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Abstract. We describe an application of Abductive Logic Program-
ming (ALP) to the analysis of an important class of DNA microarray
experiments. These experiments measure differences in expression lev-
els of whole genomes in differing environmental conditions and/or after
deletion or overexpression of one or more genes. Their aim is to ob-
tain insights about gene interactions and gene pathways. We develop
an ALP theory that provides a simple and general model of how gene
interactions can cause changes in observable expression levels of genes.
Input to the procedure are the observed microarray results; output are
hypotheses about possible gene interactions that explain the observed
effects. A key feature of the model are parameters that encode different
biological assumptions and provide a means of constraining the search
for possible hypotheses. We have applied and evaluated our approach on
microarray experiments on M.tuberculosis and on S.cerevisiae (yeast).
Comparison of inferred hypotheses against known gene regulation net-
works and known gene functions in the biological literature provide a
form of independent validation of the model.

1 Introduction

In recent years the focus in bioinformatics has shifted from the analysis of genome
sequences, now available in their entirety for several organisms, to functional ge-
nomics, which broadly described seeks to ascribe biological function to genes,
groups of genes and other genome features, and to understand gene interactions.
One of the most important tools in these studies is DNA microarray technology.
DNA microarrays measure expression levels of thousands of genes simultane-
ously. One common form of experiment aims at identifying genes whose expres-
sion is affected by environmental conditions or by changes in expression of other
genes. The aim is to obtain clues about gene interactions and unravel pathways
that define the cell’s responses to various stimuli. The datasets generated by such
experiments are too large and complex for manual analysis. The raw data are
analysed using statistical techniques to establish which genes have been signifi-
cantly differentially expressed. Methods for further interpretation of the results,
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in terms of identifying gene interactions and pathways, remain largely undevel-
oped, however, though Bayesian Networks have recently attracted attention (see
e.g. [2]).

In this paper we formulate the analysis of this type of microarray data as
a problem of abduction, that is, inference from observable effects, in this case
the microarray gene expression data, to possible causes, explanatory hypotheses
about possible gene interactions that would account for the observable effects.
We construct an Abductive Logic Program (ALP) theory which provides a sim-
ple, general model of how gene interactions can cause changes in observable
expression levels of genes—essentially a formalisation of the (usually implicit)
reasoning used by biologists when designing microarray experiments of this type.
It is clear that there may be exponential numbers of compatible hypotheses in
the general case, in which every gene is possibly related to other genes. A key
feature of the model are adjustable parameters that allow us to constrain the
search for possible hypotheses and apply the methods to realistically large data
sets. The gene relations abduced are then further processed to construct possible
interaction networks.

The methods are being developed and evaluated on microarray experiments
on Mycobacterium tuberculosis and S. cerevisiae (yeast). The model is validated
by comparing the explanatory hypotheses generated against known gene inter-
actions in these organisms and by assessing the biological plausibility of the
hypotheses where detailed information is lacking. These hypotheses in turn are
intended to help our biological collaborators design a new series of microarray
experiments. Section 3 presents three examples of inferences obtained from the
M. tuberculosis datasets, including one which re-discovers part of the heat shock
response pathway reported in the biological literature. At this stage the vali-
dation of the model is still fragmentary. Currently, we are testing the model
on microarray data on yeast, an organism for which there are large amounts of
publicly available experimental data and for which gene interactions are com-
paratively well understood and documented.

To avoid any misunderstanding, we want to state explicitly that we are aware
there are a great many issues, and other experimental techniques, in the search
for gene regulation mechanisms. We are restricting attention here to one possible
form of analysis, of one of many types of experimental data. The emphasis in
this paper is on the ALP model and its implementation.

2 The Model

The microarray experiments we use can be divided into four groups. They com-
pare expression levels of:

1. A mutant sample against the wild type;
2. A sample exposed to an environmental condition against the wild type;
3. A mutant sample exposed to an environmental condition against the wild

type;
4. A mutant sample exposed to an environmental condition against another

(usually wild type) sample exposed to the same environmental condition.



Gene mutation involves either gene inactivation (e.g. by knock out) or over-
expression (rendering a gene constantly active). The environmental change can
be either deprivation of a compound/nutrient or exposure of the organism to
extreme conditions, e.g. heat shock, or to abundance of a compound/nutrient.

Input to the abduction procedure is a collection of observations expressed as
logic assertions of the form increases expression(Expt, Gene) and reduces expression(Expt,
Gene). These are obtained by a (standard) statistical analysis of the raw mi-
croarray data to determine the significance of measured differences of expres-
sion levels of each gene (see e.g. [6]). increases expression(Expt, Gene) and re-
duces expression(Expt, Gene) represent that the statistical significance of differ-
entiated expression of gene Gene in experiment Expt exceeds a specified thresh-
old. The value of this threshold can be adjusted.

The output from the procedure is a set of abducible relations of two different
types: induces(Gene1,Gene2) and inhibits(Gene1,Gene2) for the hypothesis that
Gene1 induces the expression of Gene2, or inhibits it, respectively. Each individ-
ual experiment provides partial clues about possible induces/inhibits relations
between genes. Unlike e.g. the methods based on Bayesian Networks referred to
earlier, which analyse one experiment at a time, our abductive method seeks
sets of explanatory hypotheses that account for the combined observations of
many experiments together, of all four types in the list above. Some examples
are provided in the later sections.

2.1 The ALP Framework

The modelling framework we employ is Abductive Logic Programming (ALP)
[3, 9], an extension of logic programming that allows declarative logical repre-
sentations of the problem domain and supports abductive reasoning. In ALP, a
theory is represented by a triple (P, A, IC ), where P is a logic program, A a set
of abducible predicates and IC is a set of classical logic formulae, the integrity
constraints.

Definition 1. Given an abductive logic theory (P, A, IC ), an abductive expla-
nation for a query (observation) Q is a set ∆ of ground abducible atoms on the
predicates A such that:

– P ∪∆ |=LP Q

– P ∪∆ is consistent
– P ∪∆ |=LP IC .

where |=LP denotes some standard logical entailment relation of logic program-
ming.

The abductive explanation ∆ represents a hypothesis, which together with
the model described in program P explains how a nonempty experimental ob-
servable Q could hold. In practice abductive explanations are also required to
satisfy some minimality and other evaluation criteria. In this application we do
not require that the abductive explanations are minimal. Non-minimal hypothe-
ses may still be of some biological interest.



The role of the integrity constraints IC is to impose additional validity re-
quirements on the hypotheses ∆. They are modularly stated in the theory, in
addition to the basic model captured in P . They are used to augment any partial
information on the abducible predicates or to impose other constraints on the
abductively generated explanations. They can also be used, as explained below,
to steer the search for specific forms of explanation that our domain experts are
looking for.

2.2 Gene interactions

Top-level Rules The program P of the ALP theory represents how gene in-
teractions can increase or reduce the expression of genes, as observed in the
experiments. An assumption is that such observed variations in gene expression
should be attributed directly or indirectly to the variations (gene mutations or
environmental stress), carried out in the experiment(s) investigated.

For example: if an experiment E knocks out a gene G, and G inhibits gene
X, then E will show an increased expression of X — subject to some possible
exceptions. This rule is expressed in logic programming notation as follows:

increases expression(E, X) ← (1)
knocks out(E, G), inhibits(G, X),
not incr affected by other gene(E,G,X),
not incr affected by EnvFact(E, X).

E is a variable that ranges over names of experiments and G, X are variables
that represent genes. increases expression(E,X) is observational data from the
experiment E, inhibits(G,X) is part of the unknown information to be abduced,
and knocks out(E,G) provides background knowledge about the experiment E.

The last two conditions of rule (1) express possible exceptions: it could be
that (a) the expression of gene X is affected by a gene other than G which
cancels out the effect of G on X, or (b) the expression of gene X is affected by an
environmental factor (e.g. heat shock, or nutrient deprivation) of the experiment
E. Here not is the logic programming construct ‘negation as failure’, used to
express that (1) is a default general rule subject to the stated exceptions. The
treatment of exceptions in the abductive process is discussed below.

Similarly, the following rule deals with the cases of reduced expression of G
in experiment E:

reduces expression(E, X) ← (2)
knocks out(E, G), induces(G, X),
not red affected by other gene(E,G,X),
not red affected by EnvFact(E, X).

There are similar rules that cover the cases of over-expressing G in the ex-
periment E, and other rules that deal with the various combinations of gene
mutation and changes in environmental conditions identified in the classification
of experiment types listed in the previous section.



The rules (1) and (2) only account for direct relationships between the mu-
tated gene G and the differentially expressed gene X. These relationships could
be indirect: it might be that G regulates X via some intermediary gene Gx. In-
ference of intermediate steps of interaction is accommodated by the addition of
further rules containing recursive steps, as follows:

increases expression(E, X) ← (3)
mutates(E, G), intermediary gene(E, Gx, G),
reduces expression(E, Gx), inhibits(Gx, X),
not incr affected by other gene(E,Gx,X),
not incr affected by EnvFact(E, X).

If gene Gx inhibits gene X, and the expression of gene Gx is reduced (directly or
indirectly) by the mutation (knock out or over-expression) of gene G in experi-
ment E, then the expression of X is increased in the experiment E. The relation
mutates(E,G) covers both knock-out and over-expression of gene G in the ex-
periment E. The relation intermediary gene(E, Gx, G) is one of the parameters
of the model, as discussed below.

The Exceptions: The exceptions deal with the possibility that the difference
in gene expression can be attributed to a factor other than the mutated gene. The
first exception in (1) is captured by the relation incr affected by other gene(E,G,X),
defined as follows:

incr affected by other gene(E,G,X) ← (4)
increases expression(E, Gx),
Gx 6= X, Gx 6= G,
related genes(Gx, G), induces(Gx, X)

incr affected by other gene(E,G,X) ← (5)
reduces expression(E, Gx),
Gx 6= X, Gx 6= G,
related genes(Gx, G), inhibits(Gx, X).

Rule (4) expresses the possibility that some gene Gx (other than G), whose
expression is observed to increase in the experiment E could induce gene X and
therefore cancel out the effect of the knocked out gene G on gene X. In that
case we would not necessarily expect to see an increase in expression of X in
experiment E, even if G does inhibit X. Rule (5) deals with the case where
another gene Gx, whose expression is reduced in experiment E, inhibits gene X
and therefore cancels out the effects on gene X of knocking out the inhibiting
gene G in the experiment.

Both rules (4) and (5) refer to the abducible relations induces and inhibits.
The abductive procedure will search for combinations of induces and inhibits that
explain the observed increase/reduction of expression levels in an experiment
whilst taking into account these exceptions.

The second exception in (1) is captured by incr affected by EnvFact(E,X).
This relation is completely defined, in the sense that it does not depend on
the abducible relations. It holds when the increase in expression of X can be



attributed to an environmental factor in experiment E. It is evaluated by com-
paring the expression level of the gene to its level in another experiment where
a wild-type sample has been exposed to the same environmental stress.

There are several implementations of the ALP framework available. We em-
ploy a modified version of the implementation obtainable from [4]. This has the
feature that abductive hypotheses and negation as failure literals not B, which
computationally are treated as abducibles, are evaluated only when they are (can
be made) ground. In this case if B is a consistent hypothesis (i.e., B fails in the
program P extended with the final set of hypotheses ∆), then not B is included
as part of the explanatory hypothesis generated (as opposed to attempting to
further decompose the not B hypothesis into constituent parts). This simple
treatment of not B is appropriate for the representation of exceptions to default
general rules required in this application; more general forms of abduction and
abductive computation (see e.g. [?,1]) could be employed but do not seem to
add significant extra value in this application.

The Parameters: The rules that define the first exception contain the para-
metric condition related genes(Gx, G). This condition selects the genes we take
into account when searching for hypotheses.

Parameters such as this are used to reduce the space of possible hypotheses.
For example, the relation related genes(Gx, G) can be defined in such a way
that Gx is ‘related’ to G when gene Gx is a regulator of known similar function
to G. By varying the definition of the relation related genes we can explore and
test different possibilities of the model. (There is no loss of generality because
related genes(Gx, G) can also be defined to hold for all genes Gx and G.)

The relation intermediary gene(E, Gx, G) appearing in rule (3) is another
example. Again, its definition can vary, to generate and test different forms of
explanatory hypotheses. A simple definition specifies that any regulator gene Gx
except for the mutant gene G of the experiment E is a candidate intermediary
gene. We can further restrict the search for candidate intermediary genes by
formulating integrity constraints that consider only those regulator genes that
are affected (increased or reduced expression) in the experiment E.

We cannot over-emphasis the importance of these parameters. In the general
case there may be an exponential number of possible hypotheses. The parameters
allow us to constrain the problem.

2.3 Validity requirements

The integrity constraints IC express the validity requirements imposed on the
abducible relations. We form constraints of three different types.

(1) self-consistency: For example, a gene cannot both inhibit and induce the
same gene at the same time (under the same conditions):

← induces(G1,G2), inhibits(G1,G2). (6)

(We write all integrity constraints in clausal form, with all variables implicitly
universally quantified as usual.)



(2) consistency with background information: For example, we may know
that a certain gene g does not have an inhibitory effect on any gene. We express
this background knowledge by constraints of the form:

← inhibits(g,G).

In bacterial genomes, an operon is a group of genes that reside next to each other
along the same DNA strand and are expressed together on the same mRNA.
Usually, the products of these genes take part in the same biological processes,
but have different functions. It can be assumed therefore that two different genes
G1 and G2 of the same operon cannot both induce the same gene X, expressed
as an integrity constraint as follows:

← induces(G1,X), induces(G2,X), same operon(G1,G2).

There is also a similar constraint for the inhibits relation. The relation same operon
is computed from known information on gene function and location on the
genome that we add as further background knowledge to the model.

(3) experimental consistency: When analysing the results of an experiment
E in which a gene G is mutated, we may want to consider as ‘intermediary genes’
only genes whose expression is also observed to be affected in experiment E. This
restriction is expressed by the integrity constraint:

affects(E, Gx) ← intermediary gene(E, Gx, G), mutates(E,G).

where affects(E, Gx) is defined as the disjunction of increases expression(E, Gx)
and decreases expression(E, Gx).

This is an optional integrity constraint. These provide a third type of param-
eter for the model. Validity requirements are modular and can easily be changed
without requiring further restructuring of the model. Different aspects of the
model can be tested easily by changing the integrity constraints. For example,
the integrity constraint (6) is not always appropriate, since it is possible that G1
induces G2 in one set of experimental conditions but inhibits G2 in another.

2.4 Inference of Paths

The model, as described above, outputs a set of binary gene relations in the
form induces/2, inhibits/2. These relations are not transitive: if G1 induces G2
and G2 induces G3, this does not necessarily mean that G1 induces G3. In all
but the simplest organisms, whether a gene G1 induces/inhibits a gene G2 may
depend on how G1 itself was expressed. It may be that G1 induces G2 when G1
is induced by a gene G3 but not when it is induced by another gene G3′. The
inferred induces, inhibits relations can be composed into gene interaction paths,
but these paths must be consistent with what is observed in the microarray
experiments.

We define a gene path as the longest loop-free chain of the form R1(g0, g1), R2(g1, g2),
. . . , Rn(gn−1, gn) where each Ri is either induces or inhibits and for every gi,



apart from gn, there is an experiment E that (i) mutates (knocks out or overex-
presses) gi, and (ii) either increases or reduces expression of every downstream
element Ri+1(gi, gi+1), . . . , Rn(gn−1, gn).

The model can be formulated so that the hypothess generated are gene paths
rather than induces/inhibits relations. However, since the induces/inhibits hy-
potheses already provide valuable insights, we prefer to leave the model un-
changed and construct gene paths from induces/inhibits hypotheses in a sep-
arate, and optional, post-processing phase. The path generation program: (1)
selects all terminal elements of the paths, (2) recursively propagates the paths
by selecting every upstream element that is consistent with the path definition,
and (3) removes any sub-chains from the set of valid paths. Sub-chains are paths
that appear as fragments of longer paths.

Similarly, the raw induces/inhibits hypotheses are subjected to a further (op-
tional) post-processing stage where we look for cases where several regulatory
genes are needed together to activate a target gene.

3 Application: M. tuberculosis

The methods described in this paper are being developed and evaluated using
datasets from experiments on M. tuberculosis obtained from two sources: our
collaborators at the Centre for Microbiology and Infection (CMMI) at Imperial
College London [6], and the publicly available tables from the Schoolnik lab at
Stanford University [10].

Datasets from 14 microarray experiments containing approximately 300 genes
each are stored in a relational database together with information from the
Sanger Centre [11] about the sequenced strain M. tuberculosis H37Rv including
predicted gene product, gene length, links to other resources such as GenBank,
and a standard classification of known gene function. We also have information
from the Institut Pasteur about transcriptional regulators.

In order to perform an analysis of these experimental data, selected portions
of the database, usually covering observations from several different types of
experiment together, are converted into logic programming notation and input to
the ALP system. We have also developed a set of visualisation tools for displaying
both experimental data and inferred hypotheses in the form of directed graphs,
constructed using a modified version of the graph-layout software in the open
source Graphviz package from AT&T Laboratories [14]. A web-based front-end
to explore and manipulate the graphical displays is also available [5].

The examples below demonstrate the functionality of our model. In each
case the parameters related genes and intermediary gene were defined to restrict
attention to possible interactions between 16 genes of known regulatory function.

A simple observation For a first illustration, we attempt to explain a single obser-
vation from a single experiment. The observation increases expression(hspR,Rv0350)
represents that the difference of expression levels of gene Rv0350 in experiment
‘hspR’ exceeded the specified significance threshold. ‘hspR’ is an experiment in
which a mutant sample with gene Rv0353/hspR knocked out is compared against



the wild type. The output is a hypothetical explanation, presented in the form
of a list:

Hyp = [inhibits(Rv0353,Rv0350),
not(induces(Rv0352,Rv0350)),
not(incr affected by other gene(hspR,Rv0350,Rv0353)),
not(affected by EnvFact(hspR,Rv0350))]

Every element in the hypothesis (list) is either a positive or negative ground
abducible or a negative ground non-abducible. Starting from the bottom: the
gene Rv0350 in experiment hspR is not affected by an environmental factor; the
increase in expression of Rv0350 in experiment hspR is not due to the effect of
a gene other than the knocked out gene (Rv0353); Rv0352, which is a candidate
intermediary gene, does not induce Rv0350 (because there is no experimental or
background evidence supporting this hypothesis); and finally, Rv0353 inhibits
Rv0350 (since in an experiment where Rv0353 has been knocked out, its expres-
sion appears increased and cannot be explained in any other way).

Explaining two observations The second example demonstrates how the recursive
rules can identify possible intermediary genes in the interaction network.

The input is reduces expression(sigH, Rv2710), representing that the expres-
sion levels of gene Rv2710 in experiment ‘sigH’ exceeded the specified signif-
icance threshold. ‘sigH’ is the name of an experiment that knocks out gene
Rv3223c/sigH (i.e. it compares a sample with gene Rv3223c/sigH knocked out
against the wild type). In this case the system produces two explanatory hy-
potheses:

Hyp = [induces(Rv3223c,Rv2710)]
Hyp = [induces(Rv3223c,Rv1221), induces(Rv1221,Rv2710)]

(The negative abducibles have been omitted for clarity.)
The first hypothesis states that the experimental observation is explained if

Rv3223c induces Rv2710. The second hypothesis identifies a candidate interme-
diary gene, Rv1221. There is a way of discriminating between these two hypothe-
ses, because there is an experiment, ‘sigE’, which knocks out Rv1221. Indeed,
when we seek to explain the observations reduces expression(sigH, Rv2710) and
reduces expression(sigE, Rv2710) together, only one hypothesis is generated:

Hyp = [induces(Rv3223c,Rv1221), induces(Rv1221,Rv2710)]

The ability to analyse many experiments together in this fashion is a distin-
guishing feature of our method. In general, the more observations we attempt
to explain at the same time, the more coherent the hypothesis, as there is more
information available to reject alternatives.

Of course, if there is noise or error in the experimental data there may be no
hypothesis which can explain all observations. Micro-array data is notoriously
unrleiable. The significance thresholds values used in the first-phase statistical
analysis of raw data are deliberately chosen to be conservative. We are currently
experimenting with the model to determine how sensitive it is to decisions about
these significance thresholds.



Heat Shock Response As a final, more realistic, example, selected observations
were analysed from five different microarray experiments together. Each knocks
out or over-expresses a gene believed to be involved in heat shock response
and also known to function as a transcriptional regulator (i.e., a regulator of
expression of other genes). The experiments sigE, sigH, hrcA, hspR measure the
effects of knocking out genes Rv1221, Rv3223c, Rv2374c, Rv0353, respectively,
and experiment dnaJ over-expresses gene Rv0352.

Analysis of the observations in all five experiments together generated a
single hypothesis that explained all the observations. The hypothesis is shown
in graphical form in figure 1.

Fig. 1. The nodes represent genes, colour coded according to a standard functional
classification. The edges show the inferred relations between genes, red for inhibits

and green for induces. The cyclical edges represent the auto-regulation relationships
abduced. In the visualisation tool, operons are drawn as clusters of genes. Clusters are
omitted in this diagram to aid readability.

The resulting hypothesis is in agreement with previous knowledge about these
regulators [6]. It represents a subset of the heat shock response pathway. For
example, the DnaK operon (genes Rv0350–353, appearing on the right of the
figure) is controlled by the positive regulator sigH (Rv3223c) and the negative
regulator hspR (Rv0353). The acr2 operon (genes Rv0249c–251c, at the top
left of the figure) is controlled by the positive regulator sigE (Rv1221) and the
negative regulator hspR (Rv0353). The groES/EL genes (Rv3417c–Rv3418c) are
under dual negative control by hspR (Rv0353) and hrcA (Rv2374c).

Known feedback loops are also discovered. For example, the DnaK operon
(Rv0350–353) is negatively regulated via its own fourth member Rv0353 thus
producing a feedback loop.



Finally, there is a group of genes whose function in heat shock response is not
clear but which are linked in the explanatory hypothesis generated. For example,
the genes Rv0249c and Rv0250c are both unknown genes, both repressed (inhib-
ited) by hspR, both next to Rv0251c (acr2) in the chromosome. This could be
a real effect, suggesting that they are in an operon, or it could be some artefact
due to their place on the chromosome and the way the microarray chip collects
the data. Similarly, Rv0990c and Rv0991c could also be members of an operon,
but this time isolated with no obvious function in heat shock. Our biological
collaborators are now planning to investigate these hypotheses in a new set of
microarray experiments.

4 Application: S. cerevisiae

For the purposes of validating our model, the datasets on M. tuberculosis are
not ideal. The experiments are rather fragmentary, limiting the number of cross-
experiment analyses we can conduct, and there is limited knowledge available
on regulatory mechanisms in M. tuberculosis for validation of the hypotheses.

We are currently applying our methods to datasets on yeast (Saccharomyces
cerevisiae). This is an extensively studied organism, with large amounts of exper-
imental data available in public databases and extensive annotation of known
biological functions. We are employing the datasets [12, 13] to study a larger
number of known biological processes and validate/improve the model accord-
ingly.

Yeast is a eukaryotic organism and so more complex than M. tuberculosis.
Details of the gene interaction model had to be adjusted slightly to comply with
the properties of the yeast genome and prior knowledge, including a number of
integrity constraints and the definition of regulator genes. However, the general
rules of the gene interaction model remained the same.

The work on yeast is still in its initial stages but the results obtained so
far are quite promising. For example, one analysis that we have completed in-
volved data from four experiments that knocked out four different transcription
regulator genes: YLR442c, YMR280c, YMR047w and YBR083c. The set of ob-
servations to be explained consisted of all genes that were affected by more than
one experiment. Some of the relations inferred can be given biological support
by reference to annotations of the genes in the Comprehensive Yeast Genome
Database [13]. For example, the program generated possible relationships be-
tween the gene YLR442C and the genes YCL027W and YBR073W. These seem
to be meaningful, since gene YLR442C is a regulator of the DNA repair and
mating processes and genes YCL027W and YBR073W are genes involved in
those processes. Further discussion is omitted because of space limitations.

5 Related Work

The most common approaches to the analysis of microarray data employ vari-
ous probabilistic methods, including recently the use of Bayesian Networks (see
e.g. [2]). These approaches attempt to discover gene regulation relationships di-
rectly from raw expression level data, looking for patterns of expression levels



in a single microarray experiment or, in other kinds of microarray experiments
not considered in our work, in a series of microarray measurements over time.

To our knowledge, the inference of regulatory networks from microarray data
has not previously been formulated as a problem of abduction, though abduc-
tive inference has been used in other kinds of genetics experiments. GenePath
[8] uses abductive reasoning to construct a genetic network from classical genet-
ics experiments, where instead of differences in expression levels for genes, the
experiments evaluate the different phenotypes that occur given gene knock-outs
or over-expressions. The nature of the experimental data, of the hypotheses, and
consequently of the model itself, are quite different from what is addressed in
this paper. In [7] a hybrid framework of ALP and Inductive Logic Programming
(ILP) is applied in an attempt to uncover general patterns of interaction in bio-
chemical (metabolic) pathway data. Again, the nature of the input data and the
type of hypotheses to be generated are quite different in our work.

More generally, there is increasing interest in modelling biological phenomena
using AI methods, focussing in particular on biochemical processes and signalling
pathways. There is also a growing body of work on the application of formal
tools for modelling concurrent (computer) systems to the analysis of biological
networks.

All these latter works, however, are concerned with modelling biological pro-
cesses at a much finer level of detail than we are addressing in this paper. We are
concerned with uncovering possible gene interaction relationships but without
yet any information about the actual processes by which these interactions are
effected. We are addressing in this paper the analysis of data at a much earlier
stage of the scientific process.

6 Evaluation & Future Work

We see the contributions of the work as threefold. First, we are developing a
general method to support the analysis of an important class of microarray ex-
periments. The novel feature is the use of a simple, general model of how gene
interactions can cause changes in observable expression levels of genes under
differing conditions, and the use of abduction to infer explanatory hypotheses
for the experimental results. This method allows us to infer regulation relations
across several experiments.

Second, is the development of the gene interaction model itself. We attach
particular importance to the declarative and modular nature of this model, which
allows us to experiment easily with variations and new general rules suggested
by our biological collaborators, and to incorporate relevant biological knowledge
as it becomes available. A key feature are the parameteric relations related gene
and intermediary gene. These parameters allow our collaborators to focus on
particular classes of genes, or genes related by function or biological process.
From the computational point of view, they allow us to constrain the search
space of possible hypotheses, making it possible to apply the methods in practice.

Third, there are the actual biological results we obtain by applying the meth-
ods to the available datasets. These are still at an early stage. The tests per-



formed on M. tuberculosis successfully rediscovered part of the heat shock re-
sponse mechanism and have suggested further microarray experiments to un-
cover other parts of this mechanism. In yeast, our initial tests have revealed
biologically meaningful relations that also suggest improvements to the model.
We are presently engaged in a systematic exploration of the various possibilities
afforded by the model and an extensive validation of the model against known
gene regulation processes in yeast. We do not want to over-state these claims.
The experimental results reported here are fragmentary. It is not our aim in
this paper to present a detailed evaluation of the biological significance of these
results.

It seems to be generally assumed that the ALP methods employed here are
too brittle for practical application. We have tried a range of ALP implementa-
tions reported in the literature, and it is certainly the case that some of them
proved to be insufficiently robust to cope with this application. We are also cur-
rently experimenting with alternative, related ways of formulating the problem,
as an Answer Set Programming problem for example. Whatever the biological
significance of this technique turns out to be in the longer-term, the model pro-
vides a valuable test case for those concerned with the development of abductive
reasoning technology and related techniques.
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