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Abstract. Communication is becoming one of the central elements in software
development. As a potential typed foundation for structured communication-based
programming, session types have been studied over the last decade for a wide
range of process calculi and programming languages, focussing on binary (two-
party) sessions. This work extends the foregoing theories of binary session types
to multiparty, asynchronous sessions, which often arise in practical communication-
centred applications. Presented as a typed calculus for mobile processes, the the-
ory introduces a new notion of types in which interactions involving multiple
peers are directly abstracted as a global scenario. Global types retain a friendly
type syntax of binary session types while capturing complex causal chains of
multiparty asynchronous interactions. A global type plays the role of a shared
agreement among communication peers, and is used as a basis of efficient type
checking through its projection onto individual peers. The fundamental proper-
ties of the session type discipline such as communication safety and progress are
established for general n-party asynchronous interactions.
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1 Introduction

Backgrounds Communication is becoming one of the central elements in soft-
ware development, ranging from web services to business protocols to cor-
porate applications integration to parallel scientific computing to multi-core
programming. As a potential typed foundation for structured communication-
centred programming, session types have been studied in many contexts over
the last decade, including calculi of mobile processes [1, 11, 12, 17, 36], higher-
order processes [27], Ambients [10], multi-threaded ML [38], Haskell [29], F#
[6], operating systems [9], Java [5, 7, 8, 19], CORBA [37], C++ [4], and Web
Services [2, 3, 35, 39]. A basic observation underlying session types is that a
communication-centred application often exhibits a highly structured sequence
of interactions involving, for example, branching and recursion, which as a
whole form a natural unit of conversation, or session. The conversation structure
is abstracted as a type through an intuitive syntax, which is then used as a basis
of validating programs through an associated type discipline.

As an example, the following session type describes a simple business pro-
tocol between Buyer and Seller from Buyer’s viewpoint: Buyer sends the title
of a book (a string), Seller sends a quote (an integer). If Buyer is satisfied by the
quote, then sends his address (a string) and Seller sends back the delivery date
(a date); otherwise it quits the conversation.

!string; ?int;⊕{ok :!string; ?date;end, quit : end} (1)

Above !t denotes an output of a value of type t, dually for ?t;⊕ denotes a choice
of the options; and end represents the termination of the conversation.

Such explicit representation of conversation structure helps us deal with one
of the most common bugs in programming with communication, the synchro-
nisation bugs. A programmer expects that communicating programs should to-
gether realise a consistent conversation structure, but they easily fail to handle
a specific incoming message or to send a message at the correct timing, with no
way for her to detect such errors before runtime. An explicit specification as in
(1) guides principled programming for communications and enables automatic
protocol validation [39]. Further, a clean separation between abstraction and im-
plementation given by type-based abstraction and associated primitives leads to
intelligible programs and flexible implementations [19]. Underlying these mer-
its are the following central properties guaranteed by session types.

1. Interactions within a session never incur a communication error (communi-
cation safety).

2. Channels for a session are used linearly (linearity) and are deadlock-free in
a single session (progress).
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3. The communication sequence in a session follows the scenario declared in
the session type (predictability).

Multiparty Asynchronous Sessions The foregoing studies on session types
have focussed on binary (two-party) sessions. While many conversation pat-
terns can be captured through a composition of binary sessions, there are cases
where binary session types are not powerful enough for describing and validat-
ing interactions which involve more than two parties.

As an example, let us consider a simple refinement of the above Buyer-Seller
protocol: consider two buyers, Buyer1 and Buyer2, wish to buy an expensive
book from Seller by combining their money. Buyer1 sends the title of the book
to Seller, Seller sends to both Buyer1 and Buyer2 its quote, Buyer1 tells Buyer2
how much s/he can pay, and Buyer2 either accepts the quote or receives the
quote by notifying Seller. It is extremely awkward (if logically possible) to de-
compose this scenario into three binary sessions, between Buyer1 and Seller,
between Buyer2 and Seller, and between Buyer1 and Buyer2. Abstracting this
protocol as three separate session types means that our type abstraction loses
essential sequencing information in this interaction scenario. For validating this
conversation scenario as a whole, therefore, the conversation structure should
be abstracted as a single session.

Many existing business protocols including financial protocols are written
as a collaboration of several peers. Typical message-passing parallel algorithms
also frequently demand distribution of a request to, and collection of the results
from, many peers. All these usecases are most naturally abstracted as a single
session. Furthermore, many of these applications are implemented with an asyn-
chronous transport where the senders send the messages without being blocked
(but often preserving their order), to avoid the heavy overhead of synchronisa-
tion. The widely used network transport, such as TCP, provides this mechanism
through familiar APIs [26], alleviating the latency problem Thus we ask: can
we generalise the foregoing binary session types to multiparty asynchronous
sessions preserving clarity and their key formal properties? This question was
repeatedly posed by not only researchers but also the members of a W3C work-
ing group [35, 39] through our collaboration as invited experts [2, 3, 18, 39], be-
cause of urgent need for a theoretical basis to validate a wide range of business
protocols.

Challenges of Multiparty Asynchronous Sessions To answer this open ques-
tion, we face two major technical difficulties. First, simplicity and tractability of
the theory of binary sessions come from a notion of duality in interactions [14].
Consider the binary session type given in (1) for Buyer. Not only Buyer’s be-
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haviour can be checked against the session type, but also the whole conversation
structure is already represented in this single type, since the interaction pattern
of Seller is fully given as this type’s dual (which is given by exchanging input
and output and branching and selection in the original type). Thus a designer
can describe the intended conversation structure for sure by a session type; and,
when composing two parties, we only have to check they have mutually dual
types to check their compatibility.

This framework based on duality is no longer effective in multiparty ses-
sions. Here the whole conversation cannot be constructed only from the be-
haviour of a single participant. It is however the structure of this whole conver-
sation which we wish to type abstract and check our programs against: as we
already discussed, even a simplest example such as Two Buyer Protocol is hard
to decompose into binary conversations. Thus we need an effective means to
abstract, as a type, a multiparty interaction scenario which a designer/program-
mer wishes to realise, to check programs’ correctness against that type, and to
effectively calculate compatibility of programs to be composed.

Secondly, linearity analysis of channels, which is the key to ensure safety
and progress, becomes highly involved under a combination of asynchrony and
multiparties since a conflict of actions can arise more easily. For example, Alice
may send her messages to Bob and Carol in this order but they may not arrive
in the same order. On the other hand, if Alice sends her messages to Bob con-
secutively many times, and if the underlying asynchronous transport guarantees
message-order preservation, these messages will arrive at Bob’s without con-
fusion, ensuring linear(ized) usage of channels. Thus it is both worthwhile and
subtle to make the best of available causality principles, for a precise analysis
for correct sequencing of actions distributed among multiple peers.

This Work. This paper presents a generalisation of binary session types to mul-
tiparty sessions for the π-calculus. We overcome the aforementioned technical
challenges with the following three technical apparatus:

1. A new notion of types which directly abstract intended conversation structure
among n-parties as global scenarios, retaining intuitive type syntax.

2. Consistency criteria for an asynchronous conversation structure given as a
causality analysis of asynchronous actions in global types, modularly artic-
ulating different kinds of dependency.

3. A type discipline for individual processes (programs) which uses a global
type through its local projection onto individual local participants: the re-
sulting local types are directly associated with individual processes for effi-
cient type checking.
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The idea of type abstraction based on a global view (Point 1) comes from an
abstract version of “choreography” developed in a W3C web services working
group [2, 3, 18, 39]. The safety principle for multiparty asynchrony (Point 2)
precisely and modularly captures causality structures in asynchronous interac-
tions in the abstract setting of global types, offering a foundation for the type
discipline. Through the use of global types, we obtain a new effective method
for designing and type-checking multiparty sessions (Point 3). First, we design
a global type G as an intended scenario. A team of programmers then develop
code, one for each participant, incrementally validating its conformance to (the
projection of) G. When programs are executed, their interactions automatically
follow the stipulated scenario. The projection can also be used as a hint for mod-
elling and designing local behaviours of participants. After the development, a
global type will serve as a basis of documentation for maintenance and upgrade.
For materialising this design framework, we introduce a type discipline which
can validate whether a program is typable or not, given G (as shared agreement)
and an individual program (as its local realiser). The resulting type discipline
guarantees all the original key properties of session types, such as communica-
tion error freedom and progress property (deadlock freedom), for general mul-
tiparty asynchronous sessions.

In the remainder, Section 2 gives the syntax and semantics of the calculus,
and motivates the key ideas through business and streaming protocol examples.
Section 3 explains the global types. Section 4 describes the typing system. Sec-
tion 5 establishes the main results. Section 6 gives extensions and related works.
Section 7 concludes with future issues.
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2 Multiparty Asynchronous Sessions

2.1 Syntax for Multiparty Sessions

Several versions of the π-calculi with session types are proposed in the liter-
ature; the paper [41] offers detailed discussions and analysis of their typing
systems. We use a simple extension of the original language in [17, 36] to mul-
tiparty sessions. Informally, a session is a series of interactions which serve as
a unit of conversation. A session is established among multiple parties via a
shared name, which represents a public interaction point. Then fresh session
channels are generated and shared through which a series of communication
actions are performed.

We use the following base sets: shared names or names, ranged over by
a,b,x,y,z, . . . (representing known names of endpoints); session channels or
channels, ranged over by s, t, ... (representing fresh ports belonging to each in-
stance of a multiparty session); labels, ranged over by l, l′, . . . (functioning like
method names or labels in labelled records); process variables, ranged over by
X ,Y, . . . (used for representing recursive behaviour). In the syntax for hiding,
we use n for either a single shared name or a vector of session channels. Then
processes, ranged over by P,Q . . . , and expressions, ranged over by e,e′, . . . , are
given by the grammar in Figure 1.

Except for the first two primitives for session initiation and the final primi-
tive representing a message queue, all constructs come from [17].

The first two constructs are for session initiation. The prefix a[2..n](s̃).P ini-
tiates a new session through a shared interaction point a, by distributing a vector
of freshly generated session channels s̃ to the remaining n−1 participants, each
of shape a[p](s̃).Qp, the second construct in the grammar, for 2 ≤ p ≤ n. All
receive s̃, over which the actual session communications can now take place
among the n parties. p, q,... range over natural numbers called participants of a
session. These prefixes are chosen for representing the abstract notion of estab-
lishment of a multiparty session in bare minimal syntax.

Session communications (i.e. communications that take place inside an es-
tablished session) are performed using the next three pairs of primitives: the
sending and receiving of a vector of values, s!〈ẽ〉;P and s?(x̃);P; the session
delegation and reception, s!〈〈s̃〉〉;P and s?((s̃));P (where the former delegates to
the latter the capability to participate in a session by passing the whole chan-
nels associated with the session); and the selection and branching, s C l;P and
sB{li : Pi}i∈I (where the former chooses one of the branches offered by the lat-
ter). The next three (the conditional, parallel and inaction) are standard. (νa)P
makes a local to P while (νs̃)P makes s̃ local to P. The recursion and process
call realise recursive behaviour. s : h̃ is a message queue representing ordered
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Fig. 1 Syntax

P ::= a[2..n](s̃).P multicast session request

| a[i](s̃).P session acceptance

| s!〈ẽ〉;P value sending

| s?(x̃);P value reception

| s!〈〈s̃〉〉;P session delegation

| s?((s̃));P session reception

| sC l;P label selection

| sB{li : Pi}i∈I label branching

| if e then P else Q conditional branch

| P | Q parallel composition

| 0 inaction

| (νn)P hiding

| def D in P recursion

| X〈ẽs̃〉 process call

| s : h̃ message queue

e ::= v | e and e′ | not e ... expressions

v ::= a | true | false values

h ::= l | ṽ | s̃ messages-in-transit

D ::= {Xi(x̃is̃i) = Pi}i∈I declaration for recursion

messages in transit with destination s (which may be considered as a network
pipe in a TCP-like transport). (νs̃)P and s : h̃ only appear at runtime. We often
omit trailing 0 and write s! and s?.P, omitting the arguments of input and output
when unnecessary.

There are the following binders in processes:

– s̃ in a[2..n](s̃).P, a[p](s̃).P and s?((s̃));P;
– x̃ in s?(x̃);P;
– x̃s̃ in X(x̃s̃) = P;
– n in (νn)P and
– the process variables in def D in P.

The notions of bound and free identifiers, channels, alpha equivalence ≡α and
substitution are standard. For P a process, fpv(P), fn(P), and fs(P) respectively
denote the sets of free process variables, free identifiers and free session chan-
nels in P. dpv({Xi(x̃is̃i) = Pi}i∈I) denotes the set of process variables introduced
in {Xi(x̃is̃i) = Pi}i∈I .
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Fig. 2 Structural congruence.

P | 0≡ P P | Q≡ Q | P (P | Q) | R≡ P | (Q | R)

(νn)P | Q≡ (νn)(P | Q) if n 6∈ fn(Q)

(νnn′)P≡ (νn′n)P (νn)0≡ 0 def D in 0≡ 0

def D in (νn)P≡ (νn)def D in P if n 6∈ fn(D)

(def D in P) | Q≡ def D in (P | Q) if dpv(D)∩ fpv(Q) = /0

def D in (def D′ in P)≡ def D and D′ in P if dpv(D)∩dpv(D′) = /0

2.2 Operational Semantics

Structural congruence ≡ over processes is the smallest congruence relation on
processes that includes the equations in Figure 2. These are standard except we
are treating a vector of session channels as one chunk in hiding, which is con-
venient for some proofs on the typing system (no substantial difference arises
regarding the nature of the calculus by hiding channels one by one).

Using ≡, the operational semantics is given by the reduction relation, de-
noted P→Q, which is the smallest relation on processes generated by the rules
in Figure 3. In the figure, e ↓ v says that expression e evaluates to values v. We
illustrate each rule one by one.

Rule [LINK] describes a session initiation among n-parties through n-party
synchronisation, generating m fresh session channels and the associated m empty
queues ( /0 denotes the empty string). Each fresh channel is given a new empty
queue. As a result n participants now share the newly generated m channels,
hence their queues. Note the number of participants (n) can be different from
that of session channels (m), giving flexibility in channel usage. The use of the
n-party synchronisation in this rule captures, albeit abstractly, an n-party hand-
shake which would be necessary for establishing an n-party link in real-world
protocols.

Rules [SEND], [DELEG] and [LABEL] respectively enqueue values, chan-
nels and a label at the tail of the queue for s. Rules Symmetrically [RECV],
[SREC] 3 and [BRANCH] dequeue, at the head of the queue, values, channels
and a label. [RECV] and [BRANCH] respectively further instantiates the value in
the body and selects the corresponding branch.

3 This delegation rule (from [17]) is chosen over the more liberal one in [12, 13, 41] (which
uses substitution as in [RECV]) for simpler presentation. The technical development does not
depend on this choice, see §6.2.
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Fig. 3 Reduction

a[2..n](s̃).P1 | a[2](s̃).P2 | · · · | a[n](s̃).Pn → (ν s̃)(P1 | P2 | ... | Pn | s1 : /0 | · · · | sm : /0) [LINK]

s!〈ẽ〉;P | s : h̃ → P | s : h̃ · ṽ (ẽ ↓ ṽ) [SEND]

s!〈〈t̃〉〉;P | s : h̃ → P | s : h̃ · t̃ [DELEG]

sC l;P | s : h̃ → P | s : h̃ · l [LABEL]

s?(x̃);P | s : ṽ · h̃ → P[ṽ/x̃] | s : h̃ [RECV]

s?((t̃));P | s : t̃ · h̃ → P | s : h̃ [SREC]

sB{li : Pi}i∈I | s : l j · h̃ → Pj | s : h̃ ( j ∈ I) [BRANCH]

if e then P else Q → P (e ↓ true) [IFT]

if e then P else Q → Q (e ↓ false) [IFF]

def D in (X〈ẽs̃〉 | Q) → def D in (P[ṽ/x̃] | Q) (ẽ ↓ ṽ,X(x̃s̃) = P ∈ D) [DEF]

P → P′ ⇒ (νn)P → (νn)P′ [SCOP]

P → P′ ⇒ P | Q → P′ | Q [PAR]

P → P′ ⇒ def D in P → def D in P′ [DEFIN]

P≡ P′ and P′ → Q′ and Q′ ≡ Q ⇒ P → Q [STR]

In these communication rules, sending and receiving are mediated by a
queue: only when a message sent by (say) Alice is received by (say) Bob by
going through a queue, we can say that an interaction between Alice and Bob
has taken place. Since [LINK] generates a queue for each channel, these rules
entail that:

1. A sending action is never blocked (communication asynchrony); and that
2. two messages from the same sender to the same channel arrive in the sending

order (message order preservation).

As we discussed in Introduction, these are among the characteristics of well-
known transport mechanisms such as TCP.

All other rules are standard: for reference we briefly illustrate them. The
two rules for conditional, [IFT] and [IFF], reduce to one of the branches de-
pending on the result of evaluating the conditional guard. Rule [DEF] performs
unfolding of recursion. Rules [SCOP], [PAR] and [DEFIN] close the reduction
under hiding, parallel composition and definition. Finally Rule [STR] says that
the reduction is defined over processes up to ≡.
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2.3 Examples

Two Buyer Protocol We describe the two-buyers-protocol from Introduction
first by a sequence diagram below, then by processes.

}
branch

Buyer1 Seller Buyer2

title

quote div 2

quote

address

quote

date
quit

ok

[LINK] [LINK]

First Buyer1 sends a book title to Seller, then Seller sends back a quote to
Buyer1/2; Buyer1 now tells Buyer2 how much s/he can contribute, and Buyer2
notifies Seller if it accepts the quote or not. We now describe the behaviour of
Buyer1 as a process:

Buyer1 def= a[2,3](b1,b2,b′2,s). s!〈“War and Peace”〉;
b1?(quote); b′2!〈quote div 2〉;P1

Channel b1 is for Buyer1 to receive messages: b2 and b′2 for Buyer2 and s for
Seller (we discuss soon why Buyer2 needs two receiving channels). Buyer1
above is willing to contribute to the half of the quote. In P1, Buyer1 may perform
the remaining transactions with Seller and Buyer2. The remaining participants
follow.

Buyer2 def= a[2](b1,b2,b′2,s). b2?(quote); b′2?(contrib);
if (quote− contrib ≤ 99)

then sCok;s!〈address〉;b2?(x);P2

else sCquit;0

Seller def= a[3](b1,b2,b′2,s). s?(title); b1,b2!〈quote〉;
sB{ok : s?(x);b2!〈date〉;Q , quit : 0}

Above we write s1..sm!〈v〉;P for s1!〈v〉; ..sm!〈v〉;P, assuming s1..sm are pairwise
distinct.4 We can now explain why Buyer2 needs to use two input channels,

4 Due to asynchrony there is in effect no order among the sending actions at s1..sm, so that
s1..sm!〈v〉;P act as multicasting of v to s1..sn.

9



b2 and b′2. The first input (for quote) is from Seller, while the second one (for
contrib) is from Buyer1. Hence there is no guarantee that they arrive in a fixed
order, as can be easily seen by analysing reduction paths (this is Lamport’s prin-
ciple [23]). Thus if we were to use b2 for both actions, two messages can be
confused, losing linear usage of a channel. Later we shall show such a session
can be detected by our type discipline.

A Streaming Protocol We next consider a simple protocol for the standard
stream cipher [34].

Data Producer and Key Producer continuously send a data stream and
a key stream respectively to Kernel. Kernel calculates their XOR and
sends the result to Consumer.

Assuming streams are sent block by block (say as large arrays), we can realise
this protocol as communicating processes. In the following description we only
focus on communication behaviour. The kernel initiates a session:

Kernel def= def K(d,k,c) = d?(x); k?(y); c!〈x xor y〉; K〈d,k,c〉
in a[2,3,4](d,k,c).K〈d,k,c〉

The channels d and k are used for Kernel to receive data and keys from Data Pro-
ducer and Key Producer, respectively, while c is used for Consumer to receive
the encrypted data from Kernel. Data Producer and Consumer can be given as: 5

DataProducer def= def P(d,k,c) = d!〈data〉;P〈d,k,c〉 in a[2](d,k,c).P〈d,k,c〉
Consumer def= def C(d,k,c) = c?(data);C〈d,k,c〉 in a[3](d,k,c).C〈d,k,c〉

Key Producer is identical to Data Producer except it outputs at k instead of d.
When three processes are composed, we can verify that, although processes
repeatedly send and receive data using the same channels, messages are al-
ways consumed in the order they are produced, an essential requirement for
correctness of the protocol. This is because each channel is used by exactly one
sender. We shall show how this argument can be cleanly represented and vali-
dated through session types in the subsequent two sections.

5 For simplicity our description lets both Data Producer and Consumer repeatedly send the same
data: practically this is not the case but this simplified form is enough for our current concern,
i.e. validation of communication behaviour.
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3 Global Types and Causal Analysis

Developing programs for multiparty sessions demands a clear formal design
as to how multiple participants communicate and synchronise with each other.
To program individual participants without such a design and to hope that they
somehow realise a meaningful and error-free conversation is hardly practical,
especially for team programming. In binary session types, the type for an end-
point also served as the description of the whole conversation through duality,
but this is no longer possible for multiparty sessions, since the whole conver-
sation structure cannot be represented by that of a single endpoint. But it is
this whole conversation structure which a designer wishes to realise and hence
against which she wishes to check the correctness of her programs.

This is why we need the type abstraction which describes global conversa-
tion scenarios of multiparty sessions, introduced and studied in this section.

3.1 Session Types from a Global Viewpoint

Global session type, or global type, denoted G,G′, . . ., are intended to offer a
concise syntax for describing the conversation scenario of a multiparty session.
Its grammar is given in Figure 4. We illustrate its constructs in the following.

Type p→ p′ : k 〈U〉.G′ says that participant p sends a message of type U
to channel k (represented as a finite natural number) which is then received by
participant p′; and then interactions described in G′ ensues. Symbols U, ... range
over value types, denoting types for message values. Each value type is either
a vector of types for shared names called sorts, written S,S′, . . ., or a type for a
vector of session channels written T @p. The latter is discussed in detail in the
next section. For the development in this section, it suffices to consider U as a
single base type.

Type p→ p′ : k {l j : G j} j∈J says participant p sends one of the labels to
channel k which is then received by participant p′. If l j is sent, interactions
described in G j take place.

Type G,G′ represents concurrent run of interactions specified by G and G′.
Type µt.G is a recursive type for recurring conversation structures, assuming
type variables (t, t′, . . . ) are guarded in the standard way, i.e. type variables only
appear under the prefixes (hence contractive). We take an equi-recursive view of
recursive types, not distinguishing between µt.G and its unfolding G[µt.G/t] [31].
We assume that 〈G〉 in the grammar of sorts is closed, i.e. without type vari-
ables.6 Type end represents the termination of the session. We identify “G,end”
and “end,G” with G. The trailing end is sometimes omitted from examples.

6 In the presence of the standard recursive sorts [17] which we omit for simpler presentation,
we allow sort variables to occur in 〈G〉.
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Fig. 4 Syntax of Global Types
Global G ::= p→ p′ : k 〈U〉.G′ values

| p→ p′ : k {l j : G j} j∈J branching

| G,G′ parallel

| µt.G recursive

| t variable

| end end

Value U ::= S̃ | T @ p

Sort S ::= bool | nat | ... | 〈G〉

Definition 3.1 (prefix) We say that the initial “p→ p′ : k” in p→ p′ : k 〈U〉.G′

and p→ p′ : k {l j : G j} j∈J is a prefix from p to p′ at k. In the former U is a
carried type of the prefix. If U is a carried type in a prefix in G then U is also a
carried type in G.

Conventions 3.2 We assume that in each prefix from p to p′ we have p 6= p′,
i.e. we prohibit reflexive interaction.

Conventions 3.3 Henceforth we often regard a global type G as the acyclic
directed graph given by the standard regular tree presentation [31] of G.

A basic ordering on the nodes of this graph is induced by prefixes.

Definition 3.4 (prefix ordering) Write n,n′, .. for prefixes occurring in a global
type, say G (but not in its carried types), seen as nodes of G as a graph. We
write n ∈G when n occurs in G. Then we write n1 ≺ n2 ∈G when n1 directly or
indirectly prefixes n2 in G. Formally ≺ is the least partial order generated by:

n1 ≺ n2 ∈ p→ p′ : k 〈U〉.G′ if n1 = p→ p′ : k,n2∈G′

n1 ≺ n2 ∈ p→ p′ : k {l j : G j} j∈J if n1 = p→ p′ : k, ∃i∈J.n2∈Gi

Further we set n1 ≺ n2 ∈ G if n1 ≺ n2 ∈ G′ and G′ occurs in G but not in its
carried types.

The prefix ordering allows us to express intended sequencing in global types.
To clarify its meaning is essential for its proper usage. Consider a global type:

A→ B : s 〈U〉. A→ C : t 〈U ′〉. end (2)

The two prefixes are ordered by ≺. In a “synchronous” interpretation, this or-
dering would mean: “only after the first sending and receiving take place, the
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second sending and receiving take place”. This is a suitable reading when send-
ing and receiving constitute a single atomic action, as in synchronous calculi,
but not with asynchronous communication, where it is hard to impose this or-
dering on (2), since messages to distinct channels may not arrive in order.

Thus the present theory takes the more liberal interpretation of≺, imposing
sequencing only on the actions of the same participant in prefixes ordered by≺.
For example, in (2), A’s two sending actions are ordered, but B’s and C’s receiv-
ing actions are not. The remaining causal ordering comes from communication
à la Lamport [23]. The choice of this asynchronous interpretation of the prefix
ordering is a natural outcome of asynchronous communication in our theory and
enables us to capture causal ordering among asynchronous multiparty interac-
tions generally and with precision. We now illustrate this idea with substantial
examples.

3.2 Examples of Global Types

Two Buyer Protocol The following is a global type of Two Buyer Protocol
in §2.3. We write principals and channels with legible symbols though they are
actually numbers: Bi = i, S = 3, b1 = 1, b2 = 2, b′2 = 3 and s = 4.

1 B1→ S : s〈string〉
2 S→ B1 : b1〈int〉
3 S→ B2 : b2〈int〉
4 B1→ B2 : b′2〈int〉
5 B2→ S : s{ok : B2→ S : s 〈string〉.S→ B2 : b2 〈date〉.G, quit : end}

The type gives a vantage view of the whole conversation scenario. We show
several salient points in the interpretation of this type.

– Consider Lines 3 and 4. Since they have different senders, the sending ac-
tions are unordered in spite of their ≺-ordering. Hence if b2 = b′2 two mes-
sages can have a conflict at s. Note this analysis carries out the preceding
operational argument in §2.3 at the level of a global type.

– Consider the following causal chain of actions from Line 1 to 3 to 5:

B1 → S ≺ S → B2 ≺ B2→ S

Above → denotes the ordering given by message delivery, while ≺ is the
prefix ordering. Note in particular two sending actions by B1 (Line 1) and
by B2 (Line 5), both done at s, are causally ordered. Further there is a direct
dependency≺ from S of Line 1 to S of Line 5, showing the receiving actions
(or activeness in input channels) in Lines 1 and 5 are also ordered. Since
actions take place in strict temporal order in both sending and receiving, no
conflict occurs in spite of the use of a common channel s.
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Streaming Protocol Next we present the global type of the simple streaming
protocol in §2.3. Below we set: d = 1, k = 2, c = 3, K = 1, DP = 2, C = 3 and
KP = 4.

1 µt.DP→ K : d 〈bool〉.
2 KP→ K : k 〈bool〉.
3 K→ C : c 〈bool〉.t

Note the repetition of interactions is described by the (tail) recursion at the end.
For an analysis of its conversation structure, we unfold the recursion once, ob-
taining:

1 µt.DP→ K : d 〈bool〉.
2 KP→ K : k 〈bool〉.
3 K→ C : c 〈bool〉.
4 DP→ K : d 〈bool〉.
5 KP→ K : k 〈bool〉.
6 K→ C : c 〈bool〉.t

Since the unfolding results in having a precise copy of the original type, chan-
nels are repeated in Lines 4/5/6 from Lines 1/2/3. We note:

– Lines 1 and 2 are temporally unordered in sending (representing concurrent
sending actions from two participants). However this does not cause conflict
since channels d and k are distinct.

– Line 1 and its unfolding, Line 4, share d. But the two use the same sender
and the same receiver, so each pair of actions are ≺-ordered, hence they do
not induce conflict. Similarly for other pairs of the original and unfolded
actions.

We can easily infer that essentially The same arguments hold in any n-fold un-
foldings.

3.3 Safety Principle for Global Types

For a conversation in a session to proceed properly, it is desirable that there is no
conflict (racing) at session channels. To ensure this, the necessary and sufficient
condition is that, when a common channel is used in two communications, their
sending actions and their receiving actions should respectively be ordered tem-
porally,7 so that no confusion arises at neither sending nor receiving. If a global
type satisfies this principle, then it specifies a safe protocol: and can be used as
a basis of guaranteeing safe process behaviours through type checking.

7 To be precise, we demand that the pair of the concerned output prefixes become active in a
strict temporary order; and that the same hold for the pair of the concerned prefixes.
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Fig. 5 Causality Analysis

(II) Good (II) Bad (IO) Good (IO) Bad (OO, II) Good (OI) Bad

A→ B : s
C→ B : t

s! | s?; t? | t!

A→ B : s
C→ B : s

s! | s?;s? | s!

A→ B : s
B→ C : t

s! | s?; t! | t?

A→ B : s
B→ C : s

s! | s?;s! | s?

A→ B : s
A→ B : s

s!;s! | s?;s?

A→ B : s
C→ A : s

s!;s? | s? | s!

Causality is induced in several ways in the present asynchronous model. We
summarise all essential cases in Figure 5, with concrete process instances for
illustration in each case. IO denotes the causal ordering by ≺ is from input
(receiving) to output (sending), similarly for II, OO and OI. In (II)-Bad, we
demand A 6= C. We observe:

– The “good” and “bad” cases for II shows that II alone is safe only when two
channels differ. Similarly for IO.

– In OO,II (the fifth case), two outputs have the same sender and the same
channel, so (by message order-preservation) outputs are ordered. Inputs are
also ordered by ≺ hence they are safe.

– There is no ordering from output to input (due to asynchrony), so OI gives
us no dependency we can use.

These observations lead to the following “effective” causal relations on global
types.

Definition 3.5 (dependency relations) Fix G. The relation ≺φ over its prefixes
is generated from:

n1 ≺II n2 if n1 ≺ n2 and ni = pi→ p : ki (i = 1,2)
n1 ≺IO n2 if n1 ≺ n2, n1 = p1→ p : k1 and n2 = p→ p2 : k2.
n1 ≺OO n2 if n1 ≺ n2, ni = p→ pi : k (i = 1,2)

An input dependency from n1 to n2 is a chain of the form n1 ≺φ1 · · · ≺φn n2
(n≥ 0) such that φi ∈{II, IO} for 1≤ i≤ n−1 and φn = II. An output dependency
from n1 to n2 is a chain n1 ≺φ1 · · · ≺φn n2 (n≥ 1) such that φi ∈ {OO, IO}.

In the input dependency, the last II-ordering is needed since if it ends with an
IO-edge an input at n2 may not be suppressed.

Definition 3.6 (linearity) G is linear if, whenever ni = pi→ p′i : k (i = 1,2) are
in G for some k and do not occur in different branches of a branching, then both
input and output dependencies exist from n1 to n2, or, if not, both exist from n2
to n1. If G carries other global types, we inductively demand the same.
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Remark 3.7 We illustrate the condition on branching in Definition 3.6 by the
following example.

1. A→ B : t{ok : C→ D : s.end A→ B : t.(C→ D : s.end,
2. quit : C→ D : s.end } C→ D : s.end)

(a) branching (b) parallel

The type (a) represents branching: since only one of two branches is selected,
there is no conflict between the two prefixes C→ D : s in Lines 1 and 2. On the
other hand, (b) means a concurrent execution of two independent C→ D : s, so
an input conflict at D exists.

Remark 3.8 Let G be linear and suppose n1 and n2 in G share a common chan-
nel and there is an input dependency and an output dependency in the same
direction, say from n1 to n2. This does not mean the causal chains witnessing
these dependencies are identical. As a simple example, consider

A→ B : t〈nat〉;B→ C : s〈nat〉;C→ A : t〈nat〉.end

Here the input dependency from the first node to the last has no intermediate
nodes while their output dependency should go through the second node.

Linearity and its violation can be detected algorithmically, without infinite
unfoldings. First we observe we do need to unfold once.

µX .(A→ B : s.B→ C : t.C→ A : s.X)

This is linear in its 0-th unfolding (i.e. we replace X with end): but when un-
folded once, it becomes non-linear, as witnessed by:

def X(st) = (s! | s?.t! | t?.s!.X〈ts〉) in X〈ts〉

But in fact unfolding once turns out to be enough. Taking G as a syntax, let us
call the one-time unfolding of G the result of unfolding once for each recursion
in G (but never in carried types), and replacing the remaining variable with end.

Proposition 3.9 (1) A global type is linear iff its one-time unfolding is linear.
(2) The linearity of a global type is decidable by a quadratic algorithm.

Proof. Below the proofs of both (1) and (2) induce concrete algorithms. Global
types are generally treated as regular trees (except e.g. when we consider sub-
stitution).
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Proof of (1)

Notation. (i) In the following we write G(0), G(1), ..., G(n), ... for the result
of n-times unfolding of each recursion in G. For example if G is µt.G′ and this
is the only recursion in G, then G(0) is given as G′[end/t], G(1) is given as
G′[G(0)/t] and, for each n, G(n+1) is given as G′[G(n)/t]. If G contains more
than one recursion we perform the unfolding of each of its recursions. For con-
venience we set G(−1) to be the empty graph.

(ii) Observing each G(n + 1) is the result of adding zero or more unfoldings to
G(n), so that G(n+1) contains the exact copy of G(n), we write G(n+1)\G(n)
to denote the newly added (unfolded) part of G(n+1).

(iii) Given a node n in G(m+1)\G(m), we can jump back from n once to reach
its “original” in G(m)\G(m− 1) (which is G(0) if m = 0). This exact copy of
n which was created “one unfolding ago”, is called the one-time folding of n, or
simply the folding of n. In the same way we define the i-th folding of n which
is in G(m− i + 1)\G(m− i) (which is G(0) if i = m + 1). Note there are m + 1
such “foldings” of n in G(m+1)\G(m).

Below we say there are input/output dependencies from n1 to n2 when there
is an input dependency and an output dependency from n1 to n2.

Claim. (A) Suppose n1,2 and their respective i-th foldings n′1,2 are in G(m).
Then there are both input/output dependencies from n1 to n2 iff there are both
input/output dependencies from n′1 to n′2. (B) Let n′ be the folding of n. Then
there is always both input and output dependencies from n′ to n.

Proof (of Claim). (A) is immediate since the graph structure of the foldings is
identical to that of the originals (i.e. we can simply “fold” the original two onto
their foldings and all prefix relations coincide). For (B) we use induction. If
they are in G(1) we are done (they cannot be in G(0)). Suppose this holds up to
G(m) (m≥ 1). If n is in G(m+1) (hence n′ is in G(m)) then take their foldings
which are in G(m) and G(m− 1). By induction they have dependencies. Then
use (A). ¤

We now prove the statement. Fix a global type G and assume G(1) is linear. We
show by induction on n (n ≥ 1) that each G(n) is linear. Henceforth we ignore
nodes in carried types.

Base step. This is linearity of G(1) which is the assumption itself.

Induction Step. Suppose G(n) is linear. Then take two nodes n1 and n2 in
G(n + 1) (but not in carried types) which happen to share a common channel.
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We show there are input/output dependencies from n1 to n2, or the same holds in
the reverse direction. We say such n1,2 are conflict-free for brevity. We do case
analysis depending on the position of these nodes in G(m+1).

(i) If n1,2 are in G(n) then they already have input/output dependencies by in-
duction hypothesis.

(ii) If n1 is in G(n)\G(n− 1) and n2 is in G(n + 1)\G(n) then take their two
foldings say n′1 and n′2 respectively. By induction hypothesis they are conflict-
free by a pair of dependency chains. By Claim A we are done.

(iii) If n1 is in G(n− i) (i≥ 1) and n2 is in G(n+1)\G(n) then take the folding
of n2 say n′2 which is in G(n). By induction we know n1 and n′2 are conflict-
free. Since the present recursive types only allow tail-recursion 8 the witnessing
pairs of dependencies can only come from n1 to n′2. By Claim B there are both

input/output dependencies from n′2 to n′2. Thus we have, writing IO=⇒ for the
existence of both input/output dependencies:

n1
IO=⇒ n′1

IO=⇒ n′2

Now we connect these chains and we are done. ¤

Proof of (2)

By (1) above, it suffices to (in)validate the linearity of G(1). We consider the
following algorithm.

1. First it checks dependencies by scanning through the graph structure of G(1)
once, annotating the graph with their dependencies as well as those nodes
with common names (with indexes on branching):

2. Second it again traverses the annotated graph. When it encounters a new
channel, it records so: and it continues to record for the continuity of IO-
dependencies until one or both of them are cut. Call this state “off”. If it
meets a node of some name second time when its entry is in the “off” node
then the algorithm fails. If not it continues.

If the whole graph is checked without failing then the algorithm succeeds. Since
this algorithm demands, at each node, actions on at most m-entries where m is
the number of all channels in the global type, which is at most the size of the
graph, we conclude that this is quadratic on the size of the graph. ¤

8 This tail recursiveness (which is automatically satisfied by all recursive types in the present
type discipline) may not be essential for the argument, though details need be checked.
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Fig. 6 Syntax of Local Types

Local T ::= k!〈U〉;T send

| k?〈U〉;T receive

| k⊕{li : Ti}i∈I selection

| k&{li : Ti}i∈I branching

| µt.T | t | end

Value U ::= S̃ | T @ p

Sort S ::= bool | ... | 〈G〉

4 Type Discipline for Multiparty Sessions

4.1 Programming Methodology for Multiparty Interactions

Once given global types as our tool, we can consider the following development
steps for programs with multiparty sessions.

Step 1 A programmer describes her intended interaction scenario as global type
G, and checks that it is linear.

Step 2 She develops code, one for each participant, incrementally validating its
conformance to the projection of G onto each participant by efficient type-
checking.

When programs are executed, their interactions are guaranteed to follow the
stipulated scenario. The type specification also serves as a basis for maintenance
and upgrade.

This section introduces the type discipline which materialises this frame-
work. The type discipline uses local types which represent local behaviour of
processes and which act as a link between global types and processes.

4.2 Local Types

Syntax of Local Types Local session types or local types, ranged over by
T,T ′, .., are types for representing local behaviour of processes. The grammar
of local types is given in Figure 6 (where the grammars for carried types U and
S are repeated from Figure 4).

Local types are close to the foregoing session types in their shape: Indeed
all constructs of local types come from the binary session types [17] except for
the following changes to represent multiparty interactions.

19



Fig. 7 Type Isomorphism

k!〈U〉;k′!〈U ′〉;T ≈ k′!〈U ′〉;k!〈U〉;T (k 6= k′)

k⊕{li :k′⊕{l′j :Ti j} j∈J}i∈I ≈ k′⊕{l′j :k⊕{li :Ti j}i∈I} j∈J (k 6= k′, m ∈ I, n ∈ J)

– Since a process now uses multiple channels for addressing multiple parties,
a session type records the identity (number) of a session channel it uses at
each action type.

– Since a type is inferred for each participant, we use a notation T @ p (called
located type) representing a local type T for participant p. A located type is
also used for delegation.

Type k?〈U〉;T represents the behaviour of receiving values of type U at sk as
messages (assume s1...sn is shared at initialisation), then performing the actions
represented by T . Similarly k!〈U〉;T is for sending.

Type k&{li : Ti}i∈I describes a branching: it waits with n options at k, and
behave as type Ti if i-th label is selected; type k⊕{li : Ti}i∈I represents the be-
haviour which selects one of the labels say li at k then behaves as Ti.

For the rest, we have recursive types and type variables. As in global types,
we demand type variables occur guarded by a prefix and take an equi-recursive
approach for recursive types. Note local session type T does not contain parallel
composition as in the original session types, making each participant single-
threaded (taking off this restriction is easy, see Section 6.1).

U, ... range over value types, which already appeared in Section 3, denoting
types for message values. Each value type is a vector of types for shared names
called sorts, written S,S′, . . ., or of those for session channels denoted by a lo-
cated type T @p (indicating how these channels should be used in the receiving
process). A sort can be either an atomic type or a global type: the former repre-
sents communication of constants while the latter represents communication of
initiating names.

In addition to the standard isomorphism on recursive types induced by their
regular tree representation, local types are considered up to the isomorphism in-
duced by the rules in Figure 7 (closed under all type constructors). The equations
permute two consecutive outputs with different subjects, capturing asynchrony
in communication. Note the first equation can be regarded as the restricted case
of the second one when I and J are singletons.
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4.3 Projection and Coherence

To link global types and local types, we introduce the projection function of the
former to the latter, extracting the part of a given global type which concerns
the local behaviour of a specific participant.

Definition 4.1 (Projection) Let G be linear. Then the projection of G onto p,
written G¹p, is inductively given as:

– (p1→ p2 : k 〈U〉.G′)¹p def=





k!〈U〉.(G′ ¹p) if p = p1 6= p2

k?〈U〉.(G′ ¹p) if p = p2 6= p1

(G′ ¹p) if p 6= p2 and p 6= p1

– (p1→ p2 : k{l j : G j} j∈J)¹p def=





⊕{l j : (G j ¹p)} j∈J if p = p1 6= p2

&{l j : (G j ¹p)} j∈J if p = p2 6= p2

(G1 ¹p) if p 6= p2 and p 6= p1,
∀i, j ∈ I.Gi ¹p = G j ¹p

– (G1,G2)¹p def=

{
Gi ¹p if p ∈ Gi and p 6∈ G j, i 6= j ∈ {1,2}
end if p 6∈ G1 and p 6∈ G2

– (µt.G)¹p = µt.(G¹p), t¹p = t, and end¹p = end.

When a side condition does not hold the map is undefined.

The mapping is intuitive. For finiteness, we regard the map to act on the syntactic
(or finite) presentation of global types (we can easily check that the projection is
invariant under different syntactic presentation of global types up to ≡). Some
remarks are due:

– In the branching, all projections should generate an identical local type (oth-
erwise undefined).

– In the parallel composition, p should be contained in at most a single type,
ensuring each type is single-threaded (cf.§6.1).

Below pid(G) denotes the set of participant numbers occurring in G (but not in
carried types). In (2) Tp @ p appeared at the beginning of §4.2.

Definition 4.2 (Coherence) (1) We say G is coherent if it is linear and G¹p is
well-defined for each p ∈ pid(G), similarly for each carried global type induc-
tively. (2) {Tp @ p}p∈I is coherent if for some coherent G s.t. I = pid(G), we
have G¹p = Tp for each p ∈ I.
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Theorem 4.3 Coherence of G is decidable by a quadratic algorithm.

Proof. By Theorem 3.6 (2) and because the tree equivalence is a quadratic prob-
lem. [31, §21:12]. ¤

We also believe the coherence of {Tp @ p}p is decidable but this is not necessary
for the present technical development.

4.4 Examples of Coherence

As an example of a linear global type which is not coherent, consider:

A→ B : k{ok : C→ D : k′〈bool〉, quit : C→ D : k′〈nat〉}
Intuitively, when we project this type onto C or D, regardless of the choice made
by A, they should behave in the same way: participants C and D should be inde-
pendent threads. If we change the above nat to bool as:

A→ B : k{ok : C→ D : k′〈bool〉,quit : C→ D : k′〈bool〉},
we can define the coherent projection as follows:

{ k⊕{ok : end, quit : end}@ A, k&{ok : end, quit : end}@ B

k′!〈bool〉@ C, k′?〈bool〉@ D }
As examples of local types which are not coherent, consider processes in the
second case of Figure 5:

(II) Bad {s!〈〉@ A, s?〈〉;s?〈〉@ B, s!〈〉@ C}
This process is not coherent since the corresponding global type A→ B : s.C→
B : s is not.

4.5 Typing System

Purpose of Typing The purpose of the typing system in the present section is to
type behaviours which are built by programmers, i.e. without runtime elements
such as queues and channel hiding. Formally:

Definition 4.4 (program phrase and program) A process P is a program phrase
if P has no queues and no hidden session channels. P is a program if P is a pro-
gram phrase in which no free session channels and process variables occur.

Example 4.5 All of Buyer1, Buyer2, Seller, Data Producer, etc. in §2.3 are pro-
grams, hence are also program phrases.
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Environments and Type Algebra The typing system uses a map from shared
names to their sorts (S,S′, ..). As given in Figure 6, other than atomic types, a
sort has the shape 〈G〉 assuming G is coherent. Using these sorts we define the
grammar of sortings and typings as follows. Below in “Γ, u : S”, we assume u
does not occur in Γ. Similarly in “∆, s̃ : {T @ p}p∈I”, we assume no channel in s̃
occurs in the domain of ∆.

Γ ::= /0 | Γ,u : S | Γ,X : S̃T̃
∆ ::= /0 | ∆, s̃ : {T @ p}p∈I

A sorting (Γ,Γ′, ..) is a finite map from names to sorts and from process variables
to sequences of sorts and types. Typing (∆,∆′, ..) records linear usage of session
channels. In the binary sessions, it mapped each channel in its domain to a type:
now it maps each vector of session channels in its domain to a family of located
types. We write s̃ : T @ p for a singleton typing s̃ : {T @ p}. We write ∆,∆′ to
denote a typing made from the disjoint union of ∆ and ∆′ always assuming their
domains contain disjoint sets of session channels. We also write sid(G) for the
set of session channel numbers in G.

Definition 4.6 A partial operator ◦ is defined as:

{Tp @ p}p∈I ◦{T ′p′ @ p′}p′∈J = {Tp @ p}p∈I ∪{T ′p′ @ p′}p′∈J

if I ∩ J = /0. Then we say ∆1 and ∆2 are compatible, written ∆1 ³ ∆2, if for all
s̃i ∈ dom(∆i) such that s̃1∩ s̃2 6= /0, s̃ = s̃1 = s̃2 and ∆1(s̃)◦∆2(s̃) is defined. When
∆1 ³ ∆2, the composition of ∆1 and ∆2, written ∆1 ◦∆2, is given as:

∆1 ◦∆2 = {∆1(s̃)◦∆2(s̃) |s̃ ∈ dom(∆1)∩dom(∆2)} ∪
∆1 \dom(∆2) ∪ ∆2 \dom(∆1)

In brief this algebra gives the disjoint union of located types which is undefined
when disjointness is not satisfied.

Typing System The type assignment system for processes is given in Figure 8.
We use the judgement Γ ` P.∆ which reads: “under the environment Γ, process
P has typing ∆”. If we set |s̃| = 1 and n = 2, and delete p from located type,
the shape of rules is essentially identical with the original binary session typing
[41]. Below we only illustrate the main rules.

[MCAST] is the rule for the session request. The type for s̃ is the first pro-
jection of the declared global type for a in Γ. [MACC] is for the session accept,
taking the p-th projection. The condition |s̃| = max(sid(G)) ensures the num-
ber of session channels meets those in G. The typing s̃ : T @ p (which means
s̃ : {T @ p}) ensures each prefix does not contain parallel threads which share s̃.
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Fig. 8 Typing System for Expressions and Processes

Γ,a : S ` a : S Γ ` true, false : bool
Γ ` ei .bool

Γ ` e1or e2 : bool
[NAME], [BOOL], [OR]

Γ ` a : 〈G〉 Γ ` P.∆, s̃ : (G¹1)@ 1 |s̃|= max(sid(G))
Γ ` a[2..n](s̃).P.∆

[MCAST]

Γ ` a : 〈G〉 Γ ` P.∆, s̃ : (G¹p)@ p |s̃|= max(sid(G))
Γ ` a[p](s̃).P.∆

[MACC]

Γ ` e j : S j Γ ` P.∆, s̃ : T @ p

Γ ` sk!〈ẽ〉;P.∆, s̃ : k!〈S̃〉.T @ p
[SEND]

Γ,x : S̃ ` P.∆, s̃ : T @ p

Γ ` sk?(x̃);P.∆, s̃ : k?〈S̃〉.T @ p
[RCV]

Γ ` P.∆, s̃ : T @ p

Γ ` sk!〈〈t̃〉〉;P.∆, s̃ : k!〈T ′@ p′〉.T @ p, t̃ : T ′@ p′
[DELEG]

Γ ` P.∆, s̃ : T @ p, t̃ : T ′@ p′

Γ ` sk?((t̃));P.∆, s̃ : k?〈T ′@ p′〉.T @ p
[SREC]

Γ ` P.∆, s̃ : T @ p j ∈ I
Γ ` sk C l;P.∆, s̃ : k⊕{li : Ti}i∈I .T @ p

[SEL]

Γ ` Pi .∆, s̃ : Ti @ p ∀i ∈ I
Γ ` sk B{li : Pi}i∈I .∆, s̃ : k &{li : Ti}i∈I @ p

[BRANCH]

Γ ` P.∆ Γ ` Q.∆′ ∆³ ∆′

Γ ` P | Q.∆◦∆′
[CONC]

Γ ` e.bool Γ ` P.∆ Γ ` Q.∆
Γ ` if e then P else Q.∆

[IF]

∆ end only
Γ ` 0.∆

Γ,a : 〈G〉 ` P.∆
Γ ` (νa)P.∆

[INACT],[NRES]

Γ ` ẽ : S̃ ∆ end only
Γ,X : S̃T̃ ` X〈ẽs̃1..s̃n〉.∆, s̃1 : T1 @ p1, .., s̃n : Tn @ pn

[VAR]

Γ,X : S̃T̃ , x̃ : S̃ ` P. s̃1 : T1 @ p1..s̃n : Tn @ pn
Γ,X : S̃T̃ ` Q.∆

Γ ` def X(x̃s̃1..s̃n) = P in Q.∆
[DEF]

24



[SEND] and [RCV] are the rules for sending and receiving values. Since the
k-th name sk of s̃ is used as the subject, we record the number k. In both rules,
“p” in T @p ensures that P is (being inferred as) the behaviour for participant p,
and its domain should be s̃. Then the relevant type prefixes (k!〈S̃〉 for the output
and k?〈S̃〉 for the input) are composed in the conclusion’s session environment.

[DELEG] and [SREC] are the rules for delegation of a session and its dual.
Delegation of a multiparty session passes the whole capability to participate in
a multiparty session: thus operationally we send the whole vector of session
channels. The carried type T ′ is located, making sure that the behaviour by the
receiver at the passed channels takes the role of a specific participant (here p′) in
the delegated multiparty session. The rest follows the standard delegation rule
[41], observing [DELEG] says that t̃ : T ′@ p′ does not appear in P symmetrically
to [SREC] which uses the channels in P.

Rules [SEL] and [BRANCH] are identical with [41]. [CONC] uses ³ to en-
sure well-formedness of the session typing (note program phrases would prac-
tically lack any non-trivial composition at free channels, which is expected to
happen only at runtime).

The remaining rules [IF], [INACT],[NRES], [VAR], and [DEF] are standard.
In [INACT] and [VAR], “end only” means ∆ only contains end as session types.

An annotated P is the result of annotating P’s bound names as e.g. (νa :
〈G〉)P and s?(x : 〈G〉)P. Assuming these annotations is natural from our design
framework. For typing annotated processes we assume the obvious updates for
[RCV] and [NRES] in Fig. 8.

Theorem 4.7 Assume given an annotated program phrase P and Γ. Then it is
decidable by a quadratic algorithm if there exists ∆ such that Γ ` P . ∆ or not.
If such ∆ exists there is an algorithm to construct one.

NB: The typing constructed for a program phrase (if it exists) in the second
clause of Theorem 4.7 is its principal typing, in the sense that other typings of
the program phrase can be derived from it.

Proof. By the generation rules which follow the typing rules. The generation in-
volves consistency check which in particular includes the subtyping judgement
decidable by the standard quadratic algorithm. See Appendix A.1 for a concrete
inference system. ¤

Corollary 4.8 (typing for programs) Given an annotated program P and Γ, it
is decidable if Γ ` P. /0.

NB: The typing of a program without spurious weakening is always empty.

Proof. Immediate since a program is always a program phrase. ¤
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4.6 Typing Examples

Two Buyer Protocol Write Buyer1 as a[2,3](b1,b2,b′2,s).Q1 and Buyer2 as
a[2](b1,b2,b′2,s).Q2, both from §2.3. Then Q1 and Q2 have the following typing
under Γ = {a : 〈G〉} where G is given in the global type from § 3.2, that is:

G def=

B1→ S : s〈string〉.
S→ B1 : b1〈int〉.
S→ B2 : b2〈int〉.
B1→ B2 : b′2〈int〉.
B2→ S : s{ok : B2→ S : s 〈string〉.S→ B2 : b2 〈date〉.G, quit : end}

where we set Bi = i, S = 3, b1 = 1, b2 = 2, b′2 = 3 and s = 4. Assuming for
simplicity P1,P2,Q are 0, we obtain the following typing:

Γ ` Q1 . s̃ : s!〈string〉; b1?〈int〉; b′2!〈int〉@ B1

Γ ` Q2 . s̃ : b2?〈int〉; b′2?〈int〉; b1⊕{ok : s!〈string〉;b2?〈date〉;T, quit : end}@ B2

Similarly for Seller. After prefixing at a, we can compose all three by [CONC].
Note these typings are calculable by Corollary 4.8.

Streaming Protocol Let Γ′ = {a : 〈G′〉} where G′ is again from § 3.2. To wit:

G′ def= µt.



DP→ K : d 〈bool〉.
KP→ K : k 〈bool〉.
K→ C : c 〈bool〉. t




where we set d = 1, k = 2, c = 3, K= 1, DP= 2, C= 3 and KP= 4. Now write R1,
R2, R3 and R4 for the processes which are under the initial prefix (at the shared
name) of Kernel, DataProducer, Consumer and KeyProducer, respectively. Then
we can type each of these processes as:

Γ′ ` R1 . dkc : µt.d?〈bool〉;k?〈bool〉;c!〈bool〉; t@ K

Γ′ ` R2 . dkc : µt.d!〈bool〉; t@ DP

Γ′ ` R4 . dkc : µt.c?〈bool〉; t@ C

(R4 is similar as R2). Note these types correspond to the projection of G′ onto
respective participants: thus we have

Γ′ ` Kernel . /0.

Similarly DataProducer, Consumer and KeyProducer are typable under Γ′ with
the empty typings, which can be composed to make the well-typed initial con-
figuration.
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Delegation One of the expressiveness of the session types comes from a fa-
cility of delegation (often called higher-order session passing). We will type
and see the relationship with global and local types for delegation. Consider the
following three participants:

Alice def= a[2](t1, t2).b[2,3](s1,s2).t1!〈〈s1,s2〉〉;0
Bob def= a[2](t1, t2).b[1](s1,s2).t1?((s1,s2));s1!〈1〉;0

Carol def= b[2](s1,s2).s1?(x);P

where Alice delegates its capability to Bob. Since there are two multicasting,
there are two global specifications, one for a and another for b as follows:

Ga = A→ B : t1 〈s1!〈int〉@ B〉.end

Gb = B→ C : s1 〈int〉.end

where the type s1!〈int〉@ B means the capability to send an integer from par-
ticipant B via channel s1. This capability is passed to B so that B behaves as
A. However, since two specifications are independent, C does not have to know
who would pass the capability.

Let (Alice | Bob | Carol)→→ (νt̃ s̃)(A | B |C | R) where A,B,C are the pro-
cesses of Alice, Bob and Carol after their respective initial multicasting prefix
and R are the generated queues. Let s1 = 1, t1 = 1,A = 1,B = 2,C = 3. These
processes have the following typings under Γ with P≡ 0:

Γ ` A . t̃ : t1!〈s1!〈string〉@ B〉@ A, s̃ : s1!〈string〉@ B

Γ ` B . t̃ : t1?〈s1!〈string〉@ B〉@ B

Γ `C . s̃ : s1?〈string〉@ C

where each local type reflects the original global specifications (e.g. Carol does
not know Alice passed the capability to Bob). These types give projections of
Ga and Gb.
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5 Safety and Progress

This section establishes the fundamental behavioural properties of typed pro-
cesses, communication safety and progress. For this purpose we follow the fol-
lowing three technical steps:

1. We extend the typing rules to include those for runtime processes which
involve message queues.

2. We define reduction over session typings which eliminates a pair of minimal
complementary actions from local types.

3. We then relate the reduction of processes and that of typings: showing the
latter follows the former gives us subject reduction and safety, while show-
ing the former follows the latter under a certain condition gives us progress.

By the correspondence between local types and global types, these results guar-
antee that interactions between typed processes exactly follow the conversation
scenario specified in a global type.

NB: The typing system for runtime we shall introduce in this section is used
solely for establishing the behavioural properties of typed processes, tracing
how typability is preserved during reduction. This is in contrast to the typing
system in Section 4 which is for typing programs and program phrases, with the
corresponding type inference algorithm.

5.1 How to Type a Queue

We first illustrate a key idea underlying our runtime typing using the following
example.

s!〈3〉;s!〈true〉;0 | s : /0 | s?(x);s?(x);0 (3)

We type the two processes excepting the middle queue with

s : 1!〈nat〉;1!〈bool〉;end@p (4)

and
s : 1?〈nat〉;1?〈bool〉;end@q. (5)

After a reduction, (3) changes into:

s!〈true〉;0 | s :3 | s?(x);s?(x);0 (6)

Note that (6) is identical with (3) except that an output prefix in (3) changes its
place to the queue. Thus we can go back from (6) to (3) by placing this message
on the top of the process. A key idea in our runtime typing is to carry out this
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“rollback of a message” in typing, using a local type with a hole (a type context)
for typing a queue. For example we type the queue in (6) as:

s : { 1!〈nat〉; [ ]@p, [ ]@q } (7)

where [ ] indicates a hole. Now we cover the type 1!〈bool〉;end with the type
context for p given above, 1!〈nat〉; [ ], obtaining the type 1!〈nat〉;1!〈bool〉;end
for p, restoring the original typing.

Labels in a queue are also typed using a type context. For example k : l1 ·
true · l2 can be typed with

k⊕ l1 : k!〈bool〉; k⊕ l2 : [ ], (8)

omitting braces for a singleton selection. Now consider reduction

skCok;P | sk : /0 → P | sk : ok. (9)

Assume we type the left-hand side as

s̃ : k⊕{ok : T,quit : T ′}@p. (10)

After the reduction, we obtain the type for P as

s̃ : T @p. (11)

and the type for the queue as:

s̃ : k⊕{ok : [ ]}@p. (12)

By combining (11) and (12) as before, we obtain

s̃ : k⊕{ok : T}@p. (13)

We now observe that the located type in (13) is a subtype of the located type in
(10) in the standard session subtyping [2, 12], which is formally defined as:

Definition 5.1 The subtyping over local types, denoted ≤sub, is given as the
maximal fixed point of the function S that maps each binary relation R on local
types as regular trees to S(R) given as:

– If TRT ′ then k!〈U〉;T S(R) k!〈U〉;T ′ and (k?〈U〉;T ) S(R) (k?〈U〉;T ′).
– If TiRT ′i for each i ∈ I ⊂ J then both ⊕{li : Ti}i∈I S(R) ⊕{l j : T ′j} j∈J and

&{l j : Tj}i∈J S(R) &{li : T ′i }i∈I .

If T ≤sub T ′ then T is a subtype of T ′ whereas T ′ is a supertype of T .

Since k⊕{ok : T} ≤sub k⊕{ok : T,quit : T ′}, we can type the reductum in (9)
using the located type given in (10), which is a supertype of the located type in
(13), through the standard subsumption, achieving the required rollback.
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5.2 Type Contexts

We formally introduce the type contexts (T,T′, ...) and the extended session
typing (∆,∆′, ... as before) as follows.:

T ::= [ ] | k!〈U〉;T | k⊕ li : T

H ::= T | T

∆ ::= /0 | ∆, s̃ : {Hp@p}p∈I

Thus a type context represents a sequence of outputs and singleton selections
which ends with a hole. As before, the notation “∆,∆′” denotes the union as-
suming the domains should not include a common channel name. The isomor-
phism ≈ on type contexts is generated from permutations given in Figure 7 in
§4.2 (page 20, applied to type contexts in the obvious way) together with the
standard isomorphism on recursive types.9 Each assignment in ∆ may contain
both local types and type contexts. We then set, writing sid(T) for the set of the
channel numbers in T:

T ◦T = T ◦T = T[T ]
T ◦T′ = T[T′] (sid(T)∩ sid(T′) = /0)

In the first rule, we cap a type (for a process) with a type context (for queues).
In the second, we compose the type contexts for two mutually disjoint queues.
Note T ◦T′ is defined iff T′ ◦T is defined and in which case we have T[T′] ≈
T′[T]. Note also T ◦T ′ is never defined. Then the composition of typings, which
extends Definition 4.6, is given as follows.

Definition 5.2 A partial operator ◦ is defined as:

{Hp @ p}p∈I ◦{H ′
p′ @ p′}p′∈J = {Hp @ p◦H ′

p @ p}p∈I∩J ∪
{Hp @ p}p∈I\J ∪
{H ′

p′ @ p′}p′∈J\I

assuming each ◦ on the right-hand side is defined. Otherwise the operation is
undefined. Then we say ∆1 and ∆2 are compatible, written ∆1 ³ ∆2, if for all
s̃i ∈ dom(∆i) such that s̃1 ∩ s̃2 6= /0, s̃ = s̃1 = s̃2 and ∆1(s̃) ◦ ∆2(s̃) is defined.
When ∆1 ³ ∆2, the composition of ∆1 and ∆2, written ∆1 ◦∆2, is given as:

∆1 ◦∆2 = {∆1(s̃)◦∆2(s̃) | s̃ ∈ dom(∆1)∩dom(∆2)} ∪
∆1 \dom(∆2) ∪
∆2 \dom(∆1)

The operation ∆◦∆′ is undefined if ∆³ ∆′ does not hold.

9 The subtyping does not make sense for type contexts since ≤sub adds new branches.
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Fig. 9 Selected Typing Rules for Runtime Processes

Γ ` s : /0 .s s̃ :{[ ]@ p}p [QNIL]

Γ ` vi : Si Γ ` sk : h̃.sk ∆, s̃ :({T @ q}∪R) R={Hp@ p}p∈I

Γ ` sk : h̃ · ṽ .sk ∆, s̃ : (T[k!〈S̃〉; [ ]]@ q}∪R)
[QVAL]

Γ ` sk : h̃.sk ∆, s̃ :{T @ q}∪R R={Hp @ p}p∈I

Γ ` sk : h̃ · t̃ ′ .sk ∆, s̃ : (T[k!〈T ′@ p′〉; [ ]]@ q}∪R, t̃ ′:T ′@ p′
[QSESS]

Γ ` sk : h̃.sk ∆, s̃ : {T @ q}∪R R = {Hp @ p}p∈I

Γ ` sk : h̃ · l .sk ∆, s̃ : (T[k⊕ l : [ ]]@ q}∪R
[QSEL]

∆ end only ∆′ [ ] only
Γ ` 0. /0 ∆,∆′

[INACT]

Γ ` P.t̃ ∆ ∆≤ ∆′

Γ ` P.t̃ ∆′
[SUBS]

Γ ` P.t̃1 ∆ Γ `t̃2 Q.∆′ t̃1∩ t̃2 = /0 ∆³ ∆′

Γ `t̃1·t̃2 P | Q.t̃1·t̃2 ∆◦∆′
[CONC]

Γ ` P.t̃ ∆, s̃ : {Tp @ p}p∈I s̃ ∈ t̃ {Tp @ p}p∈I coherent
Γ `t̃\s̃ (ν s̃)P.∆

[CRES]

5.3 Typing Rules for Runtime

To guarantee that there is at most one queue for each channel, we use the typing
judgement refined as:

Γ ` P.s̃ ∆

where s̃ (regarded as a set) records the session channels associated with the
message queues. Some of the key typing rules for runtime are given in Figure 9
(the full typing rules are given in Appendix B).

[QNIL] starts from the empty hole for each participant, recording the session
channel in the judgement. [QVAL] says that when we enqueue ṽ, the type for ṽ is
added at the tail. [QSESS] and [QSEL] are the corresponding rules for delegated
channels and a label. [INACT] allows weakening for empty queue types while
[SUBS] allows subsumption (≤sub is extended point-wise from ≤sub on types).

[CONC] is refined to prohibit duplicated message queues. The rule does not
use coherence (cf. Def.4.2 (2)) since coherence is meaningful only when all par-
ticipants and queues are ready. In [CRES], since we are hiding session channels,
we now know no other participants can be added. Hence we check all message
queues are composed and the given configuration at s̃ is coherent.
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For the rest, we refine the original typing rules in Figure 8 not appearing in
Figure 9 as follows (the full typing rules are listed in Appendix B).

– For [MCAST],[MACC],[RCV],[SREC],[BRANCH] and [DEF], we replace Γ`
P.∆ with Γ ` P. /0 ∆.

– [VAR] is similar to [INACT] (so that a queue can never occur in processes
realising participants).

– For both [DEF] and [NRES], we replace Γ ` P.∆ by Γ ` P.s̃ ∆.

Using these typing rules, we can check that the redex (3) and its reductum (6) at
the beginning of this section (page 28) are given an identical typing by “rolling
back” the type of the message in the queues, similarly for the next redex and
reductum pair in the same page, (10) and (11).

The typability in the original system in §4 and the one in this system coin-
cide for processes without runtime elements.

Proposition 5.3 Let P be a program phrase and ∆ be without a type context.
Then Γ ` P.∆ in the typing system in Section 4 iff Γ ` P. /0 ∆ is derived without
using [SUBS] in the typing system in this section.

Proof. Suppose P is a program phrase. By definition, P is without queues and
without bound channels. We show two implications.

(1) Γ ` P.∆ implies Γ ` P. /0 ∆: Suppose P is typable in the original typing rules
(for program phrases). Since the typing rules for runtime processes subsume the
original rules, they can type P with the same derivation.

(2) Γ ` P. /0 ∆ without [SUBS] implies Γ ` P.∆: Suppose P is typable in the re-
fined system as Γ ` P. /0 ∆ without type contexts in ∆ and without using [SUBS].
By the lack of [SUBS] in the derivation, the derivation precisely follows the
structure of P. We inspect the potential differences between the original rules
and the refined rules.

– (Use of Type Contexts in Derivation) Suppose the derivation uses a type
context. The only place it can be taken off is [CONC]. Since there is no queue
in P this means the type context has been empty as the result of weakening
by [INACT]. Hence its use can be taken off from the derivations.

– (Use of Refined Constraints on Queue Channels in Judgements) Since the
only rule which decreases the number of mentioned queue channels in the
judgement (as in .s̃) is [CRES] we know each judgement in the derivation
has the /0 as its mentioned queue channels. Hence the constraint on queue
channels in [CONC] and other rules are never used.

Thus this derivation for P in the refined rules offers the derivation in the original
rules as is, hence done. ¤
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Fig. 10 Reduction of Typings

k!〈U〉;H @ p,k?〈U〉;T @ q→ H @ p,T @ q [TR-COM]

k⊕{ , l : H, }@ p,k&{ , l : T, }@ q→ H @ p,T @ q [TR-BRA]

H1 @ p1,H2 @ p2→ H ′
1 @ p1,H ′

2 @ p2 p1,p2 ∈ I
s̃ : { , H1 @ p1,H2 @ p2, }i∈I → s̃ : { , H ′

1 @ p1,H ′
2 @ p2, }i∈I

[TR-CXT-1]

∆0 → ∆′0
∆0,∆1 → ∆′0,∆1

[TR-CXT-2]

∆≈ ∆0 ∆0 → ∆′0 ∆′0 ≈ ∆′

∆→ ∆′
[TR-ISO]

Proposition 5.4 If Γ ` P .s1..sm ∆ then P has a unique queue at si (1 ≤ i ≤ m),
no other queue at a free channel occurs in P, and no queue in P is under prefix.

Proof. By mechanical rule induction, see Appendix A.2. ¤

5.4 Type Reduction

Next we introduce reduction over session typings, which abstractly corresponds
to interaction (including both sending and message delivery) in processes. The
generation rules are given in Figure 10. In the rules we assume well-formedness
of the types and typings. “ ” in [TR-CXT-1] stands for either an arbitrary located
contexts or selections.

For analysing properties of type reduction, in particular with respect to
causality in coherent global types, we introduce several ideas.

Definition 5.5 (1) (full projection) Assume G is coherent and let G ¹ pi = Ti

for each pi ∈ pid(G). Then [[G]], called full projection of P, denotes the family
{Ti@pi}. (2) (causal edges on [[G]]) For [[G]] given above, regarding each type
in [[G]] as the corresponding regular tree, we define the causal edges ≺II, ≺IO

and ≺OO among its prefixes precisely we have done in G.

Proposition 5.6 Each causal edge in G is preserved and reflected through the
projection onto [[G]].

Proof. This is because these causal edges record prefixing on the same partici-
pant preserved by projection. ¤
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Definition 5.7 (merge set) Assume G is coherent. Then we say two prefixes in
G in different branches of a branching prefix are mergeable with each other
when they are collapsed in its projection. A prefix is always mergeable with
itself. Given a prefix n, its merge set is the set of prefixes mergeable with n.

Proposition 5.8 Two prefixes in G are mergeable iff they are related to one
common input prefix and one common output prefix in [[G]] through projection.

Proof. This is because, in the defining clauses of projection, there are no other
cases than the one for branching which collapse two prefixes. ¤

Corollary 5.9 There is a bijection between the merge sets in G and the set of
input prefixes in [[G]]. Similarly for resp. the set of output prefixes in [[G]].

Proof. This is immediate from Proposition 5.8, taking the map induced by the
projection as the required bijection. ¤

Definition 5.10 If a merge set of G is related to an input prefix and an output
prefix in [[G]] by the bijection noted in Corollary 5.9 above, we say the former
is the projection preimage or simply preimage of the latter, or the latter is the
projection image or image of the former.

The following result links the linearity in global types to the causal properties
in local types.

Proposition 5.11

(1) If a pair of prefixes in [[G]] (taken up to the type isomorphism ≈) form a
redex with respect to → then they are not suppressed by any of ≺II, ≺IO

and ≺OO.
(2) Given coherent G, let G′ be the result of taking off the merge set of a prefix

from G which is not suppressed by any of ≺II, ≺IO and ≺OO. Then G′ is
again coherent.

(3) Let G be coherent. Then the causal edges are preserved and reflected be-
tween the two merge sets in G and their images in [[G]]. Further each redex
pair in [[G]] is the image of some prefix in G.

Proof. See Appendix A.3. ¤

Remark 5.12 Proposition 5.11 (1), (2) and (3) together say that the “redexes”
in a global type (in the sense that they are not under any non-trivial IO/OO/II-
dependency) is exactly reflected onto those in its projection.
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We can now clarify the relationship between reduction of typings and coherence,
after a definition.

Definition 5.13 (coherence and partial coherence of typings) (1) We say ∆ is
coherent if ∆(s̃) is coherent for each s̃ ∈ dom(∆). (2) ∆ is partially coherent if
for some ∆′ we have ∆³ ∆′ and ∆◦∆′ is coherent.

Proposition 5.14 (1) ∆1 → ∆′1 and ∆1 ³ ∆2 imply ∆′1 ³ ∆2 and ∆1 ◦ ∆2 →
∆′1 ◦∆2. (2) Let ∆ be coherent. Then ∆→ ∆′ implies ∆′ is coherent. (3) Let ∆ be
partially coherent. Then ∆→ ∆′ implies ∆′ is partially coherent.

Proof. For (1) suppose ∆1 → ∆′1 and ∆1 ³ ∆2. Note ∆1 ³ ∆2 means that each
pair of vectors of channels from ∆1,2 either coincide or are disjoint, and that, if
they coincide, their image are participant-wise composable by ◦. Since no rule
for → in Figure 10 invalidate either condition we conclude ∆′1 ³ ∆2.

For (2), suppose ∆ is coherent and ∆ → ∆′. Suppose the associated redex
is in ∆(s̃). By coherence we can write ∆(s̃) as [[G]] for some coherent G. Now
consider the preimage of the associated redex in [[G]], whose existence is guar-
anteed by Proposition 5.11 (3). This preimage is not suppressed by causal edges
by Proposition 5.11 (1,3). Reducing [[G]] corresponds to eliminating its preim-
age from G, say G′, whose projection [[G′]] precisely gives the result of reducing
[[G]]. Since G′ is coherent by Proposition 5.11 (2) we are done.

Finally (3) is immediate from (1) and (2). ¤

5.5 Subject Reduction and Communication Safety

For subject reduction we use the following lemmas. In the first lemma below,
we say that two typings, ∆1 and ∆2, share a common target channel in their type
contexts when, for some s̃ and k, we have: (1) T1@p∈ ∆1(s̃) and T2@p∈ ∆2(s̃);
and (2) k!〈U〉 or k⊕ l occurs in T1 and k!〈U ′〉 or k⊕ l′ occurs in T2 (i.e. they
have an output/selection type at a shared channel).10

Lemma 5.15 (partial commutativity and associativity of ◦) ◦ on typings is par-
tially commutative and associative with identity /0 under the condition that,
whenever we compose two typings, they never share a target channel in their
type contexts (in the above sense).

Proof. See Appendix A.4. ¤
10 Whenever we compose two processes, their typings never share a common target channel in

their type contexts in this sense because, by the disjointness of mentioned channels for queues,
target channels in type contexts can never coincide.
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Lemma 5.16 Assume Γ ` P .s̃ ∆. Then all free names and free variables in P
occur in Γ and all free channels in P occur in ∆.

Proof. Mechanical. ¤

Below a derivation of Γ ` P .s̃ ∆ is a derivation tree of the typing rules for
runtime processes (fully listed in Appendix B) whose conclusion is Γ ` P.s̃ ∆.

Lemma 5.17 (permutation) (1) Assume given a derivation of Γ ` P.s̃ ∆ which
uses [SUBS] at its last two steps. Then Γ ` P.s̃ ∆ has a derivation identical with
the original one except its last two steps are replaced by a single application of
[SUBS]. (2) Assume given a derivation of Γ ` P .s̃ ∆ which uses [SUBS] as its
last rule and another rule which is not one of [SUBS], [SEL] and [BRANCH].
Then Γ ` P.s̃ ∆ has a derivation which is identical with the original one except
that the last two rules used are permuted.

Proof. (1) is immediate from the transitivity of [SUBS]. (2) is mechanical. ¤

Lemma 5.18 (queue) The following rules are admissible in the typing system
for runtime processes. Below let s̃ = s1..sk..sn and assume in each rule ◦ in the
premise is well-defined.

Γ ` sk : h̃.s̃′ ∆◦ s̃ : {T@p} Γ ` ṽ. S̃
Γ ` sk : h̃ · ṽ.s̃′ ∆◦ s̃ : {T[k!〈S̃〉.[ ]]@p} [QVAL]

Γ ` sk : h̃.s̃′ ∆◦ s̃ : {T@p} {t̃} fresh
Γ ` s : h̃ · t̃ .s̃′ ∆◦ s̃ : {T[k!〈T @ p′〉.[ ]]@}, t̃ : {T @p′} [QSESS]

Γ ` s : h̃.s̃′ ∆◦ s̃ : {T@p}
Γ ` s : h̃ · l .s̃′ ∆◦ s̃ : {T[k⊕{ , l : [ ], }]@p}. [QSEL]

Γ ` s : ṽ · h̃.s̃′ ∆◦ s̃ : {k!〈S̃〉.T@p}@p

Γ ` s : h̃.s̃′ ∆◦ s̃ : {T@p}. [QVALDQ]

Γ ` s : t̃ · h̃.s̃′ ∆◦ s̃ : {k!〈T @ p′〉.T@p}, t̃ : {T @p′}@p′

Γ ` s : h̃.s̃′ ∆◦ s̃ : {T@p}. [QSESSDQ]

Γ ` s : l · h̃.s̃′ ∆◦ s̃ : {k⊕ l : T@p}
Γ ` s : h̃.s̃′ ∆◦ s̃ : {T@p} [QSELDQ]

Proof. See Appendix A.5. ¤
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Below we do not require the substitution lemmas for session channels and pro-
cess variables, cf. [41].

Lemma 5.19 (substitution and weakening) (1) (substitution) Γ,x : S ` P .s̃ ∆
and Γ ` v : S imply Γ ` P[v/x] .s̃ ∆. (2) (weakening) Whenever Γ ` P .s̃ ∆ is
derivable then its weakening, Γ ` P .s̃ ∆,∆′ for disjoint ∆′ where ∆′ contains
only empty type contexts and for types end, is also derivable.

Proof. Standard, see [41]. ¤

Among the lemmas above, the lemmas for queues are needed for treating reduc-
tion involving queues in the present asynchronous operational semantics. We
can now establish subject reduction.

Theorem 5.20 (subject congruence and reduction)

(1) Γ ` P.s̃ ∆ and P≡ P′ imply Γ ` P′ .s̃ ∆.
(2) Γ ` P .s̃ ∆ with ∆ coherent and P → P′ imply Γ ` P′ .s̃ ∆′ where ∆ = ∆′ or

∆→ ∆′.
(3) Γ ` P. /0 /0 and P→ P′ imply Γ ` P′ . /0 /0.

Proof. (1) is by rule induction on≡ showing, in both ways, that if one side has a
typing then the other side has the same typing. In the following we safely ignore
uninteresting (permutable) final applications of [SUBS] in derivations by way of
Lemma 5.17.

Case P | 0≡ P: First assume Γ ` P.s̃ ∆. By Γ ` 0. /0 /0 and by applying [CONC]
to these two sequents we immediately obtain Γ ` P|0 . ∆, as required. For the
converse direction assume Γ ` P|0.s̃ ∆. We can safely assume (via Lemma 5.17)
that the last rule applied is [CONC]. Thus we can set Γ ` P.s̃ ∆1 and Γ ` 0. /0 ∆2
such that ∆1 ◦∆2 = ∆. Note we can safely regard Γ ` 0.∆2 as being inferred by
the axiom [INACT] since applying [SUBS] to empty types and empty type con-
texts again lead to the empty types and empty type contexts: thus ∆2 consists
of only empty types and empty type contexts. Thus, in the composition ∆1 ◦∆2,
the empty types and some of the empty type contexts from ∆2 are added to ∆1
to generate ∆. Let this added part be ∆′2. Since we can weaken ∆1 in the first
sequent with ∆′2 using Lemma 5.19 (2) we are done.

Case P |Q≡Q |P: By symmetry of the rule we have only to show one direction.
Suppose Γ ` P|Q .s̃ ∆. We can safely assume the last rule applied is [CONC].
We can thus set Γ ` P.t̃ ∆1 and Γ ` Q.r̃ ∆2 such that ∆1 ³ ∆2, ∆1 ◦∆2 = ∆ and
t̃ ] r̃ = s̃. By Lemma 5.15 we know ∆2 ³ ∆1 and ∆2 ◦∆1 = ∆ hence by applying
[CONC] with the premises reversed we are done.
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Case (P | Q) | R ≡ P | (Q | R): By the establishment of the previous case again
we have only to show one direction. Suppose Γ ` (P |Q) | R.s̃ ∆. We can safely
assume: Γ`P.t̃ ∆1, Γ`P.r̃ ∆2 and Γ`P.q̃ ∆3 such that ∆1 ³∆2, (∆1◦∆2)³∆3
and (∆1 ◦∆2)◦∆3 = ∆, as well as t̃ ] r̃] q̃ = s̃. By the last condition, no two of
∆1, ∆2 and ∆3 share a common target channel in their type contexts (in the sense
given just before Lemma 5.15, page 35) because if the queue for a certain chan-
nel does not exist in a sequent then it cannot be used as a target channel in a
type context in its typing. Thus we can apply Lemma 5.15 to know ∆2 ³ ∆3,
∆1 ³ (∆2 ◦∆3) and ∆1 ◦ (∆2 ◦∆3) = ∆. By applying [CONC] in an appropriate
order we are done.

The remaining rules are reasoned exactly as in [41] (note the arguments for
congruence rules are direct from the compositionality of the typing rules). This
concludes the proof of (1).

For (2), we establish the following stronger claim by rule induction.

Claim. Suppose Γ ` P .s̃ ∆ and ∆ is partially coherent (cf. Def. 5.13). Then
P→ P′ implies Γ ` P.s̃ ∆′ such that either ∆→ ∆′ or ∆ = ∆′.

All results on reduction on coherent typing is immediately applicable to par-
tially coherent typing by Proposition 5.14 (1). Further by Proposition 5.14 (2),
∆′ above is again partially coherent. Below we again ignore irrelevant final ap-
plication of [SUBS] through Lemma 5.17. All rule names are those of the typing
rules (as given in Appendix B).

Case [LINK]: Let R def= a[2..n](s̃).P1 | a[2](s̃).P2 | · · · | a[n](s̃).Pn which is a redex
of [LINK]. We write R1 for a[2..n](s̃).P1 and Ri for a[i](s̃).Pi (2≤ i≤ n). Assume:

Γ ` R . ∆ (14)

By Lemma 5.16 we know a ∈ dom(Γ). Let Γ(a) = G. Since (14) can only be
inferred by the sequence of [CONC] (up to permutable [SUBS], similarly in the
following), we know Γ ` Ri . ∆i (1 ≤ i ≤ n) such that ∆1 ◦ ... ◦∆n = ∆. By
[MCAST] and [MACC] this means:

Γ ` Pi . ∆i, s̃ : {(G¹ i)@i} (15)

for each 1≤ i≤ n. Hence by the successive applications of [CONC] we reach:

Γ ` (ΠiPi) | (Πisi : /0) .s̃ ∆, s̃ : {(G¹ i)@i}1≤i≤n (16)

Since {(G¹ i)@i}i collects all projections of G we can apply [CRES] to obtain:

Γ ` (νs̃)( (πiPi) | (Πisi : /0) ) . ∆ (17)
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for a reductum of [LINK]. Note the typing does not change.

Case [SEND]: We use the first rule of Lemma 5.18 for “rolling back” a message.
Suppose we have:

Γ ` s!〈ẽ〉;P | s : h̃ .s ∆ (18)

Since [CONC] is the only rule to derive this process we can set

Γ ` s!〈ẽ〉;P . /0 ∆1 (19)

and
Γ ` s : h̃ .s ∆2 (20)

such that ∆1 ◦∆2 = ∆. Since (19) can only be inferred from [SEND] we know,
first:

Γ ` e j : S j (21)

for each e j in ẽ; and, second, for some p and for some s̃ which includes s,

∆1 = ∆′1 ◦ s̃ : k!〈S̃〉.T @ p (22)

and moreover
Γ ` P . /0 ∆′1 ◦ s̃ : T @ p. (23)

On the other hand by ∆1 ³ ∆2 and (20) we know:

∆2 = ∆′2 ◦ s̃ : T[ ]@ p (24)

Now assume ẽ ↓ ṽ. Notice by (21) we have Γ ` v j : S j for each v j in ṽ. Thus by
Lemma 5.18, [QVAL], we infer:

Γ ` s : h̃ · ṽ . ∆′2 ◦ s̃ : T[k!〈S̃〉.[ ]]@ p. (25)

By the algebra of located types and type contexts:

(∆′1 ◦ s̃ : T @ p) ◦ (∆′2 ◦ s̃ :T[k!〈S̃〉.[ ]]@ p)
= (∆′1 ◦ s̃ : k!〈S̃〉.T @ p)◦ (∆′2 ◦ s̃ :T[ ]@ p)
= ∆

Thus by applying [CONC] to (19) and (20) we obtain:

Γ ` P | s : h̃ · ṽ . ∆ (26)

which gives the expected typing for the reductum of [SEND], with no type
change.
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Case [DELEG]: Similar to [SEND] using the second rule of Lemma 5.18, see
Appendix A.6.

Case [LABEL]: We use the third rule of Lemma 5.18 together with the subtyping
≤sub. Suppose we have:

Γ ` sC l;P | s : h̃ .s ∆ (27)

which is the redex of [LABEL]. Since [CONC] is the only rule to derive this
process we can set, without loss of generality:

Γ ` sC l;P . /0 ∆1 (28)

and
Γ ` s : h̃ .s ∆2 (29)

such that ∆1 ◦∆2 = ∆. Since (28) can only be inferred from [SEL] as the last rule
(up to permutable applications of [SUBS]), we know, for some p and for some s̃
which includes s and for some {li} which includes l,

∆1 = ∆′1 ◦ s̃ : k⊕{li : Ti}i∈I.T @ p (30)

and moreover
Γ ` P . /0 ∆′1 ◦ s̃ : T @ p. (31)

On the other hand we can write:

∆2 = ∆′2 ◦ s̃ : T[ ]@ p (32)

By (29), (32) and Lemma 5.18, [QSEL], we infer:

Γ ` s : h̃ · ṽ . ∆′2 ◦ s̃ : T[k⊕ l.[ ]]@ p. (33)

By the algebra of located types and type contexts together with subtyping:

(∆′1 ◦ s̃ : T @ p) ◦ (∆′2 ◦ s̃ :T[k⊕ l.[ ]]@ p)
= ∆′1 ◦∆′2 ◦ s̃ :T[k⊕ l.T ]@ p

≤sub ∆′1 ◦∆′2 ◦ s̃ :T[k⊕{li : Ti}i∈I.T ]@ p

= (∆′1 ◦ s̃ : k⊕{li : Ti}i∈I.T @ p)◦ (∆′2 ◦ s̃ :T[ ]@ p)
= ∆

Thus we obtain, by applying [CONC] to (31), (33) then applying [SUBS] (the
subsumption rule):

Γ ` P | s : h̃ · l . ∆ (34)
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which gives the expected typing for the reductum of [SEND], with no type
change.

Case [RECV]: By the first of the latter three rules of Lemma 5.18 together with
Lemma 5.19. Suppose

Γ ` s?(x̃);P | s : ṽ · h̃ .s ∆ (35)

Since [CONC] is the only possible last rule (up to permutable [SUBS]) we can
set

Γ ` s?(x̃);P . /0 ∆1 (36)

and
Γ ` s : ṽ · h̃ .s ∆2 (37)

such that ∆1 ◦∆2 = ∆. Since (36) can only be inferred from [RCV] we know, for
some p and for some s̃ which includes s,

∆1 = ∆′1 ◦ s̃ : k?〈S̃〉.T @ p (38)

and moreover
Γ, x̃ : S̃ ` P . /0 ∆′1 ◦ s̃ : T @ p. (39)

By Lemma 5.19, we obtain:

Γ ` P[ṽ/x̃] . /0 ∆′1 ◦ s̃ : T @ p. (40)

Further by ∆1 ³ ∆2 and (37) we know:

∆2 = ∆′2 ◦ s̃ : k!〈S̃〉.T @ p (41)

By Lemma 5.18, [QVALDQ], we infer:

Γ ` s : h̃ . ∆′2 ◦ s̃ : T @ p. (42)

Using Proposition 5.14 we obtain:

∆ def= (∆′1 ◦ s̃ : k?〈S̃〉.T @ p)◦ (∆′2 ◦ s̃ : k!〈S̃〉.T @ p)

→ (∆′1, s̃ : T @ p)◦ (∆′2 ◦ s̃ : T @ p) (def= ∆′)

Thus by applying [CONC] to (36) and (37) we obtain:

Γ ` P[ṽ/x̃] | s : h̃ . ∆′ (43)
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such that ∆→ ∆′, as required. Note this case demands reduction of typings.

Case [SREC], [BRANCH]: Similar to [RECV], using the latter two rules of
Lemma 5.18, see Appendix A.6.

Case [IFT], [IFF], [DEF], [DEFIN]: Standard, cf. [41]. No difference in the typ-
ing.

Case [SCOP]: When a shared name is hidden, assume

Γ ` (νa)P . ∆ (44)

and P→ P′. Then we can set

Γ,a : 〈G〉 ` P . ∆. (45)

By induction hypothesis we know

Γ,a : 〈G〉 ` P′ . ∆′ (46)

such that either ∆→0,1 ∆′. Hence by [NRES] we have

Γ ` P′ . ∆′ (47)

as required. When session channels are hidden, suppose

Γ ` (νs̃)P . ∆ (48)

and P→ P′. We can set:

Γ ` P . ∆,{s} : {Tp@p}p∈I (49)

where {Tp@p}p∈I is coherent. By induction hypothesis

Γ ` P′ . ∆′,{s} : {T ′p@p}p∈I (50)

where either ∆→0,1 ∆′ or {s} : {Tp@p}p∈I →0,1 {s} : {T ′p@p}p∈I . By Lemma
5.14 (1) {T ′p@p}p∈I is again coherent. Hence by [CRES] we obtain

Γ ` (νs̃)P′ . ∆′ (51)

as required.

Case [PAR]: Suppose we have Γ ` P|Q . ∆ and P→ P′. By [CONC] we have
Γ ` P . ∆1 and Γ ` Q . ∆2 such that ∆1 ◦∆2 = ∆. By induction hypothesis
we have Γ ` P′ . ∆′1 such that ∆1 →0,1 ∆′1. By Proposition 5.14 (1) we have
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∆′1 ³ ∆2 hence Γ ` P′|Q . ∆′1 ◦∆2. Noting Proposition 5.14 (1) also says that
(∆1 ◦∆2)→0,1 (∆′1 ◦∆2) we are done.

Case [STR]: Immediate from Subject Congruence (the first clause of this theo-
rem). This exhausts all cases for (2).

(3) is because the empty typing /0 is always coherent. ¤

Remark 5.21 Theorem 5.20 (3) and the subsequent results (in particular The-
orems 5.23 and 5.31 below) tell us, through Proposition 5.3, that the typing
system in Section 4, which is for programs and program phrases, guarantees
type safety and other significant behavioural properties for typable programs.
Further this typability of programs is effective by Corollary 4.8.

Theorem 5.20 immediately entails the lack of the standard type errors in ex-
pressions (such as true + 3). The type discipline also satisfies, as in the pre-
ceding session type disciplines (cf. [17, 36, 41]), communication error freedom,
including linear usage of channels. We first introduce the reduction context E as
follows:

E ::= E | P | P | E | (νn)E | def D in E

Henceforth we assume the standard bound name convention. We also say and
write:

– A prefix is at s (resp. at a) if its subject (i.e. its initial channel) is s (resp. a).
Further a prefix is emitting if it is request, output, delegation or selection,
otherwise it is receiving.

– A prefix is active if it is not under an prefix or an if branch, after any
unfolding by [DEF]. We write P〈〈s〉〉 if P contains an active subject at s after
applying [DEF], and P〈〈s!〉〉 (resp. P〈〈s?〉〉) if P contains an emitting (resp.
receiving) active prefix at s.

– We say P has a redex at s if its redex pair (the process part) is a prefix at s.

Below and henceforth we safely confuse a channel (as a number) in a typing
and the corresponding free session channel in a process.

Lemma 5.22 Assume Γ ` P . /0 ∆ s.t. ∆ ◦∆0 is partially coherent for some ∆0.
(1) If P〈〈s〉〉 then P contains either a unique active prefix at s or a unique active
emitting prefix and a unique active receiving prefix at s. (2) If P contains an
active emitting (resp. receiving) prefix at s then ∆ contains an emitting (resp. re-
ceiving) minimal prefix at s.

Proof. By easy rule induction, see Appendix A.7. ¤
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We can now establish the communication safety for typable processes. The
following statement decomposes the corresponding properties known for syn-
chronous session types [17, 36, 41] into the sending side and the receiving side,
due to the use of queues in the present asynchronous semantics. In the following
we again work under the standard bound name convention.

Theorem 5.23 (Communication Safety) Suppose Γ ` P .t̃ ∆ s.t. ∆ is coherent
and P has a redex at free s. Then:

1. (linearity) P≡ E[s : h̃] such that either
(a) P〈〈s?〉〉 and s occurs exactly once in E with h̃ 6= /0; or
(b) P〈〈s!〉〉 and s occurs exactly once in E; or
(c) P〈〈s?〉〉 and P〈〈s!〉〉.

2. (error-freedom) if P≡ E[R] with R〈〈s?〉〉 being a redex:
(a) If R≡ s?(ỹ);Q then P≡ E′[s : ṽ · h̃] for some E′ and |ṽ|= |x̃|.
(b) If R≡ s?((s̃));Q then P≡ E′[s : t̃ · h̃] for some E′ and |s̃|= |t̃|; and
(c) If R≡sB{li : Qi}i∈I then P≡E′[s : l j ·h̃] for some E′ and j∈ I.

Proof. For (1), let P≡ (νñ)(P0|s : h̃|Q) where P0 does not contain a queue and
Q only contains queues (by Proposition 5.4). By Lemma 5.22 we know P0 has
either a single active prefix or a pair of a receiving active prefix and an emitting
active prefix. So we have three cases:

– P0〈〈s?〉〉 and there is no other active prefixes at s: if so because there is a
redex in P the queue cannot be empty.

– P0〈〈s!〉〉 and there is no other active prefixes at s: then this gives us a redex.
– P0〈〈s!〉〉 and P0〈〈s?〉〉. Then at least the former gives a redex but the latter can

also give a redex.

Hence as required.
For (2), if P satisfies the stated condition then we can write P ≡ E′[s : h̃|R]

and S def= s : h̃|R form a redex, with the same typing by Theorem 5.7 (1). Since
this should have a partially coherent typing it in particular means the pair of
active prefixes at s in the tying of S should be complementary. The rest is by the
direct correspondence between the type constructors and the prefixes. ¤

By Theorems 5.20 and 5.23, a typed process “never goes wrong” in the sense
that its interaction at a multiparty session channel is always one-to-one and that
each delivered value matches the receiving prefix. By Lemma 5.22 (2) and by
the typing of the associated queue, this delivery precisely corresponds to a redex
in the session typing.
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5.6 Progress

Communication safety says that if a process ever does a reduction, it conforms
to the typing and it is linear. If interactions within a session are not hindered by
initialisation and communication of different sessions, then the converse holds:
the reduction predicted by the typing surely takes place, the standard progress
property in binary session types [8, 17]. First we define:

Definition 5.24 Let Γ ` P.s̃ ∆. Then P is queue-full when {s̃} coincide with the
set of session channels occurring in ∆.

A process is queue-full when it has a queue for each session channel. Observe:

Proposition 5.25 Let P be typable and queue-full. Then for each free or ν-
bound session channel, there is a unique queue with that channel. Further P→∗

P′ implies P′ is also typable and queue-full.

Proof. The first part is by the typing rule [CRES]. The second part is by Theo-
rem 5.20 and shape of the reduction rules involving queues including [LINK].¤

The following condition precludes interleaving of other sessions (including ini-
tialisations and communications) which can introduce deadlock. For example,
two session initialisations a[2](s).b[2](t).s?; t! and a[2](s).b[2](t).t?;s! cause
deadlock. Observe, because we have multiparty sessions, there is less need to
use interleaved sessions.

Definition 5.26 (simple) A process P is simple when it is typable with a type
derivation where the session typing of both the premise and conclusion of each
prefix rule in Figure 8 is restricted to at most a singleton.

Proposition 5.27 Let P0 be simple and P0 →∗ P. Then no delegation prefix (in-
put or output) occurs in P and for each prefix with a shared name in P, say
a[i](s̃).P′ or a[2..n](s̃).P′, there is no free session channels in P′ except s̃.

Proof. See Appendix A.8. ¤

Another element which can hinder progress is when interactions at shared names
cannot proceed.

Definition 5.28 (well-linked) We say P is well-linked when for each P →∗ Q,
whenever Q has an active prefix whose subject is a (free or bound) shared name,
then it is always part of a redex.
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Thus, in a simple well-linked P, each session is never hindered by other sessions
nor by a name prefixing. The following gives the converse of Lemma 5.22 (2).

Lemma 5.29 Let Γ ` P.s̃ ∆ and P is simple. If there is an active receiving (resp.
active emitting) prefix in ∆ at s and none of prefixes at s in P is under a prefix
at a shared name or under an if-branch, then P〈〈s?〉〉 (resp. either P〈〈s!〉〉 or the
queue at s is not empty).

Proof. By rule induction using Proposition 5.27, see Appendix A.9. ¤

Below we say P is empty when it is the parallel composition of zero or more
empty queues possibly under restrictions (P≡ 0 when the number is zero).

Proposition 5.30 Let Γ ` P .s̃ ∆, ∆ is coherent, P is simple, queue-full, well-
linked and non-empty. Then P→ P′ for some P′.

Proof. Let P be simple, queue-full and well-linked, and Γ ` P .s̃ ∆ such that ∆
is coherent. Without loss of generality we can assume P does not have hidings
(we can just take off and the result is again simple, queue-full, well-linked and
coherent). Since ∆ is coherent, if ∆ contains any prefix then, by Proposition
5.27, it should form a redex (together with another prefix to form the image of a
merge set). By Lemma 5.29 and Theorem 5.23 (1,2) and by the well-linkedness,
either there is an if-branch above the prefix or P has an active prefix (or prefixes)
at s in P. For the former, this if-branch itself cannot be under any prefix since
that violates the activeness at s in ∆. So this if-branch can reduce hence done.

If not then by Lemma 5.29 there are the following cases:

(a) P ≡ E[Q〈〈s!〉〉|s : h̃|R〈〈s?〉〉], in which case there is at least one redex in P
between the emitting prefix and the queue.

(b) P≡ E[s : h̃|R〈〈s?〉〉] with h̃ non-empty, in which case there is a redex between
the non-empty queue and the receiving redex.

(c) P≡ E[Q〈〈s!〉〉|s : h̃], in which case there is a redex as in (a).

In each case there is a reduction hence done. ¤

Theorem 5.31 (progress) Let P be a simple and well-linked program. Then P
has the progress property in the sense that P→∗ P′ implies either P′ is empty or
P′→ P′′ for some P′′.

Proof. Immediate from Proposition 5.27, Lemma 5.29 and Theorem 5.30. ¤

A simple application of Theorems 5.20 (3), 5.23 and 5.31 for processes from
§2.3 follow. Below communication mismatch stands for the violation of the con-
ditions given in Theorem 5.23 (2).
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Proposition 5.32 (properties of two protocols)

(1) Let Buyer1|Buyer2|Seller →∗ P. Then P is well-typed, P has no communi-
cation mismatch, and if P is not empty then P→ P′ for some P′.

(2) Similarly for DataProducer|KeyProducer|Kernel|Consumer.

Proof. Immediate from Theorem 5.31 because these two configurations are ty-
pable programs each of which loses its shared name in the initial reduction (at
which point all the occurrences of the shared name are used). ¤

Remark 5.33 The progress property is stated for simple, well-linked processes.
The practical significance of the progress result under these constraints is that,
if a typable program ever gets stuck during reduction, then its causes are other
than the structure of individual typed conversations: thus we are ensured that the
causes of deadlock (if any) in typed interactions do not lie in each conversation
structure itself, allowing their well-articulated analysis.
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6 Extensions and Related Work

6.1 Extensions

We discuss several direct extensions of the proposed theory.

Existing Extensions of Session Types In the literature, several extensions of
binary session type disciplines have been proposed, including subtyping [12]
(which can be used in typing for program phrases unlike the system in Section 4,
bounded polymorphism [11], integration with security annotations to guarantee
authentication properties [1], and integration with higher-order π-calculus [27].
We believe that integrations with these extensions should be possible and will
enrich expressive power and applicability of the theory.

Multithreaded Participant Another straightforward extension is to allow a
multithreaded participant, so that a single participant can perform parallel con-
versations with others during a session. For this extension we add the parallel
composition (T1,T2) to the grammar of local types, equipped with the following
isomorphism (using type contexts in §5): T[T1],T2 ≈ T[T1,T2] if for no k there
is an output at k in both T and T2 (such a prefix adds false OO-dependency), as
well as commutativity and associativity. Linearity between T1 and T2 in T1,T2
is given by coherence via projection. This extension is also effective with the
generalised global types discussed next.

Graph-Based Global Types The syntax of global types uses the standard ab-
stract syntax tree. We can further generalise this tree-based syntax to graph
structures to obtain a strictly more expressive type language, enlarging typabil-
ity. Consider the two end-point processes P≡ s!.t? and Q≡ t!.s?: their parallel
composition does not introduce conflict hence it is linear and safe. This de-
scription cannot be represented in the current global types since two “prefixes”
crisscross each other. Interestingly, our linearity conditions in § 3.3, based on
input/output dependencies, can directly capture the safety of this configuration.
All we need to do is to take the graphs of prefixes and II, IO and OO-edges
(cf. Figure 5) under the linearity condition (precisely following §3.3) as global
types, augmented with an acyclicity condition on chains of these causal edges.
All other definitions and results stay the same.

Synchrony and Asynchrony Most of the current session types are binary
and synchronous [17]. In some computing environments (e.g. tightly coupled
SMP), synchrony would be more suitable. Adding synchrony means we have
more causality: OO-dependency between different names as well as the OI-
dependency (i.e. the dependency from output to input, cf. Figure 5) (which in
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asynchrony never arises § 3.2). We also augment the well-formedness condition
based on “connectedness” in the sense of [2].

A different direction is to consider asynchronous message passing without
order-preservation [16] which are also used in some computing environments
(though in many environments we have efficient order-preserving transport such
as TCP). Again we can use our modular articulation, by taking off OO-edges to
obtain a consistent theory for pure asynchrony.

Multicast Primitives for Sessions Communication Two Buyer Protocol uses
a multicasting prefix notation s, t!〈V 〉. The present work treats it as a macro
for s!〈V 〉; t!〈W 〉 who has an essentially identical abstract semantics. Having
proper multicasting primitives for session communication is however useful es-
pecially in the case of sessions involving a large number of participants, us-
ing multicast protocols such as IP-multicast through APIs. It also enriches the
present type structures: we extend p→ p′ : k in the prefix of global types to
p→ p1, ..,pn : {k1, ...,kn}, representing the multicast of a message to p1, ..,pn

via channels k1, ...,kn by participant p, similarly we extend local session types to
k̃!〈U〉 from k!〈U〉. Branching can similarly be extended. We may also incorpo-
rate a practical adaptation such as group addressing. Causality analysis remains
the same by decomposing each multicasting prefix into its unicasting elements
and considering causality for each of them. In type inference, a multicasting
process prefix is typed by a a multicasting type prefix.

6.2 Related Work

There is a large literature on session types for both process calculi (in particular
π-calculi) and programming languages.

Asynchronous Session Types Our multiparty session types are based on message-
order preserving asynchronous communication. The operational semantics of
binary sessions based on asynchronous communication was first considered by
Neubauer and Thiemann [30]. Recently Gay and Vasconcelos [13] study the
asynchronous version of binary sessions for an ML-like language based on their
preceding work [38]. In [13], a message queue is given two endpoint channels
and a direction.

Coppo, Dezani-Ciancaglini and Yoshida study the asynchronous binary ses-
sion types for Java in [5], extending the previous work in [8], and prove the
progress by introducing an effect system. The resulting system does not allow
interleaving sessions so that interactions involving more than two parties such as
examples in § 2.3 cannot be represented. Our theorem establishes the progress
property on multiple session channels with possibly interleaving multiple ses-
sions, significantly enlarging the framework in [5].
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Global Description of Session Types There are two recent works which stud-
ied global descriptions of sessions in the context of web services and business
protocols, by the present authors [2] and by Corin et al. [6]. Our work [2] pre-
sented an executable language for directly describing Web interactions from a
global viewpoint and provided the framework for projecting a description in the
language to local processes. The use of global description for types and its asso-
ciated theories have not been developed in [2]. The type disciplines for the two
(global and local) calculi studied in [2] are based on binary synchronous session
types, hence safety and progress for multiparty interactions are not considered.
Thus these two theories are in fact orthogonal.

Corin et al. [6] investigates approaches to cryptographically protecting ses-
sion execution from both external attackers in networks and malicious session
principals. Their session specification models an interaction sequence between
two or more constituent roles, an abstraction of network peers. The description
is given as a graph whose node represents a specific state of a role in a session,
and whose edge denotes a dyadic communication and control flow. A verifica-
tion method for session integrity – that a concrete instance of a session is carried
out properly following the graph – is introduced as a run-time analysis on tokens
carried in messages at each communication, for which the soundness is proved.

The purpose of the message flow graphs in [6] is more to serve as a model
for systems and programs than to offer a type discipline for programming lan-
guages. First their work does not (aim to) present compositional typing rules
for processes. Secondly their flow graphs do not (try to) represent such ele-
ments as local control flow (e.g. prefixing), channel-based communication and
delegation. Third their operational structures may not be oriented towards type
abstractions: for example their choice structures are based on transitions of flow
graphs than additive structures realisable by branching and selection. Integra-
tion of their and our approaches is an interesting further topic: for example, we
may consider developing a runtime validation method for multiparty sessions
using flow models induced by our global types.

Semantics of Delegation The present work uses, for a simpler presentation,
the operational semantics of delegation from [17] which demands that dele-
gated channels do not occur in the receiver. This prevents a process from acting
as two or more participants in the same session, which usually deadlock. The
duplication check is easily implementable in a way analogous to the standard
mechanism of firewalls. The more generous rule [12, 41] allows substitution of
session channels as in [RECV], which also satisfies type safety and progress
through annotations on channels and types. With this change the whole theo-
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ries remain intact with exactly the same operational semantics and typing for
programs.

Linear and Behavioural Types for Mobile Processes The session type disci-
plines are related with linear/IO-typed π-calculi with causality information. The
causality analysis in global types in the present work is partly inspired by the
graph-based linear types developed in [40] where ordering among multiple lin-
ear names (which correspond to session channels) establishes deadlock-freedom
of typed processes. Kobayashi and his colleagues, e.g [20, 21] study generalised
forms of linear typing for guaranteeing different kinds of deadlock-freedom,
incorporating synchronisations and locking. A combination of linear channel
types and CCS-like processes is used as types, for describing fine-grained chan-
nel usage and dependency. A detailed type inference system for local processes
is also studied in [22].

A main difference of session type disciplines from these and other preceding
works on types for processes is a notion of rigorously structured conversations
and their direct type abstraction. By raising the level of abstraction through the
use of structured primitives such as separate session initiation, branching and
recursion, session types can describe complex interaction structures more in-
telligibly and enable efficient type checking. These features would have direct
applicability for the design of programming languages with communication.
This paper shows that this framework smoothly extends to multiparty interac-
tions guaranteeing strong behavioural properties such as linearity and progress
with simple proofs while allowing an efficient type inference.

One of the novelties of the present work is the introduction of global descrip-
tion as types and a use of their projection for type-checking. They offer a modu-
lar and systematic causality analysis rather than directly working on individual
syntaxes and operational semantics, with adaptations to asynchronous and syn-
chronous communications. Composability of multiple programs is transparent
through projection of a common global type while complex syntax of types and
typing are required in the traditional approach. To our knowledge, this method
has not been investigated so far in the types of mobile processes.

Advanced Process Calculi and Types Several process calculi for broadcasting
have been investigated to model and analyse broadcasting networks including
(recently) mobile ad-hoc networks, starting from Prasad’s thesis [32]. Recent
works focus on behavioural equivalences with lts [24, 25, 33] and static analy-
sis [28] to investigate a number of different broadcasting. None of them studied
the typing system and provided a strong progress guarantee as ensured by our
session types. Our session types use a static participant information in types.
Recent advanced location-based typing systems for distributed processes [15]
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uses the similar notion for types T @ p, allowing dynamically instantiate loca-
tions into the capabilities using dependent type techniques. Since our aim is to
prove the simplest extension of the original session types to multiparties, the
static participants are enough even for delegations. It is a valuable further study
to investigate a dynamic change of participant numbers when session initialisa-
tion (without explicitly declaring p in the syntax) by using channel dependent
types or polymorphism.
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7 Conclusion

One of the main open problems of the session types repeatedly posed by re-
searchers and industry partners [39] is whether binary sessions can be extended
to n-party sessions and, if they can, what is their additional expressiveness
and benefits. This paper answers both questions affirmatively. The present the-
ory can guarantee stronger conformance to stipulated conversation structures
than binary sessions when a protocol involves more than two parties. We pro-
posed a new efficient type checking system and proved type safety and progress,
extended to multiparty interactions. The theory enables a new programming
methodology for communication-based applications.

The central technical underpinning of the present work is the introduction of
global types, which offer an intuitive syntax for describing multiparty conversa-
tion structures from a global viewpoint; and the use of their projection for effi-
cient type-checking, proposing a new effective methodology for programming
multiparty interactions in distributed environments. Global types also offer a
basis for a clean and modular causal analysis systematically applicable to both
synchronous and asynchronous communications, offering a basis of behavioural
properties of typed processes.

There are several significant future topics on the theory and applications of
the proposed theory. We are currently starting to use this generalised session
type structure as one of the formal foundations of the next version of a web
service description language, WS-CDL from W3C. Another topic is the use of
this theory as a basis of communication-centred extensions of general purpose
programming languages (cf. [19]). Other open questions include tools assistance
for the design and elaboration of global types; incorporation of typed exceptions
to sessions; and integration of the type discipline with diverse specification con-
cerns including security and assertional methods.
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A Proofs

A.1 Proof of Theorem 4.7

In the following we use, without loss of generality, the standard (annotated)
single recursion µX(x̃ : S̃, t̃1, .., t̃n).P, with the typing rule:

Γ,X : S̃T̃ , x̃ : S̃ ` P. s̃1 : T1 @ p1..s̃n : Tn @ pn

Γ ` µX(x̃S̃, s̃1, .., s̃n).P.∆

which is simpler for our discussion.
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Recall that an annotated program phrase will have all annotations on the
binding occurrences of shared names (which occur in the accept prefixes, the
name hidings, and the recursions as given above). Assume given Γ and anno-
tated program phrase P. First we annotate all free and bound occurrences of
names in P, using the sorts from Γ and from the binders.

The following rules, regarded as generation rules from the premise to the
conclusion, construct the typing of P under Γ following the syntactic structure
of P, that is it gives the typing rules for typable processes. If the production does
not succeed at some point the algorithm fails. We use the same sequent Γ ` P.∆
even though Γ is no longer necessary.

First, the constants and names are immediate (the latter from annotated
types). For the expression the same rule as the typing rule:

Γ ` ei .bool
Γ ` e1or e2 : bool

[OR]

is enough.
For the remaining rules which construct processes, we need participant num-

bers. These are given so that (when introduced) each is fresh: then as needed
we carry out unification. The following are the generation rules for session re-
quest/accept.

Γ ` a : 〈G〉 Γ ` P.∆, s̃ : T @ 1 |s̃|= max(sid(G)) T ¿ (G¹1)
Γ ` a[2..n](s̃).P.∆

[MCAST]

Γ ` a : 〈G〉 Γ ` P.∆, s̃ : T @ p |s̃|= max(sid(G)) T ¿ (G¹p)
Γ ` a[p](s̃).P.∆

[MACC]

Above T ¿ T ′ stands for unifiability (which includes filling additional branches
in selection types which is essentially part of the standard session subtyping [2,
12]). The unification is on participant numbers and type variables for delegation
(see below). The use of session subtyping is because the expected selection type
may have additional branches in comparison with the real branches the process
will use. This subtyping is decidable by the standard quadratic algorithm.
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We next give the rules for channel (session) prefixes.

Γ ` e j : S j Γ ` P.∆, s̃ : T @ p

Γ ` sk!〈ẽ〉;P.∆, s̃ : k!〈S̃〉.T @ p
[SEND]

Γ,x : S̃ ` P.∆, s̃ : T @ p

Γ ` sk?(x̃ : S̃);P.∆, s̃ : k?〈S̃〉.T @ p
[RCV]

Γ ` P.∆, s̃ : T @ p

Γ ` sk!〈〈t̃〉〉;P.∆, s̃ : k!〈T@ p′〉.T @ p, t̃ : T@ p′
[DELEG]

Γ ` P.∆, s̃ : T @ p, t̃ : T ′@ p′

Γ ` sk?((t̃));P.∆, s̃ : k?〈T ′@ p′〉.T @ p
[SREC]

Γ ` P.∆, s̃ : T @ p

Γ ` sk C l;P.∆, s̃ : k⊕ l.T @ p
[SEL]

Γ ` Pi .∆, s̃ : Ti @ p ∀i ∈ I
Γ ` sk B{li : Pi}i∈I .∆, s̃ : k &{li : Ti}i∈I @ p

[BRANCH]

In these generation rules for prefixes, it is possible that the premise does not have
a “base” typing (for example s̃ : T @ p in [SEND]). In this case we stipulate that
we lazily add s̃ : end. In [RCV], we demand that the sorts in the premise and the
sorts annotating binders should coincide. In [DELEG] we use the type variable
to be unified later (specifically written with the capital letter to make it distinct
from type variables for recursion though they cannot be confused). In [DELEG]
we check disjointness of carried channels and those channels occurring in P.

For the remaining construction rules except for recursion we have:

Γ ` P.∆ Γ ` Q.∆′ ∆³ ∆′

Γ ` P | Q.∆◦∆′
[CONC]

Γ ` e.bool Γ ` P.∆1 Γ ` Q.∆2

Γ ` if e then P else Q.∆1t∆2
[IF]

Γ ` 0. /0
Γ,a : 〈G〉 ` P.∆
Γ ` (ν〈G〉)P.∆

[INACT],[NRES]

In [CONC] we compose two processes disjointly (note ³ is decidable). [IF] is
different where we need to unify two selection types which may have differ-
ent selection branches. [INACT] introduces the empty typings (as noted end is
introduced lazily as needed).
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Finally for process variable and recursion we use the following rules:

Γ ` ẽ : S̃
Γ,X : S̃t1, .., tn ` X〈ẽs̃1..s̃n〉. s̃1 : t1@p1, .., s̃n : tn@pn

[VAR]

Γ,` ẽ : T̃ X : S̃, t1, .., tn ` P. s̃1 : T1@p1, .., s̃n : Tn@pn

Γ ` µX(x̃ : S̃, s̃1, .., s̃n).P. s̃1 : µt1.T1@p1, .., s̃n : µtn.Tn@pn
[REC]

In [VAR], we introduce type variables ti which are associated with X in the
premise. Then in [REC] this table is looked up and appropriate recursion is in-
troduced. The algorithm aborts when the constraint in each rule (for example
disjointness of channels in delegation in [DELEG] and [SREC]) is violated or
unifiability of participants fails. This concludes the introduction of the genera-
tion algorithm. We observe:

– Each generation rule precisely mirrors the corresponding typing: hence if
we can construct a typing (whose type variables and participant numbers
can be instantiated at will), then it shows typability.

– If there is a derivation for P under Γ in the typing rules, then the typings
used in each derivation at each typing rule specialises what the generation
rule would give, so that we know the generation is possible.

Thus the generation algorithm gives a decidable procedure for the typability of
annotated program phrases. ¤

A.2 Proof of Proposition 5.4

Assume Γ ` P .s1..sm ∆. We call s1...sm in Γ ` P .s1..sm ∆, the judgement’s men-
tioned queue channels or simply queue channels.

We first show there is one-to-one correspondence between the free queues
in P and the mentioned queue channels by inspecting each rule.

Case [INACT]: Zero queue channel to zero queue.

Case [QNIL]: It connects precisely one channel to one queue.

Case [QVAL], [QSESS], [QSEL]: These “enqueue” rules leave the number of
channels one assigned to the unique queue channel.

Case [MCAST], [MACC], [SEND], [RCV], [DELEG], [SREC], [SEL] and [BRANCH],
[IF], [VAR], [DEF]: Each of these process construction rules leaves the queue
channels unchanged (empty).

Case [CONC]: in the premise, assume Γ ` P.t̃1 ∆ and Γ `t̃2 Q.∆′ the free queues
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in P have channels t̃1 while the free queues in Q have channels t̃2. Since we as-
sume t̃1∩ t̃2 = /0 and P|Q have exactly the sum of their respective queues.

Case [NRES]: The rule leaves both the queues and the queue channels un-
changed.

Case [CRES]: The rule precisely takes off those channels whose channels be-
come bound.

Case [SUBS]: No change in the process and no change in the queue. This ex-
hausts all cases.

By the case analysis above, we conclude that free queues and mentioned
queue channels precisely correspond to each other. Further the case analysis
also shows that each prefix rule assumes the process has no free queue before
prefixing (in the premise). Further a program phrase cannot have channel re-
striction so that all of its existing queues should be recorded in queue channels.
We can now conclude that no queue can be under a prefix. ¤

A.3 Proof of Proposition 5.11

For (1), observe that redexes in the base rules in Figure 10, [TR-COM] and
[TR-BRA], are in the minimal positions: thus we have only to validate the state-
ment when a redex syntactically occurs below another prefix but gets permuted
up by the type isomorphism, reflected in reduction by [TR-ISO]. We consider
each kind of the causal edges.

Case (a): If a prefix suppresses another prefix (which is a redex, similarly in the
following) through ≺II, then the latter has no chance to get permuted up.

Case (b): If a prefix suppresses another in≺IO, then this is an input suppressing
an output, so there is again no hope of permutation.

Case (c): If a prefix suppresses another in ≺OO, then this is precisely the case
which does not allow permutation in the isomorphism so again there is no way
that the suppressed can be permuted to a minimal node. This exhausts all cases.

For (2), first, for linearity, suppose n1,2 are in G′ sharing a channel. Then
they are also in G and causal edges between them do not differ so they have the
same dependencies as in G. Second, the coherence in projection is immediate
since we lose one prefix from the projection of each branch.

For (3), the first part is immediate from the construction. For the second
point assume there is a redex pair in [[G]] whose two parts have different pre-
images. Then we have co-occurring prefixes in G which are not related by the
two dependencies, by (1) and the first part of (3), a contradiction. ¤
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A.4 Proof of Lemma 5.15

By the definition of ◦ on ∆, it suffices to show the commutativity and associativ-
ity at the level of types and type contexts, assuming that combined type contexts
never share a target channel (in the sense defined just before Lemma 5.15, page
35).

We first show the commutativity. We write H1 ³ H2 (which we read: “H1
and H2 are coherent”) when H1 ◦H2 is defined. Note H1 ◦H2 means either:

– both of H1,2 are type contexts and they do not share a target channel; or
– one of H1,2 is a type context and the other is a type.

Below the designation “context-context” below means the case when we com-
pose two contexts, similarly for others.

Case Context-Context: We consider the composition of T1,2 which are disjoint
in targets (by our assumption). Then we always have:

T1 ³ T2 (52)

T1 ◦T2 = T1[T2] (53)

By the symmetry of ³ (or equivalently by the assumption on target channels)
we have:

T2 ³ T1 (54)

T2 ◦T1 = T2[T1] (55)

Because of the isomorphism by the permutation equivalence for target-disjoint
type contexts (cf. Figure 7: recall ≈ is extended to type contexts unlike ≤sub)
we have T1[T2]≈ T2[T1] hence we are done.

Case Type-Context: Immediate since, by definition, T ³ T and T ³ T always
and T ◦T = T ◦T = T[T ].

Case Context-Type: Symmetric to the case above.

Case Type-Type: Never defined hence vacuous.

This exhausts all cases.

Next we show associativity.

Case Context-Context-Context: We consider the composition of T1,2,3, showing
(T1 ◦T2)◦T3 and T1 ◦ (T2 ◦T3) coincide in definedness and their resulting val-
ues. Assume T1,2 are mutually disjoint in target channels, similarly for T1[T2]
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and T3. Then automatically:

T1 ³ T2 (56)

T1[T2] ³ T3 (57)

T1[T2]◦T3 = T1[T2][T3] (58)

By (57) we have:

T2 ³ T3 (59)

T1 ³ T2[T3] (60)

T1 ◦T2[T3] = T1[T2[T3]] (61)

Since T1[T2][T3] = T1[T2[T3]] we are done. The other direction is symmetric.

Case Context-Context-Type: We consider the composition of T1,2 and T , show-
ing that the definedness and the resulting value of (T1 ◦T2)◦T and T1 ◦ (T2 ◦T )
coincide. This case is not symmetric hence we show both directions. First if T1,2
are disjoint then automatically:

T1 ³ T2 (62)

T1[T2] ³ T (63)

T1[T2]◦T = T1[T2][T ] (64)

We also always have:

T2 ³ T (65)

T1 ³ T2[T ] (66)

T1 ◦T2[T ] = T1[T2[T ]] (67)

Since T1[T2][T ] = T1[T2[T ]] we are done. For the other direction, we first com-
pose T2 and T then compose T1. As noted we always have

T2 ³ T (68)

T1 ³ T2[T ] (69)

T1 ◦T2[T ] = T1[T2[T ]] (70)

By our assumption T1 and T2 do not share a target channel. Hence:

T1 ³ T2 (71)

T1[T2] ³ T (72)

T1[T2]◦T = T1[T2][T ] (73)
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Again we note T1[T2[T ]] = T1[T2][T ] = hence we are done.

Case Type-Context-Context, Context-Type-Context: By the case Context-Context-
Type above and commutativity.

Since we can never combine two types this exhausts all cases. ¤

A.5 Proof of Lemma 5.18

First we observe (formally by induction on typing rules) that, in the typed single
queue, the length of the queue content and the length of the sequence of types
in the typing always coincide.

For the first three rules note they are close in their shape to the rules of the
same names in the runtime typing system in Figure 9. In fact by rule induction
it is easy to check that the composition ∆◦ s̃ : {T@p} in each rule can always be
written ∆, s̃ : {T@p}, that is the composition is always the disjoint union. Thus
these three rules are in fact identical with those in 9.

For the next three rules we use induction on the length of the queue con-
tent, combined with the first three rules for enqueue. For example, [QVALDQ]
is derivable when there is a single value in the queue in the premise, since the
singleton case is derivable only through [QNIL] followed by [QVAL] (by the
shape of the rules) hence we know T is empty, hence the premise of [QVALDQ]
should have the shape:

Γ ` s : ṽ.s̃′ ∆◦ s̃ : {k!〈S̃〉.[ ]@p}@p (74)

while the empty queue in the conclusion is immediately typed by [QNIL] as:

∆◦ s̃ : {[ ]@p}. (75)

hence as required. For induction consider it holds for the premise of

Γ ` s : ṽ · h̃ ·h′ .s̃′ ∆◦ s̃ : {k!〈S̃〉.Ũ ·W ′[ ]@p}@p (76)

where h′ is a vector of values or a label or a vector of channels; and W ′ is the
corresponding vector of sorts or a label or a located type. We do a case analysis
on h′. First suppose h′ is a vector of values. Then the only possible last rule is
[QVAL] hence we know:

Γ ` s : ṽ · h̃.s̃′ ∆◦ s̃ : {k!〈S̃〉.Ũ [ ]@p}@p (77)

By induction hypothesis we derive:

Γ ` s : h̃.s̃′ ∆◦ s̃ : {Ũ [ ]@p}@p (78)
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We now use [QVAL] to obtain:

Γ ` s :h′ · h̃.s̃′ ∆◦ s̃ : {W ′ ·Ũ [ ]@p}@p (79)

as required. By precisely the same argument we can treat the two other cases
hence as required. The same reasoning applies to the remaining two rules. ¤

A.6 Remaining Cases of Theorem 5.20

Case [DELEG]: We use the second rule of Lemma 5.18. Suppose we have:

Γ ` s!〈〈t̃〉〉;P | s : h̃ .s ∆ (80)

Since [CONC] is the only rule to derive this process we can set

Γ ` s!〈〈t̃〉〉;P . /0 ∆1 (81)

and
Γ ` s : h̃ .s ∆2 (82)

such that ∆1 ◦∆2 = ∆. Since (81) can only be inferred from [DELEG] we know,
for some p and for some s̃ which includes s,

∆1 = ∆′1 ◦ (s̃ : k!〈T ′@ p′〉.T @ p, t̃ : T ′@ p′) (83)

and moreover
Γ ` P . /0 ∆′1, s̃ : T @ p. (84)

On the other hand by ∆1 ³ ∆2 and (20) we know:

∆2 = ∆′2 ◦ s̃ : T[ ]@ p (85)

By Lemma 5.18, [QSESS], we infer:

Γ ` s : h̃ · t̃ .s̃′ ∆′2 ◦ s̃ : {T[k!〈T @ p′〉.[ ]]@}, t̃ : {T @p′}. (86)

By the algebra of located types and type contexts:

(∆′1, s̃ : T @ p) ◦ (∆′2 ◦ s̃ : {T[k!〈T @ p′〉.[ ]]@}, t̃ : {T @p′})
= (∆′1 ◦ (s̃ : k!〈T ′@ p′〉.T @ p, t̃ : T ′@ p′)) ◦ (∆′2 ◦ s̃ : T[ ]@ p)
= ∆

Thus by applying [CONC] to (81) and (82) we obtain:

Γ ` P | s : h̃ · t̃ . ∆ (87)
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which gives the expected typing for the reductum of [DELEG], with no type
change.

Case [SREC]: By the second to the last rule of Lemma 5.18. Suppose

Γ ` s?((t̃));P | s : t̃ · h̃ .s ∆ (88)

Since [CONC] is the only possible last rule (up to permutable [SUBS]) we can
set

Γ ` s?((t̃));P . /0 ∆1 (89)

and
Γ ` s : t̃ · h̃ .s ∆2 (90)

such that ∆1 ◦∆2 = ∆. Since (89) can only be inferred from [SREC] we know,
for some p and for some s̃ which includes s,

∆1 = ∆′1 ◦ s̃ : k?〈T ′@ p′〉.T @ p (91)

and moreover
Γ ` P . /0 ∆′1 ◦ s̃ : T @ p, t̃ : T ′@ p′ (92)

By ∆1 ³ ∆2 and (90) we know:

∆2 = ∆′2 ◦ s̃ : k!〈T ′@ p′〉.T @ p, t̃ : T ′@ p′ (93)

By Lemma 5.18, [QSESSDQ], we infer:

Γ ` s : h̃ . ∆′2 ◦ s̃ : T @ p. (94)

Using Proposition 5.14 we obtain:

∆ def= (∆′1 ◦ s̃ : k?〈T ′@ p′〉.T @ p)◦ (∆′2 ◦ s̃ : k!〈T ′@ p′〉.T @ p, t̃ : T ′@ p′)

→ (∆′1 ◦ s̃ : T @ p, t̃ : T ′@ p′)◦ (∆′2 ◦ s̃ : T @ p) (def= ∆′)

Thus by applying [CONC] to (89) and (90) we obtain:

Γ ` P | s : h̃ . ∆′ (95)

such that ∆ → ∆′, as required. Note this case again demands reduction of typ-
ings.

Case [BRANCH]: By the last rule of Lemma 5.18. Suppose

Γ ` sB{li : Pi}i∈I | s : l j · h̃ .s ∆ (96)
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where we assume j ∈ I. Since [CONC] is the only possible last rule (up to per-
mutable [SUBS]) we can set

Γ ` sB{li : Pi}i∈I . /0 ∆1 (97)

and
Γ ` s : l j · h̃ .s ∆2 (98)

such that ∆1 ◦∆2 = ∆. First for ∆2 we know, for some p and for some s̃ which
includes s:

∆2 = ∆′2 ◦ s̃ : k⊕ l j : T @ p (99)

where by assumption we have j ∈ I. Since (97) can only be inferred from
[BRANCH] and by ∆1 ³ ∆2, we also know:

∆1 = ∆′1 ◦ s̃ : k &l j : Tj @ p (100)

(where &l j : Tj is the singleton notation as in selection) and moreover

Γ ` Pi . /0 ∆′1 ◦ s̃ : Ti @ p (101)

for each i ∈ I (so (100) is inferred using [SUBS]). By Lemma 5.18, [QSELDQ],
we infer:

Γ ` s : h̃ . ∆′2 ◦ s̃ : T @ p. (102)

Using Proposition 5.14 we obtain:

∆ def= (∆′1 ◦ s̃ : k &l j : Tj @ p)◦ (∆′2 ◦ s̃ : k⊕ l j : T @ p)

→ (∆′1, s̃ : Tj @ p)◦ (∆′2 ◦ s̃ : T @ p) (def= ∆′)

Thus by applying [CONC] to (97) and (98) we obtain:

Γ ` P | s : h̃ . ∆′ (103)

such that ∆→ ∆′, as required. Again we need a reduction of typings. ¤

A.7 Proof of Lemma 5.22

Proof of (1) and (2)

We prove the following claim which implies both (1) and (2) by rule induction
on the typing rules. Below and henceforth we are confusing a free session chan-
nel and its numeric representation in the typing. Recall ∆ is partially coherent
when for some ∆0 we have ∆³ ∆0 and ∆◦∆0 is coherent.

Claim. Assume Γ ` P.t̃ ∆ s.t. ∆ is partially coherent and there is no queue at s.
Assume P〈〈s〉〉. Then one of the following conditions holds.
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(a) P contains a unique active receiving (resp. emitting) prefix at s and ∆ con-
tains a unique minimal receiving (resp. emitting) prefix at s (∆ may contain
another minimal prefix at s).

(b) P contains a unique minimal receiving prefix at s and a unique minimal
emitting prefix at s. Moreover ∆ contains a unique minimal receiving prefix
at s and a unique minimal emitting prefix at s.

Case [MCAST], [MACC]: Vacuous since in this case the unique active prefix in
the process is at a shared name.

Case [SEND], [RCV], [DELEG], [SREC], [SEL] and [BRANCH]: Immediate
since there can only be a unique active channel name which is by the given
prefixing.

Case [INACT], [IF], [VAR], [DEF], [QNIL], [QVAL], [QSESS], [QSEL]: Vacu-
ous.

Case [CONC]: Suppose

Γ ` P.t̃1 ∆, Γ `t̃2 Q.∆′ (104)

such that t̃1 ∩ t̃2 = /0 and ∆ ³ ∆′. Observe if ∆ ◦∆′ is partially coherent then ∆
and ∆′ respectively are partially coherent by definition. By induction hypothesis
we can assume P and Q satisfy the required condition.

1. If only one party has an active prefix at s there is nothing to prove.
2. If both are active at s, suppose both processes, hence ∆ and ∆′, have re-

ceiving active prefixes at s. Then this cannot be partially coherent since if
so then the assumed completion of ∆ ◦∆′ to a coherent typing should also
contain two minimal receiving prefixes which are impossible by Proposition
5.11 (2, 3). Similarly when two include active emitting prefixes at s, hence
as required

Note that this pair may not be a redex: we do not (have to) validate coherence
until we hide channels, however it is important that there is one output and one
input since if not there will be a conflict at s.

Case [NRES]: Vacuous since there is no change either in the process nor in the
typing.

Case [CRES]: Vacuous since there is no difference in the typing for s nor in the
activeness in prefixes.

Case [SUBS]: Vacuous again. ¤
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A.8 Proof of Proposition 5.27

We show the following logically equivalent result:

Claim. (1) If P is simple then

(1-a) no delegation prefix (input or output) occurs in P and

(1-b) for each prefix with a shared name in P, say a[i](s̃).P′ or a[2..n](s̃).P′,
there is no free session channels in P′ except s̃.

(2) If P is simple and P→ P′ then P′ is again simple.

We first show (1) by rule induction on typing rules.

Case [MCAST]: The rule reads:

Γ ` a : 〈G〉 Γ ` /0 P.∆, s̃ : (G¹1)@ 1 |s̃|= max(sid(G))
Γ ` /0 a[2..n](s̃).P.∆

First by simplicity we know ∆ = /0 (since if not the premise has at least a dou-
bleton typing). (1-a) is immediate from the induction hypothesis since the rule
does not add a delegation prefix: For (1-b) if P′ in a[i](~s).P′ (resp. a[2..n](s̃).P′)
has free session channels then we cannot have ∆ = /0 , violating simplicity.

Case [MACC]: The rule reads:

Γ ` a : 〈G〉 Γ ` /0 P.∆, s̃ : (G¹p)@ p |s̃|= max(sid(G))
Γ ` /0 a[p](s̃).P.∆

Again ∆ = /0, and the remaining reasoning is precisely the same as [MCAST].

Case [SEND]: The rule reads:

Γ ` e j : S j Γ ` /0 P.∆, s̃ : T @ p

Γ ` /0 sk!〈ẽ〉;P.∆, s̃ : k!〈S̃〉.T @ p

Again ∆ = /0. (1-a) is immediate from the induction hypothesis since the rule
does not add any delegation prefix. (1-b) is again immediate from the induction
hypothesis since the rule doe not add a shared-name prefix.

Case [RCV]: The rule reads:

Γ, x̃ : S̃ ` P/0 .∆, s̃ : T @ p

Γ ` /0 sk?(x̃);P.∆, s̃ : k?〈S̃〉.T @ p

Precisely the same as in [SEND] above.
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Case [DELEG]: The rule reads:

Γ ` /0 P.∆, s̃ : T @ p

Γ ` /0 sk!〈〈t̃〉〉;P.∆, s̃ : k!〈T ′@ p′〉.T @ p, t̃ : T ′@ p′

Even if ∆ = /0 the conclusion’s typing becomes a doubleton hence this rule can-
not be applied.

Case [SREC]: The rule reads:

Γ ` /0 P.∆, s̃ : T @ p, t̃ : T ′@ p′

Γ ` /0 sk?((t̃));P.∆, s̃ : k?〈T ′@ p′〉.T @ p

which is again impossible to apply (the premise’s typing becomes a doubleton).

Case [SEL]: The rule reads:

Γ ` /0 P.∆, s̃ : T @ p j ∈ I
Γ ` /0 sk C l;P.∆, s̃ : k⊕{li : Ti}i∈I.T @ p

Precisely the same as [SEND].

Case [BRANCH]: The rule reads:

Γ ` /0 Pi .∆, s̃ : Ti @ p ∀i ∈ I
Γ ` /0 sk B{li : Pi}i∈I .∆, s̃ : k &{li : Ti}i∈I @ p

Precisely the same as [SEND].

Case [IF], [CONC], [CRES], [NRES], [SUBS], [DEF]: By the shape of these
rules, in each rule, there is no addition or removal of a prefix from the premise
to the conclusion. Hence both (1-a/b) are immediate from the induction hypoth-
esis.

Case [INACT], [VAR], [QNIL], [QVAL], [QSESS], [QSEL]: Vacuous since no
prefixes are involved.

Hence as required.

For (2) suppose a derivation of P is simple. By the proof of Theorem 5.20,
if P→ P′ then we have essentially the same derivation for both P and P′ except:

– taking off the lost pair of prefixes from that of P (three pair of prefix rules);
– one of the branches is chosen (conditional)
– copying some part from the derivation for P to that of P′ (for recursion)

In each case clearly the simplicity of the derivation for P implies that of P′, as
required. ¤
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A.9 Proof of Lemma 5.29

Suppose:

(C1) Γ ` P.∆.
(C2) P is simple
(C3) ∆ has a minimal receiving (resp. emitting) prefix at s.
(C4) none of the prefixes at s in P are under a shared name
(C5) none of the prefixes at s in P are under a conditional branch.

Under these conditions, we show that P has an active receiving prefix (resp. has
an active emitting prefix or a non-empty queue). We use rule induction on typ-
ing rules.

Case [MCAST], [MACC]: By Proposition 5.27 there can be no free session chan-
nels hence vacuous (since (C3) is not satisfied).

Case [SEND]: The “simple” rule reads:

Γ ` e j : S j Γ ` /0 P. s̃ : T @ p

Γ ` /0 sk!〈ẽ〉;P. s̃ : k!〈S̃〉.T @ p

Observe that there can be no other minimal prefix in the typing in the conclusion
than the newly introduced prefix itself: this corresponds to the unique minimal
prefix in the typing.

Case [RCV]: The “simple” rule reads:

Γ, x̃ : S̃ ` P/0 .∆, s̃ : T @ p

Γ ` /0 sk?(x̃);P.∆, s̃ : k?〈S̃〉.T @ p

Same as [SEND].

Case [SREC], [DELEG]: By Proposition 5.27 these rules are not used in deriva-
tion of a simple process, hence vacuous.

Case [SEL]: The “simple” rule reads:

Γ ` /0 P.∆, s̃ : T @ p j ∈ I
Γ ` /0 sk C l;P.∆, s̃ : k⊕{li : Ti}i∈I.T @ p

Again the same as [SEND].

Case [BRANCH]: The “simple” rule reads:

Γ ` /0 Pi .∆, s̃ : Ti @ p ∀i ∈ I
Γ ` /0 sk B{li : Pi}i∈I .∆, s̃ : k &{li : Ti}i∈I @ p
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Again the same as [SEND].

Case [IF]: Vacuous since (C5) does not hold.

Case [CONC]: The rule reads:

Γ ` P.t̃1 ∆ Γ `t̃2 Q.∆′ t̃1∩ t̃2 = /0 ∆³ ∆′

Γ `t̃1·t̃2 P | Q.t̃1·t̃2 ∆◦∆′

We first observe:

Claim A1. If the result of the operation ◦ on typings (when defined) has a min-
imal input prefix then one of the original typings also has the same.

This is because, direct from the definition of ◦, if ◦ results in an input minimal
input prefix then it cannot come from a type context (which contains only an
output prefix) hence it can come only from the same in the premise. Further:

Claim A2. If the result of the operation ◦ on typings (when defined) has a mini-
mal output prefix then one of the premises also has the same in the form of either
the corresponding non-empty type context or the corresponding type (“corre-
sponding” means that the minimal prefix coincides).

Above the details of the shape of a typing is in fact unnecessary.
Claim B. The composition | preserves activeness of each prefix.

This is immediate from the definition.
Now we reason by induction. In the case of an input prefix in the typing,

hy Claim A1 we know one of the premises also contains an input prefix in the
typing. Hence the corresponding process has an active input prefix by induction
hypothesis. By Claim B we are done.

On the other hand in the case of an output prefix in the typing, hy Claim
A2 we know one of the premises also contains the same (either as the corre-
sponding type context or the corresponding output prefix) in the typing. Hence
by induction hypothesis the corresponding process has an active output prefix
or a non-empty queue. Hence by induction hypothesis we are done. By Claim B
we are done.

Case [INACT], [VAR]: Vacuous since in this case the typing does not contain
any active channel hence violating (C3).

Case [SUBS], : The subsumption does not add any new active prefix in the typ-
ing hence by induction hypothesis we are done.
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Case [DEF]: As [SUBS] above.

Case [QVAL], [QSESS], [QSEL]: In these cases we have a minimal emitting pre-
fix in the typing; and we have a corresponding non-empty queue, as required.

Case [QNIL]: Vacuous since (C3) is violated.

Case [NRES]: This reads:

Γ,a : 〈G〉 `t̃ P.∆
Γ `t̃ (νa)P.∆

which shows there is no change in the typing and in the process with respect to
(free) active/minimal prefixes hence immediate by induction hypothesis.

Case [CRES]: This reads:

Γ ` P.t̃ ∆, s̃ : {Tp @ p}p∈I s̃ ∈ t̃ {Tp @ p}p∈I coherent
Γ `t̃\s̃ (ν s̃)P.∆

Suppose in the conclusion there is a minimal prefix at s in ∆. Then it is also
minimal in the premise hence by induction hypothesis we are done.

This exhausts all cases. ¤
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B Full Typing Rules for Runtime Processes

This appendix presents the full typing rules except those for expressions.

Γ ` a : 〈G〉 Γ ` /0 P.∆, s̃ : (G¹1)@ 1 |s̃|= max(sid(G))
Γ ` /0 a[2..n](s̃).P.∆

[MCAST]

Γ ` a : 〈G〉 Γ ` /0 P.∆, s̃ : (G¹p)@ p |s̃|= max(sid(G))
Γ ` /0 a[p](s̃).P.∆

[MACC]

Γ ` e j : S j Γ ` /0 P.∆, s̃ : T @ p

Γ ` /0 sk!〈ẽ〉;P.∆, s̃ : k!〈S̃〉.T @ p

Γ, x̃ : S̃ ` P/0 .∆, s̃ : T @ p

Γ ` /0 sk?(x̃);P.∆, s̃ : k?〈S̃〉.T @ p
[SEND], [RCV]

Γ ` /0 P.∆, s̃ : T @ p

Γ ` /0 sk!〈〈t̃〉〉;P.∆, s̃ : k!〈T ′@ p′〉.T @ p, t̃ : T ′@ p′
[DELEG]

Γ ` /0 P.∆, s̃ : T @ p, t̃ : T ′@ p′

Γ ` /0 sk?((t̃));P.∆, s̃ : k?〈T ′@ p′〉.T @ p
[SREC]

Γ ` /0 P.∆, s̃ : T @ p j ∈ I
Γ ` /0 sk C l;P.∆, s̃ : k⊕{li : Ti}i∈I .T @ p

[SEL]

Γ ` /0 Pi .∆, s̃ : Ti @ p ∀i ∈ I
Γ ` /0 sk B{li : Pi}i∈I .∆, s̃ : k &{li : Ti}i∈I @ p

[BRANCH]

Γ ` /0 e.bool Γ ` P.∆ Γ ` Q.∆
Γ ` /0 if e then P else Q.∆

[IF]

Γ ` P.t̃1 ∆ Γ `t̃2 Q.∆′ t̃1∩ t̃2 = /0 ∆³ ∆′

Γ `t̃1·t̃2 P | Q.t̃1·t̃2 ∆◦∆′
[CONC]

∆ end only ∆′ [ ] only
Γ ` 0. /0 ∆,∆′

Γ ` P.t̃ ∆ ∆≤ ∆′

Γ ` P.t̃ ∆′
[INACT],[SUBS]

Γ,a : 〈G〉 `t̃ P.∆
Γ `t̃ (νa)P.∆

[NRES]

Γ ` P.t̃ ∆, s̃ : {Tp @ p}p∈I s̃ ∈ t̃ {Tp @ p}p∈I coherent
Γ `t̃\s̃ (ν s̃)P.∆

[CRES]

Γ ` ẽ : S̃ ∆ end only
Γ,X : S̃T̃ ` /0 X〈ẽs̃1..s̃n〉.∆, s̃1 : T1 @ p1, .., s̃n : Tn @ pn

[VAR]

Γ,X : S̃T̃ , x̃ : S̃ ` /0 P. s̃1 : T1 @ p1..s̃n : Tn @ pn Γ,X : S̃T̃ `t̃ Q.∆
Γ `t̃ def X(x̃s̃1..s̃n) = P in Q.∆

[DEF]
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Finally we present the typing rules for queues.

Γ ` s : /0 .s s̃ :{[ ]@ p}p [QNIL]

Γ ` vi : Si Γ ` sk : h̃.sk ∆, s̃ :({T @ q}∪R) R={Hp@ p}p∈I

Γ ` sk : h̃ · ṽ .sk ∆, s̃ : (T[k!〈S̃〉; [ ]]@ q}∪R)
[QVAL]

Γ ` sk : h̃.sk ∆, s̃ :{T @ q}∪R R={Hp @ p}p∈I

Γ ` sk : h̃ · t̃ ′ .sk ∆, s̃ : (T[k!〈T ′@ p′〉; [ ]]@ q}∪R, t̃ ′:T ′@ p′
[QSESS]

Γ ` sk : h̃.sk ∆, s̃ : {T @ q}∪R R = {Hp @ p}p∈I

Γ ` sk : h̃ · l .sk ∆, s̃ : (T[k⊕ l : [ ]]@ q}∪R)
[QSEL]
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