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Abstract. We study methods that allow web sites to safely combine JavaScript
from untrusted sources. If implemented properly, filters can prevent dangerous
code from loading into the execution environment, while rewriting allows greater
expressiveness by inserting run-time checks. Wrapping properties of the execu-
tion environment can prevent misuse without requiring changes to imported
JavaScript.

Using a formal semantics for the ECMA 262-3 standard language, we prove
security properties of a subset of JavaScript, comparable in expressiveness to
Facebook FBJS, obtained by combining three isolation mechanisms. The isola-
tion guarantees of the three mechanisms are interdependent, with rewriting and
wrapper functions relying on the absence of JavaScript constructs eliminated
by language filters.

1 Introduction

Web sites such as OpenSocial [18] platforms, iGoogle [10], Facebook [7], and Yahoo!’s
Application Platform [28] allow users to build gadgets, which we will refer to as ap-
plications, that will be served to other users when they visit the site. In the general
scenario represented by these sites, application developers would like to use an ex-
pressive implementation language like JavaScript, while the sites need to be sure that
applications served to users do not present security threats. In the view of the hosting
site and its visitors, the containing page (for example, an iGoogle page) is “trusted,”
while applications included in it are not; untrusted applications could try to steal cook-
ies, navigate the page or portions of it [3], replace password boxes with controls of their
own, or mount other attacks [4]. While hosting sites can use browser iframe isolation,
iframes require structured inter-frame communication mechanisms [3,4]. Just as OS
inter-process isolation is useful in some situations, while others require language-based
isolation between lightweight threads in the same address space, we expect that both
iframes and language-based isolation will be useful in future Web applications. While
some straightforward language-based checks make intuitive sense, JavaScript [6,8] pro-
vides many subtle ways for malicious code to subvert language-based isolation methods,
as demonstrated here and in previous work [17]. We therefore believe it is important to
develop precise definitions and techniques that support security proofs for mechanisms
used critically in popular modern Web sites.

? This is a revised and extended version of the conference paper [14] that appeared in the
Proceedings of ESORICS 2009.



In this paper, we devise and analyze a combination of isolation mechanisms for a
subset of ECMA 262-3 [11] JavaScript that is comparable in expressiveness to Face-
book [7] FBJS [23]. Isolation from untrusted code in our subset of JavaScript is based
on filtering out certain constructs (eval, Function, constructor), rewriting others (this,
e1[e2]) to allow them to be used safely, and wrapping properties (e.g., object and array
prototype properties) of the execution environment to further limit the impact of un-
trusted code. Our analysis and security proofs build on a formal foundation for proving
isolation properties of JavaScript programs [17], based on our operational semantics
of the full ECMA-262 Standard language (3rd Edition) [11], available on the web [13]
and described previously [15]. While we focus on one particular combination of filters,
rewriting functions, and wrappers, our methods are applicable to variants of the spe-
cific subset we present. In particular, DOM functions such as createElement could be
allowed, if suitable rewriting is used to insert checks on the string arguments passed to
eval at run-time.

While Facebook FBJS uses filters, source-to-source rewriting, and wrappers, we
have found several attacks on FBJS using our methods, presently and as reported in
previous work [17]. These attacks allow a Facebook application to access arbitrary prop-
erties of the hosting page, violating the intent of FBJS. Each was addressed promptly
by the Facebook team within hours of our reports to them. While the safe subset of
JavaScript we present here is very close to current FBJS, we consider it a success that
we were able to contribute to the security of Facebook through insights obtained by
our semantic methods, and a success that in the end we are able to provide provable
guarantees for a subset of JavaScript that is essentially similar to one used by external
application developers for a hugely popular current site.

Related work on language-based methods for isolating the effects of potentially
malicious web content include [21], which examines ways to inspect and cleanse dy-
namic HTML content, and [29], which modifies questionable JavaScript, for a more
restricted fragment of JavaScript than we consider here. A short workshop paper [27]
also gives an architecture for server-side code analysis and instrumentation, without
exploring details or specific methods for constraining JavaScript. The Google Caja [4]
project uses an approach based on transparent compilation of JavaScript code into
a safe subset with libraries that emulate DOM objects. Additional related work on
rewriting-based methods for controlling the execution of JavaScript include [19]. Foun-
dational studies of limited subsets of JavaScript and dynamic languages in general are
reported in [2,25,29,9,22,1,26]; see [15]. In previous work [17], we described problems
with then-current FBJS and proposed a safe subset based on filtering alone. The present
paper includes a new FBJS vulnerability related to rewriting and extends our previous
analysis to rewriting and wrapper functions. This produces a far more expressive safe
subset of JavaScript. The workshop paper [16] describes some intermediate results on
rewriting without wrappers.

The rest of this paper is organized as follows. In Section 2, we describe the basic
isolation problem, our threat model, and the isolation mechanisms we use. In Section 3,
we briefly review our previous work [15] on JavaScript operational semantics and dis-
cuss details of JavaScript that are needed to understand isolation problems and their
solution. In Section 4, we motivate and define the specific filter, rewriting, and wrap-
per mechanism we use and state our main theorem about the isolation properties they
provide. In Section 5, we compare our methods to those used in FBJS, with discussion
of related work in Section 6. Concluding remarks are in Section 7.
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2 The JavaScript Isolation Problem

The isolation problem we consider in this paper arises when a hosting page Phost
includes content P1, . . . , Pk from untrusted origins that will execute in the same Java-
Script environment as Phost. We assume that P1, . . . , Pk may try to maliciously manip-
ulate properties of objects defined or used by Phost, and therefore consider P1, . . . , Pk
under control of an attacker. The isolation mechanisms we provide are intended to be
used by a site that has access to P1, . . . , Pk before they loaded in the browser execu-
tion environment. In practice, this may be achieved if the page and its constituents are
aggregated at a site, or if there is some proxy in front of the browser that identifies and
modifies trusted and untrusted JavaScript. While Facebook is a good example, with
trusted content developed by Facebook containing untrusted user-defined applications,
we develop general solutions that can be used in other scenarios that allow untrusted
JavaScript to be identified and processed in advance of rendering and execution of
content.

The basic defenses we provide involve changing the definitions of objects or proper-
ties in the hosting page Phost so that untrusted components P1, . . . , Pk run in a modified
environment, filtering P1, . . . , Pk so that they must be expressed in a restricted subset
of JavaScript, or rewriting P1, . . . , Pk to change their semantics in some way. While
potentially dangerous constructs can be eliminated by filtering, allowing them to be
rewritten may provide greater programming expressiveness. While generally there may
be an arbitrary number of untrusted components, we will simplify notation and discuss
the problem of a program Phost containing two untrusted subprograms P1 and P2. We
consider two untrusted subprograms instead of one because it is important to account
for possible interaction between P1 and P2.

2.1 Attacker model

An attacker may design malicious JavaScript code that runs in the context of a honest
page. If the honest page contains two untrusted subprograms P1 and P2 from different
origins, then these may both be under control of a single attacker, or one may be
honest and the other provided by the attacker. In the event that P1 is honest and P2

malicious, for example, the attacker is considered successful if execution of P2 accesses
or modifies sensitive properties of either P1 or the hosting page Phost.

2.2 Sensitive Properties and Challenges

In general, different hosting pages may have different security requirements, and ap-
plication developers may wish to express security requirements in some way. However,
expressing and enforcing custom policies is beyond the scope of this paper. Instead, we
focus on protecting a hosting page and any honest components in the following ways.

Restricting Access to Native Properties. While memory safety is often the bot-
tom line for language-based isolation mechanisms, JavaScript does not provide direct
access to memory locations. The analogous bottom line for JavaScript isolation is pre-
venting an attacker with control of one or more applications from accessing security-
critical properties of native objects (in the context of web pages, this will also include
DOM objects) used by the hosting page or by other applications.
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In JavaScript, there are three ways to directly access a property x of a generic object
o: by o.x, by o[”x”], or by the identifier expression x if o is part of the current scope chain.
Certain native objects such as Array, Function, and a few others can also be accessed
indirectly, without naming a global variable. Although for certain purposes some of
them may have to be made inaccessible, these objects themselves do not constitute
sensitive resources per se. Therefore, we focus on direct access to native objects. In
doing so, we assume that the hosting page has a list of security critical properties,
which we call blacklist B. Thus the first part of our isolation goal (formally stated in
Section 4) is to prevent untrusted code from accessing any properties from the list B.
Although the isolation problem and the solution proposed in this paper are parametric
on a blacklist, the way our solution is designed, it is completely straightforward to
transform the solution to instead apply to a whitelist which is the set of all properties
of native objects that can be exposed to untrusted code.

Isolating the Namespace of Untrusted Principals. In our attacker model, a
malicious application succeeds in attacking the system also if it can access properties
defined by other honest applications. All untrusted application code is executed in the
same global scope. Therefore, a secondary isolation goal is to separate out the set of
global variables accessed by any two untrusted programs coming from different origins.
In the solution we propose, we assume that each untrusted program P has an id pidP
associated with it which is unique for each origin, and we prefix all identifiers appearing
in the program P with pidP . This effectively separates the namespaces of two programs
with different pids.

2.3 Enforcement Techniques

We analyze and prove the correctness of three techniques that are effective in protecting
sensitive properties of honest code against an attacker that supplies code to be executed
in the same JavaScript environment.

Filtering. Untrusted code may be statically analyzed and rejected if it does not
conform to certain criteria. In principle, filtering may range from simple syntactic
checks to full-fledged static analysis, with obvious tradeoffs between efficiency and
precision. Filtering takes place once, before untrusted code is loaded into the execution
environment. Since filtering does not modify code, it does not affect the performance
or the behavior of untrusted code that passes the filter.

Rewriting. Selected constructs within untrusted code may be re-written. Typically,
rewriting inserts run-time checks that prevent undesirable actions. While run-time
checks impose a performance penalty, they are a valuable option for constructs that
are potentially dangerous but also useful when used appropriately in honest code.
Rewritten code may execute differently from the original code, for example when a
run-time security violation is detected.

Wrapping. Sensitive resources of the trusted environment can be wrapped inside
functions that use run-time checks to ensure that these resources are not used mali-
ciously by untrusted code. Wrapper functions do not alter the untrusted code. When
trusted code can access the wrapped resources directly, bypassing the wrappers, the
run-time overhead or other down-sides of wrapping can be limited to untrusted code.
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3 Design principles

In this Section we informally summarize the key features and insights that we gained
while formalizing the operational semantics of JavaScript [13,15] based on the ECMA-
262 standard [11].

We denote the ECMA-262 compliant subset of JavaScript by JSE2. This paper deals
with subsets of JSE2. Our operational semantics consists of a set of rules written in a
conventional meta-notation suitable for rigorous but (currently) manual proofs. Given
the space constraints, we only describe informally the semantics of some of the unusual
and interesting constructs which will help us in designing the isolation enforcement
mechanisms in Section 4. Note that besides all terms derivable from the grammar
(called user terms), our semantics introduces also certain internal terms, objects and
properties useful to clearly express the evaluation semantics of user terms. None of
these internal terms, objects and properties are visible in user code. Throughout the
semantics, we use the symbol @ to distinguish user terms from internal terms.

Notations and Conventions. Our semantics is a small-step operational semantics
([20]). We represent objects as records of values ov indexed by strings m or internal
identifiers @x. The record indexes are also called object properties. In JavaScript every-
thing, including functions, is represented as an object. In our semantics the memory (or
heap H) is a mapping from heap address (l) to objects. Object values (ov) are either
pure values (pv) or function descriptions fun(x,...){P} or heap addresses. We refer to
the union of the set of primitive values and heap addresses by va.

We use H0 to denote the initial heap of JSE2. It contains native objects for repre-
senting predefined functions, constructors and prototypes, and the global object @Global

that constitutes the initial scope, and is always the root of the scope chain. For ex-
ample, the global object defines properties to store special values such as &NaN and
&undefined, functions such as eval and constructors to build generic objects, functions,
numbers and arrays. In browsers, the global object is called window. We use lg to denote
the heap address of the global object.

The scope and prototype chains are two distinctive features of JavaScript. The
stack is represented by a chain of objects whose properties represent the binding of
local variables in the scope. Each scope object stores a pointer to its enclosing scope
object in an internal @Scope property. Representing the stack as a chain of scope objects
helps in dealing with the semantics of constructs that modify the scope chain, such as
function calls and the with expression. JavaScript follows a prototype-based approach
to inheritance. In our semantics, each object stores in an internal property @Prototype a
pointer to its prototype object, and inherits its properties. At the root of the prototype
tree there is @Object.prototype, that has a null prototype. There are also other native
prototype objects such as Function.prototype, Array.prototype etc., which are present at
the top of the prototype chains for function, array objects.

We represent a program state as a triple (H, l, t) where H denotes the heap mapping
locations to objects, l denotes the heap address of the current scope object and t denotes
the term being evaluated. Terms t can be expressions, statements and programs. We
use the notation H(S), S(S) and T (S) to denote heap, scope and term component of
the state respectively.

The general form of an evaluation rule is <Premise>
S1→S2

, meaning that if a certain
premise is true then the state S1 evaluates to a state S2. The premises of each se-
mantic rule are predicates that must hold in order for the rule to be applied, usually
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built of very simple mathematical conditions such as set membership, inequality and
semantic function application. The semantics of programs depends on the semantics
of statements which in turn depends on the semantics of expressions which in turn,
for example by evaluating a function, depends circularly on the semantics of programs.
These dependencies are made explicit by contextual rules, that specify how a transition
derived for a term can be used to derive a transition for a larger term including the
former as a sub-term.

An atomic transition is described by an axiom. For example, the axiom

H,l,(v) −→H,l,v

describes that brackets can be removed when they surround a value (as opposed to an
expression, where brackets are still meaningful).

Contextual rules propagate such atomic transitions. For example, if program H,l,P
evaluates to H1,l1,P1 then also H,l,@FunExe(l2,P) (an internal expression used to evaluate
the body of a function) evaluates to H1,l1,@FunExe(l2,P1). The rule below shows that
@FunExe(l,−) is one of the contexts eCp for evaluating programs.

H,l,P P−→H1,l1,P1

H,l,eCp[P] e−→H1,l1,eCp[P1]

The full formal semantics [13] contains several other contextual rules to account for
other mutual dependencies and for all the implicit type conversions. This substantial
use of contextual rules greatly simplifies the semantics and will be very useful to prove
its formal properties.

A reduction trace τ is the (possibly infinite) maximal sequence of states S1, . . . , Sn, . . .
such that S1 → . . .→ Sn → . . .. Given a state S, we denote by τ(S) the (unique) trace
originating from S and, if τ(S) is finite, we denote by Final(S) the final state of τ(S).

3.1 Property access

We now describe the semantics of various constructs which involve accessing properties
of objects. By “accessing a property” we refer to either reading or writing the contents
of the property. The evaluation of certain constructs, such as p in o, involve checking if
the object o has a property p. We do not consider those events instances of property
access. Property accesses can be explicit or implicit.

Explicit property access.. These take place when a term explicitly names the
property that is being read.

Fact 1 There are only three kinds of expressions in JSE2 which can be used for explicit
property access: x, e.x and e1[e2].

Below, we discuss the semantics of each of the expressions x, e.x and e1[e2].

– x: This is the standard identifier expression. Its semantics is based on the scope
and prototype lookup mechanism. The evaluation involves successively looking at
objects on the scope chain, starting from the current scope object until we find an
object which has the property x (either in it or in one of its prototypes). Thus the
expression x can potentially involve access to property ”x” of one of the objects (or
its prototype) present on the current scope chain.
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– e.x: This is the standard dot notation based property access mechanism. Execut-
ing this expression will result in accessing property ”x” of the object obtained by
evaluating the expression e.

– e1[e2]: This is the most unusual property access mechanism. It involves accessing the
property name corresponding to the string form of the value obtained by evaluating
e2. Thus the property that is accessed is constructed dynamically by evaluating
an expression. The actual evaluation of e1[e2] goes through the following steps
(informally): First e1 is evaluated to a value va1, then e2 to va2, then if va1 is not
an object it is converted into an object o, and similarly if va2 is not a string it is
converted into a string m. Finally property m of object o is accessed:

e1[e2] −→ va1[e2] −→ va1[va2] −→ o[va2] −→ o[m]

Each of these steps, which precede the actual access of property m in o, may raise
an exception or have other side effects.

Implicit property access.. These take place when the property accessed is not
named explicitly by the term, but is accessed as part of an intermediate evaluation
step in the semantics. For example, the toString property is accessed implicitly by
evaluating the expression ”a”+ o, which involves resolving the identifier o and then
type converting it to a string, by calling its toString property.

There are many other expressions whose execution involves implicit property ac-
cesses to native properties, and the complete set is hard to characterize. Instead, we
enumerate the set of all property names that can be implicitly accessed.

Fact 2 [15]. The set of all property names Pnat that can be accesses implicitly by JSE2

constructs is {0,1,2,...}
⋃
{toString, toNumber, valueOf, length, prototype, constructor,

message, arguments, Object, Array, RegExp}

3.2 Dynamic code generation

For example, the native function eval takes a string as an argument, parses it as a
program, and evaluates the resulting program returning its final value. According to
the operational semantics, in JavaScript there are only two constructs which can dy-
namically generate new code.

Fact 3 The only JSE2 constructs which involve dynamic code generation (from strings
to Programs) are the native functions pointed to by the properties eval and Function of
the global object.

3.3 Accessing the global object

Since controlling access to global object is crucial in isolating untrusted from trusted
code, we explore the set of constructs that can be used to access the global object.

As our semantics is formulated, the global object for the initial heap state is only
accessible via the internal properties @scope and @this. These internal properties can
only be accessed as a side effect of the execution of other instructions. An analysis of
our semantics shows that the contents of the @scope property are never returned as the
final result of any evaluation step, and the only construct whose evaluation involves
access to the @this property is the expression this.
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Besides using this, the global object can be returned by calling in the global scope
the functions valueOf of Object.prototype, and concat, sort or reverse of Array.prototype. For
example, var f=Object.prototype.valueOf; f() evaluates to the global object.

Fact 4 The only JSE2 constructs that can return a pointer to the global object are: the
expression this, the native method valueOf of Object.prototype and native methods concat,
sort and reverse of Array.prototype.

4 A safe subset of JavaScript

In this Section, we formally state the isolation problem introduced in Section 2.2, and
propose a solution based on filtering, rewriting and wrapping techniques.

As mentioned in Section 2, we consider web pages which include untrusted con-
tent P1, . . . , Pk in the JavaScript environment of the host page. We associate to each
untrusted user program P a unique identifier pidP , which corresponds to the origin
from which the program was loaded. Given a heap H, let Access(H,P ) be the set of
property names accessed when P is executed against H in the global scope, and let
Accessl(H,P ) (l ∈ dom(H)) be the set of properties of the object at address l, accessed
when P is executed against the heap H in the global scope.
Isolation Problem Given a blacklist B of property names, find a meaningful subset
Jsub(B) ⊆JSE2, an appropriate wellformed initial heap state H0

sub and a function
Enf : pid ∗ Jsub(B)→ JSE2 such that

(Goal 1) For all user programs P in the subset Jsub(B) with program ids pidP

Access(H0, Enf(pidP , P )) ∩ B = ∅.

(Goal 2) For any two untrusted programs P1 and P2 in the subset Jsub with program
ids pidP1 and pidP2 respectively

Accesslg (H0, Enf(pidP1 , P1)) ∩Accesslg (H0, Enf(pidP2 , P2)) ⊆ Pnat ∪ PnoRen .

Goal (2), as stated above, is the most precise property isolating different applications
that we are able to support using the current proof techniques. In future work, we plan
to generalize this property to enforce isolation when the execution of applications is
interleaved, introducing proof techniques able to handle the combination of alternative
safety properties for each application.

4.1 Isolating blacklisted properties

In order to achieve Goal 1, we need to control all possible ways in which object prop-
erties can be accessed.

As discussed in Section 3, there are two kinds of property accesses: explicit and
implicit access, and for isolating blacklisted properties we need to control both of
them. The implicit accesses are in general very difficult to control because given a term
t, it is undecidable to statically decide the precise list of property names that will be
accessed implicitly. On the positive side, from Fact 2, we know that the set of property
names that would be accessed implicitly would be contained in the set Pnat. In this
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work, we therefore assume that none of the properties from the set Pnat are blacklisted
or in other words all implicit property accesses are considered safe and are allowed.

From Fact 1 we know that x, e.mp and e1[e2] are the only expressions which can
be used for explicitly accessing user properties. Hence, in order to restrict access to
blacklisted properties we have to restrict the behavior of these expressions.

In this work we combine the filtering approach of [17] to restrict the behavior of
expressions x and e.x with a rewriting based approach to restrict the behavior of e1[e2].

Restricting x and e.x. The expressions x and e.x can access a blacklisted property if
the identifier name ”x” is contained in the blacklist. In order to restrict this behavior
we conservatively disallow all such expressions where ”x” is contained in the blacklist.

Filter 1 Disallow all terms which contain an identifier from the blacklist B.

This restriction mechanism will fail if dynamically generated code can contain black-
listed identifiers. From Fact 3 we know that JSE2 includes two primitive functions
which can be used to generate code dynamically. One approach to fixing this prob-
lem is to restrict all ways of accessing such functions. In the initial heap, this can be
achieved by disallowing the identifiers eval, Function and constructor.

Although this may be a restriction for full-blown JavaScript applications that use
eval to parse JSON code, a recent study by Livshits and Guarnieri[12] shows that a low
percentage of widgets use constructs like eval. Thus, we propose the following filtering
step.

Filter 2 Disallow all terms containing any of the identifiers eval, Function, or contructor.

An alternative to the above filtering step is to define safe wrappers for the functions
eval and Function. Such wrappers need to use a JavaScript expression to parse, filter
and rewrite the string passed as an argument to the original functions. Proving such a
JavaScript expression correct would complicate severely our analysis, and we leave for
future work.

Restricting e1[e2]. We restrict the behavior of e1[e2] by rewriting it to a safe expres-
sion. The main idea is to insert a run-time check in each occurrence of e1[e2] to make
sure that e2 does not evaluate to a blacklisted property name. We transform every
access to a blacklisted property of an object into an access to the property ”bad” of the
same object (assuming B does not contain ”bad”). Although this transformation seems
easy, it is complicated by subtle details of the semantics of the expression e1[e2].

In view of our operational semantics for e1[e2] we propose the following rewriting
step.

Rewrite 1 Rewrite every occurrence of e1[e2] in a term by e1[IDX(e2)], where,

IDX(e2) = ($=e2,{toString:function(){return ($=$String($),CHECK $)})
CHECK $ = ($BL[$] ? ”bad”:

($ == ”constructor” ? ”bad”:
($ == ”eval” ? ”bad”:
($ == ”Function” ? ”bad”:
($[0] == ”$” ? ”bad”:$)))))
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where $String refers to the original String constructor, $BL is a (blacklisted) global vari-
able containing an object with all blacklisted property names initialized to true, and $

is a reserved variable name.

In order to initialize the variables $String and $BL to their appropriate values, we
propose the following (trusted) initialization code, that must be executed in the global
scope of the initial heap.

Initialization Code 1 (Tidx) Let {p 1,...,p n} be the blacklist B.

var $String = String; var $= ””; var $BL = {p 1:true;...,p n:true}.

The IDX code defined in the rewrite rule work as follows: evaluates (once and for all)
e2 to a value va2 that is saved in the variable $. It then creates a new object with a
specially crafted toString property, and returns the address of this object as the final
value l2. These steps correspond to the internal execution trace

e1[IDX(e2)] −→ va1[IDX(e2)] −→ va1[l2] −→ o[l2]

According to the JavaScript semantics, the evaluation of o[l2] involves converting the
object at address l2 to a string by calling the toString method of l2 that will return the
result of converting $ to a (sanitized) string. The conversion to a string is faithfully
implemented by the expression $String($), which calls the native String method on $.
The expression CHECK $, uses nested conditional expressions to return the string saved
in $ only if it is not set a blacklisted property.

To protect this mechanism from tampering, we also need to ensure that the proper-
ties $, $String and $BL cannot be accessed by untrusted code. Similar restrictions need
to be imposed on other variables needed by similar enforced mechanisms. Therefore,
we impose the restriction that untrusted code cannot use identifier names beginning
with $, thus separating the namespaces of trusted and untrusted code.

Filter 3 Disallow all terms which involve an identifier name beginning with $.

Note that the condition $[0] == ”$”? ”bad”:$ in the CHECK $ expression already im-
poses this restriction on dynamically generated property names.

4.2 Isolating one program from another

In order to achieve Goal 2, we need to make sure that for two programs P1 and P2

with ids pidP1 = pidP2 , it is the case that

Accesslg (H0
sub, Enf(pidP1 , P1)) ∩Accesslg (H0

sub, Enf(pidP2 , P2)) = ∅

where Accesslg (H0, Enf(P1)) refers to the set of global object properties (or global
variables) that are accessed during the entire evaluation trace of program P . As dis-
cussed in the previous subsection, it is very difficult to control implicit property ac-
cesses. Therefore we assume that accessing the same properties from the set Pnat is
safe for both programs and weaken our goal to the following

Accesslg (H0
sub, Enf(pidP1 , P1)) ∩Accesslg (H0

sub, Enf(pidP2 , P2)) ⊆ Pnat.

On analyzing our semantics, we found that properties of the global object can be
accessed in following two ways:
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(1) Explicit access to the global object. If the program can get a pointer lg to the
global object then it can access properties of the global object directly by using
one of the two expressions l g.x or l g[x]. We isolate the property names accessed
using these expressions by conservatively disallowing explicit access to the global
object by untrusted code.

(2) Scope resolution. Since the global object is also the base scope object, variable
names appearing in a program can resolve to the global object thereby resulting in
access to the corresponding property. In other words, evaluation of the expression
x can potentially involve accessing the property x of the global object. We isolate
the set of property names accessed in this way by uniquely prefixing all identifiers
appearing in a program by its id, thereby separating out the namespaces of two
programs with different ids.

From Fact 4 we know that a pointer to the global object can potentially be obtained
by using the expression this or calling method valueOf of Object.prototype or methods
sort,reverse,concat of Array.prototype. In [17] we used the filtering approach and conser-
vatively disallowed this and the identifiers valueOf, sort,reverse,concat from the language.
In this work, we use the rewriting technique for restricting the behavior of this and the
wrapping technique for the native methods.

Rewriting this. The main idea is to rewrite every occurrence of this in the user code
to the expression NOGLOBALTHIS which returns the result of evaluating this, if it is not
the global object, and null otherwise.

Rewrite 2 Rewrite every occurrence of this by NOGLOBALTHIS, where
NOGLOBALTHIS = (this==$g?null;this). and $g is a blacklisted global variable, initialized
with the address of the global object.

In order to initialize correctly $g with the global object, we use the following ini-
tialization code that must be executed in the global scope.

Initialization Code 2 (Tng) var $g = this;

Note that, Filter 3 and Rewrite 1 already enforce that untrusted code cannot access
the trusted variable name $g.

Wrapping Native methods. As opposed to [17], in this work we take the less
conservative approach of wrapping the native methods in order to ensure that the
value returned by them is never the heap address of the global object. The following
trusted initialization code demonstrates the wrapping for the method valueOf.

Initialization Code 3 (TvalueOf)
$OPvalueOf = Object.prototype.valueOf;
$OPvalueOf.call = Function.prototype.call;
Object.prototype.valueOf =

function(){var $= $OPvalueOf.call(this); return ($==$g?null:$)}

The main idea is to redefine the method to a new function which calls the original
valueOf method and returns the result only if it is not the global object. We store a
pointer to the original valueOf and call methods and the global object using $-variable
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names. Since untrusted code is restricted from accessing $-properties (see Filter 3
and Rewrite 1), these are automatically isolated form untrusted code. Similarly we
can define the appropriate initialization code for the methods sort, concat, reverse of
Array.prototype. We denote these by Tsort, Tconcat and Treverse.

Restricting identifier names. In order to make sure that the identifier names
appearing in a program P are distinct from the ones occurring in another program
with a different pid, we essentially rewrite all identifiers x to pid x.

Although this will completely separate the namespaces of any two programs with
different pids, thereby achieving the isolation goal, blindly renaming all identifiers will
drastically modify the semantics of the program including that of good programs. The
most obvious example is the expression toString(), that evaluates to ”[object Window]”

in the un-renamed version, whereas it raises a reference error exception when it is
evaluated as a12345 toString() in the renamed version. The main issue is that variable
names are in fact properties of the scope object or of the prototypes of the scope
objects. Since the native properties of the global object and prototype objects are not
renamed, the corresponding variable names in the program should also not be renamed,
in order to preserve this correspondence between them. By analyzing the semantics,
we found the complete set of property names that should not be renamed as, denoted
by PnoRen , to be

NaN,Infinity,undefined,eval,parseInt,parseFloat,IsNaN,
IsFinite,Object,Function,Array,String,Number,Boolean,
Date,RegExp,Error,RangeError,ReferenceError,TypeError,
SyntaxError,EvalError,constructor,toString,toLocaleString,
valueOf,hasOwnProperty,propertyIsEnumerable,
isPrototypeOf


Since we do not rename the variable whose names appear in PnoRen , we can only

enforce the weaker isolation

Accesslg (H0
sub, Enf(pidP1 , P1)) ∩Accesslg (H0

sub, Enf(pidP2 , P2)) ⊆ Pnat ∪ PnoRen

and rely on the assumption that it is safe for two untrusted programs to access the
same set of non-blacklisted native properties of the global object. In particular, eval

and Function are always filtered out by Filter 2.
Thus, we propose the following rewriting step.

Rewrite 3 Given a program P , rewrite all identifiers x /∈ PnoRen , appearing in P to
pid Px.

4.3 Defining Jsub(B), H0
sub and Enf

We now combine the filtering, rewriting and heap initialization steps mentioned in the
previous section to define the subset Jsub(B), the initial heapH0

sub and the enforcement
function enf, which together solve the isolation problem. By design, the steps proposed
in the previous subsection are all compatible with each other and can be combined
in a straightforward manner. Based on the filtering steps, we propose the following
definition for the subset Jsub(B).
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Definition 1. [Jsub(B)] Given a blacklist B, the subset Jsub(B) is defined as JSE2 MI-
NUS: all terms containing identifiers from the set B, all terms containing one or more
of the identifiers {eval, Function, contructor}, all terms containing identifiers beginning
with $.

Based on the rewriting steps, we define the function Enf as follows:

Definition 2. [Enf ] Given a program P we define, Enf(pidP , P ) as program P with

(1) Every occurrence of the expression e1[e2] is rewritten to e1[IDX(e2)],
(2) Every occurrence of the expression this is rewritten to NOGLOBAL(this)
(3) Every identifier x appearing in the program must be replaced with pid Px if x /∈
PnoRen .

Combining all the initialization steps we define the initialized heap H0
sub as:

Definition 3. [H0
sub] Given the initial JSE2 heap H0, we define H0

sub as the heap ob-
tained after executing all the initialization codes in the global scope. Formally, H0

sub =
H(Final(H0, lg, Tidx;Tng;TvalueOf ;Tsort;Tconcat;Treverse)).

Note that for correctness of our solution, it is very important to execute the trusted
initialization code on the initial JSE2 heap H0 (described in Section 3) and hence
before any untrusted code is executed.

Theorem 1 (Isolation theorem). Given a blacklist B, such that B ∩ Pnat = ∅,
and the subset Jsub(B), function Enf and the heap H0

sub as defined in Definitions 1, 2
and 3 respectively.

(1) For all user programs P in the subset Jsub(B) with program ids pidP

Access(H0, Enf(pidP , P )) ∩ B = ∅

(2) For all user programs P1 and P2 in the subset Jsub with program ids pidP1 and
pidP2 respectively

Accesslg (H0, Enf(pidP1 , P1)) ∩Accesslg (H0, Enf(pidP2 , P2)) ⊆ Pnat ∪ PnoRen

The proof of the above theorem is described in the Appendix A.

5 Case Study: FBJS

We studied the isolation mechanisms of FBJS and Yahoo! ADsafe because of their im-
portance to hundreds of millions of Web users, and their relative simplicity. As reported
in [17], we initially studied isolation based on filtering alone, and made suggestions for
improvement in FBJS and ADsafe that have been adopted in both systems. However,
the provably safe JavaScript subset based on filtering of [17] is far too restrictive to be
used as a satisfactory replacement for FBJS.

In this paper, we therefore designed rewritings and wrapper functions to design a
more expressive, provably safe subset of JavaScript. We believe that Jsub(B) is now
comparable to FBJS from the application developer viewpoint, has fewer semantic
anomalies (as described below), and has the advantage of being provably safe.
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Facebook. Facebook [7] is a well-known social networking Web site reporting 200
millions active users. Registered and authenticated users store private and public in-
formation on the Facebook website. Users can share information by sending messages,
directly writing on a public portion of a user profile (called the wall), or interacting
with Facebook applications. Facebook applications can be written by any user and can
be deployed in various ways: as desktop applications, as external web pages displayed
inside an iframe within a Facebook page, or as integrated components of a user profile.

Integrated Facebook applications are written in FBML [24], a variant of HTML
designed to make it easy to write applications and also to restrict their possible be-
havior. A Facebook application is retrieved from the application publisher’s server and
embedded as a subtree of the Facebook page document. Since integrated Facebook
applications are intended to interact with the rest of the user’s profile, they are not
isolated inside an iframe. As part of the Facebook isolation mechanism, the scripts used
by applications must be written in a subset of JavaScript called FBJS [23] that restricts
them from accessing arbitrary parts of the DOM tree of the larger Facebook page. The
source application code is checked to make sure it contains valid FBJS, rewriting is
applied to limit the application’s behavior, and a specialized library is provided.

FBJS. While FBJS has the same syntax as JavaScript, a preprocessor consistently
adds an application-specific prefix to all top-level identifiers in the code, isolating the
effective namespace of an application from the namespace of other applicantions and
of the rest of the Facebook page. For example, a statement document.domain may be
rewritten to a12345 document.domain, where a12345 is the application-specific prefix.
This renaming will prevent application code from directly accessing most of the host
and native JavaScript objects, such as the document object, Facebook provides libraries
that are accessible within the application namespace. For example, the libraries include
the object a12345 document, which mediates interaction between the application code
and the true document object.

Additional steps are used to restrict the use of the this and o[e] in FBJS code.
Occurrences of this are replaced with the expression $FBJS.ref(this), which calls the
function $FBJS.ref to check what object this refers to when it is used. If this refers to
window, then $FBJS.ref(this) returns null. FBJS rewrites o[e] to a12345 o[$FBJS.idx(e)],
where $FBJS.idx enforces blacklisting on the string value of e.

Other, indirect ways that malicious content might reach the window object involve
accessing certain standard or browser-specific predefined object properties such as

parent and constructor. Therefore, FBJS blacklists such properties and rewrites any
explicit access to them in the code into an access to the useless property unknown .
Finally, FBJS code runs in an environment where properties such as valueOf, which
may access (indirectly) the window object, are redefined to something harmless.

Comparison. FBJS imposes essentially the same filtering restrictions as those we
propose in Section 4, and the FBJS library appears to impose conditions similar to
those we state in our wrapper conditions. However, there are some differences when it
comes to renaming identifiers to place applications in separate namespaces and in the
rewriting used to restrict this and e[e].

The renaming issue is that the FBJS implementation renames properties in the
set PnoRen of properties we suggest should not be renamed. For example, toString() is
rewritten to a12345 toString(), with an application-specific prefix. While toString() nor-
mally evaluates to ”[object Window]”, the rewritten version throws a “reference error”
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exception when evaluated. As noted in [17], FBJS does not correctly support renaming
because it does not prevent explicit manipulation of the scope; the subset we propose
here does not completely prevent access to scope objects either (for greater expressive-
ness), but has fewer pathological cases, because we avoid renaming PnoRen properties.
A minor point is that we show that a safe subset can contain with, which FBJS pro-
hibits, although our safe subset removes or restricts constructs that appear in many
with use-cases.

To discuss more substantive issues, we consider FBJS v
09 , the version of FBJS de-

ployed on Facebook at the time of our analysis, in March 2009. This version reflects
repairs to the rewriting of this based on our earlier discovery of ways to redefine the
run-time checking function [17]. The FBJS v

09 $FBJS.ref function performs a check equiv-
alent to NOGLOBAL, with some additional filtering to wrap DOM objects exposed to
user code. Since $FBJS is effectively blacklisted in FBJS v

09 , we believe that ref prevents
the this identifier from being evaluated to the window object; the check is semantically
faithful to the requirements developed in Section 3.

On the other hand, the FBJS v
09 $FBJS.idx function does not preserve the semantics

of the property access, and as a result can be compromised in certain environments.
More specifically, we report an attack we identified during the research reported here, a
repair to prevent that attack, and a remaining problem. In the context of other filtering,
$FBJS.idx is equivalent to

($=e2,($ instanceof Object||$blacklist[$])?”bad”:$)

where $blacklist is the object {caller:true,$:true,$blacklist:true}. The main problem is that,
in contrast to our definition of IDX, the expression $blacklist[$]?”bad”:$ converts va to
a string two times. This is a problem if evaluation has a side effect. For example, the
object

{toString:function(){this.toString=function(){return ”caller”}; return ”good”}}

can fool FBJS by first returning a good property ”good”, and then returning the bad
property ”caller” on the second evaluation. To avoid this problem, FBJS v

09 inserts the
check $ instanceof Object that tries to detect if $ contains an object. In general, how-
ever, this check is not sound – according to the JavaScript semantics, any object with
a null prototype (such as Object.prototype) escapes this check. Moreover, in Firefox,
Internet Explorer and Opera the window object also escapes the check. In FBJS v

09 ,
Object.prototype and window are not accessible by user code, so cannot be used to im-
plement this attack.

We found that the scope objects described in Section 3 have a null prototype in
Safari, and therefore we were able to mount attacks on $FBJS.idx that effectively let
user application code escape the Facebook sandbox. Shortly after we notified Facebook
of this problem, the $FBJS.ref function was been modified to include a check of current
browser, and if it is Safari an additional check that this is not bound to an object able to
escape the instanceof check described above. This solution is not completely satisfactory,
for two reasons. First, some browsers may have other host objects that have a null

prototype, and that can be accesses without using this. Such objects could still be used
to subvert $FBJS.idx, which has not been changed. Second, $FBJS.idx prevents objects
from being uses as arguments of member expressions. This restriction is unnecessary
for the safety of blacklisting, as shown by our proof for IDX.
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6 Other Language-Based Approaches to Isolation

In this Section, we describe a few other approaches to JavaScript isolation which have
not been subjected to rigorous semantic analysis, and could therefore benefit from
the reasoning techniques presented in this paper. Due to space limitations, we do not
discuss solutions based on idealized subsets of JavaScript with limited expressiveness,
or that rely on browser modifications (for example [29]).

ADsafe. The Yahoo! ADsafe subset [5] is designed to allow advertising code to be
placed directly on the host page, limiting interaction by a combination of static analysis
and syntactic restrictions. The advertising code must satisfy very severe syntactical
restrictions (including no this), and has access to an ADSAFE object, provided as a
library, that mediates access to the DOM and other page services. Since we discovered
that ADsafe was liable to prototype-poisoning attacks [15], the filtering process for
ADsafe code has been complemented by a static analysis which gathers information
about the objects that untrusted code may try to get access to. It is left to the page
hosting the advertisement to make sure that those objects cannot be used to subvert
the isolation mechanism. Our results show that some of the ADsafe restrictions are not
strictly necessary, and the subset could be made more expressive.

BrowserShield. Browsershield is a system that rewrites web pages in order to enforce
run-time monitoring of the embedded scripts. The systems takes an HTML page, adds
a script tag to load a trusted library, rewrites embedded scripts so that they invoke a
local rewriting function before being executed, and rewrites instructions to load remote
scripts by making them load through a rewriting proxy. The run time monitoring is
enforced by policies which are in effect functions that monitor the JavaScript execution.
Common operations such as assignment suffer from a hundred-fold slowdown, and
policies are arbitrary JavaScript functions for which there is no systematic way of
guaranteeing correctness.

GateKeeper. Livshitz and Guarnieri [12] propose an approach to enforcing security
and reliability policies in JavaScript based on static analysis based on two subsets. The
first, JSSafe, is obtained exclusively by filtering, and does not contain with, eval, e[e] or
other dangerous constructs. The second subset, JSGK reinstates e[e] after wrapping it
in a run-time monitor. The two subsets are amenable to static analysis by extracting
Datalog facts and clauses that approximate the call-graph and points-to relation of
JavaScript objects at run-time. The analysis necessarily loses precision in several points,
and in particular when dealing with prototypes. Unfortunately, the implementation of
GateKeeper is not available for inspection, and the sparse details on the definition of
JSSafe and the run-time monitors in JSGK are not sufficient for a formal comparison
with our results.

Caja. The Google Caja [4] project is a substantial effort to provide a safe JavaScript
subset. Caja uses a compilation process that takes untrusted JavaScript and produces
code in Cajita, a well behaved capability-based safe subset of JavaScript. Our goal
is to isolate certain variables in the heap, whereas Caja enforces a finer grained se-
curity policy, which allows untrusted code from different principals to interact safely,
by leveraging the capability-based paradigm. The Caja enforcement mechanisms also
include filtering and rewriting, but the additional expressive power is gained at the
price of complexity and efficiency. The reasoning techniques introduced in this paper
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could be used to proof the correctness of such mechanisms, and possibly improve their
implementations.

Lightweight Self-Protecting Javascript. Phung et al. [19] introduce a principled
approach for enforcing safety properties on JavaScript native libraries. The enforcement
mechanism involves wrapping each of the security critical native library methods and
properties, before executing an untrusted script. Unfortunately, this approach is not
sound for existing browsers. For example, by deleting certain properties of the global
object, some native object are reinstated in the global environment, subverting the
wrapping mechanism. Future versions of JavaScript may provide better support this
implementation technique.

7 Conclusions

We systematically presented and analyzed a combination of isolation mechanisms for
a subset of JavaScript that is comparable in expressiveness to Facebook FBJS [23].
Isolation from untrusted code in our subset of JavaScript is based on filtering out certain
constructs (eval, Function, constructor), rewriting others (this, e1[e2]) to allow them to be
used safely, and wrapping properties (e.g., object and array prototype properties) of
the execution environment to further limit the impact of untrusted code. Our analysis
and security proofs build on a formal foundation for proving isolation properties of
JavaScript programs [17], based on our operational semantics [15] of the full ECMA-
262 Standard language (3rd Edition) [11]. While we focus on one particular combination
of filters, rewriting functions, and wrappers, our methods are applicable to variants of
the specific subset we present. For example, a DOM function such as createElement

could be allowed, if suitable rewriting is used to insert checks on its string argument
at run-time. In future work, we intend to examine Caja [4] and other systems, with
the goal of providing provable security for practically useful language-based isolation
mechanisms.
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ence Foundation. Maffeis is supported by EPSRC grant EP/E044956/1.
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A Appendix: Formal Analysis

In this Section we prove the isolation theorem stated in Section 4. In order to prove
this theorem, we make use of the operational semantics of JavaScript. The reader does
not need to read this Appendix in order to understand the main body of the paper.

A.1 Preliminaries

We now extend some of the notation and properties of the operational semantics men-
tioned in Section 3.

As mentioned in Section 3, a state S is a triple (H, l, t). We use the notation H(S),
S(S) and T (S) to denote each component of the state. We denote by H0 the “empty”
heap, that contains only the native objects, and no user code. We use lg to denote the
heap address of the global object #Global. If a heap, a scope pointer and a term are
well-formed then the corresponding state is also well-formed (see the Appendix of [17]
for a formal definition). In [15], we show that the evaluation of well-formed terms, if
it terminates, yields either a value or an exception (for expressions), or a completion
(for statements and programs). A state S is initial if it is well-formed, H(S) = H0,
S(S) = lg and T (S) is a user term. A reduciton trace τ is the (possibly infinite) maximal
sequence of states S1, . . . , Sn, . . . such that S1 → . . . → Sn → . . .. Give a state S, we
denote by τ(S) the (unique) trace originating from S and, if τ(S) is finite, we denote
by Final(S) the final state of τ(S). Given two states S1 and S2 such that S1 →∗ S2,
we denote by subTr(S1, S2) the trace of states from S1 to S2.

To ease our analysis, we add a separate sort mp to distinguish property names from
strings and identifiers in the semantics. We make all the implicit conversions between
these sorts explicit, by adding the identity functions Id2Prop: x → mp, Prop2Id: mp

→ x; Str2Prop: m → mp, Prop2Str: mp → m. The semantics already contained explicit
conversion of strings to programs: ParseProg, ParseFunction, ParseParams. We also add
context based reduction rules corresponding to each of the conversion functions, which
apply to terms whose single step reduction involves an implicit conversion. In order
to keep track of the names appearing in a state S, we define functions that collect
respectively the identifiers and the property names of the term and the heap of S.

N T
I (S) = {x|x ∈ T (S)} N T

P (S) = {mp | mp ∈ T (S)}
NH
I (S) = {x | x ∈ P, P ∈ H(S)}
NH
P (S) = {mp | ∃l : mp ∈ H(S)(l)}
NI(S) = N T

I (S) ∪NH
I (S) NP (S) = N T

P (S) ∪NH
P (S)

Finally, we define the set of all the identifiers and property names appearing in a state
S by N (S) = NI(S) ∪ Prop2Id(NP (S)). From these definitions, it follows that for
any initial state S0, N (S0) = N T

I (S0) ∪ NH
P (S). NH

P (S) is the set of property names
present in the initial heap H0. This is a fixed set, and will henceforth be denoted by
N 0
P .

We define meta-call a pair (f, (args)) where f is a semantic function or predicate
appearing in the premise of a reduction rule, and (args) is the list of its actual argu-
ments as instantiated by a reduction step using that rule. For every state S, we denote
by C1(S) the set of the meta-calls triggered directly by a one step transition from state
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S. Since each meta-call may in turn trigger other meta-calls during its evaluation, we
denote by C(S) the set of all the meta-calls involved in a reduction step. We denote
by FH the set of functions that can read or write to the heap: FH = {Dot(H, l, mp),
Update(H, l,mp, v ) }

For any state S, we define the set of all property names accessed during a single
transition by A(S) , {mp | ∃f ∈ FH ∃H, l : (f, (H, l,mp)) ∈ C(S)}.

For any state S, we define the set of all property names of object at heap address
l, accessed during a single transition by Al(S) , {mp | ∃f ∈ {Dot, Update} ∃H :
(f, (H, l,mp)) ∈ C(S)}.

In the case of a trace τ , A(τ) ,
⋃
Si∈τ A(Si).

Definition 4. (Access) Given a heap H and a program P , we define Access(H,P ) as
Access(H,P ) = A(τ(H, lg, P ))

Definition 5. (Accessl) Given a heap H, a program P and a heap address l, we define
Access(H,P ) as Accessl(H,P ) = Al(τ(H, lg, P ))

A.2 Proving the Isolation Theorem

In this section, we prove the isolation theorem which is restated below for convenience.

Restatement of Isolation theorem Given a blacklist B, such that B ∩ Pnat = ∅,
and the subset Jsub(B), function Enf and the heap H0

sub as defined in Definitions 1,
2 and 3 respectively.

(1) For all user programs P in the subset Jsub(B) with program ids pidP

Access(H0, Enf(pidP , P )) ∩ B = ∅

(2) For all user programs P1 and P2 in the subset Jsub with program ids pidP1 and
pidP2 respectively

Accesslg (H0, Enf(pidP1 , P1)) ∩Accesslg (H0, Enf(pidP2 , P2)) ⊆ Pnat ∪ PnoRen

We assume that the semantics of JavaScript is compliant with the ECMA-262 standard
with the exception of the semantics of object literal. The ECMA-262 semantics for eval-
uation of object literals is to create a new empty object ”as if by calling” new Object().
As suggested by various researchers, this is actually a bug in the semantics and the
new object creation step should not execute new Object() explicitly. Instead a call to
the ”original” Object constructor should be hard-wired in the semantics. This is because
in the case of an explicit call to new Object(), if the Object constructor is redefined or
deleted by a malicious attacker then the whole object literal mechanism might fail.
Thus in order to make the mechanism more robust, we consider the following modified
semantic rule in our proofs:

H,l,{[(pn:e)˜]} −→H,l,@AddProps(new l Object()[,(pn:e)˜]) [E−Obj]

where lObject is the heap address of the native Object constructor. Note that it is also
possible to write safe rewriting function using the existing object literal rule by saving
the original Object constructor in a $-variable, just like we save Function.prototype.call in
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the expression IDX(e). We can then use this saved Object constructor to create new ob-
jects instead of using the object literal mechanism. We consider the modified semantic
rule in our analysis mainly to make our presentation of the proof more clear.

In order to prove the theorem, we first define a state property P pidsafe(S) where S is
any state obtained during corresponding the execution of a program with program id
pid. This property states that the single step reduction of the state S does not involve
accessing any property from the set B and all properties of the global object that are
accessed during the reduction step are either in PnoRen ∪Pnat or are prefixed with pid.
A formal definition of this property is as follows.

Definition 6. (P pidsafe) Given a well-formed state S, P pidsafe(S) holds iff

(1) A(S) ∩ B = ∅
(2) ∀mp ∈ Alg (S) \ (Pnat ∪ PnoRen) : isPrefix(pid,mp).

where for any strings m1 and m2, isPrefix(m1,m2) is true iff m1 is a prefix of m2.

In order to prove the isolation theorem, it is sufficient to show that for each program
P , the property P pidP

safe (S) holds for all states S in τ(H0, lg, Enf(pidP , P )). We prove
this by a defining a goodness property Goodpidheap(H) for a heap H and program id pid
and goodness property Goodpidterm(t) for a term t and program id pid. We combine the
heap goodness and term goodness properties to define a property Goodpid(S) for any
wellformed state S and program id pid. We then show that the following hold:

(1) The initial heapH0
sub is good for any program id pid andGoodpidterm(Enf(pid, P ))

is true for any user program P from the subset Jsub(B) with program id pid (2) Given a
program id pid and state S1 such that Goodpid(S1) is true and S1 is not a final state, S1

can be reduced to (in possibly multiple steps) another state S2 such that Goodpid(S2)
is true and the safety property P pidsafe(S) holds for all states S between S1 and S2.

Before defining the goodness property, we state a few notations and definitions.
Let lFunction, lString denote the heap addresses of the constructors Function, String. Let
lOP and lAP denote the heap address of the native object prototype and native array
prototype. Let leval, lhOP , lpIE be the heap address of the methods eval, hasOwnProperty,
propertyIsEnumerable. Let lvalueOf and lvalueOfN be the heap addresses of the original and
wrapped valueOf method of Object.prototype. Similarly let lsort, lsortN ; lconcat, lconcatN
and lreverse, lreverseN be the heap addresses of the original and wrapped methods sort,
concat and reverse of Array.prototype. Finally let lcall be the heap address of the call

method of Function.prototype. We use the macro IDX1(e) to denote the expression
(l g∗$=e,{toString:function(){return ($=$String($),CHECK $)})

Term goodness Goodpidterm. : Given a program id pid, we say that Goodpidterm(t) is true
for a wellformed JSE2 user or internal term t iff it is contained in the subset Termspidgood
which is described using the grammar defined in Section A.3. The grammar is essentially
a more restricted form of the JSE2 grammar. Certain production rules such as e →
@cEval(P) are filtered and some other rules such as e→ this and e→ e[e] are rewritten
to e → NOGLOBALTHIS and e → e[IDX(e)] respectively. For certain production
rules in the grammar we also associate a predicate (also called restriction) on the
terminals present in the derived sentence. These terminals include values, heap address,
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property names and identifier names. A derived sentence is then acceptable only if
it satisfies the corresponding predicate. For example the rule e → @Fun(l,e[,va˜]) is
associated with the predicate l /∈ {lFunction, leval, lvalueOf , lsort, lconcat, lreverse} ∧ va /∈
{lFunction, leval, lvalueOf , lsort, lconcat, lreverse, lg}. So any derived term @Fun(l,e[,va˜]) is
acceptable only if l and va satisfy the predicate. In order to give the reader an intuitive
understanding of the subset Termspidgood, we give the following informal definition for
it. The subset Termspidgood consists of all terms t such that

(1) Structure of t does not contain any property name or identifier from the set
B ∪ {eval, Function, constructor } except in contexts l {hOP}.exe(l1,−), l {pIE}(l1,−).

(2) All identifiers x appearing in an expression must have pid as a prefix.
(3) All sub-expressions of the form l g∗mp must satisfy mp /∈ (PnoRen ∪Pnat)⇒ mp /∈
B ∧ isPrefix($,mp).

(4) If the term contains a subexpression e1[e2] then e2 must be of one of the following:
(a) IDX(e) for some expression e.
(b) IDX1(e) for some expression e.
(c) String m where m /∈ B ∪ {eval, Function, constructor }.

(5) If the term contain this then it must appear only inside subexpressions of the form
NOGLOBALTHIS.

(6) Identifier $ only appears inside expressions of the form IDX(e) or IDX1(e) ( for some
expression e) or NOGLOBALTHIS.

(7) Structure of t does not contain any sub terms with contexts cEval() or FunParse().
(8) Structure of t does not contain any of the heap addresses lFunction, leval, lvalueOf ,

lsort, lconcat, lreverse.
(9) If heap address of the global object lg is present in T (S) then it must appear

inside one of the following contexts only: Function(fun([x˜]){P},−); −.@Put(mp,va);
l.@call(−,[va˜]); l.@exe(−,[va˜]); Fun(−,e[,va˜]); @ExeFPA(l,−,va); @FunExe(−,P);
@with(−ln1,ln2,s); −∗mp

where cEval(...) and FunParse(...) are internal continuation contexts which are entered
during calls to the eval methods and Function constructor respectively.

Heap goodness (Goodpidheap). : We now state a goodness property for wellformed heaps.

Definition 7. Given a wellformed heap H and a program id pid, we say that Goodpidheap(H)
is true iff:

∀l, p : H(l).p = lFunction ⇒ p = constructor

∨ p = Function

∀l, p : H(l).p = leval ⇒ p = eval

∀l, p : H(l).p = lg ⇒ p = @scope ∨ p = @this ∨ p = @Fscope
∀l, p : p ∈ H(l) ∧ isPrefix($, p)⇒ l = lg
∀l, p : H(l).p = lvalueOf ⇒ l = lg ∧ p = $OPvalueOf
∀l, p : H(l).p = lconcat ⇒ l = lg ∧ p = $APconcat
∀l, p : H(l).p = lsort ⇒ l = lg ∧ p = $APsort
∀l, p : H(l).p = lreverse ⇒ l = lg ∧ p = $APreverse
H(lg).$g = lg
H(lg).$ = ””
H(lg).$String = lString
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H(lvalueOf ).call = lcall
H(lvalueOfN ).@body = function(){var $ = $OPvalueOf.call( this, arguments);

return ($==$g?null:$) }
H(lvalueOfN ).@Fscope = lg
H(lsort).call = lcall
H(lsortN ).@body = function(x){var $ = $APsort.call( this, arguments);

return ($==$g?null:$) }
H(lsortN ).@Fscope = lg
H(lreverse).call = lcall
H(lreverseN ).@body = function(){var $ = $APreverse.call( this, arguments);

return ($==$g?null:$) }
H(lreverseN ).@Fscope = lg
H(lconcat).call = lcall
H(lconcatN ).@body = function(x ){var $ = $APconcat.call( this, arguments);

return ($==$g?null:$) }
H(lconcatN ).@Fscope = lg
∀l : ∀p ∈ H(l) : l /∈ {lvalueOfN , lreverseN , lsortN , lconcatN} ⇒ ∃x, P :

(H(l).p = function(x){P} ⇒ Goodpidterm(P ) ∧ isPrefix(pid, x))

Definition 8. (State Goodness Goodpid) Given a program id pid and a wellformed
state (H, l, t), we say that Goodpid(H, l, t) is true iff Goodpidheap(H) and Goodpidterm(t) are
true.

Main Results.

Lemma 1. Given any program id pid, Goodpidheap(H0
sub) is true and for any blacklist

B, for all programs in P ∈ Jsub(B) with program id pid, Goodpidterm(Enf(pid, P )) is
true.

Proof. The heap H0
sub is defined as:

H0
sub = H(Final(H0, lg, Tidx;Tng;TvalueOf ;Tsort;Tconcat;Treverse))

Since the reduction trace of the term Tidx;Tng;TvalueOf ;Tsort;Tconcat;Treverse only
consists of a few steps, it can be shown by performing symbolic execution and tracking
all the heap updates, that the final heap obtained after executing the term

Tidx;Tng;TvalueOf ;Tsort;Tconcat;Treverse is good.
We show that ∀P ∈ Jsub(B) : GoodtermEnf(pid, P ), by structural induction over

the terms in Jsub(B). For each term Enf(pid, P ) , it can be shown that
Goodpidterm(Enf(pid, P )) is true by showing that it is derivable from the grammar for
Termspidgood described in Section A.3.

Lemma 2. Given a wellformed state S1 and a program id pid such that Goodpid(S1)
holds, either S1 corresponds to a final state OR

∃S2.S1 →∗ S2 ∧Goodpid(S2) ∧
∧

S∈subTr(S1,S2)

P pidsafe(S)
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Proof. Given the program id pid, consider any good heap H and any wellformed scope
address l. Proving the above lemma is equivalent to showing that:

∀t ∈ Termspidgood : IsV al(t)
∨
∃S2.((H, l, t))→∗ S2∧Goodpid(S2)∧

∧
S∈subTr(S1,S2)

P pidsafe(S))

where IsV al(t) is predicate which is true iff t denotes a final value.
We prove this by structural induction over the set of terms Termspidgood. In doing so we
use the natural term structure obtained using grammar described in Subsection A.3.

Base Case. : The set of base case terms is
{ pv,l,r,co,w} ] pv1 + pv2; x , l.@Call(vaw[,va˜]) , l.@DefaultValue([String/Number]),

@PutValue(v,va) , @GetValue(r) , @ExeFPA(l,vaw,va) , l.@Put(l1,m,va)
PutLen(l,va), l[mp], ; , continue [x], break [x]

]
{NOGLOBALTHIS}

(1) Each term in {pv,l,r,w, co} is a value from the set Termspidgood and so the lemma
holds trivially.

(2) Each term in { pv1 &+ pv2, x , l.@Call(vaw[,va˜]) , l.@DefaultValue([String/Number]) ,
@PutValue(v,va) , @GetValue(r) , @ExeFPA(l,vaw,va) , l.@Put(l1,m,va) , l[mp], ;, break [x],
continue [x], @PutValue(v,va);} except those in set Texcpt = {l valueOfN.@Call(l[,va˜]),
l sortN.@Call(l[,va˜]), l concatN.@Call(l[,va˜]), l reverseN.@Call(l[,va˜])} has a transition
axiom that applies to it. For each of these terms, we show that the state S2 obtained
by single step state transition of S1 = (H, l, t) has the property that Goodpid(S2)
holds and also that P pidsafe(S1) holds. We illustrate this on the term t = x as an
example. The transition axiom that applies to x is [E−Ide−val] which is stated
below:

mp = convIdtoPname(x)
Scope(H,l,mp)=ln

H,l,x −→H,l,ln∗mp
[E−Ide−val]

From the restriction on the term x we know that g3(x) and isPrefix(pid, x).
Therefore the corresponding property name mp also has the property g3(mp) ∧
isPrefix(pid,mp). It is easy to check that or all such mp, for every heap ad-
dress ln, the reference ln∗mp ∈ Termspidgood. Thus Goodpid(H, l, ln∗mp) holds. Since
A(H, l, x) = {@scope,@prototype} P pidsafe(H, l, x) holds.

For each term in the set Texcpt, it follows by symbolic execution that (H, l, tI)→∗
H2, l2, l3 where l3 is such that l3 /∈ {lFunction, leval, lvalueOf , lsort, lconcat, lreverse, lg}.
Also we show that P pidsafe(S) holds for all the intermediate states.

(3) For the term NOGLOBALTHIS, it follows by symbolic execution with respect to
a good heap H that (H, l,NOGLOBALTHIS)→∗ (H2, l2, l3) where
l3 /∈ {lFunction, leval, lvalueOf , lsort, lconcat, lreverse, lg}. Also we show that P pidsafe(S)
holds for all the intermediate states S.

Inductive Case. : It is possible to split the set of inductive cases as T indB ] T indC
where T indB denotes the set of terms to which a transition axiom applies and T indC is
the set of terms which can be expressed as C1(t) where C1 is a valid evaluation context
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from the operational semantics [15] and t is a well-formed JSE2 user or internal term.
After analyzing all the inductive cases, we obtain the following definitions for the sets
T indB and T indC .

T indB =


”{”[(pn:e)˜]”}” ;do s while ”(”e”)”; while ”(”e”)”s ;
@Typeof(e); @”<”S(b,e,e); @”<”N(b,e,e)
@L(b,va1,va2,e) ; var [(x[”=”e])˜]; function x ”(”[x˜]”){”[P] ”}”
”{”s∗”}”; l.@Construct([e,][va˜]); @ConstructCall(l,e)
for ”(”e in e”)”s; e.x; for ”(”var x[”=”e] in e”)”s; ”[”[(e|,)˜] ”]”



T indC =



@TS(e); @TN(e); @TP(e); @GV(e) ; @AddProps(e,[,(pn:e)˜]); @Fun(l,e[,va˜]);
@FunExe(l,P); l.@Construct([e,][va˜]); @ConstructCall(l,e);
”(”e”)”; e”[”IDX(e)”]”; e”[”IDX1(e)”]”; new e[”(”[e˜]”)”];
e”(”[e˜]”)”; e PO ; UN e; e BIN e; ”(”e”?”e”:”e”)”; @VarList([e,][x[=e]˜]);
”(”e”,”e”)”; e; if ”(”e”)”s [else s]; return [e]; @PO(v,e,n); l.@Exe(l1[,e˜]);
with ”(”e”)”s; id:s; throw e; try ”{”s∗”}”[catch ”(”x”)””{”s1∗”}”];
[finally ”{”s2∗”}”]; @while(e,s,ls,vae,e,s); @Block(co[,s+]);
@with (l,ln1,ln2,s); @eforin(e,ls,s,vae,l,e,m); @pforin(e,ls,s,vae,l,m);
@sforin(e,ls,s,vae,l,s,m); ls>s; fd [P]; s[P]; @ArrayLiteral(e,n,([e˜]));
@GetDefault(l,m,e) ; l.@Construct([e,][va˜]); @ConstructCall(l,e)


Note that the terms in the set T indB and T indC are good only under the restriction

mentioned in the grammar defined in Subsection A.3. Henceforth we will assume that
all terms in T indB and T indC satisfy the restriction predicates.

(1) T indB : A transition axiom applies to each term tI ∈ T indB . For each term, we
show that the state S2 obtained by single step state transition of S1 = (H, l, tI)
has the property that Goodpid(S2) holds and also that P pidsafe(S1) holds. In showing
this property we make use of the fact that tI ∈ Termspidgood and Goodpidheap(H) hold.
We illustrate this argument on the term tI = ”{”[(pn:e)˜]”}” as an example. The
transition axiom that applies to ”{”[(pn:e)˜]”}” is [E−Obj] which is stated below:

H,l,{[(pn:e)˜]} −→H,l,@AddProps(new l Object() [,(pn:e)˜])

From the grammar, it is easy to see that @AddProps(e,[,(pn:e)˜])} is derivable and
hence
AddProps(new l Object()[,(pn:e)˜]) ∈ Termspidgood. Therefore,
Goodpid(H, l, AddProps(new l Object()[,(pn:e)˜])) is true.
Since A(H, l, AddProps(new l Object()[,(pn:e)˜])) = ∅, we conclude that
P pidsafe(H, l, AddProps(new l Object()[,(pn:e)˜])) is trivially true. Thus the lemma holds
for tI = ”{”[(pn:e)˜]”}”.

(2) T indC : The term tI can be expressed as tI = C1(t) where C1 is some evaluation
context defined in our operational semantics and t is a wellformed JSE2 user or
internal term. It turns that all terms in T indC can be expressed as C1(t) with
the additional property that t ∈ Termspidgood. Since t is a sub-term of tI and t ∈
Termspidgood, we can apply the induction hypothesis on t. This gives us the following
two cases:
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(a) t does not correspond to a final value: In this case by the induction
hypothesis we have for state S1 = (H, l, t),
∃S2 : S1 →∗ S2 ∧Goodpid(S2) ∧

∧
S∈subTr(S1,S2)

P pidsafe(S)
Given a state S = (H, l, t), we define C(S) = (H, l, C(t)). The general form of
a context rule is therefore S→S′

C(S)→C(S′) where C is an evaluation context defined
in the semantics.
Applying the context rule multiple times to state C1(S1) = (H, l, C1(t1)), we
get C1(S1) →∗ C1(S2). Let S2 = (H2, l2, t2). Since Goodpid(H2, l2, t2) holds,
Goodpidheap(H2) holds, l2 is a well-formed scope address and t2 ∈ Termspidgood.
Therefore C(t2) ∈ Termspidgood and as a result Goodpid(H2, l2, C(t2)) holds. Us-
ing the definition of Psafe, it is easy to show that

∧
S∈subTr(S1,S2)

P pidsafe(S)⇒∧
S∈subTr(C(S1),C(S2))

P pidsafe(S). This is essentially because for any state C(S)
where S is not a final state and C is an evaluation context, A(C(S)) = A(S)
and ∀l : Al(C(S)) = Al(S). Thus we have
C(S1)→∗ C(S2) ∧Goodpid(C(S2)) ∧

∧
S∈subTr(C(S1),C(S2))

P pidsafe(S)
Thus the lemma is true for this case.

(b) t corresponds to a good value v: In this case we have tI = C1(v). For
all such terms either a transition axiom or a context rule applies to it. After
analyzing all terms in T indC , we find that for all terms other than {va1[IDX(e2)],
va1[IDX1(va2)]}}, the same argument as mentioned in cases 1 and 2a applies,
that is, we can either
express the term C1(v) as C1(v) = C2(t2) where t2 is not a final value OR
show that a transition axiom applies to C1(v) and a single step reduction under
the axiom is safe and leads to a good term. In the remaining part we explain
the analysis for the terms {va1[IDX(e2)], va1[IDX1(va2)]}}:
– va1[IDX(e2)]: Although va1[IDX(e2)] can be expressed as C[IDX(e2)] for the

evaluation context C = va1[−], we cannot use the argument from case 2a
because the term IDX(e2) is not in Termspidgood. However from the operational
semantics, we know that a single step transition of the state
(H, l, va1[IDX(e2)]), where H is a good heap, moves it to the state
(H, l, va1[IDX1(e2)]).

(H, l, va1[IDX(e2)])→ (H, l, va1[IDX1(e2)])Rule [E−Ide−val]

Now from the grammar we know that va1[IDX1(e2)] ∈ Termspidgood. Since
A(H, l, va1[IDX(e2)]) = {@scope,@prototype} P pidsafe(H, l, va1[IDX(e2)])
holds. Thus the lemma is true for this case.

– va1[IDX1(va2)]}: For this case, it follows by symbolic execution with respect
to a good heap H that (H, l, va1[IDX1(va2)])→∗ H2, l2, l 3[mp]) where mp
is such that
g3(mp) ∧ ¬(isPrefix($, x)) and
l3 /∈ {lFunction, leval, lvalueOf , lsort, lconcat, lreverse, lg}.
Also we show that P pidsafe(S) holds for all the intermediate states.

�

Proof Sketch of Isolation theorem:. Follows from Lemma 1 and Lemma 2 �
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A.3 Grammar for Termspid
good

Given a program id pid, we define a restricted context free grammar for the set of terms
Termspidgood. The table below gives the set of production rules for the nonterminals e,
s and P corresponding to expressions, statements and programs. The third column of
the table specifies restrictions on values, property names, identifier names and heap ad-
dresses appearing in the derived term. To shorten the description, we use the following
macros.

g1(l) = l /∈ {lFunction, leval, lvalueOf , lsort, lconcat, lreverse, lg}
g2(l) = l /∈ {lFunction, leval, lvalueOf , lsort, lconcat, lreverse}.
g3(x) = x /∈ B ∪ {constructor, eval, function}
where g3 is also defined for property names mp and strings m.

Good Expressions.

e ::= l g1(l)
r r = l ∗mp⇒

((g3(mp) ∧ ¬(isPrefix($,mp)))∧
((l = lg ∧mp /∈ (PnoRen ∪ Pnat))⇒
isPrefix(pid,mp)))

w w = |l| ⇒ g1(l)
pv1 &+ pv2

@AddProps(e,[,(pn:e)˜]) pn /∈ B ∪ {constructor, eval, function}
∧¬(isPrefix($, pn))

@TS(e)
@TN(e)
@TP(e)
@GV(e)
@Fun(l,e[,va˜]) g1(va) ∧ g2(l)
@PO(v,e,n) g1(v)

∧
v = l ∗mp⇒

((g3(mp) ∧ ¬(isPrefix($,mp)))∧
((l = lg ∧mp /∈ (PnoRen ∪ Pnat))⇒
isPrefix(pid,mp)))

@Typeof(e)
@”<”S(b,e,e)
@”<”N(b,e,e)
@L(b,va1,va2,e) g1(va1) ∧ g1(va2)
@ArrayLiteral(e,n,([e˜]))
l.@Call(vaw[,va˜]) g1(l) ∧ g2(vaw) ∧ g1(va)
l.@Exe(l1[,e˜]) g1(l) ∧ g2(l1)
@FunExe(l,P)
l.@Construct([e,][va˜]) g1(va) ∧ g1(l)
@ConstructCall(l,e) g1(l)
l.@DefaultValue([String]) g1(l)
l.@DefaultValue(Number) g1(l)
@GetDefault(l,m,e) g1(l) ∧ (g3(m) ∧ ¬(isPrefix($, x)))
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e ::= @PutValue(v,va) g1(va) ∧ g1(v) ∧ v = l ∗mp⇒
((g3(mp) ∧ ¬(isPrefix($,mp)))∧
((l = lg ∧mp /∈ (PnoRen ∪ Pnat))⇒
isPrefix(pid,mp)))

∧
@GetValue(v) g1(v)

∧
v = l ∗mp⇒

((g3(mp) ∧ ¬(isPrefix($,mp)))∧
((l = lg ∧mp /∈ (PnoRen ∪ Pnat))⇒
isPrefix(pid,mp)))

@ExeFPA(l,vaw,va) g1(l) ∧ g2(vaw) ∧ g1(va)
l.@Put(m,va) g2(l) ∧ g1(va) ∧ (g3(m) ∧ ¬(isPrefix($, x)))
@PutLen(l,va) g2(l) ∧ g1(va)
NOGLOBALTHIS

x g3(x) ∧ isPrefix(pid, x)
pv

”[”[(e|,)˜] ”]”

”{”[(pn:e)˜]”}”
”(”e”)”

e.x g3(x) ∧ ¬(isPrefix($, x))
e”[”IDX(e)”]”

e”[”IDX1(e)”]”

e”[”mp”]” g3(mp) ∧ ¬(isPrefix($, x))
new e[”(”[e˜]”)”]
e”(”[e˜]”)”

function [x] ”(”[x˜]”){”[P]”}” g3(x) ∧ isPrefix(pid, x)
e &PO

&UN e

e &BIN e

”(”e”?”e”:”e”)”

”(”e”,”e”)”

Good Statements.

s ::=
”{”s∗”}”
var [(x[”=”e])˜] g3(x) ∧ isPrefix(pid, x)
;
e

if ”(”e”)”s [else s]
while ”(”e”)”s

do s while ”(”e”)”

for ”(”e in e”)”s

for ”(”var x[”=”e] in e”)”s g3(x) ∧ isPrefix(pid, x)
continue [x]
break [x]
return [e]
with ”(”e”)”s

id:s
throw e;
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s ::=
try ”{”s∗”}”[catch ”(”x”){”s1∗”}”] g3(x) ∧ isPrefix(pid, x)
[finally ”{”s2∗”}”]
co g1(val(co))
@while(e,s,ls,vae,e,s) g1(vae)
@Block(co[,s+]) g1(val(co))
@VarList([e,][x[=e]˜]) g3(x) ∧ isPrefix(pid, x)
@with (l,ln1,ln2,s) g2(l) ∧ g2(ln1) ∧ g2(ln2)
@eforin(e,ls,s,vae,l,e,m) g1(l) ∧ g1(vae)
@pforin(e,ls,s,vae,l,m) g1(l) ∧ g1(vae)
@sforin(e,ls,s,vae,l,s,m) g1(l) ∧ g1(vae)
ls>s

Good Programs.
P ::=

fd [P]
s[P]

fd ::=
function x ”(”[x˜]”){”[P]”}” g3(x) ∧ isPrefix(pid, x)
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