22,60) (24,42) (25,62) (25,38)
(37,84) (41,94) (41,26) (44,35) (45,21)
(54,67) (54,62) (58,35) (58,69) (62,32)
(64,60) (68,58) (71,44) (71,71) (74,78)
(82,7) (83,46) (83,69) (87,76) (91,38)

Eilon50 50 427.96 (5,64) (5,25) (5,6) (7,38) (8,52) (10,17)
(12,42) (13,13) (16,57) (17,33) (17,63)
(20,26) (21,47) (21,10) (25,32) (25,55)
(27,68) (27,23) (30,48) (30,15) (31,62)
(31,32) (32,22) (32,39) (36,16) (37,69)
(37,52) (38,46) (39,10) (40,30) (42,57)
(42,41) (43,67) (45,35) (46,10) (48,28)
(49,49) (51,21) (52,33) (52,41) (52,64)
(56,37) (57,58) (58,27) (58,48) (59,15)
(61,33) (62,42) (62,63) (63,69)

Eilon75 75 542.31 (6,25) (7,43) (9,56) (10,70) (11,28)
(12,17) (12,38) (15,5) (15,14) (15,56)
(16,19) (17,64) (20,30) (21,48) (21,45)
(21,36) (22,53) (22,22) (26,29) (26,13)
(26,59) (27,24) (29,39) (30,50) (30,20)
(30,60) (31,76) (33,34) (33,44) (35,51)
(35,16) (35,60) (36,6) (36,26) (38,33)
(40,37) (40,66) (40,60) (40,20) (41,46)
(43,26) (44,13) (45,42) (45,35) (47,66)
(48,21) (50,30) (50,40) (50,50) (50,70)
(50,4) (50,15) (51,42) (52,26) (54,38)
(54,10) (55,34) (55,45) (55,50) (55,65)
(55,57) (55,20) (57,72) (59,5) (60,15)
(62,57) (62,48) (62,35) (62,24) (64,4)
(65,27) (66,14) (66,8) (67,41) (70,64)

Table D.1: Coordinates of cities for three famous problem instances

These three problems have been used repeatedly in the past to compare
generic and specialised approximation algorithms for the Travelling Salesman
Problem.
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Parallelisation data

E.1 Local optimiser

Problem Machine 2-OPT Time Length off-%
Eilon75 m04 No 1655.1 548.73 1.18
Eilon75 m05 No 1632.6 561.08 3.46
Eilon75 m05 No 1517.6 560.51 3.35
Eilon75 m05 No 1634.2 552.12 1.81
Eilon75 m06 No 1704.5 553.69 2.10

Averages: 1628.80 555.226 2.38

Eilon75 m06 Yes 2055.8 556.25 2.57
Eilon75 m06 Yes 1954.3 551.51 1.69
Eilon75 m06 Yes 2147.0 545.62 0.61
Eilon75 m06 Yes 1848.2 551.20 1.64
Eilon75 m06 Yes 1901.0 545.90 0.66

Averages: 1981.26 550.096 1.434

Table E.1: Influence of local search on execution time
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E.2 Splitting the environment from the ant pro-
cesses

Problem Machine-Ants Machine-Env Time Length off-%
Eilon50 m06 m06 556.0 439.5 2.69
Eilon50 m04 m04 622.9 432.2 1.01
Eilon50 m04 m04 630.8 445.4 4.07
Eilon50 m04 m04 635.1 445.4 4.07
Eilon50 m05 m05 592.7 430.7 0.64

Averages: 607.5 438.64 2.496

Table E.2: Running ants and environment on the same machine

Problem Machine-Ants Machine-Env Time Length off-%
Eilon50 m02 m04 345.1 434.3 1.48
Eilon50 m02 m04 388.0 428.4 0.11
Eilon50 m05 m04 365.0 432.8 1.13
Eilon50 m06 m04 313.2 431.4 0.80
Eilon50 m03 m04 324.2 432.0 0.96

Averages: 347.1 431.78 0.896

Table E.3: Running ants and environment on separate machines
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E.3 Distributing the ant processes

Problem Machines-Ant 2-OPT Time Length off-%
Eilon50 m02 Yes 345.1 434.3 1.48
Eilon50 m02 Yes 388.0 428.4 0.11
Eilon50 m05 Yes 365.0 432.8 1.13
Eilon50 m06 Yes 313.2 431.4 0.80
Eilon50 m03 Yes 324.2 432.0 0.96

Averages: 347.1 431.78 0.896

Eilon50 m02/m06 Yes 274.8 429.4 0.33
Eilon50 m02/m06 Yes 275.4 432.2 1.01
Eilon50 m02/m06 Yes 275.3 431.1 0.73
Eilon50 m03/m06 Yes 270.9 432.2 0.98
Eilon50 m03/m05 Yes 277.6 445.4 4.07

Averages: 274.8

Eilon50 m02/m05/m06 Yes 258.2 445.4 4.07
Eilon50 m02/m05/m06 Yes 254.8 432.8 1.13
Eilon50 m02/m05/m06 Yes 268.3 431.4 0.80
Eilon50 m02/m05/m06 Yes 327.2? 432.0 0.96
Eilon50 m03/m05/m06 Yes 230.0 432.8 1.13

Averages: 267.7

Eilon50 m02/m03/m05/m06 Yes 274.3 432.2 1.01
Eilon50 m02/m03/m05/m06 Yes 240.1 428.4 0.11
Eilon50 m02/m03/m05/m06 Yes 271.6 442.2 3.32
Eilon50 m02/m03/m05/m06 Yes 259.6 433.0 1.19
Eilon50 m02/m03/m05/m06 Yes 260.7 428.4 0.11

Averages: 261.2

Table E.4: Running ant process on several machines
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E.4 Reduced communication

Local Attempts Machines-Ant 2-OPT Time Length off-%
2 m02/m05 Yes 125.2 431.1 0.73
2 m03/m06 Yes 127.6 433.0 1.19
2 m02/m06 Yes 195.7 ? 431.1 0.73
2 m03/m05 Yes 133.0 431.1 0.73
2 m05/m06 Yes 135.5 430.3 0.55

Averages: 143.4 431.32 0.786

5 m02/m06 Yes 67.9 435.0 1.65
5 m02/m05 Yes 71.4 435.2 1.69
5 m02/m06 Yes 68.6 429.8 0.44
5 m05/m06 Yes 71.7 433.7 1.34
5 m03/m06 Yes 70.8 435.2 1.69

Averages: 70.08 433.78 1.362

10 m02/m05 Yes 58.6 435.5 1.78
10 m03/m05 Yes 61.6 433.7 1.34
10 m05/m06 Yes 61.6 432.9 1.17
10 m03/m06 Yes 68.2 431.8 0.91
10 m03/m06 Yes 61.4 436.4 1.96

Averages: 62.28 434.06 1.432

14 m02/m06 Yes 64.9 431.3 0.79
14 m02/m06 Yes 64.8 432.2 1.01
14 m02/m05 Yes 61.6 435.7 1.82
14 m05/m06 Yes 62.8 439.6 2.73
14 m03/m06 Yes 59.8 432.8 1.14

Averages: 64.06 434.32 1.498

20 m03/m06 Yes 67.2 434.3 1.48
20 m03/m06 Yes 64.1 432.7 1.12
20 m03/m05 Yes 64.0 445.4 4.07
20 m02/m05 Yes 60.8 440.8 3.00
20 m02/m06 Yes 62.3 431.4 0.80

Averages: 63.68 436.92 2.094

Table E.5: Results of reduced communication experiments
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E.5 Subcolonies

Local attempts Machines-Ant 2-OPT Time Length off-%
1 m02/m05 Yes 190.6 432.2 0.99
1 m02/m05 Yes 188.4 432.2 0.99
1 m03/m05 Yes 189.0 431.1 0.74
1 m03/m05 Yes 184.3 432.8 1.13
1 m02/m03 Yes 193.8 434.3 1.48

Averages: 189.22

Table E.6: Using sub-colony communication one-way

Local attempts Machines-Ant 2-OPT Time Length off-%
1 m02/m05 Yes 167.1 432.7 1.11
1 m02/m05 Yes 171.2 428.4 0.11
1 m03/m06 Yes 165.7 428.4 0.11
1 m03/m06 Yes 176.0 431.1 0.74
1 m02/m03 Yes 168.1 432.8 1.13

Averages: 169.62

Table E.7: Two-way sub-colony communication and ants on two machines

Local attempts Machines-Ant 2-OPT Time Length off-%
1 m02/m03/m05 Yes 109.9 441.7 3.21
1 m02/m03/m05 Yes 120.4 433.4 1.29
1 m02/m03/m05 Yes 124.2 433.0 1.17
1 m02/m03/m05 Yes 120.6 430.5 0.59
1 m02/m03/m05 Yes 116.4 432.7 1.11

Averages: 118.3

Table E.8: Two-way sub-colony communication and ants on three machines

Local attempts Machines-Ant 2-OPT Time Length off-%
1 m02/m03/m05/m06 Yes 97.1 429.8 0.44
1 m02/m03/m05/m06 Yes 83.9 431.3 0.79
1 m02/m03/m05/m06 Yes 81.5 428.5 0.13
1 m02/m03/m05/m06 Yes 75.4 437.7 2.29
1 m02/m03/m05/m06 Yes 92.7 431.7 0.88

Averages: 86.12

Table E.9: Two-way sub-colony communication and ants on four machines
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Sample execution trace

Output for the Oliver30 Problem with best known result 423.74

0 602.191680952806 481.179537073577 481.179537073577 51.9362556922699
1 539.120789066102 460.504631807133 460.504631807133 46.6464303172493
2 546.827703374946 444.56788548067 444.56788548067 39.1456527958425
3 514.363459582563 441.002547633235 441.002547633235 44.3897895019038
4 523.377283318957 455.394567903649 441.002547633235 39.3268174314845
5 522.499390913142 453.224171598663 441.002547633235 32.7581073836472
6 523.049041994126 437.406557794296 437.406557794296 51.7935059462957
7 531.279551351457 465.310297608873 437.406557794296 37.5386865650413
8 506.465951505182 425.820140589076 425.820140589076 39.8639118203405
9 525.733262064195 454.928575298146 425.820140589076 39.4933670634493
10 508.247941669055 430.949077800447 425.820140589076 39.3203173169933
11 517.811168097665 425.820140589076 425.820140589076 40.2834618737472
12 521.354553136352 447.917022468885 425.820140589076 39.4782091805378
13 516.298260156901 442.124716717941 425.820140589076 35.6938919522941
14 510.440243121162 443.908240791291 425.820140589076 47.0416828714723
15 514.787382109178 444.740688473083 425.820140589076 43.6875091176694
16 522.36592080706 425.820140589076 425.820140589076 44.7595623345933
17 509.760945591483 444.110806898799 425.820140589076 42.2229648730764
18 513.086804604047 452.113899236964 425.820140589076 41.8458013905418
19 508.789460776726 443.861821194275 425.820140589076 39.239197754526
20 516.018224366652 425.820140589076 425.820140589076 42.1331733034413
21 521.622720516464 451.44210273346 425.820140589076 49.8176150956573
22 518.851355616363 446.990640662187 425.820140589076 44.3915505323419
23 508.142544273972 435.275227566801 425.820140589076 41.1320371080417
24 514.360459518876 434.922496816667 425.820140589076 43.8205842833484
25 515.051343673296 435.575387639329 425.820140589076 36.9717250855875
26 518.096345324004 447.046937335453 425.820140589076 36.5152518706797
27 517.538130195142 444.10348967671 425.820140589076 41.5084345554057
28 520.096823828178 425.820140589076 425.820140589076 45.2742021978376
29 514.65219668635 425.820140589076 425.820140589076 41.5441613243873
30 513.241498574045 455.3688640232 425.820140589076 31.1607313537418

Columns represent, in order, iteration number, iteration average, iteration
best, global best so far and standard deviation of current iteration. The fact,
that the last column shows a number bigger than zero means that no stagnation
has occurred yet.

A very good solution (0.49% off the optimal one) is found after 8 iterations.
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