Modelling and Analysis of Workflow Processes

C. Karamanolis', D. Giannakopoulou', J. Magee', S. Wheater’

" Dept. of Computing, Imperial College of Science, Technology and Medicine
{ctk,dgl jnm}(@doc.ic.ac.uk

? Dept. of Computing Science, University of Newcastle upon Tyne
Stuart. Wheater@ncl.ac.uk

Abstract

Practical experience indicates that the definition of real-world workflow
applications is a complex and error-prone process. Existing workflow management
systems provide the means, in the best case, for very primitive syntactic verification,
which is not enough to guarantee the overall correctness and robustness of workflow
applications. The paper introduces a method for formal verification of workflow
schemas (definitions). Workflow behaviour is modelled by means of an automata-
based method, which facilitates exhaustive compositional reachability analysis. The
workflow behaviour is checked against both safety and liveness properties, which
can be either generic (applicable to all workflow schemas) or domain specific
(applicable to a given schema). The analysis is performed by automated tools, which
are accessible by designers who are not experts in formal methods.

1 Introduction

Workflow Management Systems provide automated support for defining and controlling
various activities (tasks) associated with business processes [1, 2]. A Workflow Schema is
used to represent the structure of an application in terms of tasks as well as temporal and
data dependencies between tasks. A Workflow Application (or just Workflow) is executed
by instantiating the corresponding workflow schema [3].

The aim of providing automated support for business processes is to reduce costs and
flow times, to improve the robustness of the process and to increase productivity and
quality of service [4, 5]. However, specifying a real-world workflow schema is a complex
manual process, which is prone to errors. Incorrectly specified workflow schemas result in
erroneous workflow applications, which, in turn, may cause dramatic problems in the
organisation where they are deployed. Therefore, it is crucial to be able to verify the
correctness of a workflow schema before it becomes operational.

Many commercial workflow management systems provide the means for some basic
syntactic verification, while a workflow schema is designed. They check, for example, for
the existence of inputs and outputs in task specifications. However, more thorough and
rigorous analysis is required to ensure that the schema is correct [6]. For instance, we need
to be able to check that the workflow eventually terminates, that there are no potential
deadlocks, or that a certain path of execution is possible. This paper proposes a novel
method for formal verification of workflow schemas, by means of Labelled Transition
Systems (LTS). We propose a complete mapping of workflow entities to the LTS model



and discuss analysis techniques for checking safety and liveness properties. Analysis is
done by automated tools provided as part of the LTSA toolkit. LTSs and in particular the
TRACTA approach followed here have been used extensively to model and analyse
concurrent systems. It has been shown that the method is accessible and usable by
practising engineers, who are not experts of model-checking techniques.

Due to the size and complexity of most real-world workflow schemas, any viable
analysis method should follow an incremental (compositional) approach, which should be
applied at each step of the design procedure. Experience shows that correctness by design
is clearly preferable over approaches where correctness is verified after the design of the
final workflow has been completed [7]. TRACTA addresses exactly these problems by
enforcing a close integration of modelling and analysis with system design. In particular,
Compositional Reachability Analysis (CRA) is used for modelling and analysis of system
components as they are composed from other sub-components. CRA improves the
computational complexity of analysis (together with minimisation techniques) and favours
reusability of specifications. To the best knowledge of the authors, there is no other system
that provides a satisfactory way for compositional/incremental verification of workflows.

The remainder of this paper is organised as follows. Section 2 provides an overview of
the semantics of our workflow definition notation and outlines the requirements for
verification in this context. In the same section, we also outline the TRACTA approach to
compositional reachability analysis and argue about the suitability of the method to
verification of workflow schemas. Sections 3 and 4 form the core of the paper. Section 3
proposes a complete and formal modelling, in terms of LTSs, of all workflow schema
elements. Section 4 discusses the classes of safety and liveness properties that can be
verified using the TRACTA techniques and the LTSA toolkit. In both sections, the
theoretical concepts are illustrated by means of a case study: a workflow for business trip
reservations. The paper is concluded (section 5) with a critical discussion of the proposed
method and directions of future work.

2 Background

2.1 Defining workflow schemas

A workflow schema must be expressive enough to represent the structure of a business
process. The schema represents a workflow application as a collection of tasks and their
dependencies. A task is an application-specific unit of activity that requires specified input
objects and produces specified output objects. There can be two types of dependencies
between tasks: 1) noftification dependencies indicating temporal (causal) relations; 2)
dataflow dependencies indicating that a task requires some input (data) from another task.
In the following, we present the principles for workflow schema definitions [8].

A task can start in one of several initial states and can terminate in one of several
output states. Thus, a task is modelled as having a set of input sets and a set of output sets.
In Figure 1, task t; is represented as having three input sets I, I, and 15, and two output
sets Oy and O,.

The execution of a task is triggered by the availability of an input set; only the first
available input set will trigger the task. For an input set to be available it must have
received all of its constituent input objects and notification dependencies. For example, in
Figure 1, input set I; of task t; requires three dependencies to be satisfied: objects i;, i, and
i3 must become available (dataflow dependencies). On the other hand, input set I, requires



three dependencies to be satisfied: object i; must become available and two notifications,
n; and n,, must be signalled (notifications are modelled as data-less input objects). A given
input can be obtained from more than one source (e.g., two for object i; in set I; of task t3).
If multiple input sources become available simultaneously, then one source is selected

deterministically.

The notification dependencies are represented by dotted lines, for example, sq is a
notification source for notification dependency n;. A notification dependency may have
more than one alternative sources too. For example, n; has alternative sources ss and sg.

A task terminates producing output objects belonging to exactly one of a number of
output sets (e.g. O; or O, for task t3). An output set consists of a (possibly empty) set of
output objects (0, and o3 for output set O; of t; and null object for the output set of task t,).

S1
T i
S, @
t; k. 53_»@ Il
—"O O s; @ )
6 - T
|
57/,’: : o
) s o
—|’O ' So »@ I3
i R o

Figure 1. A workflow schema defining inter-task dependencies.

A workflow application consists of a number of inter-dependent tasks. A schema indicates
how the constituent tasks are “connected”. To allow workflow applications to be designed
in a hierarchical way, tasks can be composite: they are realised as a collection of other,
inter-dependent tasks. Therefore a task can be either primitive (implemented by some
application service) or composite (consists of other primitive of composite tasks). A given
input of the composite task may be the source of one or more internal inputs (data objects
or notifications dependencies). Similarly, a given output may have more than one
alternative sources. Figure 2 illustrates an example of a composite task called Reservation.
The task provides the schema definition for a trip reservation workflow.

Reservation i
A

abort

cnINCK

abort |
~

flight ‘
1+ CnioK

abort [
cnlOK
data
cancel:
FICancel
hoBooking

hotel:
HotelRes

data details

flight:

| data FlightRes A
|
]

fight booking

abort

L flight

| fBooking— / l

Figure 2. A composite workflow task.

chk:

details | FlightSearch

plan:
TripPlan




Composite tasks provide the principal way of introducing reusability of workflow schema
definitions. Figure 3 shows a composite task BusinessTrip, which reuses the definition of
the Reservation task to define a workflow schema for a business trip reservation process.
The latter two examples (tasks Reservation and BusinessTrip) will be used as case-studies
for the rest of the paper, in order to illustrate the modelling concepts discussed.

rv:Reservation BusinessTrip o

| I
abort
£ A f ¥l
= i s
] 1 T ;

cniNOK

! comiak
: cn
| pr:Print i

abort

|details data cnloK lbooking

] '4 ‘ i printed

|
:I '. .‘ﬁ-“
Lo L booking fy confirmed
abort f
accepted '."
/ ch:Charge

Figure 3. A composite workflow task containing a composite sub-task.

booking

2.2 Requirements for a workflow verification method

Our experience with building large workflow systems has shown that it is common for
errors to appear in the design of complex workflow schemas. These errors are typically
detected only after the workflow is deployed and tested in practice. As it has been stressed
in the introduction of the paper, it is very important for the designer to be able to apply a
rigorous verification method on the schema and argue formally about the correctness of the
resulting workflow instances. In this context, we have identified a number of requirements
to be satisfied by any such verification method:

1. Have a solid mathematical foundation and allow for rigorous and formal analysis of
both safety and liveness properties.

2. Perform exhaustive analysis at design-time (of the workflow schema) as well as
interactive simulation of the workflow model.

3. Employ algorithms that are computationally efficient in order to be applicable to real-
world systems. These algorithms should be supported by automated tools.

4. Follow a compositional approach in order to enable incremental analysis while the
system is designed and to support re-use of specifications in multiple contexts.

5. Generate meaningful diagnostic information, in the form of execution traces, to
indicate potential errors to the designer.

6. Use a comprehensible graphical representation for humans and also an equivalent well-
defined and space-efficient formal notation for usage with the tools.

7. Be understandable and accessible by users who have no special expertise in the area of
modelling and formal methods.



2.3 The TRACTA approach to behaviour modelling and analysis

The TRACTA approach has been extensively used for modelling and analysing concurrent
and distributed systems [9-11]. It is based on the use of Labelled Transition Systems (LTS)
for modelling the behaviour of system components and for expressing system properties.

In order to integrate analysis with other activities of software development, TRACTA
has traditionally used software architecture to direct analysis. In general, the software
architecture of a distributed system has a hierarchical structure [12, 13]. Therefore,
TRACTA uses a compositional approach to modelling a system following the phases of
hierarchical system design. Behaviour is attached to the software architecture by
specifying a labelled transition system for each primitive component in the hierarchy
(primitive is a system component which cannot be expanded to sub-components, at least
for the sake of analysis). Following the terminology of traditional process algebras, the
LTS of a primitive component is equivalent to a finite-state interacting process. An LTS
contains all the reachable states and executable transitions (triggered by actions) of a
process. The behaviour of composite system components is defined as the composition of
the LTSs of their constituent components.

TRACTA exhaustively explores the reachable states of an LTS, a technique known as
reachability analysis. The main disadvantage of this technique is state explosion. That is,
the exponential relation between the system state-space and the number of its constituent
components. TRACTA takes advantage of the hierarchical structure of the system in order to
address this problem. As the system behaviour is composed in a bottom-up manner,
internal details (actions) of a subsystem’s behaviour are hidden and the subsystem is
minimised, at intermediate stages of the analysis. In general, only a subset of the actions in
a subsystem’s LTS are of interest to external systems (processes) that interact with it. The
key to the success of the technique is to hide as many internal actions as possible in each
subsystem.

An LTS can be described either graphically or by explicitly specifying its alphabet,
states, transition relation and initial state (as in traditional automata theory). However, such
representations become impractical for systems with more that a few states. For this
reason, TRACTA uses a simple process algebra notation called FSP (stands for Finite State
Process) to specify the behaviour of components in a system [14]. FSP is not a different
way of modelling a system. It is a specification language with well-defined semantics in
terms of LTSs, which provides a concise way for describing LTSs. Each FSP expression
can be mapped onto a finite LTS and vice versa.

Reachability analysis owes much of its popularity to the fact that it is fairly easy to
automate. TRACTA is supported by the LTSA4 sofiware tool, which provides for automatic
composition, analysis, minimisation, animation and graphical display of system models
expressed in FSP.

Primitive system components

Primitive system components are defined as finite-state processes in FSP using action
prefix “->”, choice and recursion. If x is an action and P a process, then ( x->P)
describes a process that initially engages in the action x and then behaves exactly as
described in P. If x and y are actions, then ( x->P|y->Q) describes a process which
initially engages in either of the actions x or y, and the subsequent behaviour is described
by P or Q respectively. The definition of a primitive component may use an auxiliary
process. Actions can be parameterised with variables from a set of values; ( x[ v: Val ues]

2

ey 2
-> |



->R) describes a process which engages in one of a set of possible actions x[v], for v O
Val ues (set Val ues must be explicitly specified in the model).

FSP uses an interface operator ‘@, which specifies the set of action labels which are
visible at the interface of the component and thus may be shared (synchronisation points —
used for interaction) with other components. It restricts the alphabet of the LTS to the
actions prefixed by these labels. All other actions are “hidden” and will appear as silent “1”
(tau) actions during analysis, if they do not disappear during minimisation of the
component. When it is more concise to describe what actions are hidden rather than which
actions remain observable, the hiding operator “\ ” may be used, which is complementary
to the interface operator.

Composite system components

Composite-component processes are defined in terms of other, non-auxiliary, processes.
Their identifiers are prefixed with | | ”. The process of a composite component does not
define additional behaviour: it is simply obtained as the parallel composition of instances
of the processes it is made of. Process instances are denoted as “instance-name:type-
name”. The LTS of the instance is identical to that of the type, with action labels prefixed
with the instance name. The instance name is not necessary if there is just one instance of a
process in a given context. Composition expressions use parallel composition (| | ) together
with operators such as re-labelling (/ ), action hiding (\ ) or interface (@. Communication
is modelled by means of synchronisation of shared actions (the remaining actions are
interleaved). Actions that correspond to interaction interfaces are re-labelled to a common
name in order to be synchronised when behaviours are composed. Re-label specifications
are of the form “new-label/old-label”.

set Doc = {x}

Printer request print.x tau
Printer = (request -> print[d: Doc]
-> reset -> release -> Printer)
\{reset}.
release
request

Spooler

Spooler = (request -> Transfer),
Transfer =(submi t[d: Doc] -> Transfer m})
| print.x

rel ease -> Spooler).

release
m ni mal System request print.x
|| System = (Printer || Spooler)
/{print/submt}.
release

Figure 4. Modelling primitive and composite system components with TRACTA.

Figure 4 depicts the model of three system components, each represented by a process in
FSP. Process Pri nt er models a printer, a primitive system component; the pri nt action is
parameterised with values from set Doc and action reset is hidden from the visible
process interface. The specification of process Spool er uses an auxiliary process
Transf er. Finally, process Syst emrepresents a composite component, which consists of
one printer and one spooler instance (instance names do not have to be explicitly specified
here, since we have just one instance of each process). In the parallel composition, actions
request and rel ease, which have the same name in both Printer and Spool er, are




implicitly synchronised, while actions pri nt and subnit are explicitly synchronised by
renaming subnit to print. The figure illustrates the FSP specifications of the three
processes as well as the corresponding LTS diagrams automatically produced by the LTSA
tool. The mi ni mal keyword enforces minimisation of the System process to hide any
transitions labelled exclusively by tau actions. More details of the TRACTA approach will
be shown when the actual modelling of workflow systems is discussed later on in the

paper.

3  Workflow modelling

This section presents the proposed method for modelling workflow schemas, by means of
the TRACTA compositional approach. The model of each schema consists of two parts. The
first part is generic and is concerned with modelling elements that are common to every
schema, such as input-output interfaces and techniques for representing dataflow and
causal dependencies between tasks. The second part is application specific and is
concerned with the model of actual tasks in the schema and their inter-dependencies. The
models are presented in the form of FSP specifications and, when appropriate, as LTS
diagrams produced by the LTSA tool.

3.1 Task interfaces

A task interacts with its environment through its inferface sets. Interface sets consist of
zero or more data objects (representing dataflow dependencies) and inbound and outbound
notifications (representing causal dependencies). Interface sets model the common
denominator of the behaviour of input and output sets of tasks.

= An interface set is “available”, if all its dataflow and notification dependencies are
satisfied. When an interface set is available, then all of its constituent objects and
outbound notifications are also available.

An interface object can perform i nput and out put actions, reflecting the fact that the
object receives and outputs data, respectively. To model the fact that an interface becomes
available when all its constituent objects are available (a logical AND operation), we use an
action avai | abl e, on which all objects in an interface set need to synchronise. An object
can only perform avai | abl e after performing action i nput . Therefore, the behaviour of
an object with identification I D (to uniquely identify it in the set) is modelled as follows:

Object (ID=1) = (input[ID] -> available -> output[ID] -> STOP).

Action avai | abl e is also used to make sure that all inbound notifications are received
before an interface set becomes available and also, that outbound notifications are provided
only after the interface set becomes available:

InNotification (ID=1) = (inNotify[ID] -> available -> STOP).
OutNotification = (available -> outNotify -> STOP).

An interface set is then modelled as the parallel composition of a set of objects and
inbound and outbound notifications. If an interface set does not contain any objects, and
has no notification dependencies, it is unconditionally available, as modelled by the
following default process:



Default = (available -> STOP).

|| Iface (Objs=1, INotfs=1, ONotfs=1) =
if (ONotfs >= 2) then
| face_Probl em
else ( if (bjs > 0) then
(forall [i:1..Cbjs] Object(i))
|| i€ (INotfs > 0) then
(forall [i:1..1Notfs] InNotification(i))
|| i€ (ONotfs > 0) then
Qut Notification
|| i€ (Objs == 0 & INotfs == 0 & ONotfs == 0) then
Def aul t
).

Iface_Problem = (erroneous -> ERROR).

input.1

output.1

available outNotify output.1

outNotify

inNotify.1

Figure 5: LTS of an interface set, with one object, one in- and one out- notification.

An interface produces at most one outbound notification (which can be bound to more than
one task). Thus, no identifier is required for these type of notifications. For the same
reason, a process | f ace_Pr obl emis introduced to model a transition to an error state, if an
interface instance is specified with more than one outbound notification. Figure 5
illustrates the LTS of an interface with one object, one inbound and one outbound
notification. The general model of an interface set that we have described above will be
adjusted to reflect input and output sets of primitive or composite components, as we show
in the following sections.

3.2 Primitive tasks

Primitive tasks either have no internal structure or their internal structure is not provided in
the workflow schema description. The main entities of a primitive task that need to be
modelled are its interfaces, qualified as input and output sets. They are called abstract sets
(Absl nput Set and AbsQut put Set ) and they are modelled as interfaces that have zero
notifications. The reason is that, in the general case, a task should be modelled in a
reusable way: the designer has no knowledge of the context where the task may be
instantiated in. Therefore, at this stage, no information can be provided about potential
notification dependencies of input sets, or notification dependencies on the output sets of
the task.




Moreover, information that is concerned with the outputs of input sets and the inputs of
output sets, is encapsulated within the model of these tasks. The corresponding actions are
hidden appropriately. This is achieved by keeping visible only actions prefixed with labels
i nput and ready for input sets, and out put and enabl ed for output sets. In addition,
action avai | abl e of the | face process is renamed to r eady in the case of input and to
enabl e in the case of output sets.

The prefix “minimal” is added to the processes to make sure that, during the generation
of the model, our tools will not only hide these actions but will also minimise the
corresponding LTSs. Minimisation results in a more compact but behaviourally equivalent
model. Figure 6 illustrates the LTS for process Absl| nput Set in three forms: without action
hiding (but after renaming action avail abl e of |face to ready), after hiding action
out put by explicitly making only actions r eady and i nput visible, and after hiding with
enforced minimisation.
minimal
|| AbsInputSet (Objs=1) = (lface(Objs, 0, 0))

[ {ready/avail abl e}
@{ready, input}.

minimal
|| AbsOutputSet (Cbjs=1) = (Iface(Qbjs, 0, 0))
| {enabl e/ avai | abl e}
@ {enabl e, output}.
input. 1 ready output.1 input.1 ready tau input. 1 ready

@ 5 @ DO ® ® O B ©

Absl nput Set  with
Absl nput Set  without hiding Abs nput Set  with hiding hiding and minimisation

Figure 6. The model of process AbsInputsSet.

A primitive task’s behaviour is dictated by two rules:
= The execution of a task starts as soon as one of its input sets is available.
= When the execution of a task completes, exactly one of its output sets is available.

The above two rules also capture the causal dependency between a task’s input and output
sets. This behaviour pattern is common to all primitive tasks and is modelled by the
process AbsTaskl npl . This process also models the fact that, even if more than one input
set is available, just one is selected by the internal task behaviour and exactly one output is
produced.

AbsTaskImpl (I nSets=1, QutSets=1) = ( ready[i:1l..InSets] -> Execute ),
Execute = ( enable[o:1..QutSets] -> STOP ).

A specific primitive task is then defined as the parallel composition of its input and output
sets with the above default implementation process. For example, the primitive task
Tri pPl an of Figure 2, with one input set (named dat a) and two output sets (named abor t
and det ai | s), is modelled as shown below. The renaming reflects the bindings of the
task’s interfaces to AbsTaskl npl .




|| TripPlan = AbsTaskl npl (1, 2)
| dat a: Absl nput Set (1)
| ] abort: AbsQut put Set ( 0)
| ] det ai | s: AbsCut put Set (4)

/{ data.ready/ready[1],
abort . enabl e/ enabl e[ 1],
detai |l s. enabl e/ enabl e[ 2] }.

3.3 Composite tasks

Composite tasks are constructed out of a number of constituent task (sub-task) instances.
Sub-tasks are either primitive or composite tasks themselves. When a composite
component is specified, the data objects of its input set(s) are bound to objects of input sets
of sub-tasks. The objects of its output sets are bound to objects of output sets of sub-tasks.
Similarly, in the context defined by the composite task, there may be notification
dependencies from the input sets of the composite to input sets of sub-tasks and from
output sets of sub-tasks to output sets of the composite task. For example, in the case of the
workflow schema of Figure 2, the composite task Reservati on consists of a number of
interconnected sub-task instances, such as plan of type TripPlan (denoted
pl an: Tri pPl an), chk of type Fl i ght Sear ch and cancel of type Fl Cancel . Among other
dependencies, the (single) data object of input set dat a of Reservati on is bound to the
object of input set dat a of pl an: Tri pPl an and there is a notification dependency from the
output set cnl OK of sub-task cancel : FI Cancel to the output set cnl OK of Reser vat i on.

The context of a composite task specifies the internal dependencies between its
constituent tasks. However, incoming notification dependencies to the composite’s own
input sets and outgoing notification dependencies from the composite’s output sets are not
known in this context. The aim is to achieve reusability of the composite task’s model, by
making it context independent. This principle is captured in the specifications of the
“external” input and output sets of composite tasks. An | nput Set is an interface set with
no input notifications and an Qut put Set is an interface set with no output notifications. In
order to differentiate between input and output sets, | f ace’s avai | abl e action is renamed
to r eady and enabl e, respectively.
|| InputSet (Ohjs=1, ONotfs=1) =

if (bjs ==0 && ONotfs==0) then |face_Probl em
else (Iface(Objs, 0, ONotfs))
I {ready/ avail abl e} .

| | outputset (Objs=1, INotfs=1l) =
if (bjs ==0 && | Notfs==0) then |face_Problem
else (Iface(Objs, INotfs, 0))
! {enabl e/ avai | abl e}.

The conditional specification in the above model states that: 1) external input set must
have at least one (boundable) data object or one outgoing notification; 2) an external
output set has at least one data object or at least one incoming notification. Process
| f ace_Probl emis again used to model a transition to an error state, if either of the above
conditions is not satisfied. Composite task Reser vati on has one such “external” input set
and four output sets. Figure 7 illustrates a general diagram of the task interfaces and the
corresponding model.

10



In the case of composite tasks, we have, again, to model the fact that exactly one input
set is selected even if more than one is available and exactly one output set is enabled
when the task terminates (both primitives are enforced by the execution environment). The
later is modelled by processes | nSel ect or and Qut Sel ect or, instances of which are used
together with the necessary action renaming in the model of the composite component.

| | Reservation = (
/* Selectors of interface sets ...*/
InSel ector (1) || QutSelector(4)
/* Interfaces ... */

/* lnput sets */
|| data:lnputSet(1, 0)
/* Qutput sets */
| | abort: QutputSet(0, 1)
|| cnl NOK: Qut put Set (1, 1)
- || cnl OK: Qut put Set (0, 1)
[

hooking booki ng: Qut put Set (4, 0)
. Y L.}
N InSelector (I nSets=1) =
Reservation outSelector (((;J'iasg[si ::1-1-)I n=Sets] -> STOP).

(enable[i:1..CQutSets] -> STOP).

Figure 7. “External” input and output sets of a composite component.

Another problem that has to be addressed, when composing task instances together, is the
way that notification dependencies between these tasks are modelled. As it has been
already discussed, the incoming and outgoing notifications of a task’s external interfaces
are not known when the task is specified (whether primitive of composite itself). That was
a modelling decision in favour of specification reusability. Thus, when instances of tasks
are interconnected within the context of a composite task, two additional generic
processes, Cont ext Qut Not f s and Cont ext | nNot f s are used to provide the “glue” for this
composition. In particular, these processes are used to add notification dependencies to
sub-tasks, as required by the context (composite task) where the sub-tasks are instantiated.
Their models are based on those of abstract input and output sets, since they introduce
conditions for an input to become ready or provide outputs, in the form of notifications, as
soon as an output set is enabled. The re-namings introduced simply re-label output actions
to out Noti fy ones and input actions to i nNoti fy ones. Recall that we can have only a
single outbound notification per output set.

|| ContextOutNotfs = AbsQut putSet ( 1)
/ { outNotify/output[1] }.

|| ContextInNotfs (Il Notfs=1) = Absl nput Set ( I Notfs )
[/ { inNotify/input }.

In other words, all input and output sets, whether abstract (when they belong to primitive
tasks) or not (when they belong to non-primitive tasks), may need to be qualified with
notifications when their tasks are put in a context. For example, the model of task
Reservation consists of the parallel composition of five constituent task instances,
together with their context-dependent notification models:

11



|| Reservation = (

/* Constituent tasks ... */

|| plan:TripPlan | | plan.abort: ContextQut Notfs
|| chk: FlightSearch || chk.abort: Cont ext Qut Notfs
[| flight:FlightRes || flight.abort: ContextQutNotfs

|| flight.flBooking: ContextQut Notfs

hot el . dat a: Cont ext | nNot f s( 1)
hot el . abort: Cont ext Qut Not f s

|| hotel: Hotel Res |
I

|| cancel: Fl Cancel || cancel.flight: ContextlnNotfs(1)
I
I

cancel . cnl NOK: Cont ext Qut Not f s
cancel . cnl OK: Cont ext Qut Not f s
) 1A
dat a. ready/ ready[ 1], abort.enabl e/ enabl e[ 1],
cnl NOK. enabl e/ enabl e[ 2], cnl OK. enabl e/ enabl e[ 3],
booki ng. enabl e/ enabl e[ 4],

}

The implementation of composite tasks is modelled by the appropriate bindings between
the interfaces of the constituent sub-tasks. In the case of the Reservation task, the
dataflow dependency between the dat a object of Reservati on’s (external) input set and
the object of the input set of task pl an: Tri pPl an is modelled by the renaming of Figure 8.

|| Reservation = ( ... )
/ {dat a. out put [ 1]/ plan.data.input[1], ... }

Reservation

Figure 8. Dataflow dependencies between external and sub-task input objects.

The dataflow dependency between three of the objects of the data output set of
pl an: Tri pPl an and the dat a input set of chk: Fl i ght Sear ch are modelled by a similar
renaming of all the corresponding data objects, as shown in Figure 9.

‘ %@ I Reservation={(..)
(j p details /{ e
T e plan.details.output[1]/chk.details.input[1],
detal | _ plan.details.output[2)/chk.details.input[2],
plan: | <X FlightSearch plan.details.output[3]/chk.details.input[3]

TripPlan e
Reservation

Figure 9. Dataflow input dependencies between data objects of sub-tasks.

L}

Dataflow dependencies are specified on a per data object basis. A single data object may
be the source of more than one dependencies. For example, the first two objects of the
details output set of pl an: Tri pPl an are also bound to an input set of the hot el : Hot el Res
task:

|| Reservation={(..)
/{..., plan.details.output[1])/hotel.data.input[1],
plan.details.output[2]/hotel.data.input[2], ... }

12



A given interface set or data object may have more than one alternative input sources.
Availability of just one of the input sources is enough to enable the set or object,
accordingly. Alternative dependency sources are modelled by means of relational
relabelling. In our example, the abort output set of Reservation can be enabled by a
number of alternative sources: plan. abort, chk.abort and flight.abort. The
corresponding action abort.inNotify[1] is relationally renamed  to
pl an. abort.outNotify, chk.abort.outNotify and flight.abort.outNotify, as
shown in Figure 10(a). This relabelling states that a transition labelled
abort.inNotify[1] in the LTS of the “external” output set abort is, now, performed
when any of the other three transitions occurs. The corresponding transformation of the
LTS is shown in Figure 10(b).

Reservation )
|| Reservation={(...)
abort /{

S A "'Ej { plan.abort.outNotify,
o x s chk.abort.outNotify,
shiabort ¢ flight.abort.outNotify

frof i i
e et } } /abort.inNotify[1]

(a) Modelling alternative input sources for notification dependencies.

plan.abort.outNotify
) . chk.abort.outNotify
abort.inNotify[1] |:| flight.abort.outNotify

(b) LTS transformations due to relational relabelling.

Figure 10. Relational relabelling used to model alternative input sources.

From the above discussion, it is clear that the procedure to create the model of a workflow
schema from the actual workflow description can be easily supported by automated tools.
We are currently developing a compiler that parses a correct schema description and
produces the model of the schema, in FSP. The latter can be either saved as a re-usable
model module or be directly fed to the LTSA tool.

4 Workflow analysis

The LTSA tool supports the TRACTA approach for analysis of systems modelled as LTSs.
This section describes how to customise generic LTS analysis techniques for the domain of
workflow systems.

4.1 Interactive simulation

A practical first step in checking a process is to simulate its behaviour. Simulation is
performed as a user-controlled animation of the process. For composite processes, the LTS
of their behaviour is not composed first. The method does not, as a result, suffer from state
explosion. The LTSs of the components of the process are used to determine the current
state of the process, as well as which actions are enabled at that state. The enabled actions
are the “ticked” actions in the “animator window”. When the user selects one of these
actions, the process transits to the corresponding next state. The LTSA tool highlights the

13



transitions on the LTS diagrams of the component processes and presents the
corresponding system trace.

Eggﬁmimatul M=] B
flight.input.1 = Step )
flight.ready flIBooking.enable

[ flight.reacy AbsTaskimpl(1,2) flight.ready abort.enable

|+ abort.enable
[v| fiBooking.enable G e
[ flight.input.1

[ fiBooking.output.1

flightinput.l  flight.ready

Figure 11: Interactive simulation of task type FlightRes.

flight:AbslInputSet(1)

Figure 11 illustrates the interactive simulation of the flight reservation task Fl i ght Res (see
Figure 2). We can see that after the input to the task has been provided, its input set
flight is ready. Action flight.ready is performed synchronously by processes
flight: Absl nput Set (1) and AbsTaskl npl (1, 2). Since this is a primitive task, the
outputs become available, as soon as an input set is ready. In this case, when actions
abort . enabl e and f | Booki ng. enabl e become available, users may select which output
to enable, according to the scenario they wish to check.

Interactive simulation provides an intuitive way for the system designers to experiment
with different execution scenarios. However, in the general case, interactive simulation
cannot establish the correctness of a real system, since designers cannot simulate all its
possible execution scenarios. For that reason, techniques are required for rigorously
checking the models of workflow systems.

4.2 Properties

The model-checking techniques associated with TRACTA can be used to check a workflow
system exhaustively, against both generic and domain-specific properties. When a property
is violated, our tools provide a counterexample. Counterexamples are a useful guide to
debugging a model, since they describe executions of the system that violate some desired

property.

Generic properties: deadlock

The LTSA identifies deadlock states in the LTS of a process, as states with no outgoing
transitions. Reachability of such states is checked by default for every process in the
system. This is because LTSA has been mainly aimed at reactive models that exhibit non-
terminating behaviours. A typical way of dealing with terminating executions is to add a
looping transition to each terminating state of a system (that is, a transition from the state
back to itself). For workflow tasks that are expected to terminate, we provide a generic
process called Val i dTaskTer ni nati on, which models the fact that a valid terminating
state of a task is one where some output of the task has been enabled:

14



ValidTaskTermination = (out_enabl ed -> TERM,
TERM = (termok -> TERM.

When composed with a task that we wish to check for deadlock, this process will add
looping transitions to the valid terminating states of the task. In this way, only real
deadlock states will have no outgoing transitions in the resulting LTS.

For example, to check that no execution of the Reservation task deadlocks, we
compose the task process with the Val i dTaskTer mi nat i on process, as follows:

|| Complete Reservation =
( Reservation || reservation: ValidTaskTerm nation)
[/ { {abort.enable, cnl NOK. enable, cnl OK enable, booking.enable} /
reservation. out _enabl ed}.

The generic ValidTaskTermi nation has been instantiated with the name of task
Reservation, to which it refers. Relational relabelling is also applied so that the
Val i dTaskTer mi nat i on process transits to its terminating state whenever any one of the
outputs of the Reser vat i on task is enabled. In this way, valid terminating states of process
Conpl ete_Reservation will have looping transitions labelled with action
reservation. term ok. Indeed, the LTSA tool does not detect any deadlocks in process
Conpl et e_Reservati on:

St at es Conposed: 120 Transitions: 254 in Ons
No deadl ocks/errors

Generic properties: safety

In TRACTA, safety property violations are identified by the reachability of a special "error
state", represented as state -1 in our LTSs. The error state has special semantics [10].
Firstly, it never has any outgoing transitions, reflecting the fact that there is no meaning in
exploring a system after a safety violation has occurred. Moreover, in the context of
parallel composition, local errors are propagated globally. By this we mean that if any
component of a global state is an error state, then this global state is also an error state. The
error state may be introduced in two ways in an LTS model:

1. explicitly, by means of some transition to the auxiliary process ERROR.

2. implicitly, by means of some safety property process added as a component of a
system.

An example of an explicitly introduced error state can be found in process | f ace_Pr obl em
discussed earlier. Safety properties are specified as FSP primitive processes, whose
definition is prefixed with the keyword “property”. A property process with alphabet 4
describes all the traces from A that satisfy the property that it expresses. The LTS that our
approach creates for such a process is complete, and has the characteristic that any trace
from A that does not satisfy the property leads to the error state. For example, assume the
following property:

property A then_B = (a -> b -> STOP).

This property asserts that action b can only occur after action a, after which none of these
actions is allowed to occur again. The corresponding LTS is illustrated in Figure 12. Note
that property LTSs are composed with the components to which they refer. Then a system
satisfies the properties that have been introduced to it, if the error state is not reachable in
this system's LTS [10].

15



a
b

Figure 12: LTS for property A then B

A fundamental requirement that models of composite tasks have to be checked against is
that the output produced by a task causally depends on the input that triggers its execution.
The latter requirement is expressed by means of a safety property:

property Task_InOut Relation = ( input_ready -> output_enable -> STOP ).

Property  process Task_| nQut _Rel ati on is composed  with  process
Conpl et e_Reservati on in order to check for potential violations of the property in the
non-blocking version of the reservation task. Figure 13 illustrates the LTS for property
Task_| nQut _Rel ati on, after relational relabelling is applied. It specifies, that if any one
of the input sets (just dat a in our example) is enabled, then (and only then) any one of the
output sets may be enabled by the corresponding task; any behaviour that does not
conform to this pattern leads to an error state.

|| Check_InOut_ Reservation =
(Conpl et e_Reservati on | | Task_Il nCut_Rel ati on)
/| { data.ready / input_ready,
{ abort.enable, cnl NOK. enabl e, cnl OK enable, booking.enabl e}/ output_enable

}.

booking.enable
cnlOK .enable
cnINOK .enable
data.ready abort.enable

Task_InOut_Relation

booking.enable

data.ready
abort.enable
cnINOK .enable
cnlOK .enable
booking.enable

Figure 13. LTS of property Task InOut Relation.

Another typical requirement for any workflow schema is that each of its constituent tasks
plays a role in the workflow. By this we mean that, for each task, there must exist at least
one execution of the workflow where this task is triggered, i.e. where one of this task's

16



input sets becomes ready. To check this for some task T, we introduce a property
Pat hsToSubt ask to the model, which states that no input set of T ever becomes ready. If
our analysis tools return a counterexample, it means that indeed, there exists some
execution where T is triggered, as desired. If the LTSA detects no violations, it means that
T never plays any role in the context of the specific workflow. The generic form of
property Pat hsToSubt ask is the following;:

property PathsToSubtask = STOP + {reachabl e}.

Here, action reachabl e (explicitly added to the alphabet of the property) expresses the
fact that a task is triggered. In the context of each task, r eachabl e is relationally relabelled
to the set of ready actions corresponding to the task's input sets. For example, we proceed

as follows to check that task plan is triggered in at least one execution of
Conpl et e_Reservati on:

|| ExistPathsToPlan = ( Conpl ete_Reservation || PathsToSubt ask)
!/ { plan.data.ready/reachable }.

The LTSA tool returns the following result:

Trace to property violation in PathsToSubt ask:
data.input.1
dat a. ready
data. out put. 1
pl an. dat a. r eady

The counterexample gives the prefix of an execution of Conpl et e_Reservati on where
task Pl an is triggered (pl an. dat a. r eady).

Generic properties: liveness

In our approach, a progress property "progress P = {actions}" requires that, in any
infinite execution of a target system, at least one of the actions in set { acti ons} occurs
infinitely often [11]. We use the following progress property to check that task
Conpl et e_Reser vat i on eventually terminates (enables some output):

progress RESERVATION TERM = {reservation.term ok}

As discussed earlier, "t er m ok" looping transitions distinguish the valid termination states
of a task. By checking that action t er m ok is performed infinitely often in any infinite
execution of the task, we basically check that every execution of the task eventually
terminates.

In the workflow models presented in this paper, a system that has no deadlocks trivially
satisfies any such progress property. Progress properties are of particular interest in the
case where the behaviour model of the resources used for the execution of each primitive
task are also introduced in the overall system model. The latter is an ongoing research
issue and is further discussed as part of the future work directions in section 5.

17



Domain-specific properties

In addition to checking generic properties of workflows, our techniques may be used for
properties that refer to the particular workflow under analysis. Some examples are briefly
described in this section.

= Correct_Booki ng asserts that booking is enabled only if both a flight and a hotel have
been booked, and they have been booked in this order.

property Correct Booking = ( flight.fl Booking.output[1] ->
hot el . hoBooki ng. out put [ 1] ->
booki ng. enabl e -> STOP ).

= Correct_Abort asserts that, if any of the tasks pl an, chk, or f1i ght aborts, then the
only possible outcome is an abort.

property Correct_ Abort = No_Abort_Seen,
No_Abort_Seen =
( {cnl NOK. enabl e, cnl K. enabl e, booki ng. enabl e} -> No_Abort_Seen
| {pl an. abort.enabl e, chk.abort.enable, flight.abort.enable} ->
Abort _Seen),
Abort _Seen = (abort.enable -> STOP).

® Adds_To_Abort additionally checks, that no task is triggered (i.e. no input set becomes
ready) subsequently to any abort action.

property Adds To Abort = No_Abort_Seen,
No_Abort_Seen =
({pl an. dat a. ready, chk.details.ready, flight.flight.ready,
hot el . dat a. ready} -> No_Abort_Seen
| {pl an. abort. enabl e, chk.abort.enable, flight.abort.enable} -> STOP).

In TRACTA, any number of properties may be checked simultaneously on a system. All the
properties of interest can be composed with the process to be analysed; reachability of the
error state is then checked. We can even compose properties amongst themselves, before
they are applied to a process. The following example shows how properties
Correct _Abort and Adds_To_Abort are composed, before they are applied, together with
Cor r ect _Booki ng, to process Conpl et e_Reser vati on.

|| Strict Abort Check = (Correct_Abort || Adds_To_Abort).

|| Check All = ( Conpl ete_Reservation
|| Correct_Booking
|| Strict_Abort_Check).

4.3 Modularity and Abstraction

After checking thoroughly that a task satisfies its requirements, the behaviour of the task
may be abstracted before re-using it in some other context. The only actions that need to be
visible by the context of a task are actions related to its interfaces. Specifically, the
interface of an abstracted task consists of the input actions of its input sets and the output
actions of its output sets. Additionally, the ready actions of input sets and enabled actions
of output sets must also be exposed, in order to be able to add notifications to and from the
task when the latter is introduced in a context. All remaining actions are turned to the

18



unobservable action T (tau). The LTS of the task is then minimised, typically resulting in a
smaller LTS. For example, the Conpl et e_Reser vat i on task is abstracted as follows:
minimal
| | AbstractReservation = ( Conpl ete_Reservation )
@{ data.input, data.ready,

abort. enabl e, abort. output,

cnl NOK. enabl e, cnl NOK. out put,

cnl K. enabl e, cnl OK. out put,

booki ng. enabl e, booki ng. out put

}.

The size of the LTS of the reservation task is thus reduced to 26 from 120 states.
Therefore, the modular approach for modelling and checking components advocated by
our techniques can also reduce state explosion, which is the main inhibiting factor of
exhaustive analysis methods.

5 Discussion and conclusions

The paper proposes a method for modelling and verifying workflow schemas, in lines with
the TRACTA approach, which satisfies the fundamental requirements that have been set in
section 2.2. It is a mature method that has been extensively used for model checking of
complex concurrent and distributed systems. It uses a solid automata-based theory to allow
exhaustive analysis on the static model of a system, at design time.

The TRACTA approach is fully automated within the LTSA toolkit. The algorithms
employed for process composition, action hiding and minimisation are computationally
efficient and scale well for real-world workflow schemas. In addition, LTSA provides a
graphical representation of LTSs and an animation facility for simulating the execution of
the model. Diagnostic information is presented in the form of counter examples: traces of
execution that lead to violation of a desired property. The graphical user interface of LTSA
facilitates the use of the method by designers that are not experts in formal methods. In
fact, with an automated production of the model from the workflow schema definition
(which is currently under development), the workflow designers will not have to write any
FSP code apart from expressing the task properties they wish to analyse.

However, the feature of TRACTA that makes it particularly suitable for behaviour
analysis of workflow schemas is compositionality. TRACTA traditionally follows a
compositional approach to modelling and analysis, in order to address the state explosion
problem which is inherent to all exhaustive reachability analysis techniques. We have
exploited this feature, by making the models of tasks to be context independent and re-
usable. Therefore, designers can check the model of their system in an incremental
manner, while the system is designed. Design errors can be spotted early in the design and
right in the components (tasks) where they occur.

The lack of compositionality is the main weakness of the Woflan system, according to
its designers [7]. Woflan is a verification tool that uses a special type of Petri-nets to
model and analyse the behaviour of workflow processes. Mappings from several
proprietary workflow notations to the Woflan model have been devised and the tool has
been extensively used in academic environments. Errors in the model are reported in the
form of “behaviour error messages”, similar to our “counterexample traces”. The main
advantage of the system is the theoretical robustness of the Petri-Net models and the clear
representation of workflow state by token-based Petri-nets. However, the system lacks a

19



means for visual representation of the model or the produced output (behaviour error
messages). In addition, Woflan can only handle systems with up to 10° states. In
comparison, LTSA can typically handle LTSs with more than 10° states, which may
correspond to a system that is several orders of magnitude larger, before minimisation.

There are a number of directions we are planning to follow in order to extend the work
presented in this paper. Although the proposed modelling method has been illustrated by
means of a specific workflow notation, it is generic and product independent. To justify
this claim, we are planning mappings for other proprietary notations used by commercial
workflow management systems. In addition, the proposed method has to be extended with
a generic model of recursive tasks (tasks that can trigger new instances of their own type),
a common pattern in business processes.

The work presented in this paper focuses on the modelling and analysis of workflow
schemas, irrespectively of the environment in which schemas are instantiated and
executed. Such models can be enriched with the behaviour of system resources used for the
enactment of workflow instances. Analysis of the extended models can then ensure that
workflow specifications are consistent with the constraints set by the execution
environment. We are currently investigating what are the required abstractions for
modelling system resources in this setting.

References

[1] Koulopoulos, T.M., The Workflow Imperative, New York: Van Nostrand Reinhold 1995.

2] Georgakopoulos, D., Hornick, M., and Sheth, A., An overview of workflow management:
from process modelling to workflow automation infrastructure. International Journal on
Distributed and Parallel Databases. Vol. 3(2), April 1995: pp. 119-153.

[3] Wheater, S.M., Shrivastava, S.K., and Ranno, F. "A CORBA Compliant Transactional
Workflow System for Internet Applications”, in Proc. of the IFIP International Conference

on Distributed Systems Platforms and Open Distributed Processing. 1998, Lake District,
UK

[4] Workflow-Management-Coalition, Workflow Handbook, ed. P. Lawrence, New York: John
Wiley and Sons 1997.

[5] Schal, T., Workflow Management for Process Organisations. Lecture Notes in Computer
Science. Vol. 1096, Berlin: Springer Verlag 1996.

[6] Sheth, A.P., van de Aalst, W.M.P., and Arpinar, 1.B., Processes Driving the Networked
Economy. IEEE Concurrency. Vol. 7(3), July - September 1999.

[7] Verbeek, HM.W., Basten, T., and van der Aalst, W.M.P., Diagnosing Workflow Processes
using Woflan, 1999, Eidhoven University of Technology: Eidhoven.

[8] Ranno, F., Shrivastava, S.K., and Wheater, S.M. "A Language for Specifying the
Composition of Reliable Distributed Applications", in Proc. of the 18th International
Conference on Distributed Computing Systems (ICDCS-98). 1998, Amsterdam, The
Netherlands

[9] Magee, J., Kramer, J., and Giannakopoulou, D. "Analysing the Behaviour of Distributed
Software Architectures: a Case Study", in Proc. of the 5th IEEE Workshop on Future
Trends of Distributed Computing Systems. October 1997 Tunis, Tunisia, pp. 240-245

[10]  Giannakopoulou, D., Kramer, J., and Cheung, S.C., Analysing the Behaviour of Distributed
Systems using Tracta. Journal of Automated Software Engineering, special issue on
Automated Analysis of Software. Vol. 6(1), January 1999: pp. 7-35.

20



[11]

[12]

[13]

[14]

Giannakopoulou, D., Magee, J., and Kramer, J. "Checking Progress with Action Priority: Is
it Fair?", in Proc. of the 7th European Software Engineering Conference held jointly with
the 7th ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE'99). September 1999 Toulouse, France. Springer, Lecture Notes in Computer
Science 1687. M.L. O. Nierstrasz, Ed

Kramer, J., Magee, J., and Finkelstein, A. "A Constructive Approach to the Design of
Distributed Systems", in Proc. of the 10th IEEE International Conference on Distributed
Computing Systems. June 1990 Paris

Magee, J., Dulay, N., and Kramer, J., Regis: A Constructive Development Environment for
Parallel and Distributed Programs. Distributed Systems Engineering Journal, Special
Issue on Configurable Distributed Systems. Vol. 1(5), September 1994: pp. 304-312.

Jeff Magee, J.K., Concurrency: State Models & Java Programs. Worldwide Series in
Computer Science: John Wiley & Sons 1999.

21



