
A Cut-Free Proof Theory for Boolean BI

(via Display Logic)

James Brotherston∗

Dept. of Computing

Imperial College, London, UK

August 3, 2009

Abstract

We give a display calculus proof system for Boolean BI (BBI) based
on Belnap’s general display logic. We show that cut-elimination holds in
our system and that it is sound and complete with respect to the usual
notion of validity for BBI. We then show how to constrain proof search
in the system (without loss of generality) by means of a series of proof
transformations. By doing so, we gain some insight into the problem of
decidability for BBI.

1 Introduction

O’Hearn and Pym’s logic of bunched implications BI [16] is a well-known sub-
structural logic whose formulas have a natural declarative interpretation as
statements about resource. Formulas of the logic freely combine the standard
additive units and connectives of propositional logic (⊤,⊥,¬,∧,∨,→) with a
multiplicative (a.k.a. “linear”) unit ⊤∗, conjunction ∗ and implication —∗. There
are two main flavours of BI, induced by two alternative treatments of the addi-
tive connectives. If the latter are interpreted intuitionistically, then the resulting
logic is called (intuitionistic) BI, while the variant in which they are instead con-
sidered classically is known as Boolean BI (BBI).

There has been considerable interest in the theory and application of BI and
its variants among the computer science research community over the last few
years, primarily because the logic’s concise representation of resource makes it
a viable basis for reasoning about resource-manipulating programs [12]. Strik-
ingly, however, theoretical developments in BI have focused for the most part
on its intuitionistic version, whereas the numerous program verification appli-
cations of BI — notably separation logic [20] and its spin-offs, including various
flavours of shape analysis [4, 5, 6, 7] — are mainly based on its Boolean variant.

∗Research supported by an EPSRC postdoctoral fellowship.

1

These applications typically rely heavily on theorem-proving (e.g., in order to
remove redundant disjuncts of an invariant in shape analysis), and stand to
benefit substantially from further development of the theory of BBI. Indeed, of
four basic theoretical questions about BBI — completeness with respect to a
class of models, cut-elimination, decidability and the existence of a well behaved
type theory — only the first has so far been answered. In this paper, we give a
positive answer to the second question, and in doing so make progress towards
establishing the status of the third.

We consider BBI from the proof-theoretic viewpoint. For intuitionistic BI
there is both a complete natural deduction proof system satisfying normalisa-
tion, and a complete sequent calculus satisfying cut-elimination [17]. In contrast,
no such well-behaved syntactic proof systems for BBI presently exist in the liter-
ature1. Rather, proof systems for BBI are usually obtained by adding a suitable
axiom or inference rule (e.g. the axiom ¬¬F ⊢ F) to the corresponding proof
system for BI. Such additions typically break normalisation and cut-elimination
properties, which is less than ideal both from the point of view of BBI as a bona
fide logic in its own right and from the perspective of the aforementioned pro-
gram analysis tools based on BBI. However, extending the BI sequent calculus
(cf. [17]) to BBI without breaking cut-elimination in the process is problematic.
The contexts in this calculus are “bunches”, which are syntax trees whose leaves
are formulas and whose internal nodes are labelled by either a semicolon or a
comma, denoting respectively additive and multiplicative conjunction at the
structural level. Weakening and contraction are then permitted with respect to
the additive semicolon, but not the multiplicative comma. In order to cope with
the tree structure of bunches, the left-introduction rules for logical connectives
are formulated so as to apply at arbitrary positions within a bunch, whereas
the right-introduction rules operate at only the top level of bunches due to the
intuitionistic presentation. E.g., the rules for the conjunction ∗ are:

Γ(F1, F2) ⊢ F
(∗L)

Γ(F1 ∗ F2) ⊢ F

Γ1 ⊢ F1 Γ2 ⊢ F2
(∗R)

Γ1, Γ2 ⊢ F1 ∗ F2

where Γ(∆) denotes a bunch Γ with a distinguished sub-bunch occurrence ∆.
It is not obvious how to extend this calculus to the Boolean setting. On the
one hand it seems clear that, as in Gentzen’s sequent calculus LK for classical
logic, the sequents should support multiple conclusions in some form (otherwise
cut-free proofs of classical tautologies such as ¬¬F ⊢ F are impossible). On the
other hand, it is far from clear how to formulate multiple-conclusion versions of
the rules for the multiplicative connectives or of the usual left-introduction rule
for negation, owing to the failure of various distribution properties in BBI (e.g.
∗ distributes over ∨ but not vice versa). Pym reports that two-sided bunched
systems suffer from problems with cut-elimination [17], but in any event it is
not obvious how even to interpret bunched conclusions in BBI.

1A tableau proof system for a version of BBI based on functional rather than the usual
relational monoidal semantics is given in [14], but it does not correspond straightforwardly to
a cut-free sequent calculus.

2

Instead of a sequent calculus, we give in this paper a Belnap-style display cal-
culus proof system for BBI. Display calculi can be seen as generalised sequent
calculi, facilitating the combination of arbitrarily many “families” of logical
connectives, each such family being assigned a corresponding set of structural
connectives. This results in a very rich meta-level for proof judgements, and
to cope with this one postulates special structural rules, called “display rules’,
which ensure that any proof judgement can be rearranged so as to “display” (i.e.
bring to the top level) any given part of the judgement. Our system, DLBBI,
largely follows our previous formulation, with Calcagno, of a display calculus
for CBI, which is a nonconservative extension of BBI including multiplicative
versions of falsity, negation and disjunction [3]. However, DLBBI differs from
this calculus, and other standard display calculi, in that its proof judgements
are syntactically (and semantically) asymmetric, reflecting the lack of symme-
try in the multiplicative connectives of BBI. Despite this asymmetry, DLBBI

nevertheless enjoys the crucial display property, from which cut-elimination for
DLBBI follows as a straightforward corollary of Belnap’s cut-elimination proof
for general display logic [1]. Soundness is an easy direct result, and completeness
follows from the reduction of provability in DLBBI to provability in a Hilbert-
style proof system which is known to be complete.

Although cut-elimination for DLBBI entails a traditional subformula prop-
erty, it is clear that naive approaches to proof search in DLBBI will lead to
divergence, due to the evident need to employ the aforementioned display rules
and the usual structural rules such as contraction. The complexity arising in
proof search is not unexpected since, by soundness and completeness, decidabil-
ity of provability in DLBBI is equivalent to decidability of validity in BBI, which
has been an open problem for some time. (One might be tempted to hope that
it is possible to know whether any given display calculus is decidable merely by
looking at it, but Kracht showed that this question is itself undecidable [13].)
However, by adapting techniques from Restall [18], we show how to constrain
proof search in DLBBI via a series of completeness-preserving proof reductions
(of which cut-elimination is the first stage). In contrast to the situation for
the relevant logics considered by Restall, however, the analysis fails to estab-
lish decidability of full BBI, seemingly due to the presence of Boolean negation.
Nevertheless, we argue that our results ought to be of use in implementing proof
search strategies for BBI.

The remainder of this paper is structured as follows. In Section 2 we give a
brief overview of BBI. We formulate our display calculus DLBBI in Section 3,
and outline the arguments for cut-elimination, soundness and completeness. In
Section 4 we present our proof reduction strategy for DLBBI, and discuss its
implications for decidability of BBI and its fragments. Finally, in Section 5 we
conclude with some comments and suggestions regarding future work.

3

2 Syntax and semantics of BBI

In this section we briefly recall the syntax of BBI and its standard algebraic
semantics. We also recall a Hilbert-style proof system for BBI which is sound
and complete with respect to the algebraic semantics.

We assume a fixed infinite set V of propositional variables, and write Pow(X)
for the powerset of a set X .

Definition 2.1 (Formula). Formulas of BBI are given by the following gram-
mar, where P ranges over V :

F ::= P | ⊤ | ⊥ | ¬F | F ∧ F | F ∨ F | F → F | ⊤∗ | F ∗ F | F —∗ F

We treat ∧, ∨ and ∗ as having greater precedence than → and —∗.

Definition 2.2 (BBI-model). A BBI-model is a relational commutative monoid
〈R, ◦, e〉, where e ∈ R and ◦ : R×R → Pow(R) are such that ◦ is commutative,
with r ◦ e = {r} for all r ∈ R. We extend ◦ to Pow(R) × Pow(R) by X ◦ Y =
⋃

x∈X,y∈Y x ◦ y. Under this extension, ◦ is required to be associative.

A BBI-model 〈R, ◦, e〉 is typically seen as an abstract model of resource,
where R is a set of resources, ◦ denotes nondeterministic resource combination
and e is the distinguished empty resource. An environment for 〈R, ◦, e〉 is a
map ρ : V → Pow(R) interpreting propositional variables as subsets of R.

Definition 2.3 (Satisfaction). Let M = 〈R, ◦, e〉 be a BBI-model. Satisfaction
of a formula F by an environment ρ for M and a “resource” r ∈ R is denoted
r |=ρ F and defined by structural induction on F as follows:

r |=ρ P ⇔ r ∈ ρ(P)
r |=ρ ⊤ ⇔ always
r |=ρ ⊥ ⇔ never

r |=ρ ¬F ⇔ r 6|=ρ F

r |=ρ F1 ∧ F2 ⇔ r |=ρ F1 and r |=ρ F2

r |=ρ F1 ∨ F2 ⇔ r |=ρ F1 or r |=ρ F2

r |=ρ F1 → F2 ⇔ r |=ρ F1 implies r |=ρ F2

r |=ρ ⊤∗ ⇔ r = e

r |=ρ F1 ∗ F2 ⇔ ∃r1, r2. r ∈ r1 ◦ r2 and r1 |=ρ F1 and r2 |=ρ F2

r |=ρ F1 —∗ F2 ⇔ ∀r′, r′′. if r′′ ∈ r ◦ r′ and r′ |=ρ F1 then r′′ |=ρ F2

Definition 2.4 (Formula validity). A formula F is said to be true in a BBI-
model M = 〈R, ◦, e〉 if for any environment ρ for M and for all r ∈ R, we have
r |=ρ F . F is said to be valid if it is true in all BBI-models.

HLBBI, the standard Hilbert-style proof system for BBI (cf. [17, 9]) is ob-
tained by extending some fixed finite axiomatisation of classical propositional
logic by the following axioms and inference rules:

(Ax 1) ⊢ F → ⊤∗ ∗ F

(Ax 2) ⊢ ⊤∗ ∗ F → F

(Ax 3) ⊢ F ∗ G → G ∗ F

(Ax 4) ⊢ F ∗ (G ∗ H) → (F ∗ G) ∗ H

4

⊢ F ⊢ F → G
(MP)

⊢ G

⊢ F1 → G1 ⊢ F2 → G2
(∗)

⊢ F1 ∗ F2 → G1 ∗ G2

⊢ F → (G —∗ H)
(—∗1)

⊢ (F ∗ G) → H

⊢ (F ∗ G) → H
(—∗2)

⊢ F → (G —∗ H)

The following result is due to Galmiche and Larchey-Wendling (and inde-
pendently proved by Yang).

Theorem 2.5 (Completeness [9]). Any valid formula is HLBBI-provable.

3 DLBBI: a display calculus for BBI

In this section we formulate a Belnap-style display calculus proof system for
BBI. Our display calculus, DLBBI, departs slightly from traditional display
calculi in that the form of proof judgements is not symmetric. Nevertheless, our
proof system admits the crucial display property, and satisfies cut-elimination.

The judgements of our proof system, called consecutions, are built from
structures which generalise the “bunches” used in proof systems for BI (cf. [17]).

Definition 3.1 (Structure / Consecution). A-structures X and C-structures Y

are (mutually) defined by the grammar:

X ::= F | ∅ | ♯Y | X ; X | ∅ | X, X

Y ::= F | ∅ | ♯X | Y ; Y | X ⊸ Y

where F ranges over BBI-formulas. We use the generic name structure to refer
to both A-structures and C-structures. If X is an A-structure and Y is a C-
structure then X ⊢ Y is said to be a consecution.

Roughly speaking, A-structures and C-structures represent respectively an-
tecedent parts and consequent parts of our consecutions (we defer a formal def-
inition of these terms until later). The asymmetry between the two is caused
by the absence of multiplicative versions of falsity, negation and disjunction in
BBI, which leads us to employ a non-standard structural connective ⊸ in C-
structures, interpreted as multiplicative implication —∗. The following definition
gives the interpretation of our consecutions.

Definition 3.2 (Consecution validity). For any consecution X ⊢ Y we define
the BBI-formulas ΨX and ΥY by mutual structural induction as follows:

ΨF = F ΥF = F

Ψ∅ = ⊤ Υ∅ = ⊥
Ψ♯Y = ¬ΥY Υ♯X = ¬ΨX

ΨX1;X2
= ΨX1

∧ ΨX2
ΥY1;Y2

= ΥY1
∨ ΥY2

Ψ∅ = ⊤∗ ΥX⊸Y = ΨX —∗ ΥY

ΨX1,X2
= ΨX1

∗ ΨX2

X ⊢ Y is said to be valid iff ΨX → ΥY is a valid formula.

5

A consecution S is said to be derivable from another consecution S′ (using
some fixed set of proof rules) if, given a derivation of S′, one can construct
a derivation of S. That is, there is a derivation whose root is S and whose
leaves are either axioms or occurrences of S′. The consecution S is said to be
interderivable with S′ if S is derivable from S′ and vice versa. We write proof
rules with a double-line between premise and conclusion to indicate that they
are invertible, i.e. that the roles of premise and conclusion may be reversed.

Definition 3.3 (Display-equivalence). Two consecutions X ⊢ Y and X ′ ⊢ Y ′

are said to be display-equivalent, written X ⊢ Y ≡D X ′ ⊢ Y ′, if they are
interderivable using only the following display rules:

X; Y ⊢ Z
======== (AD1a)
X ⊢ ♯Y ; Z
======== (AD1b)
Y ; X ⊢ Z

X ⊢ Y ; Z
======== (AD2a)
X; ♯Y ⊢ Z
======== (AD2b)
X ⊢ Z; Y

X ⊢ Y
====== (AD3a)
♯Y ⊢ ♯X
====== (AD3b)
♯♯X ⊢ Y

X, Y ⊢ Z
========= (MD1a)
X ⊢ Y ⊸ Z
========= (MD1b)

Y,X ⊢ Z

We remark that ≡D is indeed an equivalence relation.

Definition 3.4 (Antecedent and consequent parts). We classify the substruc-
ture occurrences in a structure X as either positive or negative in X as follows:

• X is positive in X ;

• if Z is negative (positive) in X ′ then Z is positive (negative) in ♯X ′;

• if Z is positive (negative) in X1 or X2 then Z is positive (negative) in
X1; X2 and X1, X2;

• if Z is negative (positive) in X1 or positive (negative) in X2, then Z is
positive (negative) in X1 ⊸ X2.

Z is said to be an antecedent (consequent) part of a consecution X ⊢ Y if it
is positive (negative) in X or negative (positive) in Y .

Definition 3.5 (Height). Let Z be a substructure occurrence in a structure X .
Define the height of Z in X as the length of the path from the root of X to the
root of Z, when structures are viewed as trees. If Z is a structure occurrence in
a consecution X ⊢ Y , then define the height of Z in X ⊢ Y as the height of Z

in X if Z is a substructure occurrence in X and the height of Z in Y otherwise.

Lemma 3.6. Let Z be a structure occurrence with height h 6= 0 in a consecution
X ⊢ Y . There is a consecution X ′ ⊢ Y ′ that is display-equivalent to X ⊢ Y

and such that Z has height < h in X ′ ⊢ Y ′. Moreover, Z is an antecedent
(consequent) part of X ′ ⊢ Y ′ iff it is an antecedent (consequent) part of X ⊢ Y .

Proof. We proceed by cases as follows.

Case Z occurs in X. We observe that since h 6= 0, we have Z 6= X and so X

is not of the form F , ∅ or ∅. The remaining subcases are treated as follows:

6

Subcase X = ♯W . We proceed as follows:

♯W ⊢ Y
(AD3a)

♯Y ⊢ ♯♯W
(AD3b)

♯♯♯W ⊢ ♯♯Y
(AD3a,b)

♯W ⊢ ♯♯Y
(AD3a)

♯Y ⊢ W

and thus set X ′ ⊢ Y ′ = ♯Y ⊢ W , which is clearly display-equivalent to X ⊢ Y =
♯W ⊢ Y as required. Also note that if Z is an antecedent (consequent) part of
♯W ⊢ Y then it is a positive (negative) part of ♯W , thus a negative (positive)
part of W and so an antecedent (consequent) part of ♯Y ⊢ W . Furthermore, Z

has a lower height in W than in ♯W , thus a lower height in ♯Y ⊢ W than in
♯W ⊢ Y , as required.

Subcase X = W1; W2. If Z occurs in W1 then we proceed as follows:

W1; W2 ⊢ Y
(AD1a)

W1 ⊢ ♯W2; Y

Otherwise, Z occurs in W2 and we instead use rule (AD1b) in a similar fashion.
The justification that the required properties hold is then similar to the subcase
above.

Subcase X = W1, W2. If Z occurs in W1 then we proceed as follows:

W1, W2 ⊢ Y
(MD1a)

W1 ⊢ W2 ⊸ Y

Otherwise, Z occurs in W2 and we instead use rule (MD1b) in a similar fashion.
The justification that the required properties hold is then similar to the subcase
above. This completes the case.

Case Z occurs in Y . Since h 6= 0, in particular Z 6= Y and so Y is not of the
form F or ∅. The remaining subcases are treated as follows:

Subcase Y = ♯W . We proceed as follows:

X ⊢ ♯W
(AD3a)

♯♯W ⊢ ♯X

W ⊢ ♯X

The justification that the required properties hold is similar to the cases above.

7

Subcase Y = W1; W2. If Z occurs in W1 then we proceed as follows:

X ⊢ W1; W2
(AD2b)

X ; ♯W2 ⊢ W1

Otherwise, Z occurs in W2 and we instead use rule (AD2a) in a similar fashion.
The justification that the required properties hold is then similar to the cases
above.

Subcase Y = W1 ⊸ W2. If Z occurs in W1 then we proceed as follows:

X ⊢ W1 ⊸ W2
(MD1b)

W1, X ⊢ W2
(MD1a)

W1 ⊢ X ⊸ W2

Otherwise, Z occurs in W2 and we proceed as follows:

X ⊢ W1 ⊸ W2
(MD1a)

X, W1 ⊢ W2

The justification that the required properties hold is then similar to the cases
above. This completes the case and thus the proof.

We can now prove the fundamental display theorem for DLBBI.

Theorem 3.7 (Display theorem). Let Z be a structure occurrence in a con-
secution X ⊢ Y . If Z is an antecedent part of X ⊢ Y then there exists some
structure W such that Z ⊢ W ≡D X ⊢ Y . Similarly, if Z is a consequent part
of X ⊢ Y then there exists some structure W such that W ⊢ Z ≡D X ⊢ Y .

Proof. By induction on the height h of Z in X ⊢ Y . In the case h = 0, we
are trivially done. In the case where h > 0, we can apply Lemma 3.6 and the
induction hypothesis to obtain the required consecution.

The process of of rearranging a consecution X ⊢ Y into the consecution
Z ⊢ W or W ⊢ Z using the display rules is called displaying Z (or W), and Z

(or W) is said to be displayed in the resulting consecution.
The proof rules for DLBBI are given in Figure 1, and fall into three distinct

categories. The identity rules consist of the identity axiom for propositional
variables, a rule for display-equivalence, and a cut rule. The logical rules consist
of a left and right introduction rule for each formula connective, in the style
familiar from sequent calculus. Note that the formula introduced by a logical
rule is displayed on the side of the consecution in which it is introduced; the
display theorem allows us to write the logical rules in this form without loss
of generality. The structural rules implement suitable associativity and unitary
laws for the structural connectives, plus weakening and contraction with respect
to the semicolon.

8

Identity rules:

(Id)
P ⊢ P

X ⊢ F F ⊢ Y
(Cut)

X ⊢ Y

X ′ ⊢ Y ′

X ⊢ Y ≡D X ′ ⊢ Y ′ (≡D)
X ⊢ Y

Logical rules:

∅ ⊢ X
(⊤L)

⊤ ⊢ X
(⊥L)

⊥ ⊢ ∅

♯F ⊢ X
(¬L)

¬F ⊢ X

(⊤R)
∅ ⊢ ⊤

X ⊢ ∅
(⊥R)

X ⊢ ⊥

X ⊢ ♯F
(¬R)

X ⊢ ¬F

F ; G ⊢ X
(∧L)

F ∧ G ⊢ X

F ⊢ X G ⊢ Y
(∨L)

F ∨ G ⊢ X ; Y

X ⊢ F G ⊢ Y
(→L)

F → G ⊢ ♯X ; Y

X ⊢ F Y ⊢ G
(∧R)

X ; Y ⊢ F ∧ G

X ⊢ F ; G
(∨R)

X ⊢ F ∨ G

X ; F ⊢ G
(→R)

X ⊢ F → G

∅ ⊢ X
(⊤∗L)

⊤∗ ⊢ X

F, G ⊢ X
(∗L)

F ∗ G ⊢ X

X ⊢ F G ⊢ Y
(—∗L)

F —∗ G ⊢ X ⊸ Y

(⊤∗R)
∅ ⊢ ⊤∗

X ⊢ F Y ⊢ G
(∗R)

X, Y ⊢ F ∗ G

X, F ⊢ G
(—∗R)

X ⊢ F —∗ G

Structural rules:

W ; (X ; Y) ⊢ Z
=========== (AAL)
(W ; X); Y ⊢ Z

W ⊢ (X ; Y); Z
=========== (AAR)
W ⊢ X ; (Y ; Z)

W, (X, Y) ⊢ Z
=========== (MAL)
(W, X), Y ⊢ Z

∅; X ⊢ Y
======= (∅L)
X ⊢ Y

X ⊢ Y ; ∅
======= (∅R)
X ⊢ Y

∅, X ⊢ Y
(∅1)

X ⊢ Y

X ⊢ Y
(∅2)

∅, X ⊢ Y

X ⊢ Z
(WkL)

X ; Y ⊢ Z

X ⊢ Z
(WkR)

X ⊢ Y ; Z

X ; X ⊢ Y
(CtrL)

X ⊢ Y

X ⊢ Y ; Y
(CtrR)

X ⊢ Y

Figure 1: Proof rules for DLBBI. W, X, Y, Z range over structures, F, G range
over formulas, and P ranges over V .

9

Proposition 3.8 (Soundness). Any DLBBI-provable consecution is valid.

Proof. Soundness follows as usual from the fact that each proof rule of DLBBI

is locally sound in that, if each of its premises is valid, then so is its conclusion.
We show how to treat the rule (—∗L):

X ⊢ F G ⊢ Y
(—∗L)

F —∗ G ⊢ X ⊸ Y

Suppose that the conclusion of this rule is invalid. By definition of validity
for consecutions and formulas (Defns. 3.2 and 2.4), this means that the formula
(F —∗ G) → (ΨX —∗ ΥY) is false in some BBI-model M = 〈R, ◦, e〉. So for
some r ∈ R (and environment ρ) we have r |=ρ F —∗ G but r 6|=ρ ΨX —∗ ΥY .
The latter of these implies there exist r′, r′′ ∈ R such that r′′ ∈ r ◦ r′ and
r′ |=ρ ΨX but r′′ 6|=ρ ΥY . Suppose first that r′ 6|=ρ F , then since r′ |=ρ ΨX we
have that the formula ΨX → F is false in M and hence invalid, so the premise
X ⊢ F is invalid. Otherwise, we have r′ |=ρ F and, since we have r′′ ∈ r ◦ r′

and r |=ρ F —∗ G, we must have r′′ |=ρ G. But then we have r′′ |=ρ G and
r′′ 6|=ρ ΥY , which implies that the premise G ⊢ Y is invalid. So validity of both
premises implies validity of the conclusion, as required. The other rule cases are
similar, although note that local soundness of the rule (≡D) follows from the
local soundness of each of the display rules (cf. Defn. 3.3).

The identity axiom (Id) can be extended from variables to arbitrary formulas.

Proposition 3.9 (Identity). F ⊢ F is DLBBI-provable for any formula F .

Proof. By structural induction on F . We show the case F = F1 —∗ F2.

(I.H.)
·
·
·

F1 ⊢ F1

(I.H.)
·
·
·

F2 ⊢ F2

(—∗L)
F1 —∗ F2 ⊢ F1 ⊸ F2

(≡D)
F1 —∗ F2, F1 ⊢ F2

(—∗R)
F1 —∗ F2 ⊢ F1 —∗ F2

The other cases are similar.

Since we already have a complete Hilbert system for BBI (cf. Section 2),
completeness can be proven in the standard manner for display calculi (cf. [10]).

Lemma 3.10. For any consecution X ⊢ Y , the consecutions X ⊢ ΨX and
ΥY ⊢ Y are DLBBI-provable.

Proof. By mutual induction on the structure of X and Y . We show how to
treat the case Y = X ′

⊸ Y ′, using the rule symbol (=) to denote rewriting a

10

consecution according to the definitions of Ψ− and Υ−.

(I.H.)
·
·
·

X
′

⊢ ΨX′

(I.H.)
·
·
·

ΥY ′ ⊢ Y
′

(—∗L)
ΨX′ —∗ ΥY ′ ⊢ X

′

⊸ Y
′

(=)
ΥX′

⊸Y ′ ⊢ X
′

⊸ Y
′

The other induction step cases are similar. When X or Y is a formula, we
invoke Proposition 3.9.

Theorem 3.11 (Completeness). Any valid consecution is DLBBI-provable.

Proof. If a consecution X ⊢ Y is valid then ΨX → ΥY is a valid formula, and
hence HLBBI-provable by completeness (Theorem 2.5). It can be easily verified
that the axioms and inference rules of HLBBI and its modus ponens rule are
all derivable in DLBBI under the embedding F 7→ (∅ ⊢ F) from formulas to
consecutions. For example, in the case of the inference rule (—∗1) we proceed as
follows:

∅ ⊢ F → (G —∗ H)

(Prop. 3.9)
·
·
·

F ⊢ F

(Prop. 3.9)
·
·
·

G ⊢ G

(Prop. 3.9)
·
·
·

H ⊢ H
(—∗L)

G —∗ H ⊢ G ⊸ H
(→L)

F → (G —∗ H) ⊢ ♯F ;G ⊸ H
(Cut)

∅ ⊢ ♯F ; G ⊸ H
(≡D)

∅; F ⊢ G ⊸ H
(∅L)

F ⊢ G ⊸ H
(≡D)

F, G ⊢ H
(∗L)

F ∗ G ⊢ H
(∅L)

∅; F ∗ G ⊢ H
(→R)

∅ ⊢ F ∗ G → H

Thus ∅ ⊢ ΨX → ΥY is DLBBI-provable, and we can construct a DLBBI proof

11

of X ⊢ Y as follows:

Lemma 3.10
·
·
·

X ⊢ ΨX

·
·
·

∅ ⊢ ΨX → ΥY

Prop. 3.9
·
·
·

ΨX ⊢ ΨX

Prop. 3.9
·
·
·

ΥY ⊢ ΥY

(→L)
ΨX → ΥY ⊢ ♯ΨX ; ΥY

(Cut)
∅ ⊢ ♯ΨX ; ΥY

(≡D)
∅; ΨX ⊢ ΥY

(∅L)
ΨX ⊢ ΥY

Lemma 3.10
·
·
·

ΥY ⊢ Y
(Cut)

ΨX ⊢ Y
(Cut)

X ⊢ Y

We say a DLBBI proof is cut-free if it contains no instances of the rule (Cut).
The following definition is taken from Belnap [1]. By a constituent of a structure
or consecution we mean an occurrence of one of its substructures.

Definition 3.12 (Parameters / congruence). Let I be an instance of a DLBBI

proof rule R. Note that I is obtained by assigning structures to the structure
variables occurring in R and formulas to the formula variables occurring in R.

Any constituent of the consecutions in I occurring as part of structures
assigned to structure variables in I are defined to be parameters of I. All other
constituents are defined to be non-parametric in I, including those assigned to
formula variables.

Constituents occupying similar positions in occurrences of structures as-
signed to the same structure variable are defined to be congruent in I.

We remark that congruence as defined above is an equivalence relation. We
can now prove cut-elimination for DLBBI using the standard Belnap-style argu-
ment.

Theorem 3.13 (Cut-elimination). Any DLBBI proof can be transformed into a
cut-free DLBBI proof (of the same consecution).

Proof. Belnap’s original analysis of display logic [1] guarantees cut-elimination
(Theorem 3.13) provided the proof rules of DLBBI satisfy the following 8 condi-
tions, which are stated with reference to an instance I of a proof rule R. (Here,
we state a stronger, combined version of Belnap’s original conditions C6 and
C7, following Kracht [13], since the rules satisfy this stronger condition.) In
each case, we indicate how to verify that the condition holds for our rules.

C1. Preservation of formulas. Each formula which is a constituent of some
premise of I is a subformula of some formula in the conclusion of I.
Verification. One observes that, in each rule, no formula variable or struc-
ture variable is lost when passing from the premises to the conclusions.

12

C2. Shape-alikeness of parameters. Congruent parameters are occurrences of
the same structure.
Verification. Immediate from the definition of congruence.

C3. Non-proliferation of parameters. No two constituents in the conclusion of
I are congruent to each other.
Verification. One just observes that, for each rule, each structure variable
occurs exactly once in the conclusion.

C4. Position-alikeness of parameters. Congruent parameters are either all an-
tecedent or all consequent parts of their respective consecutions.
Verification. One observes that, in each rule, no structure variable occurs
both as an antecedent part and a consequent part.

C5. Display of principal constituents. If a formula is nonparametric in the
conclusion of I, it is either the entire antecedent or the entire consequent
of that conclusion. Such a formula is said to be principal in I.
Verification. It is easy to verify that the only non-parametric formulas in
the conclusions of our rules are the two occurrences of P in (Id) and those
occurring in the introduction rules for the logical connectives in Figure 1,
which obviously satisfy the condition.

C6/7. Closure under substitution for parameters. Each rule is closed under
simultaneous substitution of arbitrary structures for congruent formulas
which are parameters.
Verification. This condition is satisfied because no restrictions are placed
on the structural variables used in our rules.

C8. Eliminability of matching principal formulas. If there are inferences I1 and
I2 with respective conclusions X ⊢ F and F ⊢ Y and with F principal in
both inferences, then either X ⊢ Y is equal to one of X ⊢ F and F ⊢ Y ,
or there is a derivation of X ⊢ Y from the premises of I1 and I2 in which
every instance of cut has a cut-formula which is a proper subformula of
F .
Verification. There are only two cases to consider. If F is atomic then
X ⊢ F and F ⊢ Y are both instances of (Id). Thus we must have X ⊢
F = F ⊢ Y = X ⊢ Y , and are done. Otherwise F is non-atomic and
introduced in I1 and I2 respectively by the right and left introduction rule
for the main connective of F . In this case, a derivation of the desired form
can be obtained using only the display rule (≡D) and cuts on subformulas
of F . For example, if the considered cut is of the form:

·
·
·

X, F ⊢ G
(—∗R)

X ⊢ F —∗ G

·
·
·

Y ⊢ F

·
·
·

G ⊢ Z
(—∗L)

F —∗ G ⊢ Y ⊸ Z
(Cut)

X ⊢ Y ⊸ Z

13

then the cut is reduced as follows:

·
·
·

Y ⊢ F

·
·
·

X, F ⊢ G
(≡D)

F ⊢ X ⊸ G
(Cut)

Y ⊢ X ⊸ G
(≡D)

X, Y ⊢ G

·
·
·

G ⊢ Z
(Cut)

X, Y ⊢ Z
(≡D)

X ⊢ Y ⊸ Z

Similarly, a principal cut on the formula F ∗ G has the form:

·
·
·

X ⊢ F

·
·
·

Y ⊢ G
(∗R)

X, Y ⊢ F ∗ G

·
·
·

F, G ⊢ Z
(∗L)

F ∗ G ⊢ Z
(Cut)

X, Y ⊢ Z

This cut is reduced as follows:

·
·
·

X ⊢ F

·
·
·

Y ⊢ G

·
·
·

F, G ⊢ Z
(≡D)

G ⊢ F ⊸ Z
(Cut)

Y ⊢ F ⊸ Z
(≡D)

F ⊢ Y ⊸ Z
(Cut)

X ⊢ Y ⊸ Z
(≡D)

X, Y ⊢ Z

This completes the verification of the conditions, and thus the proof.

Corollary 3.14 (Subformula property). Any DLBBI-provable consecution X ⊢
Y has a proof in which every formula occurrence is a subformula of a formula
occurring in X ⊢ Y .

Proof. If X ⊢ Y is DLBBI-provable then it has a cut-free proof by Theorem 3.13.
By inspection of the rules, any formula occurring in the premises of a rule
instance in this proof is a subformula of a formula occurring in its conclusion.
Thus every formula occurring in this proof is a subformula of a formula in
X ⊢ Y .

In spite of the subformula property, cut-free proof search in DLBBI is compli-
cated considerably by the presence of the display rule and the structural rules.

14

For example, the cut-free proof of the consecution F ⊢ (F ∗G)∨(F ∗¬G) shown
in Figure 2 makes seemingly essential use of contraction on a structure which is
introduced into the proof using unitary and display rules.

Prop. 3.9
·
·
·

F ⊢ F

Prop. 3.9
·
·
·

F ⊢ F

Prop. 3.9
·
·
·

G ⊢ G
(≡D)

♯G ⊢ ♯G
(¬R)

♯G ⊢ ¬G
(∗R)

F, ♯G ⊢ F ∗ ¬G
(WkR)

F, ♯G ⊢ F ∗ G; F ∗ ¬G
(≡D)

♯(F ⊸ (F ∗ G; F ∗ ¬G)) ⊢ G
(∗R)

F, ♯(F ⊸ (F ∗ G; F ∗ ¬G)) ⊢ F ∗ G
(WkL)

(F, ♯(F ⊸ (F ∗ G; F ∗ ¬G))); ♯(F ∗ ¬G) ⊢ F ∗ G
(≡D)

♯(F ⊸ (F ∗ G; F ∗ ¬G)) ⊢ F ⊸ (F ∗ G; F ∗ ¬G)
(WkL)

∅; ♯(F ⊸ (F ∗ G; F ∗ ¬G)) ⊢ F ⊸ (F ∗ G; F ∗ ¬G)
(≡D)

∅ ⊢ (F ⊸ (F ∗ G; F ∗ ¬G)); (F ⊸ (F ∗ G; F ∗ ¬G))
(CtrR)

∅ ⊢ F ⊸ (F ∗ G; F ∗ ¬G)
(≡D)

F, ∅ ⊢ F ∗ G; F ∗ ¬G
(∅1)

F ⊢ F ∗ G; F ∗ ¬G
(∨R)

F ⊢ (F ∗ G) ∨ (F ∗ ¬G)

Figure 2: A DLBBI proof of the consecution F ⊢ (F ∗ G) ∨ (F ∗ ¬G).

4 Constraining proof search for DLBBI

In this section we show how to reduce the search space for DLBBI proofs by
means of a series of (completeness-preserving) proof reductions. Our reductions
are obtained by adapting Restall’s techniques for showing the decidability of
display calculi for a class of relevant logics [18]. However, several substantial
alterations are necessary in order to make the proofs go through in the setting of
BBI. Furthermore, our reductions are seemingly not sufficient to establish the
decidability of DLBBI, due to the potential for quite sophisticated redundancies
to be created during proof search by Boolean negation in combination with
weakening and contraction.

First, given any structure X we define its reduced inversion X as follows:

15

X =def

{

Y if X = ♯Y for some Y

♯X otherwise

Proposition 4.1 (Rule replacement). Provability in DLBBI remains unaffected
if the rules (Cut), (∅L) and (∅R) are excised and the rules (⊤R), (⊥L), (∧R),
(∨L) and (→L) are replaced by the following variants:

X ⊢ F X ⊢ G
(∧R)

X ⊢ F ∧ G

F ⊢ Y G ⊢ Y
(∨L)

F ∨ G ⊢ Y

X ⊢ F X ⊢ ♯G
(→L)

F → G ⊢ X

(⊤R)
X ⊢ ⊤

(⊥L)
⊥ ⊢ X

Proof. (Sketch) First, provability in DLBBI is obviously unaffected by the re-
moval of (Cut), given cut-elimination (Theorem 3.13). The new versions of the
modified proof rules are clearly sound, so for completeness we must show that
the old versions are cut-free derivable using the new versions. This is trivial in
the case of (⊤R) and (⊥L). In the case of (→L), we proceed as follows, using
the rule symbol (=) to denote rewriting a consecution by the definition of X :

X ⊢ F
(WkL)

X ; ♯Y ⊢ F
(≡D)

♯♯(X ; ♯Y) ⊢ F

G ⊢ Y
(≡D)

♯Y ⊢ ♯G
(WkL)

♯Y ; X ⊢ ♯G
(≡D)

♯♯(X ; ♯Y) ⊢ ♯G
(→L)

F → G ⊢ ♯♯(X ; ♯Y)
(=)

F → G ⊢ ♯(X ; ♯Y)
(≡D)

F → G ⊢ ♯X ; Y

The other rule cases are similar. Thus any proof using the old rules can be
converted to one using the new rules.

Finally, we need to show how to eliminate (∅L) and (∅R). We show how to
treat (∅L); the case of (∅R) is exactly dual. First, we replace an instance of (∅L)
by an instance of (CtrL) as follows:

∅; X ⊢ Y
(∅L)

X ⊢ Y
⇒

X ; X ⊢ Y
(CtrL)

X ⊢ Y

We then replace by X all occurrences of ∅ corresponding to the indicated oc-
currence in the consecutions above the considered (∅L), working bottom-up.
(By “corresponding” we mean that a replaced ∅ occurring in the premise of a
proof rule must occupy a similar position to a replaced ∅ in the conclusion. The
notion of correspondence can be defined fully formally, e.g., by enumerating oc-
currences of ∅.) The result remains a proof because, with the modified versions
of (⊤R) and (⊥L) in place, all proof rules are closed under the substitution of
arbitrary structures for occurrences of ∅. This completes the proof.

From now on, we work with respect to the modified proof rules of DLBBI

given by Proposition 4.1.

16

Definition 4.2 (♯-reduction). A structure is said to be ♯-reduced if it has no
substructures of the form ♯♯X . A consecution X ⊢ Y is ♯-reduced just in
case both X and Y are ♯-reduced, and a proof is ♯-reduced just in case every
consecution in it is ♯-reduced.

The ♯-reduction of a consecution S is the consecution obtained from S by
successively replacing every structure occurrence of the form ♯♯X by the struc-
ture X until the result is ♯-reduced.

We remark that any consecution is clearly display-equivalent to its ♯-reduction.
Thus a consecution is provable just in case its ♯-reduction is provable.

Lemma 4.3. Any provable ♯-reduced consecution has a ♯-reduced proof.

Proof. Let π be a proof of a ♯-reduced consecution and let π′ be the tree obtained
by replacing every consecution in π by its ♯-reduction. We claim that π′ is still
a proof.

It suffices to show that each of the proof rules remains unaffected by ♯-
reduction, i.e., that any instance of a proof rule remains an instance of the same
rule under ♯-reduction. This property can easily be seen to be satisfied for all
the rules that do not introduce or eliminate occurrences of ♯. The remaining
rules are (≡D), (¬L), (¬R) and (→L). The display rule (≡D) is obviously all
right, since any consecution is display equivalent to its ♯-reduction and display-
equivalence is transitive. So too are the negation-introduction rules (¬L) and
(¬R), because ♯F is already ♯-reduced (since F is a formula). In the case of
(→L), the modified left-introduction rule for implication, one observes that if
the premises of (→L) are ♯-reduced then clearly so is the conclusion, because of
the use of the reduced inversion X in place of ♯X . So π′ is indeed a proof, as
required.

Lemma 4.3 implies that, in order to search for a proof of a consecution S,
it suffices to consider just those proofs involving only ♯-reduced consecutions.
This is something of a relief, since any consecution has infinitely many display-
equivalent representations that are not ♯-reduced. The original technique of
eliminating stacked ♯s from consecutions is due to Kracht [13].

The following series of definitions is intended to assist in dealing with the
non-determinism in proof search caused by the structural rules by defining a
notion of reduction on consecutions that eliminates further superfluous infor-
mation. They follow the corresponding definitions in [18] but with some crucial
differences, mainly due to the fact that in DLBBI we are allowed to contract
consequent structures as well as antecedent ones.

Definition 4.4 (AD-equivalence). Two consecutions S and S′ are said to be
AD-equivalent, written S ≡AD S′, if they are interderivable using the display
rule (≡D) and the structural associativity rules (AAL), (AAR) and (MAL).

Definition 4.5 (Nearness). Two structure occurrences Z1, Z2 in a consecution
S are said to be near (in S) if S ≡AD Z1; Z2 ⊢ W or S ≡AD W ⊢ Z1; Z2 for
some W (where Z1 and Z2 are the occurrences indicated).

17

Definition 4.6 (Superfluous ∅). An occurrence of ∅ in a consecution S is said
to be superfluous if S ≡AD ∅, W ⊢ Z for some W, Z (where ∅ is the occurrence
indicated).

Definition 4.7 (Deletion). Let Z be a structure occurrence in a consecution
X ⊢ Y . We say that Z can be deleted from X ⊢ Y if Z is a strict substructure
of some structure W in X ⊢ Y where W is of the form W1; W2 or W1, W2 or
W1 ⊸ W2. (I.e., Z is not any of X, Y, X, Y .) The consecution obtained by
deleting Z from X ⊢ Y is obtained by replacing any of W ⋆ Z, Z ⋆ W , W ⋆ ♯Z,
♯Z ⋆ W , Z ⊸ W , ♯Z ⊸ W by W , where ⋆ is comma or semicolon.

We remark that if X and Y are near in a consecution S then at least one of
them can be deleted from S.

Definition 4.8 (Reduction). For any ♯-reduced consecution S, we define its
reduction r(S) to be the consecution obtained from S by iterating the following
sequence of steps until a fixed point is reached:

1. For any two occurrences of the same structure that are near to one another,
we delete the first such occurrence, from left to right, that can be deleted
(there must be at least one such).

2. We delete any superfluous occurrences of ∅ that can be deleted. If a
superfluous occurrence of ∅ cannot be deleted then the consecution must
be of the form ∅ ⊢ X ⊸ Y or ♯(X ⊸ Y) ⊢ ♯∅, and in both cases we
reduce the consecution to X ⊢ Y .

A consecution S is said to be reduced if S = r(S).

Clearly a consecution is valid (hence provable) iff its reduction is valid (hence
provable). Unfortunately, it will not be possible to exclusively consider reduced
consecutions, which would amount to the total elimination of contraction and
the rules for ∅. We therefore introduce a notion of “semi-reduction”. Informally
speaking, a consecution is semi-reduced if it is either reduced or one “reduction
iteration step” away from being so.

Definition 4.9 (Semi-reduction). A consecution S is said to be semi-reduced
if it is reduced or contains a single superfluous occurrence of ∅ and/or a single
structure occurrence near to another occurrence of the same structure such that,
when these occurrences are eliminated from S by the reduction procedure given
in Definition 4.8, the resulting consecution is reduced.

A proof is semi-reduced if every consecution appearing in it is semi-reduced.

We observe that the proof of the reduced consecution F ⊢ (F ∗G)∨(F ∗¬G)
in Figure 2 is semi-reduced; the contraction introduces one structure near to an
instance of the same structure, and exactly one superfluous ∅ is used (note that
it is however not superfluous in the premise of the contraction instance).

Definition 4.10 (Irredundancy). A proof is said to be irredundant just in case
no consecution occurs twice on any branch in the proof.

18

Lemma 4.11. Any provable reduced consecution has a proof that is both semi-
reduced and irredundant.

Proof. First, any semi-reduced proof that is not irredundant can then be con-
verted to a proof that is both semi-reduced and irredundant by deleting the
sections of proof between every pair of identical consecutions occurring on the
same branch in the proof. Thus it suffices to show that any provable reduced
consecution has a semi-reduced proof.

Let π be a proof of a reduced consecution S. By Lemma 4.3 we can assume
without loss of generality that π is ♯-reduced. Then define π′ to be the tree
obtained by replacing every consecution in π by its reduction. π′ is almost
a proof of S; its root is S because S is already reduced by assumption, and
the leaves of π′ are axioms because every axiom in π (i.e. instances of the
conclusions of the rules (Id), (⊥L), (⊤R) and (⊤∗R)) remains an instance of
the same rule under reduction. For each of the other proof rules, we show how
to derive the reduction of its conclusion from the reductions of its premises,
using only semi-reduced consecutions. Thus any proof of a reduced consecution
can be converted to a semi-reduced proof by replacing each consecution by its
reduction and inserting these derivations between nodes as required.

Cases (∅1),(∅2),(CtrL),(CtrR). All of these rules collapse into the iden-
tity rule (the trivial case of (≡D) in which the premise and conclusion are
identical) under reduction. For example, in the case of (∅R) it is clear that
r(X ⊢ Y ; ∅) = r(X ⊢ Y) since the indicated occurrence of ∅ is superfluous in
X ⊢ Y ; ∅. Similarly, in the case of (CtrL) we have r(X ; X ⊢ Y) = r(X ⊢ Y)
since the two indicated occurrences of X are near in X ; X ⊢ Y .

Case (≡D). We require to show that if S and S′ are display-equivalent then
so are r(S) and r(S′). To see this, observe that S and S′ are AD-equivalent,
so that any two structure occurrences near in S are near in S′ and vice versa,
and any superfluous unit occurrences in S are superfluous in S′ and vice versa.
Thus r(−) deletes the same structure occurrences in S and S′. It is clear that
this operation preserves display-equivalence.

Cases (AAL), (AAR), (MAL). The premise and conclusion of each of
these rules are AD-equivalent. Thus the same structure occurrences are deleted
in the premise and conclusion by r(−). It is clear that the rule instance is either
preserved by reduction or collapses into the identity rule. E.g., in the case of
(AAL), if the premise is ♯Z; (X ; ∅) ⊢ Z then the reduction of both premise and
conclusion is r(X ⊢ Z).

Cases (WkL), (WkR). Consider (WkL), and write the reduced premise
r(X ⊢ Z) as X ′ ⊢ Z ′. It is clear that the reduced conclusion r(X ; Y ⊢ Z) is
X ′; Y ′ ⊢ Z ′ for some Y ′ unless the structure Y weakened in by the rule causes
a structure to be deleted in X ′ or Z ′ that would otherwise be untouched (e.g.

19

if X ′ = A; B, Z ′ = C and Y = A). We define W to be the structure obtained
by deleting from Y any structure that is near in X ′; Y ⊢ Z ′ to some structure
occurrence in X or Z, and any occurrence of a unit that is superfluous in
X ′; Y ⊢ Z ′. This operation differs from the notion of deletion in Definition 4.7
in that Y may be entirely deleted. In this case, the rule collapses into the
identity rule. Otherwise, we apply (WkL) to X ′ ⊢ Z ′ to obtain X ′; W ⊢ Z ′.
It is clear that r(X ; Y ⊢ Z) = X ′; W ⊢ Z ′ as required. The case for (WkR) is
similar.

Cases (⊤L), (⊥R), (⊤∗L). Consider (⊤∗L), and suppose first that the re-
duced premise r(∅ ⊢ X) is of the form ∅ ⊢ X ′. Then by applying (⊤∗L) we
obtain ⊤∗ ⊢ X ′, which is possibly only semi-reduced (because the introduced
instance of ⊤∗ may be near to another instance of ⊤∗ in X ′). We note that
the reduced conclusion r(⊤∗ ⊢ X) is of the form ⊤∗ ⊢ X ′′ because the indi-
cated instance of ⊤∗ cannot be deleted from ⊤∗ ⊢ X . One observes that X ′

and X ′′ can differ in two respects. First, X ′ may contain a ⊤∗ that is near to
the indicated ⊤∗ in ⊤∗ ⊢ X ′, and thus is not in X ′′. If so, we apply display
and contraction rules to remove it. Second, X ′′ may contain an instance of ∅

that is near to the indicated ∅ in ∅ ⊢ X ′′ and thus is not in X ′. If so, we
apply display and weakening rules to reintroduce it (note that this maintains
semi-reduction). The result is then ⊤∗ ⊢ X ′′ = r(⊤∗ ⊢ X) as required. For
example, if X = ♯∅; ♯⊤∗ then the reduced premise is ∅ ⊢ ♯⊤∗ and the reduced
conclusion is ⊤∗ ⊢ ♯∅. We “patch” the rule instance in the manner described
above via the following derivation:

∅ ⊢ ♯⊤∗

(⊤∗L)
⊤∗ ⊢ ♯⊤∗

(WkR)
⊤∗ ⊢ ♯∅; ♯⊤∗

(≡D)
⊤∗;⊤∗ ⊢ ♯∅

(CtrL)
⊤∗ ⊢ ♯∅

If r(∅ ⊢ X) is not of the form ∅ ⊢ X ′ then the indicated instance of ∅

was deleted (because it was superfluous), and we must reintroduce it. Writing
r(∅ ⊢ X) = Y ⊢ Z, we obtain the semi-reduced r(∅ ⊢ Y ⊸ Z) by applying (∅)
and display-equivalence. This is of the form ∅ ⊢ X ′, and we can then proceed
as in the previous case.

The rules (⊤L) and (⊥R) are treated similarly.

Cases (¬L), (¬R). Consider (¬L), and observe that we have r(♯F ⊢ X) of
the form ♯F ⊢ X ′ and r(¬F ⊢ X) of the form ¬F ⊢ X ′′. We apply (¬L) to
the reduced premise to obtain ¬F ⊢ X ′, which is at least semi-reduced. As
is similar to the case above, X ′ and X ′′ can differ in two ways. First X ′ may
contain a ¬F near to the indicated ¬F in ¬F ⊢ X ′ that must be removed
using contraction and display rules. Second, X ′′ may contain a ♯F that is not

20

in X ′ because it was near to the indicated ♯F in ♯F ⊢ X , and which must
be reintroduced using weakening and display rules. This process only involves
semi-reduced consecutions, and the result is r(¬F ⊢ X) as required.

The rule (¬R) is treated similarly.

Cases (→R), (—∗R). Consider (→R) and note that the reduced conclusion
r(X ⊢ F → G) is of the form X ′′ ⊢ F → G. Suppose the reduced premise
r(X ; F ⊢ G) is of the form X ′; F ⊢ G. Then we apply (→R) to obtain the
semi-reduced X ′ ⊢ F → G. As in previous cases, X ′ may have an extra F → G

which must be removed by contraction, and may also be missing an F or G

which must be reintroduced by weakening. The process uses only semi-reduced
consecutions and the result is X ′′ ⊢ F → G as required.

If r(X ; F ⊢ G) is not of the form X ′; F ⊢ G then it must instead be F ⊢ G as
none of the unit reductions of Definition 4.8 is applicable, and the indicated F

cannot be deleted because deletion occurs from left to right, and the indicated
F is not near the indicated G. In this case we apply the unit rule (∅L) to obtain
the semi-reduced ∅; F ⊢ G. We can then proceed as in the previous case.

The rule (—∗R) is treated similarly.

Case (→L), (∧R), (∨L). Consider (→L), and note that we have r(X ⊢ F) of
the form X ′ ⊢ F and r(X ⊢ ♯G) of the form X ′′ ⊢ ♯G. Now X ′ and X ′′ can only
differ in that an F has been deleted in X ′ or in that a ♯G has been deleted in X ′′.
If so, we reintroduce the missing instances using display and weakening rules to
obtain X ′′′ ⊢ F and X ′′′ ⊢ ♯G, which are both semi-reduced. Then we apply
(→L) to obtain F → G ⊢ X ′′′. This may not be r(F → G ⊢ X) = F → G ⊢ Y

in that X ′′′ contains an F → G near to the indicated instance of F → G in
the reduced conclusion, in which case we must remove it using contraction.
There can be no other differences since any units superfluous in the premises
are superfluous in the conclusion, and any structures near in the premises are
near in the conclusion, except for those considered.

The rules (∧R) and (∨L) are treated similarly.

Cases (—∗L), (∗R). Consider (—∗L), and note that we have r(X ⊢ F) of the
form X ′ ⊢ F and r(G ⊢ Y) of the form G ⊢ Y ′. We can immediately apply
(—∗L) to obtain F —∗ G ⊢ X ′

⊸ Y ′. Note that the reduced conclusion is of
the form F —∗ G ⊢ X ′′. Now X ′′ and X ′

⊸ Y ′ can differ in several respects.
First, X ′

⊸ Y ′ may be missing an instance of F or an instance of G that were
near respectively to the indicated F and G in X ⊢ F and G ⊢ Y , in which
case said instances must be restored using display and weakening rules. Second,
X ′ may be the unit ∅, in which case it is superfluous in F —∗ G ⊢ X ′

⊸ Y ′

and must be deleted using display and unit rules. Third, Y ′ may contain an
instance of either F —∗ G (if X is a superfluous ∅) or X ′, F —∗ G (if X ′ is not
a superfluous ∅) near to the indicated instances in X ′, F —∗ G ⊢ Y ′. In this
case we use display and contraction rules to eliminate the duplicate structure

21

instance. Note that the second and third conditions can hold simultaneously,
but this is still allowed by semi-reduction.

The rule (∗R) is treated similarly.

Cases (∧L), (∨R), (∗L). Consider (∧L), and suppose that the reduced
premise r(F ; G ⊢ X) is of the form F ; G ⊢ X ′. Then we can apply (∧L) to
obtain F ∧ G ⊢ X ′. The reduced conclusion is of the form F ∧ G ⊢ X ′′ and,
as in previous cases, X ′ and X ′′ may differ in two respects. First, X ′ may
contain an instance of F ∧G near to the indicated instance in F ∧G ⊢ X ′, and
if so then we must remove it using contraction and display rules. Second, X ′

may be missing an instance of F or of G that was removed from X because it
matched the indicated instance in F ; G ⊢ X , and if so then the instance must
be reintroduced using weakening and display rules.

If r(F ; G ⊢ X) is not of the form F ; G ⊢ X ′ then there are two further
possibilities to consider. First, r(F ; G ⊢ X) may be of the form F ⊢ X ′ or
G ⊢ X ′ because either F or G in the premise was deleted by reduction (note
that both cannot be deleted). In that case, we can apply weakening to obtain
the semi-reduced F ; G ⊢ X ′, and then proceed as in the case above. Second,
r(F ; G ⊢ X) may be of the form F ⊢ G because X is the superfluous unit ∅. In
this case, we apply the rule (∅R) and the display rule to obtain the semi-reduced
F ; G ⊢ ∅, and then proceed as in the case above.

The cases (∨R) and (∗L) are similar. This completes all the cases.

Since a consecution is provable iff its reduction is provable, it clearly suffices
for a proof search for an arbitrary consecution S to consider only semi-reduced,
irredundant proofs of r(S).

Somewhat surprisingly, the restriction to semi-reduced and irredundant proofs
still does not yield a finite proof search space for DLBBI, as can be seen by con-
sidering the following derivation:

♯(♯(X ⊸ Y) ⊸ Y) ⊢ ♯(X ⊸ Y) ⊸ Y
(WkL)

X; ♯(♯(X ⊸ Y) ⊸ Y) ⊢ ♯(X ⊸ Y) ⊸ Y
(≡D)

X ⊢ (♯(X ⊸ Y) ⊸ Y); (♯(X ⊸ Y) ⊸ Y)
(CtrR)

X ⊢ ♯(X ⊸ Y) ⊸ Y
(≡D)

♯(X ⊸ Y) ⊢ X ⊸ Y

Note that the top and bottom consecutions are both reduced, and the deriva-
tion uses only semi-reduced consecutions. Thus we can obtain an infinite family
of interderivable reduced consecutions of the form ♯Z ⊢ Z in a semi-reduced
proof 2. Moreover, such derivation segments seemingly cannot be wholly elim-

2We could define the reduction of ♯Z ⊢ Z to be r(∅ ⊢ Z), but this would force us to
reintroduce the rules for ∅, and in any case the top and bottom consecutions in the derivation
above would still be different under reduction. We also remark that the restriction to semi-
reduced proofs is still important; without it, proof search in DLBBI would fail to terminate
for entirely trivial reasons!

22

inated, since they generate multiplicative structure which may be needed to
apply (∗R) or (—∗L).

Interestingly, BI, which can be obtained by dropping the classical axiom of
excluded middle from the axiomatisation of BBI, is known to be decidable [8].
However, decidability of BBI does not follow from decidability of BI; indeed,
Larchey-Wendling and Galmiche have recently demonstrated that there is an
encoding of BI into BBI whereas the converse is not known to hold [14]. Thus
it seems plausible that the addition of Boolean negation to BI results in a
considerable increase in complexity.

5 Conclusions and future work

In this paper, we resolve the long-standing difficulty of the absence of a well-
behaved proof theory for BBI, by formulating the DLBBI display calculus, using
a nonsymmetric form of proof judgement (an approach also taken by Goré [11]).
We also show to constrain proof search in DLBBI by means of proof reductions
which impose bounds on the local applicability of the display and structural
rules. These are adapted from Restall’s reductions for relevant display calculi,
which is not entirely a straightforward process because of the significant differ-
ences between these calculi and DLBBI. Unlike in Restall’s setting, our reduc-
tions do not entail decidability of DLBBI, but they do serve to give some insight
into the question of decidability, and they represent proof search optimisations
that should assist in any putative implementation.

Of course, the main question left open by our developments is whether or
not full BBI (equivalently DLBBI) is indeed decidable, and it is not obvious to
us which possibility is the more plausible, since the particular mix of structural
rules is what typically makes the difference between a decidable display calculus
and an undecidable one [19]. A salutary comparison is provided by the linear
and relevance families of substructural logics, which provide seemingly similar
expressivity to that of the BI family. The decision problem for these families
falls into a spectrum of complexities for the decidable logics, while the most
expressive members are known undecidable [15, 21] and the decidability of some
important variants (such as multiplicative exponential linear logic) is still open.
If BBI is in fact undecidable, these logics may provide hints as to an appropriate
reduction of the decision problem for BBI. As things stand, our example in
Section 4 shows that there are infinitely many interderivable representations of
a consecution which are essentially multiplicative rather than additive, a feature
that strikes us as ominously similar to the role of exponentials in linear logic.
Alternatively, since provability in DLBBI is semi-decidable, another route to
decidability would be via an enumeration of BBI models, if BBI were known to
have the finite model property. Unfortunately, this too is currently open.

A very promising avenue for exploitation is the potential for theorem proving
tools based upon DLBBI, and its refinements suggested by our proof reductions.
Such tools could provide a platform for checking pure entailments in separation
and spatial logics (an essential step in Hoare-style verification and in shape anal-

23

ysis); the existing tools typically cannot deal with the full expressivity provided
by BBI. Also, we think that our techniques should apply to a variety of other
logical settings based on bunch-like structures.

Acknowledgements. We extend special thanks to Greg Restall for his help-
ful and enthusiastic technical advice, and to Lucas Dixon for encouraging the
initial investigation. Thanks also to Cristiano Calcagno, Philippa Gardner, Pe-
ter O’Hearn and the East London Massive for useful discussions and feedback,
and to the anonymous referees of an earlier version of this paper for comments
that were very useful in improving the present version.

References

[1] Nuel D. Belnap, Jr. Display logic. Journal of Philosophical Logic, 11:375–
417, 1982.

[2] James Brotherston. A cut-free proof theory for Boolean BI (via dis-
play logic). Unpublished note; available from http://www.doc.ic.ac.

uk/~jbrother, 2009.

[3] James Brotherston and Cristiano Calcagno. Classical BI (A logic for reason-
ing about dualising resource). In Proceedings of POPL-36, pages 328–339,
2009.

[4] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang.
Compositional shape analysis by means of bi-abduction. In Proceedings of
POPL-36, pages 289–300, 2009.

[5] Bor-Yuh Evan Chang and Xavier Rival. Relational inductive shape analy-
sis. In Proceedings of POPL-35, 2008.

[6] Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin.
Enhancing modular OO verification with separation logic. In Proceedings
of POPL-35, 2008.

[7] Dino Distefano and Matthew Parkinson. jStar: Towards practical verifica-
tion for Java. In Proceedings of OOPSLA, pages 213–226. ACM, 2008.

[8] D. Galmiche, D. Mery, and D. Pym. The semantics of BI and resource
tableaux. Mathematical Structures in Computer Science, 15:1033–1088,
2005.

[9] Didier Galmiche and Dominique Larchey-Wendling. Expressivity properties
of Boolean BI through relational models. In Proceedings of FSTTCS, 2006.

[10] Rajeev Goré. On the completeness of classical modal display logic. In
Heinrich Wansing, editor, Proof Theory of Modal Logic, pages 137–140.
Kluwer Academic Publishers, 1996.

24

[11] Rajeev Goré. Gaggles, Gentzen and Galois: How to display your favourite
substructural logic. Logic Journal of the IGPL, 6(5):669–694, 1998.

[12] Samin Ishtiaq and Peter W. O’Hearn. BI as an assertion language for
mutable data structures. In Proceedings of POPL-28, 2001.

[13] Marcus Kracht. Power and weakness of the modal display calculus. In Hein-
rich Wansing, editor, Proof Theory of Modal Logic, pages 93–121. Kluwer
Academic Publishers, 1996.

[14] Dominique Larchey-Wendling and Didier Galmiche. Exploring the rela-
tion between intuitionistic BI and Boolean BI: An unexpected embedding.
Mathematical Structures in Computer Science, 19:1–66, 2009.

[15] Patrick Lincoln, John C. Mitchell, Andre Scedrov, and Natarajan Shankar.
Decision problems for propositional linear logic. Annals of Pure and Applied
Logic, 56(1–3):239–311, 1992.

[16] P.W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin
of Symbolic Logic, 5(2):215–244, June 1999.

[17] David Pym. The Semantics and Proof Theory of the Logic of Bunched
Implications. Applied Logic Series. Kluwer, 2002. Errata and re-
marks (Pym 2004) maintained at http://www.cs.bath.ac.uk/~pym/

reductive-logic-errata.html.

[18] Greg Restall. Displaying and deciding substructural logics 1: Logics with
contraposition. Journal of Philosophical Logic, 27:179–216, 1998.

[19] Greg Restall. An Introduction to Substructural Logics. Routledge, 2000.

[20] John C. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In Proceedings of 17th LICS, 2002.

[21] Alasdair Urquhart. The undecidability of entailment and relevant implica-
tion. Journal of Symbolic Logic, 49(4):1059–1073, 1984.

25

