On Asynchronous Session Semantics

Dimitrios Kouzapas®, Nobuko Yoshida*, Raymond Hu*, and Kohei Honda®

*Imperial College London TQueen Mary, University of London

Abstract. This paper studies a behavioural theory of the 7-calculus with session
types under the fundamental principles of the practice of distributed computing
— asynchronous communication which is order-preserving inside each connec-
tion (session), augmented with asynchronous inspection of events (message ar-
rivals). A new theory of bisimulations is introduced, distinct from either standard
asynchronous or synchronous bisimilarity, accurately capturing the semantic nature
of session-based asynchronously communicating processes augmented with event
primitives. The bisimilarity coincides with the reduction-closed barbed congruence.
We examine its properties and compare them with existing semantics. Using the be-
havioural theory, we verify that the program transformation of multithreaded into
event-driven session based processes, using Lauer-Needham duality, is type and se-
mantic preserving. Our benchmark results demonstrate the potential of the session-
type based translation as semantically transparent optimisation techniques.

1 Introduction

Modern transports such as TCP in distributed networks provide reliable, ordered deliv-
ery of a stream of bytes from a program on one computer to another, once a connection
is established. In practical communications programming, two parties start a conver-
sation by establishing a connection over such a transport and exchange semantically
meaningful, formatted messages through this connection. The distinction between pos-
sibly non order-preserving communications outside of connection and order-preserving
ones inside each connection is an essential feature of this practice: order preservation al-
lows proper handling of a sequence of messages following an agreed-upon conversation
structure. Further, to enable asynchronous event processing [23], each arriving message
needs to be buffered at the receiver’s end, which the receiver can asynchronously inspect
(event inspection) and consume.

A buffer in the m-calculus serves as an intermediary between a process and its
environment. Operational semantics for buffers distill this nature, representing order-
preserving, non-blocking communication for sessions; and non order-preserving, non
blocking communication for shared names, for both input and output.

This paper investigates semantic foundations of asynchronously communicating
processes, capturing these key elements of modern communications programming —
distinction between non order-preserving communications outside connections and the
order-preserving ones inside each connection, as well as the incorporation of asyn-
chronous inspection of message arrivals. We use the mw-calculus augmented with ses-
sion primitives and a simple event inspection primitive. Sessions offer typed, formally
founded abstraction of connections, enabling well-structured description of message
passing. The formalism is intended to be a small idealised but expressive communi-
cations programming language, offering a basis for a tractable semantic study. Our



study reveals that the combination of the fundamental elements for modern commu-
nications programming leads to a rich behavioural theory which differs from both the
standard synchronous communications semantics and the asynchronous one [10], man-
ifest through its novel equational laws for asynchrony. These laws can then be used
as a semantic justification of a well-known program transformation based on Lauer
and Needham’s duality principle [18], which translates multithreaded programs to their
equivalent single-threaded, event-based programs. This transformation is regularly used
in practice, albeit in an ad-hoc manner, playing a key role in e.g. high-performance
servers. Our translation is given formally and is backed up by a rigorous semantic jus-
tification. It is applied to eventful Session Java [15, 16], a session-typed extension of
Java with asynchronous event primitives, using which we demonstrate the practical ef-
fectiveness of our formal transformation through benchmark results.

Let us outline some of the key technical ideas informally. In the present theory,
the asynchronous order-preserving communications over a connection are modelled as
asynchronous session communication, extending the standard synchronous session cal-
culus [11, 31] with message queues [6,7,14]. A message queue is written s [i: h o: h]
which encapsulates both input buffer (i) with elements h and output buffer (o) with .
Figure 1 represents the two end points of a session. A message v is first enqueued by
a sender s!(v); P at its output queue at s, which intuitively represents a communication
pipe extending from the sender’s locality to the receiver’s. The message will eventually
reach the receiver’s locality, formalised as its transfer from the sender’s output buffer
(at s) to the receiver’s input buffer (at 5). For a receiver, only when this transfer takes
place a visible (and asynchronous) message reception takes place, since only then the
receiver can inspect and consume the message (as shown in Remote in Figure 1). Note
that dequeuing and enqueing actions inside a location are local to each process and is
therefore invisible (7-actions) (Local in Figure 1).

Local (the dashed arrows) S Dy sl<y’> s
s!(0):0 | s[o:h] = Q| s[o:h-V]
2x).P | s[i:w-h] = P{w/x} | s[i:h]
Remote (the solid arrows)

s[i:h] 5&2 s[i:hv] s[o:v-hA] ﬂ s[o:h]

Fig. 1. The transitions in the two locations.

The induced semantics captures the nature of asynchronous observables not investigated
before. For example, in weak asynchronous bisimilarity (=2, in [10, 12]), the message
order is not observable (s!(vi) | s!(v2) =, s!(v2) | s!(v1)) but in our semantics, messages
for the same destination do not commute (s!(v;);s!(v2) 5 s!{v2);s!{v1)) as in the syn-
chronous semantics [26] (= in [10, 12]); whereas two inputs for different targets com-
mute (s1?(x);52?2(y); P & s22(x);51?(y); P) since the dequeue action is un-observable,
differing from the synchronous semantics, s1?(x);52?2(y); P %5 522(x);51?(y); P.
Event-handling primitives [15] lead to further novel equational laws. Asynchronous
event-programming is characterised by reactive flows driven by the detection of events,
that is message arrivals at local buffers. In our formalism, this facility is distilled as a
simple arrived predicate: for example, Q = if arrived s then P, else P, reduces
to Py if the s input buffer contains one or more message; otherwise Q reduces to P;.
By arrived, we can observe the movement of messages between two locations. For



(Identifiers) u ::= a,b|x,y k == s,5|x,y n == a,b|s,5 (Values)v ::= tt,ff|a,b|s,s
(Expressions) e ::= v | x,y,z | arrivedu | arrivedk | arrivedkh

(Processes) P,Q == u(x).P | u(x);P | kNe);P | k?x).P | k<l;P | ko {li:P}ics

| ifethenPelseQ | (va)P | P|Q | 0 | uX.P | X

| als] |als)| (vs)P|s[i:h,o0:l] (Messages) h == v | [

Fig. 2. The syntax of processes.

example, O | s[i: 0] | 5[o : v] is not equivalent with Q | s[i : v] | 5o : 0] because the
former can reduce to P, (since v has not arrived at the local buffer at s yet) while the
latter cannot. To capture arrived, we need the IO-buffers at each session, with which
one has, for example, s1!(v;);s2!(v2) & 52!(v2);51!(v1) in the presence of the arrived
(we cannot observe the remote process performing the output), while one would have
s11(vi);sal{va) % 52! {va);s11{(v1) with the arrived, if we were without local queues.

This way, our asynchronous session semantics captures asynchrony, locality, event
inspection and orders of actions at session channels, all being major elements of practi-
cal communications programming. The induced event- and location-aware asynchronous
behavioural equivalence is essential for validating a well-known, effective but hitherto
unjustified program transformation.

Contributions Section 3 defines a bisimulation for the asynchronous eventful ses-
sion calculus, examines its properties against the standard bisimulations and proves
that it coincides with the barbed reduction-based congruence [12]. Section 4 provides
the semantics-preserving Lauer-Needham transformation of multithreaded into event-
driven processes and proves its correctness. Section 5 discusses the performance with
extensive benchmarks for justifying the transformation in Session-based Java imple-
mentation [15]. The paper concludes with the related work with the detailed compar-
isons with the existing semantics. Appendix lists the full definition of Lauer-Needham
transformation, the detailed definitions and full proofs. The benchmark programs and
results are found in [29]. Appendix and [29] are provided only for the reviewers’ con-
venience: the paper is self-contained and can be read without them.

2 Asynchronous Network Communications in Sessions

2.1 Syntax

We use a sub-calculus of the eventful session 7-calculus [15]. In Figure 2, values v,v/, ...
include the constants, shared channels a,b,c, and session channels s, s'. A session chan-
nel designates one endpoint of a session, where s and s denote two ends of a single
session, with 5 = s. Labels for branching and selection range over [,/’, ..., variables
over x,,z, and process variables over X,Y,Z. Shared channel identifiers u,u’ include
shared channels and variables; session identifiers k,k” are session endpoints and vari-
ables. Identifies n denotes either a or s. Expressions e are values, variables and the mes-
sage arrival predicates (arrived u, arrived k and arrived k h: the last one checks
for the arrival of the specific message h at k). We write s and I for vectors of session
channels and messages respectively, writing € for the empty vector.

We distinguish two kinds of asynchronous communications, asynchronous session
initiation and asynchronous session communication (over an established session). The



[Request1] a(x);P — (vs) (P{5/x} [ s[iz€,0:€][als)) (s & n(P))
[Request2] am |a<s> — a[E's]

el a(x)Palss) — P{s/x} | s[i:e,0:€] | aff]

[Send,Recy] S!(V);P|s[o:h] — P|s[o:h-V] s2(x).P | s[i:v-h] — P{v/x} | s[i:h]
(SelBra]  s<UiP|s[o:h] — Plslo:h-li]  so{l;:P;}jes|s[i: ,~h] — P |s[i:h] (ieJ)
[Comm] s[o:v-h] | 5[i:h] — s[o:h] |5[1:H V]

[Areq] Elarrivedd | a[f] — Eb] | al5] . (\i‘\ >1)\/b

[Ases] Elarriveds] |s[i:h] — E[b] | s[i:h] (\h >1)\/b

[Amsg] Elarrivedsh]|s[i:h] — E[b] | s[i:h] (h=h-H)\,b

Fig. 3. Selected reduction rules.

former involves the unordered delivery of a session request message a(s), where @ (s)
represents an asynchronous message in transit towards an acceptor at a, carrying a fresh
session channel s. As in actual network, a request message will first move through the
network and eventually get buffered at a receiver’s end. Only then a message arrival
can be detected. This aspect is formalised by the introduction of a shared channel input
queue als], often called shared input queue for brevity, which denotes an acceptor’s
local buffer at a with pending session requests for 5. The intuitive meaning of the end-
point configuration s[i :71, o ] is explained in Introduction.

Requester 7(x); P requests a session initiation, while acceptor u(x).P accepts one.
Through an established session, output k!{e); P sends e through channel k asynchronously,
input k?(x).P receives through k, selection k</; P chooses the branch with label /, and
branching k> {l;: P, };c; offers branches. The (v a) P binds a channel a, while (v s)P
binds the two endpoints, s and 5, making them private within P. The conditional, par-
allel composition, recursions and inaction are standard. 0 is often omitted. For brevity,
one or more components may be omitted from a configuration when they are irrelevant,
writing e.g. s[i:/] which denotes the input part of s[i:/,o://]. The notions of free
variables and channels are standard [27]; we write fn(P) for the set of free channels in
P. The syntax a(s), (vs)P and s[i:h,o: /] only appear at runtime. A closed process
without runtime syntax is called program.

2.2 Operational Semantics

Reduction is defined over closed terms. The key rules are given in Figure 3. We use the
standard evaluation contexts E|[_] defined as E ::= — | sI(E);P | if E then P else Q.
The structural congruence = and the rest of the reduction rules are standard.

The first three rules define the initialisation. In [Request1], a client requests a server
for a fresh session via shared channel a. A fresh session channel, with two ends s
(server-side) and s (client-side) as well as the empty configuration at the client side,
are generated and the session request message a(s) is dispatched. Rule [Request2] en-
queues the request in the shared input queue at a. A server accepts a session request
from the queue using [Accept], instantiating its variable with s in the request message;
the new session is now established.

Asynchronous order-preserving session communications are modelled by the next
four rules. Rule [Send] enqueues a value in the o-buffer at the local configuration; rule
[Receive] dequeues the first value from the i-buffer at the local configuration; rules [Sel]



and [Bra] similarly enqueue and dequeue a label. The arrival of a message at a remote
site is embodied by [Comm], which removes the first message from the o-buffer of the
sender configuration and enqueues it in the i-buffer at the receiving configuration. Note
the first four rules manipulate only the local configurations.

Output actions are always non-blocking. An input action can block if no message
is available at the corresponding local input buffer. The use of the message arrivals
can avoid this blocking: [Areq] evaluates arrived a to tt iff the queue is non-empty;
similarly for arrived k in [Areq]. [Amsg] evaluates arrived s h to tt iff the buffer is
nonempty and its next message matches /. The notation e \, b means e evaluates to b.
We write —»= (— U =)* (see Appendix A for detailed illustration).

2.3 Types and Typing

The type syntax follows the standard session types from [11].
(Shared) U ::= bool | i(S) | o(S) | X | uX.U (Value) T ==U | S
(Session) S = UT);S | AT);S | ®{li:Sitier | &{li:Sitier | uX.S | X | end

The shared types U include booleans bool (and, in examples, naturals nat); shared chan-
nel types i(S) (input) and o(S) (output) for shared channels through which a session
of type S is established; type variables (X,Y,Z,..); and recursive types. The IO-types
(often called server/client types) ensure a unique server and many clients [4, 13]. In the
present work they are used for controlling locality (queues are placed only at the server
sides) and associated typed transitions, playing a central role in our behavioural theory
together with session types.

In session types, output type !(7);S represents outputting values of type 7T, then
performing as S. Dually for input type ?(T);S. Selection type ®{/; : S;}ics describes a
selection of one of the labels say /; then behaves as T;. Branching type &{/; : S; }ic; waits
with 7 options, and behaves as type T; if i-th label is chosen. End type end represents
the session completion and is often omitted. In recursive type u X.S, type variables are
guarded in the standard sense.

The typing judgement from [15] uses two environments:

F:=0|CuU|C-X:T Az=0|A-a|A-k:S|A-s:(S,[S,1:T,0:T)

I' is called shared environment, which maps shared channels and process variables to,
respectively, constant types and value types; A is called linear environment mapping
session channels to session types and recording shared channels for acceptor’s input
queues. The configuration element [S,i: T,0:T ] records the active type S of the con-
figuration and types of messages enqueued in the buffers where, in this case only, we
extend T with labels (T ::= U | S | ). The initial S in (S, [S’,i:T,0:7"]) denotes the
session type of a process. Now the typing judgement for a process is given as:

I'FPrA

where program P, under shared environment I, uses channels as linear environment A,
where we stipulate that, if a is in A, I"(a) should be an input shared type. The typing
system is identical with [15], thus we leave them to Appendix B. The key properties of
typed processes stated in [15] are:



— (queues under hiding) The hiding of a shared (resp. session) channel is only possi-
ble when a queue (resp. a pair of queues) at that channel is present.

— (subject reduction) if I' = P> A and P — Q then we have I' = P> A’ for some A’
(where such A’ may not be uniquely determined by I" and A).

In the following we study semantic properties of typed processes: however these devel-
opments can be understood without knowing the details of the typing rules.!

(Acd)  alf] “Dafss]  (Rea) als) Lo iy siah) T iR
(Out) s[o:v-A] M slo:h]  (Bra) s[i:h] & s[ihd]  (sel) s[o:l-h] Sk s[o:h]

l l v
P — P — P bn(t)nfn(Q) =0 P—PQ— Qixr
<Loca|> Q <Par> nn(Q) T Q Q

P50 Plo % Plo PIQ — (vbn(L,0))(P'|Q))
P -5 Pagn p bl p p Y p P=a PP 550
<Res> 7 ; <Opens>7am <OpenN> ) <A|pha> 7
(vm)P — (vn)P (vs)p =% P' (va)p =% p' P—Q

Fig. 4. Labelled transition system (we omit the symmetric rule of Par).

3 Asynchronous Session Bisimulations and its Properties

3.1 Labelled Transitions and Bisimilarity

Untyped and Typed LTS. This section studies the basic properties of behavioural
equivalences. We use the following labels (¢,7,...):

o= als)y | as) | a(s) | s2v) | s'v) | sl(a) | s&l | sl | 7

where the labels denote the session accept, request and bound request, input, output,
bound output, branching, selection and the 7-action. We have the labels for both shared
and session channels. sbj(¢) denotes the set of free subjects in ¢; and fn(£) (resp. bn(£))
denotes the set of free (resp. bound) names in £. The symmetric operator ¢ = ¢ on
labels that denotes that £ is a dual of ¢, is defined as: a(s) < a(s), a(s) <a(s), s?{v) <
s1(vy, s2{a) < s!(a), and s&l < s D1.

Figure 4 gives the untyped labelled transition system (LTS). (Acc)/(Req) are for the
session initialisation. The next four rules (In)/(0ut)/(Bra)/(Sel) say the action is observ-
able when it moves from its local queue to its remote queue. When the process accesses
its local queue, the action is invisible from the outside, as formalised by (Local}. Other
compositional rules are standard. Based on the LTS, we use the standard notations [24]

suchasP:€>Q,P:[>QandP:é>Q.

We define the typed LTS on the basis of the untyped one. The basic idea is fo
use the type information to control the enabling of actions. This is realised by intro-
ducing the definition of the environment transition, defined in Figure 5. A transition

! This is because the properties of the typing system are captured by typed reductions defined in Figure 5
later.



(r',A) N (I'",A’) means that an environment (I", A) allows an action ¢ to take place,
and the resulting environment is (I'"’;A’), constraining process transitions through the
linear and shared environments. This constraint is at the heart of our typed LTS, accu-
rately capturing interactions in the presence of sessions and local buffers. The transition
is not deterministic, because the 7-action (reduction) of a process can alter its linear en-
vironment in several different ways.

2

(s)

I'(a) =1i(S),a € A,s fresh implies (I',A) —> (I",A -s:S)
I'(a) = o(S),a ¢ A implies (I',A) @ (r,A)
I'(a) =o(S),a & A,s fresh implies (I",A) ) (I',A-5:S)
CFv:U implies (T, A-5: (S, [20); i : Tyo: 7)) 2 (A -5:(8,[5',4 : TU,0: 7))
CFv:U implies (I,A -5:(S,[{U); i : Tro: UT/]))—?(F,As.(&[s,l:T,o:ff])
ais fresh implies (I',A-s: (S, [1((S")); 8,3 : T,0: (S")T)))

—Q(F a:{(S"),A-s5:(S,18",i: T 0: T']))

T

=
5
i<
o
—

(C,A-5:(S,[2(8); 8",i: T,o: T/
(C,A-s:(S,[&{l; : S;},i: Tro: T/

A58 5:(8,[8",1i: TS 0: T"))
L,A-s:(S,[Sp,i: Tl,0: T))

(I'yA-s:S) — (I',A-s:(S,[S,1: €,0: €]))
(T, A-s:((U):S,[Si: To0: 1)) = (I'A-5:(S,[8,i: T,0: T'U]))
(F,A-5:(2U); S,[8,i: UT,0: T'))) = (I'A-s:(S,[8,i: T,0: 7))
(C,A-s:(1S');8,[8",i: To: T'))) = ([,A-5:(S,[8",i: T,0: T'S]))
(C,A-5:(2S):S,[8",i: ST, 0:T'])) = (I',A-5:(S,[8",i: T,0: T")))
(C,A-s:({li: S}, [8,i: To: T)) == (F,A-5:(S,[S,i: T,0: T'L]))
(C,A 52 (&{L 83,184 iT,0: T)) = (I,A-5:(Si,[8,i: T0: T]))
(F,A-5':8 - s5:(S,[(S'); 8",i: T,0: S'T])) i? (F,A-5:(8,[8",i: T,0: T']))
)
)

Ik

=
g

(T,A-s:(S,[{li : Si},i: Tro: L T])

=
—

L,A-5:(S,[S,i: Tho: T'))

Fig. 5. Labelled transition rules for environments.

The first rule says that reception of a message via a is possible only when a is input-
typed (i-mode) and its queue is present (@ € A). The second is dual, saying that an
output at a is possible only when a has o-mode and no queue exists. Similarly for a
bound output action. For session actions, we note that action types are changed before
and after a transition. The first two rules (¢ = s!(v) and ¢ = s?(v)) are standard value
input and output rules, where an asynchronous input is possible only when a queue is
present. The third rule (¢ = s!(a)) is a scope opening rule.

The next seven rules (¢ = 7) follow the reduction rules. The final three rules corre-

spond to session channel output, label input and label output. Note that session channel
input is subsumed by the case of £ = s?(v).
Equivalence t< and Typed Relation. Before the introduction of typed bisimilarity, we
define several preliminary notions, including a notion of typed relations over processes.
First, the composition of two environments, say Ay and A,, is denoted by Ay ® A [27],
and is defined as:

AL O A= {SZ (A1(s) ®A2(s)) | s € dom(A1) ﬁdom(Ag)} Ua; \dom(Az) UA, \dom(Al)



where SO [8,1:T,0: T =[8,i:T,0:T1©S=1[5,i:T,0:T'] if § < §'; otherwise
undefined. We first introduce A-ordering, which represents how session environments
are updated as typable processes are reduced. We define:

1. sNT):S ® s:[1(T);8,0:T) C s:S @ s:[S,0:TT]

2. sAT)S © s:[AT);8,1:T-T] C s:S © s:[8,i:T]

3. s:fo:T-T) o 5:[1:T C s:fo:T] ®5:[i:7"-T)

4. S:@{li:Si}iel O] S:[@{liisi}ie],oi’f] C s:S; ® SZ[S,',OZT~I,‘]

5. s:&{liiSitier  © s:[&{li:SiYier, i1l T) C os:S @ s:[S;,i:T]

6. s:{Sitier © s:[Si] o C s:S  ©s:[S] o

7. s:uX.S © s [uX.S,i:Tj,0:T3) C s © s:[8,i:T{,0:T]]
if s:S{UX.S/X} @ s [S{UXS/x},i:Ti,0: 1) C s:8 @ §:[8,1:T],0:T]]

In(7),s issors. When A; T A and A ® A; defined, we define A © A} T A © A,.
Now write C for the reflexive and transitive closure of C and write A A’ if AC A’
or A’ C A. Then we say a relation on typed processes is a typed relation if, whenever
it relates two typed processes, we have I' -+ P> Ay and I - P,> A, and Aj <1 Ay under
I'. Wewrite I' - Pi> A\ ZP,> Ay if (I'F Pi>A, T = P> Ap) are in a typed relation Z.
Further we often leave the environments implicit, writing simply P ZP.
Localisation and Bisimulation. A bisimulation we shall introduce is a typed relation
over processes which are localised, in the sense that each process is equipped with its
local queues. Formally, let P be closed and I' - P>A. Then we say Pis I' - P> A is
localised if the following two conditions hold.

— Foreach s € dom(A), we have A(s) = (S, [S,i:7,0:7"]) (i.e. P contains its buffer).
— Similarly for shared channels, i.e. if I'(a) = i(S), then a € dom(A).

Substantively, being localised means that a process owns all necessary queues as speci-
fied in environments: for this reason, it is natural to say P is localised w.r.t. I and A if
I' = P> A is localised. Further we often simply say P is localised if it is so for a suitable
pair of environments.

For example, s?(x);s!(x+ 1);0 is not localised: we need a queue at s. However
s2(x); 81 (x+1):0 | [s,1: k1,0 o] is localised. Similarly, a(x).P is not localised, but
a(x).P | als] is. By composing buffers at appropriate channels, any typable closed pro-
cess can become localised. If P is localised w.r.t. (I",A) then P — Q implies Q is
localised w.r.t. (I",A), since queues never go away. We can now introduce the asyn-
chronous bisimilarity.

Definition 3.1 (Asynchronous Session Bisimulation). A typed relation &% over lo-
calised processes is a weak asynchronous session bisimulation or often a bisimulation if,

whenever I - P> A1 Z P> > A, the following two conditions holds: (1) I" - P> A i>
I'"+ P{>A{ implies ' - P> Ay L+ Pj>A) such that I + P[> A{ZP} > A}, with
A{ > Aé holds and (2) the symmetric case of (1). The maximum bisimulation exists

which we call bisimilarity, denoted by ~. We sometimes leave environments implicit,
writing e.g. P~ Q.

We extend = to possibly non-localised closed terms by relating them when their mini-
mal localisations are related by ~ (given I - P> A, its minimal localisation adds empty
queues to P for the input shared channels in I" and session channels in A which are
without queues). Further ~ is extended to open terms in the standard way [12].



3.2 Properties of Asynchronous Session Bisimilarity

Characterisation of Reduction Congruence. This subsection studies central proper-
ties of asynchronous session semantics. We first show that the bisimilarity coincides
with the naturally defined reduction-closed congruence [12], given below.

Definition 3.2 (Reduction Congruence). We write P | a if P = (vii)(a(s) | R) with
a & ii. Similarly we write P | s if P = (vii)(s[o:h-h] | R) with s & /i. P |} n means
IP'.P — P' | n. A typed relation Z is reduction congruence if it is a congruent and
satisfies the following conditions for each P|Z P, whenever they are localised w.r.t. their
given environments.

1. P1 l}n iffP2 l}n
2. Whenever I' - Py >A; = P,> A holds, Py — P| implies P, — P} such that I" -
P{>A{ 2P, > Al holds with A{ >1 A} and the symmetric case.

The maximum reduction congruence which is not a universal relation exists [12] which
we call reduction congruency, denoted by ==.

Theorem 3.3 (Soundness and Completeness). ~ = ==.

The soundness (=C=) is by showing = is congruent. The most difficult case is a closure
under parallel composition, which requires to check the side condition A 1 A} for each
case. The completeness (=2C=) follows [9, § 2.6] where we prove that every external
action is definable by a testing process, see Appendix D.1.

Asynchrony and Session Determinacy. Let us call ¢ an output action if £ is one of
a(s),a(s),s!(v),s!(a),s®I; and an input action if £ is one of a(s),s?(v),s&l. In the fol-
lowing, the first property says that we can delay an output arbitrarily, while the second
says that we can always immediately perform a (well-typed) input.

Lemma 3.4 (Input and Output Asynchrony). Suppose I' = P> A £ PA

— (input advance) If ¢ is an input action, then I' = P1> A s PhA
— (output delay) If £ is an output action, then I' - P> A — -5 PeA

The asynchronous environment interaction on the session buffers enables input actions
to happen before multi-internal steps and output actions to happen after multi-internal
steps.

Following [28], we define determinacy and confluence. Below and henceforth we
often omit the environments in typed transitions.

Definition 3.5 (Determinacy). We say I’ - Q> A’ is derivative of I' = P> A if there

exists £ such that " PoA == I - O>A’. We say I' b P> A is determinate if for each
derivative Q of P and action £, if Q LI Q' and Q N Q" then Q' = Q".

We then extend the above notions to session communications.



.. . . . 1 . ¢ .
Definition 3.6 (Session Determinacy). Let us write P —; Q if P — Q where sbj()
is a session channel; or £ = 7 and it is generated without using [Request1], [Request2], [Accept],
[Areq] noOT [Amsg] in Figure 3 (i.e. a communication is performed without arrival predicates

or shared name interactions). We extend the definition to :€>s and :€>S etc. We say P
is session determinate if P is typable and localised and if I' - P> A =L O A’ then
'+-Pr-A :Z>S O A’. We call such Q a session derivative of P.

We define ¢ |4, as (1) a(s) if £; = a(s’) and 5" € bn(£y); (2) s!i{s') if £; = s!(s)
and s’ € bn(¢2); (3) s!{a) if £; = s!(a) and a € bn(¢,); and otherwise ¢1. We write that
I} >1l, when [y # I, and if 11,1, are input actions then sbj(l;) # sbj(l).

Definition 3.7 (Confluence). We say I' - P> A is confluent if for each derivative Q of

P and actions /1, /> such that ¢; >x 5, (i) if Q N Q1 and Q N 0>, then Q) = Q)

and 0, = 0 ~ 0}; and (i) if 0 1 Q) and Q =2 05, then 0y 2% 0/ and @, 112

0~ 0.
Lemma 3.8. Let P be session determinate and Q be a session derivative of P. Then
P=Q.

Theorem 3.9 (Session Determinacy). Let P be session determinate. Then P is deter-
minate and confluent.

The following relation is used to prove the thread elimination optimisation.

Definition 3.10 (Determinate Upto-expansion Relation). Let & be a typed relation
such that if ' - P>A % Qv A’ and (1) P,Q are determinate; (2) A = A’; Q) If I' -
PoA T FP'sA" then T QpA == T Q'sA and [ F P'o A" = ' - P's A
with " F P> A% Q> A and ) ET F Qb A — 5 T - Q"> A” then T - P> A ==
I'EP oA and TP oA Z QA withlI'-Q"vA” =T+ Q' >A’. Then we
call Z a determinate upto-expansion relation, or often simply upto-expansion relation.

Lemma 3.11. Let #Z be an upto-expansion relation. Then % C=.

The proof is by showing => # <= is a bisimulation, using determinacy.

3.3 Examples of Induced Equations: Permutation and Events

This subsection shows example equations (algebra of processes) pertaining to prop-
erties of permutations of actions studied in § 3.2 and the semantic effects of arrival
predicates. Significant equations induced by a behavioural equivalence offer insights on
the nature of process behaviours we are concerned with, and play a key role in reasoning
about processes.

We use the examples from § 1. Let R; = s;[i :ﬁi, o: 72;] for some ﬁi,fzg and assume
51 75 52.
(1) Input and Output Permutations. The two actions at different channels are per-
mutable up to =2, i.e. 512(x);52?(y); P| R1 | R2 == 52?(y);s17(x); P| R; | Ry. Similarly for
two outputs: s1!1(v1);s21(v2); P | Ry | Ry = 52!{(v2);s1!(v1); P | R} | R,. However, an input
and an output are not permutable: s1?(x);s21{(v2); P | Ry | Ry % 52!(v2);512(x); P| Ry | Ra.
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(2) Input and Output Ordering. Two actions at the same session have the ordering,
hence: 512(x);512(y); P | R1 % s12(y);512(x); P | Ry for inputs, s1!(v1);s11{(v2); P | Ry %
s11{va);s11{v1); P | Ry for outputs and s1!{v;);527(x2); P % 522(x2);51 ! (v1); P.

(3) Non-Local Semantics. In the literature [6,7,27], the asynchronous session types
are modelled by the two end-point queues without distinction between input and output
entries in queues. We call this semantics non-local since the output process directly
puts the value into the input queue. The transition relation for non-local semantics is
defined by replacing the output and selection rules in Figure 4 (see Appendix E.3 for
full details) to:
s! ;
(ow) st PP (sa) s@lp 2 p

We write the induced bisimilarity ~,. The same (in)equalities hold except permutation
of outputs, e.g. S1!<V1>;S2!<V2>;P ‘ Ry | R; 532 S2!<V2>;S1!<V1>;P ‘ Ry | R;.

(4) Arrival Predicates. Let Q = if ¢ then P| else P, with Py % P;. If the syntax does
not include arrival predicates, we have Q | s[i:0] | s[o:v]~ Q| s[i:V]|5[o:@]. In the
presence of the arrival predicate, we have Q | s[1: 0] | 5[o:v] % Q| s[i:v] ]| 5[0 : 0] with
e = arrived s. However we have: if arrived s then P else P~ P.

(5) Arrive Inspection Ordering. Let

P = uX.if arrived s; then s;?(x).X else if arrived s, then s,?(x).X else X
O = uX.if arrived s, then 57?(x).X else if arrived s then s;?(x).X else X

Then P | Ry | Ry =~ Q| Ri | R2. An inspection of arrival of messages using recursion as
above makes no distinction between different orderings by which session endpoints are
inspected. Later this equation plays a central role in the thread elimination later.

For more comparisons, see § 6.

4 Lauer-Needham Transform

In an early work [18], Lauer and Needham observed that a concurrent program may be
written equivalently either in a thread-based programming style (with shared memory
primitives) or in an event-based style (where a single-threaded event loop processes
messages sequentially). Following this framework and using high-level asynchronous
event primitives such as selectors [15, 19] for the event-based style, many studies com-
pare these two programming styles, often focusing on performance of server archi-
tectures, e.g. [2, 15, 20, 32]. These studies and implementations implicitly or explicitly
assume a transformation from a program written in the thread-based style, especially
those which generate a new thread for each service request (as in thread-based web
servers), to its equivalent event-based program, which treats concurrent services using
a single threaded event-loop (as in event-based web servers). However the precise se-
mantic effects of such a transformation nor the exact meaning of the associated “equiv-
alence” has not been clarified.

We study the semantic effects of such a transformation using the asynchronous ses-
sion bisimulation. Not only is this transform hence its semantics has practical signif-
icance, but also the semantic analysis of this transform demands the use of the key
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elements of our asynchronous semantics, including asynchrony and events. We first in-
troduce a formal mapping from a thread-based process to their event-based one, based
on Lauer and Needham and suggested by recent studies on event-based programming
[2,20,32]. Assuming a server process whose code creates fresh threads at each service
invocation, the key idea of the transformation is to decompose this whole code into dis-
tinct smaller code segments each handling the part of the original code starting from a
blocking action. As in the standard event-based programs, such a blocking action is rep-
resented as reception of a message (input or branching). Then a single global event-loop
can treat each message arrival by processing the corresponding code segment combined
with an environment, returning to inspect the content of event/message buffers.

We first stipulate a class of processes which we consider for our translation. Below
xa(x); P denotes an input replication abbreviating uX .a(x).(P|X).

Definition 4.1 (Simple Server). A server at a is a replicated process *a(x); P with a
typing of form a : (S). A server is simple if it has the form *xa(w : S); P such that P
contains neither parallel compositions (|) nor name hiding (v), and each bound process
variable in P is guarded. We usually consider a simple server in a localised form, with
the empty queue a : [€].

A simple server spawns an unbounded number of threads as it receives session requests
repeatedly. Each thread may initiate other sessions with outside, and its interactions may
involve delegations and name passing. But it may not spawn further threads nor export
a new shared channel, and, by guardedness, it always goes through a blocking action
before recurring. Note a simple server does not involve accesses to internal shared state
among threads: a simple server is stateless in this sense (as we shall see later, it is
confluent), as found in static web-servers — those which only serve static pages.

Example 4.2 (A Simple Server). As an example of a simple server, consider:
P = xa(x);x?(y).x!(y+1);x2(z).x{(y+2);0 | alg]

This process has the session type ?(nat);!(nat)?(nat);!(nat) at @ which can be read:
a process should first expect to receive 7 a message of type nat and send ! it, then to
receive (again ?) a nat, and finish by sending | a result.

A simple server creates an unbounded number of threads as it processes services con-
currently. The thread elimination transforms this process into an equivalent one which
uses a single thread for processing these unbounded number of services. Given a sim-
ple server xa(w : S); P | alg], its translation, which we call Lauer-Needham transform
or LN-transform for short, is written £ [[xa(w : S); P | a[e]]]. The formal mapping
is given in Appendix G: here we outline the key constructions of the LN-transformed
LA [*a(w: S); P | ale]]) and illustrate the key ideas through examples.
First, ZA [xa(w : S); P]| consists of the following key elements:

1. An event loop Loop{o,q) repeats the standard event-loop, inspecting its selector
queue named g (see below), selects a message from a message arrived and processes
it by sending it to the corresponding code block (see below).

2. A selector queue g{a,co) whose initial element is (a, co). This data says: “if a mes-
sage comes at a, jump to the code block (CPS procedure) whose subject is co”.
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3. A collection of code blocks CodeBlocks(a,0,q,¢), CPS procedures handling in-
coming messages. A code block originates from a blocking subterm of a(w); P, i.e.
a subterm starting from an input or a branching, see Example 4.3 below.

The process uses a standard “select” primitive represented as a process, called selector
[15]. It stores a collection of session channels, with each channel associated with an en-
vironment, binding variables to values. It then picks up one of them at which a message
arrives, receives that message via that channel and has it be processed by the corre-
sponding code block (which may alter the environment). Finally it stores the session
and the associated environment back in the collection, and moves to the next iteration.
Since a selector should handle channels of different types, it uses the typecase con-
struct from [15]. typecase k of {(x;:T;) P, }ics takes a session endpoint k and a list of
cases (x;:T;), each binding the free variable x; of type pattern 7; in P;. The reduction of
typecase is defined as:

typecase s of {(x;i:T;) P.}ics | s[S] — P{s/x;} | s[S]

where there exists i € I such that (Vj < i.7; £ SAT; < ). We extend the calculus with
the selector operations, with the following reduction semantics.

new selector rin P — (vr)(P | sel(r, €)) register(s',r); P |sel{r,5) — P |sel(r,5-5')
let x = select(r) in typecase x of {(x;:T}) : Pi}ics | sel(r, s -5) | ' [S,i:h]

— P [x;} | sel(n3) | s'[S,i:h] (h#e€)
let x = select(r) in typecase x of {(x;:T;) : P}ics | sel(r, s’ -5) | s’ [1:€]

— let x =select(r) in typecase x of {(x;:T;) : P }ics | sel(r, §-5') | 5’ [1: €]
where in the third line S and 7; satisfies the condition for typecase in the reduction
rule. We also include the structural rules with garbage collection rules for queues as
(vr)sel(r, €) = 0. Operator new selector r in P (binding r in P) creates a new selector
sel(r, €), named r and with the empty queue €. register(s’,r); P registers a session
channel s

Operator register(s’, r); P registers a session channel s to r, adding s’ to the orig-
inal queue s. The next let retrieves a registered session and checks the availability to
test if an event has been triggered. If so, find the match of the type of s’ among {7;}
and select P;; if not, the next session is tested. As shown in [15], these primitives are
encodable in the original calculus augmented with typecase. For a detailed encoding,
see Appendix F. The bisimulations and their properties remain unchanged.

Example 4.3 (Lauer-Needham Transform). Recall the simple server in Example 4.2.
We extract the blocking subterms from this process as follows.

Blocking Process Type at Blocking Prefix
a(x).x?(y)x!(y+ Dx?(2) x!{y +2);0  (?(nat);!(nat);?(nat);!(nat))
x?2(y)xy+ DHx2(z).x(y+2);0 ?(nat);!(nat); ?(nat); !(nat)
x2(z).x!(y+2);0 ?(nat); !(nat)

These blocking processes are translated into code block processes or code blocks, de-
noted CodeBlocks, given as:
xco(y);a(x).update(y,x,x); register (sel,x,y,c1);0 |
xc1(x,y);x?(z);update(y, z,2); x!([z]ly + 1); register (sel,x,y,c2);0 |
xca(x,);x2(2');update(y, 7', 2)sx!([2]ly + [£']y):0
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which is used for processing each message. Above, the operation update(y,x,x); up-
dates an environment, while register stores the blocking session channel, the associ-
ated continuation ¢; and the current environment y in a selector queue sel.

Finally, using these code blocks, the centre of the event processing, the main event-
loop denoted Loop, is given as:

Loop = *0.let (x,y,z) = select from sel in typecase x of {
(?(nat);!(nat); ?(nat);!(nat)) : newy:env inz(y)
?(nat); !(nat); ?(nat); !(nat) : z(x,y)
?(nat);!(nat) : Z(x,y)

}

Above select from sel in selects a message from the selector queue sel, and treats
it in P. The new construct creates a new environment y. The typecase construct then
branches into different processes depending on the session of the received message, and
dispatch the task to each code block.

For the formal details, see Appendix G. Because a simple server does not allow, by con-
struction, its internal shares state to be accessed by the threads it spawns, it is currently
stateless.?, we observe:

Lemma 4.4. xa(w:S);R | a[€] is confluent.

On the other hand, the transformed process is essentially a sequential process. Hence
we can also establish:

Lemma 4.5. ZA [xa(w:S);P | al€]] is confluent.

Using these results, we can establish the fundamental result, which crucially relies on
asynchronous nature of our bisimulations, noting that the original simple server and
its translation generally have completely different timings at which the session in-
put/branching subjects (prefixes) become active: in the former they are made active
in parallel for all threads, while in the latter they are made active only sequentially.

Lemma 4.6. Let R = Loop | CodeBlocks | a[s] | TLues Sm [1:/tim; 0 : hom). Assume

Py r<(slaélvcl)a"'v(si’éivci)v""(Sjvéjvcj)a'"’(Snaénacn»
Py =r((s1,&1,¢1), ..., (85,8,¢j)5 -, (8i,6i¢i), ooy (0, Enscn))

Then (v cor)(Py | R) = (v Cor)(P, | R).

The above lemma substantiates a generalisation of the observations behind Example
3.3(5), which distills a nature of event-driven programming. With this lemma, we can
permute the sessions in a selector queue, still having the same behaviours (this permu-
tation is possible w.r.t. bisimilarity because of the stateless nature of a simple server).
Selector’s behaviour ties together threaded and event programs because there is no dif-
ference between which event (resp. thread) is selected to be executed first.

2 The transform easily extends to the situation where threads share state, though its behavioural justification
takes a different form.
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Theorem 4.7 (Semantic Preservation). Let xa(w:S);R | a[€] be a simple server. Then
xa(w:S);P|ale]~ LA [alw:S);P|ale]].

The proof of the above theorem uses a determinate upto-expansion relation, cf. Defi-
nition 3.10 and Lemma 3.11. We construct the target relation so that it contains each
process pair that has all the parallel processes on a blocking prefix for the threaded
server and starts from the Loop process for the thread eliminated process. We show the
conditions needed Definition 3.10 by using Lemmas 4.4 and 4.5. We conclude the proof
through Lemma 3.11. For details of the proof, see Appendix G.

5 Performance Evaluation of the LN-Transform

This section presents a benchmark evaluation of the type-directed transformation from
multithreaded to thread-eliminated (i.e. event-driven) programs by the LN-transform
(§ 4). The benchmark compares the performance of implementations of the Server pro-
cesses from Examples 4.2 and 4.3 under load from a varying number of concurrent
clients, ranging up to 1000. As discussed earlier, event-driven concurrency is typically
regarded as trading performance for more complex implementation; the present bench-
mark examines these aspects from each side of the trade-off. First, the results show
that the LN-transformed Server exhibits the performance and scalability improvements
expected of thread-elimination. The second and key point, however, is that the LN-
transformation, with formal justification by asynchronous session bisimilarity (The-
orem 4.7), ensures the thread-eliminated Server preserves equivalent behaviour to the
original. This benchmark thus demonstrates how the session-oriented behavioural equiv-
alence theory presented in this paper can be directly applied to the development of
practical tools for real-world concurrent programming.

Benchmark Programs. The implementation and execution of the session-typed bench-
mark applications uses SJ (Session Java) [16] with extensions for event-driven session
programming [15]. The session type implemented by the multithreaded Server (MT)
is a slightly modified version of the type from Example 4.2 (to allow variation of the
message size), which written in SJ syntax is:

?(bytel[]).!<byte[]>.7(byte[]).!<byte[]>

The MT Server spawns a new thread to execute a session of this type for each client that
connects. The LN-transformed Server (TE) uses a single-threaded central event-loop
to dispatch the input events of the above type across concurrent sessions one-by-one,
following Example 4.3. The same Client program, which implements the dual of the
above type, is used to interact with both the MT and TE Servers.

Methodology and Environment. The benchmark measures Server throughput in terms
of the number of Client sessions completed per millisecond. The benchmark parameters
are the message size (100 Bytes and 1 KB), and the number (10, 100, 300, 500, 700 and
900) of concurrent Clients, which simply request and execute repeated sessions with
the Server. After the execution of the benchmark configuration has stabilised, a mea-
surement is taken by recording the number of sessions completed by the Server within
a 30 s measurement window. For each parameter combination, we take measurements
from three windows to each Server instance, and repeat the whole benchmark 20 times.
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Fig. 6. Throughput of multithreaded (MT) and LN-transformed (TE) SJ Servers under increasing
client loads.

The benchmark is conducted in the following cluster environment: each node is a
Sun Fire x4100 with two 64-bit Opteron 275 processors at 2 GHz and 8 GB of RAM,
running 64-bit Mandrakelinux 10.2 (kernel 2.6.11) and connected via gigabit Ethernet.
Latency between each node is measured to be 0.5 ms on average (ping 64 bytes). The
benchmark applications are compiled and executed using the Sun Java SE compiler and
Runtime versions 1.6.0.

Results. Figure 6 gives the mean throughput for the multithreaded (MT) and thread-
eliminated (TE) Server implementations for the increasing number of Clients. In all
cases, as expected, the TE Server exhibits higher throughput than the MT server. We
observe that the throughput of the MT Server decreases steadily due to the thread
scheduling overhead. For the TE Server, there is first an increase in throughput, un-
til the saturation point for the Server performance is reached, and then a decline as the
number of Clients increases, due to the cost of the event selector handling more Client
connections. We also observe higher throughput for the smaller message size: this is
because more messages of the smaller size can be transmitted, and thus more sessions
can be completed, in the same period of time. Further micro and macrobenchmarks
comparing session-typed multithreaded and event-driven SJ applications, and also their
untyped counterparts (standard Java threads and Java NIO) as base cases, can be found
at [30].

6 Discussions

Comparisons with Asynchronous/Synchronous Calculi. We briefly compared the
present asynchronous bisimulation to related ones in Example 3.3 in § 3. Below we
report more comprehensive comparisons, clarifying the relationship between (1) the
session-typed asynchronous 7-calculus [10] without queues (=2,, the asynchronous ver-
sion of the labelled transition relation for the asynchronous 7z-calculus), (2) the session-
typed synchronous 7-calculus [11,31] without queues (=), (3) the asynchronous ses-
sion m-calculus with two end-point queues without 10 queues [6,7,27] (=;), see Ex-
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ample 3.3; and (4) the asynchronous session 7-calculus with two end-point I0-queues
(=), i.e. the one developed in this paper. See Appendix E for the full definitions.

The following figure summarises distinguishing examples. Non-Blocking Input/Out-
put means inputs/outputs on different channels, while the Input/Output Order-Preserving
means that the messages will be received/delivered preserving the order. The final table
explains whether Lemma 3.4 (1) (input advance) or (2) (output delay) is satisfied or not.
If not, we place a counterexample.

Non-Blocking Input Non-Blocking Output
) ( ):522(0); P ~a 522(y)3 51 2(x); P 51(v) [52(w) | P ~a sT(w) [52(v) [ P
2 ( )i522(0); P s $22(y)s 81 (X) st ()il (W) Py sal(w)ssi!(v); P
®3) () 20):P [ s [e] [ s H si!(v)ss2!(w)s P | s1 [e] | s2 (] %2
22(y); 81 ()PISIHISZ[E] <W> 1{(v); P | s [€] | 52 [€]
(4)[s512(x); 52 ()P\[vl,leoe]\[sz,leos] s11(v);s2 <>P\[v1,1so£]|[v21808]
527 (y)s (x)P|[s11808}|[s271808] sz (w)s Hv);P | [s1,i:€,0:€]|[s2,i:€,0:¢€]
Input Order-Preserving Output Order-Preserving
O] 9005700 P ~a 520):52 (03 P 500 [5w) | P~ 50w) [50) | P
(2) s2(x);82(y); P % s2(y);5?(x); P sHV)sstw); P &g s!{w);s!{v); P
3 20070 P 5 [e] 2 ST)s1w): P sTe]

| s[€] siw);st(v); P se]
[s2,i:€,0:€] %|s!(v);s!{w); P | [s1,i:€,0:€] | [s2,i:€,0:€] %
| [s2,1i:€,0:€] | st w);s!(v);P | [s1,i:€,0:€]]|[s2,i:€,0:€]

s2(x);82(y);52(x); P
(4)[s2(x);82(y); P | [s1,1:€,0:€] |
$(x);s?(y); P | [s1,i:€,0:€]

Lemma 3.4 (1) Lemma 3.4 (2)
(1) yes yes
)| (v s)(s!{(v);52(x);0 | s2(x);0) [ (v 5)(s!(v);5"1(V/);0 | 5'2(x);0)
(3) yes sHvY; s'2(x);0 | S'[V]
4) yes yes

Another technical interest is the effects of the arrived predicate on these combi-
nations, which we carry out below. For precise comparisons, we define the synchronous
and asynchronous 7-calculi augmented with the arrived predicate and local buffers.
For the asynchronous 7-calculus, we add a[ﬁ] and arrived a in the syntax, and define
the following rules for input and outputs.

a) ™0 afl M aff-n a2).P | ality-hi- ko) —s P{hi/x} | aliy B

if arrived a then P else Qlale] — Q| ale]
if arrived a then P else Qla[h-h] — P | alh-h]

The above definition precludes the order preservation as the property of transport,
but still keeps the non-blocking property as in the asynchronous 7z-calculus. The syn-
chronous version is similarly defined by setting the buffer size to be one. The non-local
version is defined just by adding arrived predicate.

Figure 7 summarises the results which incorporate the arrived predicate. Inter-
estingly in all of the calculi (1-4), the same examples as in Example 3.3(4), which
separate semantics with/without the arrived, are effective. The IO queues provide
non-blocking inputs and outputs, while preserving the input/output ordering, which dis-
tinguishes the present framework from other known semantics.
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With arrived Without arrived

(I)| if arrivedsthenPelse Q|s[i:g]|s(v) if ethen Pelse Q| s[i:g]|5(v)
% if arrivedsthen P else Q| s[i:v] ~ if e then P else Q|s[i:V]

(2)| if arrivedsthen P else Q|s[g]|5(v);0 if e then P else Q | s[e] | 5(v);0

% if arrived s then P else Q| s[v] ~ if e then P else Q| s[v]

(3)| if arrivedsthenPelse Q|s[i:€]|5(v);0 | if e then Pelse Q|s[i:€]|5(v);0
% if arrived s then P else Q| s[i:v] ~ if e then P else Q|s[i:V]

(4)] if arrived sthenPelse Q|s[i:€]|s[o:v] | if ethenPelse Q|s[i:€]]|s[o:V]

% if arrived s then P else Q|s[i:v]|s[o:€]|~ if ethen Pelse Q|s[i:v]]|s[o:€]

Fig.7. Arrive inspection behaviour in synchronous/asynchronous calculi.

The formal definitions and proofs for the above results can be found in Appendix
E. As a whole, we observe that the present semantic framework is closer to the asyn-
chronous bisimulation (1) ~, augmented with order-preserving nature per session. Its
key properties arise from local, buffered session semantics and typing. We have also
seen the semantic significance of the arrived predicates, which enables processes to
observe the effects of fine-grained synchronisations.

Related Work. Some of the key proof methods of our work draw their ideas from
[28], which study an extension of the confluence theory on the 7-calculus. They apply
the theory to reason about the correctness of the distributed protocol which can be
represented by constructing a collection of confluent processes. Our work differs in that
we investigate the effect of asynchronous 10 queues and its relationship to confluence.

The work [3] examines expressiveness of various messaging mediums by adding
message bags (no ordering), stacks (LIFO policy) and message queues (FIFO policy)
in the asynchronous 7m-calculus [10]. They show that the calculus with the message
bags is encodable into the asynchronous 7-calculus, but it is impossible to encode the
message queues and stacks. Neither the effects of locality, queues, and typed transitions
are studied. Further neither of [3, 28] treats event-based programming, including such
examples as thread elimination nor performance analysis.

Programming constructs that can test the presence of actions or events are studied in
the context of the Linda language [5] and CSP [21, 22]. The work [5] measures expres-
sive powers between three variants of asynchronous Linda-like calculi, with a construct
for inspecting the output in the tuple space, which is reminiscent of the inp predicate
of Linda. The first calculus (called instantaneous) corresponds to (1) [10], the second
one (called ordered) formalises emissions of messages to the tuple spaces, and the third
one (called unordered) models unordered outputs in the tuple space by decomposing
one messaging into two stages — emission from an output process and rendering from
the tuple space. It shows that the instantaneous and ordered calculi are Turing powerful,
while the unordered is not. The work [21] studies CSP with a construct that checks if
a parallel process is able to perform an output action on a given channel. It studies op-
erational and denotational semantics, demonstrating a significance to investigate event
primitives using process calculi. A subsequent work [22] studies the expressiveness of
its variants focussing on the full abstraction theorem of the trace equivalence. Due to
the difference of the base calculi and the aims of the primitives, direct comparisons are
difficult: for example, our calculi (1,2,3,4) are Turing powerful and we aim to examine
properties and applications of the typed bisimilarity characterised by buffered sessions:
on the other hand, the focus of [5] is a tuple space where our input/output order pre-
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serving examples (which treat different objects with the same session channel) cannot
be naturally (and efficiently) defined. The same point applies for [21,22]. As another
difference, the nature of localities has not been considered either in [5, 21, 22] since no
notion of a local or remote tuple or environment is defined. Further, neither large ap-
plications which include these constructs (§ 4), the equivalences as we treated, nor the
performance analysis of the proposed primitives had been discussed in [5, 21, 22].

Using the confluence and determinacy guaranteed by session types, and through
observations on the semantics of the arrive predicate, we have demonstrated that the
theory is applicable, through the verification of the correctness of the Lauer-Needham
transform. This well-known transform claims that threads and events are dual to each
other. Our LN-transform and the asynchronous, buffered bisimulation provide a formal
framework and reasoning mechanisms for the conversion from the former to latter and
for establishing their equivalence. The asynchronous nature realised through IO mes-
sage queues provides a precise analysis of local and eventful behaviours, found in major
distributed transports such as TCP. The benchmark results from high-performance clus-
ters justify the effect of the type and semantic preserving LN-transformation.

Some preceding works approach the Lauer-Needham duality by combining multi-
threaded and event-driven programming to obtain benefits from both categories. The
work [20] implements both multithreaded and event-driven components at the applica-
tion level. A trace over blocking system calls is inferred from the threaded code and the
scheduler invokes the user-supplied event handler when event points are reached in the
trace. Scala [8] offers both thread-blocking receive operations and actor-based event
handlers as a library. Heuristics are used to determine whether a thread has become
blocked on some external operation to prevent blocking other actors. Although these
studies offer improved support for user-level threads, event-based systems currently re-
tain the edge in terms of performance and scalability for highly concurrent applications
such as Web servers [17]. These preceding studies do not investigate either semantic
foundations or the formal correctness of their approaches.

In contrast, the present paper offers a semantic basis for asynchronous session com-
munications with event primitives, which can justify the correct implementation of prac-
tical communications-based applications, as we have seen in §4. It also applies the be-
havioural theory to demonstrate a benefit of structured and type-safe transformation
based on session types. It is an interesting future work to use our bisimulation theory
in the higher-order setting [27] as well as for analysing more complex programs where
threads and events co-exist.
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A Appendix for Section 2

We give the definitions that were omitted from § 2 including the type case construct.

A.1 Structural Congruence

The notion of bound and free identifiers is extended to cover the subject and objects
of arrived u, arrived k, arrived k h, typecase k of {(x;:T;) P, }ier, a(s), als], and
s[S,i:h,o0: k'] in the expected way. We write fn(P) for the set of names that have a free
occurrence in P. Then structural congruence is the smallest congruence on processes
generated by the following rules in Figure 8.3

A.2 Reduction

Reduction Relation The binary single-step reduction relation, — is the smallest re-
lation on closed terms generated by the rules in Figure 3 together with those in Figure 9.

B Appendix to Section 2.3
B.1 Subtyping

If P has a session channel s typed by S, P can interact at s at most as S (e.g. if S
has shape ®{/; : S1,L> : S2,13 : S3} then P may send /; or /3, but not a label different
from {l1,l>,13}). Hence, S < S’ means that a process with a session typed by S is more
composable with a peer process than one by §'. Composability also characterises the
subtyping on shared channel types. Formally the subtyping relation is defined for the set
7 of all closed and contractive types as follows: T is a subtype of T’, written T < T”,

3 For the recursion, it would be more natural to use a demand-driven input-guarded reduction for the LN-
transformation. The choice does not affect the developments of this paper.
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[Request1] a(x:S);P — (vs)(P{5/x} |5[S,1i:€,0:€] |a(s)) (s¢t(P))

[Request2] als]|a(s) — a[s-s]
[Accept] a(x:8).P|alss] — P{s/x}|s[S,i:€,0:€]|als]
[Send] sIV):P | s[(T):S,0:h] — P|s[S,0:h-V]
[Receive] s2(x).P | s[2T):S,i:v-h] — P{v/x}|s[S,i:h]
[Sel], [Bra] S<1[,';P|S[@{li:5i},’61,0:m —>P|s[S,~,o:71~l,-] (iel)
so{1j:Pj}jer | s[&{li:SiYier,i:li-h) — Pr|s[Si,i:h] (ielCJ)

[Comm] slo:v-h] |5[i:h] — s[o:R] | S[i:h'-V]
[Arriv-req] Elarrivedd| |a[s] — E[b] | a[s] (1= 1) \yp
[Arriv-ses] Elarriveds]|s[i:h] — Eb] | s[i:h] (JA] > 1) \yb
[Arriv-msg] Elarrivedsh] | s[i:h] — E[b] | s[i:/] (h=h-H) b
[Typecase]

typecase s of {(x;:T;) Pi}ticr | s[S] — P{s/x;} | s[S] el (Vj<iTj £SAT; <)

[Unfold] P | s[S{UX.S/X},i:hy,0:R,] — P | s[S',1i:hy,0:1]
—  P|s[uX.S,ihy,0: 1] — P |s[S,ithy,0:h))

[Eval] e— ¢ = Ele] — E[¢]
[Chan] P— P = (va:(S))P — (va:(S))P'
[Sess] P— P = (vs)P — (vs)P
[If-true] if tt thenPelseQ — P
[If-false] if ff thenPelseQ — Q
Pa] P— P = PlQ— P|Q
[Struct) P=P — Q' =0 — P— Q

Fig. 9. The reduction rules §2.2.

if (T,T’) is in the largest fixed point of the monotone function .7 : (7 x ) —
P (T x T), such that F (#£) for each # C .7 x .7 is given as follows.

{(bool,bool), (nat,nat)} U{(o(S),0(S")) | (S,5),(S',S) € %}
U {(1(8),1(8") [ (8.5"),(5".S) € 2}
U {(uX0.U") | (U{RXU/x},U") € Z}U{(U,uXU") | (U,U{uXU'/X}) € %}
UA{NT1):81.1(T2):85) | (T2, Th), (S7,85) € 2} U {(AT1): 81, UT2):8y) | (11, T2), (8], 55) € #}
@] {(@{liZSi}iEIa@{lj3S;}jej) |Vi el C J.(S,',S;) E%}
@] {(&{l,‘ZS[}iel,&{ljZS;-}jgj) |V]€J§I(SJ,S;) Gﬁ}
U {(1X.S,8") | (S{uX.S/x},8") € By U{(S,uX.8") | (S,8'{uX.S'/x}) € #}
UA{({Sitier. {S}}jes) | ~(Il = V| =1),Vj € J,3i € 1.(S;,S) € #}

Line 1 is standard ({S) is invariant at S since it logically contains both S and S). Line
2/6 are the standard rule for recursion. In Line 3, the linear output (resp. input) is con-
travariant (resp. covariant) on its carried types following [27]. In Line 4, the selection is
co-variant since if a process may send more labels, it is less composable with its peer.
Dually for branching in Line 5. Finally, the ordering of the set types says that if each
element of the set type {S';} jes has its subtype in {S;}ies, the former is less composable
by the latter. The condition —(|/| = |J| = 1) avoids the case {S;}ier = S,{S}jes = 5,
which makes the relation universal.
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We now clarify the semantics of < using duality. The dual of S, denoted gLis de-
fined in the standard way: !(T);S =2(T);S, 2(T);S =!(T);S, uX.S = uX.S, X =X,
@{ll ZS,‘},'GI = &{li 3§i}i€1 &{l, ZS,‘},'GI = @{l,‘ :fi}ie[ and end = end.

B.2 Program Typing

We first define a typing system for programs (§ 2.1). Program typing can be considered
a static typing phase performed by a compiler, on user-level code before execution.
Program typing uses two environments:

I':=0|Tu:U|I''X:A 2u=0|Z-a|Z-k:{Si}ier

I' is called shared environment, which maps shared channels and process variables to
shared channel types and linear environment respectively; X is called linear environ-
ment mapping session channels to set types (writing k: S for k: {S}) and recording
shared channels for acceptor’s input queues. X-a means a ¢ dom(X) and similarly for
others. Shared channel a is recorded in X to ensure that one and only one queue for a
exists. Subtyping is extended to environments by £ < X’ iff dom(X) = dom(ZX’) and
Vk € dom(X).X(k) < X'(k). The typing judgements for a process and an expression are
given as:

r-psx I'Ire:T

where the program P, under shared environment I, features the channel usage speci-
fied by linear environment X; and similarly for the expression. The judgement can be
shortened to, e.g. I - e: T if X is not required.

Figure 10 presents the typing rules for programs. The first four rules are the standard
expression typing (note u : i(S) and u : o(S) allows both accept and request respectively
via u by (Shared), while u : 1(S) allows request via u by (Shared’)). The next four rules
are for the arrivals. Rule (Areq) is for a session request arrival. Rule (Asess) is for an in-
session message arrival. Rule (Amsg) checks the message arrival and its value. Similarly
(Alab) checks a branch label.

The remaining rules are standard. Rule (Subs) is the standard subsumption. Rule
(Acc) (resp. Rule (Req)) says that the session following an accept (resp. request) should
conform to a declared shared channel type. (Send) and (Recv) are for sending and re-
ceiving values. (Send) is standard apart from using the extended expression judgement
to handle occurrences of the arrival predicates within e: the relevant type prefix !(S) for
the output is composed with T in the conclusion’s session environment. (Recv) is a dual
input rule. (SSend) and (SRecv) are the standard rules for delegation of a session and
its dual [27], observing (SSend) says that k': T does not appear in P, symmetrically to
(SRecv) which uses the channels in P. (Select) and (Branching), identical with [27], are
the rules for selection and branching. (If) rule handles the conditional expression.

(Chan) records the a : (S) from the shared environment after checking the presence
of a (in effect unique) queue at a. (Par) prevents multiple queues for the same shared
channel and processes with the same session channels from being composed. (Nil),
(Rec) and (PVar) are standard from [11]. (Queue) records the presence of an empty
shared queue in a linear environment. “X end only” means X has the form s;:end, ..., s,:
end.
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(Bool) (Var) (Shared")
I'ttt,££:bool I'-x:bool - x:bool Tu:i(S)Fu:o(S)

I'bu:(S) I' X+ arrived k h:bool
————————(Shared) (Areq) (Asess)
I'u:Tt+u:T I' - arrived u:bool I' X+ arrived k :bool
'v:U le{li}i
4 (Amsg) < { l}lel (Alab)
I',2-k2(U);SF arrived k v:bool I X-k:&{l;:S;}icr F arrived k [ :bool
'-pPpx X <X
I'-pPpX
I'tu:i(S) I'EPrXx:S A T'Fu:olS) I'FP>Xx:S
CcC —
I'kFu(x:S).PrX I'Fu(x:S);PrX
I''YXFe:U FI—PDE-k:S(S 0 I''x:UFP>X-k:S (
en
I'Fkle);PrX-k:1(U);S I'Fk?(x).Pr2-k2(U);S
I'+-PoXk:S I'FPoX-k:Sx:T
7 7 (SSend) (SRecv)
kYK Y, P>X-k:W(T); Sk :T I'Ek(x).P>X-k2T);S
1<i<n TI'kPpX-k:S; Vil<i<n I'kP>X-k:S;
(Select) (Branch)
F}—kQZ[;PDZkZ@{l,'ZS,‘},'E] F'—k[>{l,'ZP,'},,DZ'](Z&{I,'ZS,'},'QI
I''YFe:bool 'FP-XTHQO>X " ra:(S)FPrX-a ch 'FP>xX I'QvX
an
I'-if ethenPelse QX I'k(va:(S))P>Z rFpP|ovx.x

X end only ; I''X:AFPrA

(Subs)

Req)

ecv)

Par)

(Nil) (Rec) (Pvar)
I'FosX I'uX.PrA I''X:AFX>A
Viel T'FPoX-xi:T; Ui <T X end only
(Typecase) ————————(Queue)
I' Ftypecase k of {(x;:T;) P, }ie;> X -k:T I'kalglpX-a

Fig. 10. Typing rules for programs.

Rule (Typecase) is an extension from the dynamic typing system of the A-calculus
[1] to session types. It checks the body P, is typed under X with x; assigned to 7;. Then
the whole process is typable with x assigned to T which is a supertype of all T;.

C Typing Runtime Processes

This subsection gives typing for runtime processes following the presentation in [27].
The judgement is extended as: I' - P> A with A = X | A-s:[S,i:T,0:7T'] where
the configuration element [S,1i: T,o: T’] records the active type S of the configuration
and types of values enqueued in the buffers. We extend T with labels (T ::= U | S | I).
(S,[8,i:T,0:T"]) pairs a type S for the session s and the type information [S,i:7,0:7"]
for the associated configuration at s. We identify (S, [...]) with ([...],S).

The composition of A; and A;, denoted by A; ® A; [27], is defined as:

Ay © Ay = {s5:(A1(s) ®Ax(s)) | s € dom(A;) Ndom(Ap)} UA; \ dom(Ay) UA, \ dom(A;)
where SO [8,i:T,0: T =[8,i:T,0:T'|©S =[§,i:T,0:T'] if § < §'; otherwise

undefined. Next, we define the session type remainder S’ obtained by subtracting a
vector of message types T from a session type S, denoted by S— T =5, by: (1) S—€ =
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T'FPsAT QoA T'ka:i(s)

7 (Par’) - (Queue’)
I'EP|OrAGA I'Fal(S):5]>Ues {s:(S,[S,i:€,0:€])},a
——— (ASreq’
R{s:S}Fs:S( «)
I'ta:o(S) I'P>rA s,5e€dom(A) wc(A,s)
(Endpt) (SRes)
I'ka(s)rs:(S,[S,i:€,0:€]) 't (vs)PrA\{s,5}

Vi<mI Zibh: T, Vj<nI,ZiEH:T] Z=XoZy--5uX{---%, ct(Zp)
Its[Sihol]>E0s:[S,i:T,0:T"

(Config)

Fig. 11. Selected typing rules for runtime processes.

S; () AT);S—T-Tif S—T =585 and 3) &{l;:Si}ies — ;T =S if for all i € 1,
S;—T = S'. Our session type remainder differs from that in [27] because we require
the stronger condition that a well-formed configuration with an output prefixed active
type cannot have a non-empty local i-buffer or be composed with an configuration
with a non-empty o-buffer. We say a A-environment is well-configured with respect to
a session s, written wc(A, s), if the following is satisfied:

A(s) = [S1,1:Ty,0: T3], A(3) = [Sa,1:Tr,0:T]] implies S =S;— (T;-T/) (i € {1,2}), S} < S,

These conditions say that, at any stage of execution of an established session, the
types of the remaining session implementations on each endpoint, modulo any messages
buffered (i.e. to be consumed by pending input actions) at the local i-buffer and oppos-
ing o-buffer, should be subtypes of the active types in their respective configurations;
and that the dual of the active type at one endpoint should be a supertype of the active
type at the other. We say that A is well-configured, wc(A), iff Vs € dom(A), wc(A,s).

Figure 11 lists the rules for typing runtime processes. The composition by (Par’)
pairs up the types of each session endpoint with the associated configurations to form
(S,[8',i:T,0:T")). Rule (Queue’) creates a server-side type for each of the buffered
session request messages, as well as recording the presence of the a-queue in the A-
environment like (Queue). Buffered session endpoints (i.e. endpoints being delegated)
are typed using (Endpt), which creates a X-context holding the type of the endpoint; by
typing each buffered message under a separate X-context, the concatenation of these
contexts ensures the linearity of buffered endpoints. (SRes) checks that the body of the
session restriction is well-configured with respect to the session, i.e. that the session im-
plementations on each endpoint and the two session configurations together constitute
a valid runtime state in the consistent execution of the session. Rule (Config) types all
messages enqueued within the i- and o-buffers of the endpoint configuration to con-
struct the [S,1i: T,o:T' ] representation of the configuration. Using the properties of the
ordering between environments, A C A’, we have:

Theorem 3.1 (Type Soundness) If '+ P>A, we(A) and P— Q, then I' + Q> A’
and either A=A or AC A'.

Proof. The proof is done by using the induction on the structure of the typing rule,
following each operational transition case.
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Case [Request1].
Leta(x).P— (v s)(P{s/x} |5[i:€,0:€] |a(s)). By typing both sides of the transition,
we have that I' F @(x). P>A and I' F (v s)(P{s/x} | 5[i:€,0:€] | a(5))>A as required.
Note that I' =I"-a: o(S).
Case [Request2].
Leta(s) | a[s] — a[s- s]. If we type both sides of the transition, we get I +a(s) | a[s]>
A-5:§-s:Sand '+ afs-s]>A-5:§-5:8 as required.
Case [Accept].
Let a(x).P | als-s] — a(x).P{s/x} | s[i:€,0:¢€] | al5]. If we type both sides of the
transition we have I' - a(x).P | a[s-5]>A-a-s:Sand I' - P{a/x} | a[s]>A-a-s:S as
required.
Case [Send].
Let (s)v;P | s[o:V] — P | s[o:V-v]. If we type both sides of the transition, we have
T'E(s)yv;P|s[o:V]pA-s:(T);Sand ' - P |s[o:¥-v]>A-s:S as required.
Case [Send].
Let s!(s'); P | s[o:7] | &' [1:7,0:V/] — P | s[o:¥-5'] | ' [i:¥,0:V/]. If we type both sides
of the transition, we have I' - s!(s'); P | s[o:7] | ' [i:7,0:V]pA -5 1§ -5:1(5'); S and
TFP|s[o:¥-v]|s[i:¥,0:V]>A-5':S -s5:S as required.

Below we assume the following as the inductive hypothesis (IH).
Let P— P and I' - P> A and A well configured, then I' = P'>A’ and A = A’ or
ACA.
Case [Par].
Let P| Q — P | Q. If we type both sides of the transition we have that I' - P | Q>
Ap©AgandT'FP | Q' >APO A’Q. From the (IH), we have that Ag C A’Q and from the
definition of ® operator the result follows.

Case [Chan].

Let (v a)(P) — (v a)(P'). From the (IH), we have that I" -a: i(S) - P>A-aand I -a:
i(S)FP'>A"-aand A-aC A’ -a. From here we can see that " -a:1(S) - (v a)(P)>A
andI'-a:i(S)F (va)(P')>A" and A C A’ as required.

Case [Sess).

Let (v s)(P) —> (v s)(P"). From the (IH), we have that I' - P>A-s:Sand ' P'>A" - s:
S'and A-s:SC A'-5:S. By runtime typing rule (SRes), we have that I' - (v s5)(P)> A
and ' (v s)(P)>A" and A A’ as required.

D Appendix for Section 3

Transitions: We write —> for the reflexive and transitive closure of L>, — for the
.. 1 ! . l .
composition =>—=—= and = for = if / = 7 and = otherwise. Furthermore we

. ? . ¢ .
write — for — if / = 7 and — otherwise.

Subject and Object: We define the subject (subj(¢)) and object (obj(¢)) for actions

£. For session transitions, we have subj(a(s)) = subj(a(s)) = subj(a(s)) = {a} and
obj(a(s)) = obj(a(s)) = obj(a(s)) = {s}. For sesion transitions, we have subj(s!(v)) =
subj(s?(x)) =subj(s!(a)) = subj(s®!) = subj(s&!) = {a} and obj(s!(v)) = {v}, obj(s?(x)) =
{x}, subj(s!(a)) = {a} subj(s® 1) = subj(s&!) = {I}.
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Free and Bound Names: Free and bound names follow the definition, fn(a{s)) =
fn(a(s)) = {a,s}, fn(a(s)) = {a}, bn(a(s)) = bn(a(s)) = 0, bn(a(s)) = {s} for shared
name actions. For session name actions, we have fn(s!(v)) = fn(s?(x)) = fn(s!(a)) =
fn(s®1) = fn(s&l) = {5}, where v is not a name, fn(s!{a)) = {s,a}, fn(s!{s')) = {s,5'}
and bn(s!(v)) = fn(s?(x)) = subj(s!{a)) = bn(s® 1) = bn(s&l) = 0, bn(s!(a)) = {a},
bn(s!(s")) = {s'}.

The names of an action (n(¢)) is the union of fn(¢) and bn(¢), n(¢) = fn(¢) Ubn(¢).

Contexts: We define the context of a process. Assume that o is a prefix:

- acfa(s).,a(s).,s!(v); ,s2(x).,s! <l; }.

=—| | C|D | (viA)(C) | if ethenCelseC | a.C
SD{liZC}iGI | X | 0
- Du=slith;0:h,) | afs).

=
>
aa

D.1 Proof for Theorem 3.3
Theorem (Coincidence) ~ and = coincide.

The above theorem requires to show the equality into two directions.
Lemma D.1 (Soundness). ~ implies =
Proof. The prove of the soundness direction follows P ~ Q implies V C, C[P] = C[Q]
and V C, C[P] =~ C[Q] implies V C, C[P] = C|Q]

To prove the above it is enough to show the first implication, that bisimulation is a
congruence, meaning that bisimulation is preserved through parallel composition, pre-

fixed processes and the restriction operator. The second implication is trivial.
To show that input prefixed processes are congruent, consider:

P~ Q implies a.P ~ o..Q where « is an input prefix.
Assume that
S={(a.P,0.Q)|P =~ Q,.P,0..Q typable, & is an input prefix}
then S is a bisimulation.
As a note here, consider the case where:
s1(v); 0| s[(T);end,i:€,0:€] = 0|s[!(T);end,i:€,0:V]

If we prefix the above pair with s?(v'). Then we have

s?2(0).s1(v); 0| s[2T"); {T); end,i:€,0:€] and s?(v').0 | s[2(T"); (T); end,i:€,0:V]

Obviously the second process is not typable. The runtime type of the s buffer does
not agree with the process typing.
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The proof that S is a bisimulation considers a simple reduction on the processes of
S to reach to their bisimilar point.

Output prefix and restriction are trivial.

The interesting case is the parallel composition of processes:

P~ QimpliesP |R~Q|R (1)
We assume
S={(P|R,Q|R)|P~ Q,VR such that P|R, Q|R are localised and typable}

We show that S is a bisimulation. There are three cases:

Case (1) Suppose I' = P | R>A; P | R>Aj. Then I' = P>Ap LN P'>Ap.
By the definition of S:

T'FQsAg == @' A) and )
Ap > A €)

By (2) we have that I" - Q | R Ay == Q' | R>A]. It remains to show that A] b1 AJ.
By composing parallel processes, we have that A] = Ap © Ag and A; = A, © Ag.
From the definition of bisimulation (Definition 3.1), we have that P,Q, P’ and Q' are

localised, hence: Vs € dom(Ap), Ap(s) = (S,[S',4: hi,0: ko)), Y a € dom(A}), Ap(a) =

a,V's € dom(Ap), Ay(s) = (S,[S',1: hi,0: h,]) and ¥ a € dom(4}), Aj(a) =a.
From the above, the definition of ® operator and localisation of P and Q we can

conclude that dom(Ap) Ndom(Ag) = 0 and dom(A,) Ndom(Ag) = 0. The last condi-

tion, along with (3) gives that P | R ~ Q | R as required.

Case (2) Suppose I' = P | R> Ay P |R'>A]. Then I F R>Ag BN R'>Ap,.

By the above, we have that I" - Q | R> Ay ) | R'> A}. Tt remains to show that
Al > A).

By composition of parallel processes, we have that A] = Ap ©® A, and A} = Ap © Ag.

From the the definition of bisimulation (Definition 3.1),we have that P and Q' are
localised, s0: Vs € dom(Ap), Ap(s) = (S,[S',i: hi,0: hy)),V a € dom(Ap), Ap(a) =a,
Vs € dom(Ag), Ap(s) = (S,[8',i: hiyo: h)) and ¥ a € dom(4g), Ap(a) =a.

From the above, the definition of @ and localisation we can conclude that: dom(Ap)N
dom(4g) = 0 and dom(A;) Ndom(Ag) = 0.

From here, we conclude P | R ~ Q | R as required.

Case (3) Suppose I' =P | R>A; — P' | R'>A{. Then we have

CPoAp -5 P @)
Q)
By the definition of S, we have:
THQsAg— -5 —0'v4) ©)
Ap b A ©)
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By (6), we have that ' - Q | R Ay = Q' | R’ > A}. Then it remains to show that
Aj 1 A;. By composing parallel processes, we have that A] = Ap © Ag and Ay = Ay ©
Ak

From the definition of the bisimulation we have that P,Q,P" and Q' are localised,
so: Vs € dom(Ap), Ap(s) = (S,[S',i: hj,o0: hy)), ¥V a € dom(A}), Ap(a) =a,V s €
dom(A}), Ap(s) = (S,18',1: hi,o fz(,]) andVae dom(A’Q).7 Aé(a) =a.

From the above and the definition of ® and the localisation we can conclude:

df)m(A;,) Ndom(Ag) = 0 and dom(A’Q) Ndom(Ag) = 0. The last result along with (7)
gives us that P | R =~ Q | R as required. O

The proof for the completeness direction follows the technique shown in [9]. How-
ever we need to adapt it to session and buffers.

Definition D.1. An external action ¢ is definable if for for a set of names N, actions
succ, fail ¢ N there is a testing process T (N,succ, fail,£) with the property that for
every process P and fn(P) C N

N implies that T (N, succ, fail,£) | P=> (v bn(¢))(succ[o:bn(£)]|P")
— T(N,succ, fail ,{) | P= Q, where Q {succ, Q ¥ rair implies that O = (vbn(¢))(succ [o:
bn(0)]|P")

Lemma D.2. Every external action is definable.

Proof. The input action cases are straightforward:

1. IfF"PDApﬂP/DAP/ then T =a(s) | succlo:tt].

2. IfFI—PDAPMP’DAPr then T =5[o:Vv] | succo:tt].
3. IfFI—PDAPL&Z)P’DAP/ then T =5[o:{] | succ[o:tt].

The requirements of Definition D.1 can be verified with simple transitions.

Output actions cases:

1 I T F PoAp 4 P'b Ap then we have,

T = fail{) | ale] | succ[o:€] | a(y).
(if y = s then (fail[g] | succ!(y); 0) else (v b)(b(x).succ!(y);0|b[g]))
2. fI'+ PDAP @ P/DAP/.
Then we have:

T = fail{) | ale] | succo:€] | a(y).
(if y € N then (v b)(b(x).succ!(y); 0| b[e]) else (faile] | succ!(y); 0))

3. T PoAp " P'oAp or T PoAp 4 P> A then we have that:

T = fail() | 5[i:€] | succlo:€]|52(y).
(if y=b then (faille] | succ!(y); 0) else (v b)(b(x).succ!(y); 0] b[e]))

respectively for s!({s") we have for the if expression y = s.
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4. 16T F PoAp 25 P/ Ap then we have that:
T = fail() |5[i:€] | succlo:€] | s> {l;: faille] | succ!(y); 0}icr, 1 <i<n

Again the requirements of Definition D.1 can be verified by simple transitions for each
case.

Note that process (v b)(b(x). succ!(y); 0| b[€]) is used to maintain the entire process
typable. Obviously this process is bisimilar to 0.

O
Lemma D.3. If succ is fresh, b € d- 5 and
' (va,s)(P| succlo:b])>Ay 22 (vad,s)(Q | succ[o:b])> Ay (8)
then
I'EP>rAp=Q>Ag )

Proof. Define

S={(T'+PoAp,T - Q>Ap) |
I'F(vd,s)(P| succlo:b])>A =2 (va,s)(Q | succ[o:b])> Ay, succ is fresh}

We shall show that the contextual properties hold in S.

Reduction Closedness: S is reduction closed by the freshness of succ. We cannot ob-
served a 7 transition on succ, so we conclude that if I" - (vd,5)(P | succ[o:D]) > A =
(va,s)(P' | succ[o:b])>Af implies I' - (vd, 5)(Q | succ [0:b])>Ay = (vd,5)(Q' | succ [o:
b])>Aj then I' = P>Ap == P'> Ap implies I' = Q> Ag = Q'> A,

It remains to show that A, 1 A),. From results (8) and (9) and the (Par) typing rule
we conclude that: Aj >1 Ay, Aj = Ap-succ:fo: T]and Ay = Ay - succ:[o: T].

We also have the assumption that succ is fresh, so: V s € dom(4;), s # succ and
Vs € dom(Ay), s # succ.

The result is immediate by the definition of the > operator.

Preserve Observation: If P || ¢ then if ¢ ¢ @ 5'then (vd,s)(P | succ[o:b]) |} ¢ implies
(vd,s)(Q | succlo:b]) || c. From the freshness of succ, we conclude Q |} ¢

Suppose now the case where ¢ € d@-5. We define T = succ?(x). OK!(); 0. Under the
assumption that P |} ¢ we conclude that 7' | (vd,s)(P | succ[o:b]) |} OK.

From the context property of (8) we have that I' - T | (vd,s)(P | succ[o:b])>A; =
LT | (vd,s)(Q | succlo:b])>A; and T | (vd,s)(Q | succ[o:b]) | OK. But this can
only happen if Q |} ¢ as required.

Context Property: The interesting case is the parallel composition. We shall show that
if ' PrAp S Q> Ag. Then for arbitrary process R we have that I' =P | R>Apg S Q | R>
AQR and APR [P AQR.

If we consider that succ may occur in R, then to conclude the above it is enough to
show that: I' F (vad,s)(P | succ’ [o:b]) | R>A = (vad,5)(Q | succ’ [0:b] | Q) > A’ where
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succ’ is fresh. Assume the process: T = succ?(x). succ’!(tt); R | succ’ [o: €], then from
the contextual property of the theorem assumption, we have that: I' F (vd, 5) (P | succ [o:
b)) | TrA = (vd,s)(Q | succlo:b] | T)>A'.

By the above, it is easy to prove (D.1).

‘We now show the typing result. Due to localisation, we have Ap N Ag =0 and Ap N
Agr = 0. From the definition of =, we have that Ap 1 Ap This implies: Ap ® Ag <
Ag © Ag, as required. O

We are know ready to prove the completeness direction.
Lemma D.4 (Completness). = implies ~
Proof. For the proof we show that if
I'EPrAp = QO»Agpand (10)
['FPoAp —5 PoAp (1)

then I' - Q> Agp LN O'vAjand =P A= 0'>A,

Suppose (10) and (11). Then there are two cases.

If ¢ = 7 then by reduction closeness of = the result follows.

In the case where /¢ is an external action we can do a definability test for P by
choosing the appropriate test 7.

Because 2 is context preserving we have that I' =P | T>Apr = Q | T>Agr. By
Lemma D.1 we have that I' = P | T > Apr = (v bn(£))(succ[o:bn(£)]|P')> A so by
the definition of = (Definition 3.2), we have that I' =T | Q>Agr = R >A’. According
to the second part of the Definition D.1, we can write:

I'+R>A" = T'F(vbn(f))(succlo:bn(€)]|Q)>A’ (12)
THQsAg =2 0'bA) (13)

Now we can derive I' - (v bn(¢)) (succ [o:bn(£)]|P)>A =2 R>A" and I' F (v bn(¥)) (succ [o:
bn(0)]|P)>A =T F (v bn(¢))(succ[o:bn(¢)]|Q')>A’. By Lemma D.3 we conclude
that:

I'-Prap=Q'vag (14)
Ap <Ay (15)

We began with the assumption that I" = P>Ap = 1" = Q> Ag and we concluded to (13),
(14) and (15). Thus = implies ~.
O

D.2 Bisimulation Properties

Proof for Lemma 3.4 We define input and output actions.

Definition (Input/Output Actions).

1. £is an input action if £ € {a(s),a(s),s?(v),s?(v),s&l;}
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2. {is an output action if £ € {a(s),a(s),s!(v),s!(v),s ®1;}

Lemma (Input and Output Asynchrony).
Suppose I' - P> A £ pPoA,

1. (input advance) If / is an input action, then I" - P> A e PbA
2. (output delay) If £ is an output action, then I" - P> A — P

Proof. For the first part of Lemma 3.4, there are two cases.

Case (1) The action takes place on a shared channel. Process P has the form R | a[s],
thus ' F R | afs]> A g |als' - s]>A’ with§-5s =555, (55 =55 -sAs =0) Vs =
5.5, A' = AL @s:S. So T FR|aff]>A “4 R | afs-s]>A" = R | a[s]>A" with
§-5=55-5,(F5=55-sAs =0)Vs =5 -sand A" = A ®s:8S.

We conclude the same processes with the same typing as required.

Case (2) Input communication takes place on a session channel. It is similar using
a session queue.
For the second part of Lemma 3.4, there are two cases.

The first case is the action happening on a shared channel. Then I' - P> A —>
P |als) 2 P — PoaY,
al(s
From this we can always conclude that I' - P>A = P’ | a(s) U pr A,

It is obvious that A = A’.

For the second case, we have the action to be observed on a session channel. I" -
- ! - — - -
Pls[ov-hoA 2 P s[o:i]b A, where it = h- .
Thus we can see that '+ P | s[o:v-h]>A = P' | s[o:v- /] H p | s[o:h]>A’,
where v-# = v-h-hg, which concludes the same result as above, with A = A’. O

Proof for Lemma 3.8

Lemma. Let P be session determinate and Q be a session derivative of P. Then P =~ Q.

Proof. The proof considers induction on the length of = transition. The basic step is
trivial. For the induction step step we do a case analysis on —; transition.

Case Receive.. By the typability of P, we have that P’ = 5?(x).Q | s[i:v-h] | R —,
P" = Q{v/x}|s[i:h] | R.

From the induction step, we have that P = P’. To show that P ~ P” we need to show
that P’ ~ P"”. We will use the fact that bisimulation is a congruence. Consider R ~ R
and s2(x).Q | s[i:v-h] ~ Q| s[i:h].

Due to s ¢ fn(R) we can compose in parallel bisimilar processes and get that P’ ~ P”
as required.

The rest of the cases follow similar arguments. a
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Confluence by Construction

LemmaD.1. 1. If P,Q be confluent processes and fn(P) Nfn(Q) =0 and P | Q is
typable then P | Q is confluent.
2. If P is confluent and a ¢ fn(P) then a(x).P | al€] is confluent.

Proof. For the first part of the proof we need to show thatif '+ P | O>A £ R A/ ,
then if R i>R1 and R %Rz then R, % R,R, 4>R” and R' ~ R".

Since fn(P) Nfn(Q) =0, we have that R=P' | O, P = P’ and 0 =N Q' and P/
and Q' are confluent.

We now do a case analysis on the possible Z:l, % transitions and proof the bisim-
ilarity of the resulting processes.

To present a case assume that £, ¢, happen on P’ but = transition is observed in
both P’ and Q'. Recall that the P’ and Q' cannot interact because of free name disjoint-

¢ ¢ .
ness. So we have that P’ | Q' —+ P | Q' and P' | ' == P; | Q». Because P’ is confluent

we have that P | O’ L, pr | Q" and P | 02 N | 0" and P" ~ P (because of the
confluence of P).

We also conclude that: Q' = Q" and Q' = Q" and from Lemma 3.8, we have
that ' = Q" Q' ~ Q" which concludes that Q" ~ Q"".

To show that P” | Q" = P"" | Q" we need to check the actions that each process can

do. Again recall that P, Q" and P, Q" are free name disjoint. So if P | Q" LN Py | Q"

! !
and P" | Q" Lpr | Qo then P" | Q" N Py | Q" and P | Q" = p | O because
P" =~ P" and Q" ~ Q". We apply a similar analysis for the other direction and the result
follows as required.

For the second part of the proof, we have that a(x). P | a[€] b, a(x).P|a[s] —

P{s/x} | ale] and P{s/x} | al€] is confluent by Part 1 of this lemma. O

Proof for Lemma 3.9
Lemma D.5. Let typable, localised P and actions {1, £, such that subj(¢1),subj(¢>) are
session names and {1 < 0. If ' - P> A L PivbAyand ' P> A ﬁ) P> Ay then
6|0 0
rpvA 28 poa and - pa 2 poal
Proof. The result is an easy case analysis on all the possible comptations of £}, ;.
— — !

We give an interesting case. Let (v a)(P | si[o:h1-a]|s2[0:h2-d]) 14 p | s1]o:
- = o = ! N -
]| 52[0: /s -a] and (v @)(P | s1[0: 1 -d] | s2[o:im-a]) 29 P | 51027 -a] | 52 [0: 2a].

o o | N =
Now it is easy to see that P | si[o:h;] | s2[o:hy - q] 214 p | si[o:hy] | s2[0:hy] and
— — ! — —

P|si[o:h)-a]]|sa]o:ha] 1 p | s1[0:h1] | s2[o:h2] as required. O

Two useful lemmas follow.
Lemma D.6. Ler P be session determinate. Then if I' = P> A L PoA and T+
PoA =5 P> A" then P~ P"
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Proof. There are two cases:
Case 7:. Follow Lemma 3.8 to get P ~ P’ and P ~ P". The result then follows.

Case ¢:. Suppose that P in P and P :/h P" implies P = Py in P, =, P".From
Lemma 3.8, we can conclude that P ~ P; and because of the bisimulation definition, we
have P’ ~ P, to complete we call upon 3.8 once more to get P’ ~ P” as required. a

Lemma D.7. Let P be session determinate and £| <1 {. Then if ' - P> A i> Pi>A

0|0 YA
and T - PoA =2 Pos Ay Then T - Pio Ay 28 DoAY and T+ Pys Ay L2 pr A7

and P' =~ P"

Proof. The proof considers a case analysis on the combination of ¢}, ¢>.

Case 51 =351 !<v1>,€2 = S2?<V2>.

- o= Vi - -
P|S1 [Otl’ll-vl] |S2[l!/’l2] —1>S P1 |S1 Olhl} |S2 11]12]
|

[ [

=, P | 51 [o:h)] | s2[i:h))]

Y) - -

2, P | s [o:h\] | s2[i:h)-v2)

= P'| sy [o:h] | s2[i:h5]
Plsi[o:hy-vi]|s2[i:ha) == Py | si[o:ho-vi] | sa[izh))]

Vi = .

2 P} | s1[o:ho-vi] | 52 [i:h - vo]

= P |si[o:h)-vi] | sa[ith) v

—, Py | s1[o:hs-vi] | sa[ithd)

¢ —
N ARICHR A
— P | sy[o:l] | sy [i:h"]
By using Lemma 3.4, we have that P | s [o: i ]| s2[i: l?z] :>Si>sﬁ>sz>s
P[5y [0:h"] | sy [i:hY] and P | sy [o:hy-vi] | 52 [1:5] —Zrymmy— sy P | 51 [0:7] | s[4
1"). We use the lemmas D.5,3.4 to get P | 51 [o:/1 -v1] | 52 [1:/2] ﬁ>s:>si>s P'|sio:
W) 52 122,
The rest of the proof considers Lemma 3.8.

We summarise the above to prove Lemma 3.9.

Lemma. If P is session determinate then P is determinate and confluent.

Proof. From the definition of confluence (resp. determinacy) and from the definition of
P we have that

VI P Ay —=, Qb A

and Q can only do :fh actions. By Lemma D.7 (resp. D.6 we can see that P gives us
the required property. a
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Proof for Lemma 3.11

Lemma. Let Z be a determinate upto-expansion relation. Then & is inside a bisimu-
lation.

Proof. The proof is easy by showing = # <= is a bisimulation. If we write this
relation ., we can easily check that this relation is a bisimulation, using determinacy
(commutativity with other actions).

O

E Comparison with Asynchronous/Synchronous Calculi

E.1 Behavioural Theory for Session Type System with Input Buffer Endpoints

Before we prove the relations in § 6, we define a behavioural theory for the asyn-

chronous session 7-calculus with two end-point queues but without 10-queues [6, 7,
27].

(Acc)  als] “ afs-s] (Rear) als) X% 0 ang) sl sl

(Ou) 1) P ™ P (B} si] S sfin) (sen) stanp P p

4 / -~ Vi f Y '
<Loca|A>P 7 9 <Pa"/\>P —F b;((mf"(Q)—QJ <T3UA> F —7:> re — /Q [//\ﬁ /
P—0 PlQ P 0 P1Q % (vbn(6,) (P | Q)
P L P p 2 pr
<Res,\> 7 <OpenSA>77
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Fig. 12. Labelled Transition for Session Type System with Two Buffer Endpoint Without 10

A labelled transition system is given in Figure 12. The LTS is similar to the LTS of
the calculus studied in this paper (4), except from the output actions. Shared channels,
and input actions have identical transition labels. The output actions cannot be observed
on the buffer since there is no output buffer defined. Instead they are observed in an
output reduction of a process.

E.2 Proofs for Section 6

We prove the results in § 6 for the two asynchronous session typed m-calculus, by either
giving the bisimulation closures when a bisimulation holds or giving the counterexam-
ple when bisimulation does not hold. The results for the synchronous and asynchronous
m-calculi are well-known, hence we omit.

1. Case s!{v); s!(w); P|s[o:€] % s!(w); s!(v); P|s[o:€]. On the left hand side process
we can observe a 7T transition and get s!{w); P | s[o:V] i si{w); P | s[o: €] but
si{w); st(v); P | s[o:€] ;& as required.
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2. Case s1!(v);s2l{w); P|si[o:€]|saf[o:€] = sal{w);s11(v); P|si[o:€]|s2][o:€]

Relation:

R={(si!{v); o!{w); P|si[o:€]|sao:€], sal{w); s1!{(v); P|s1[o:€]|s2][o:€]),
(s21{w): P | 1 [o:3] | s2o:€] . P |51 o] |32[o:])
(P|si[o:v]|s2[o:w], s1!{(v); P|si[o:€]|s2][o:w]),
(P|sifo:v]|sa[o:w], Plsi[o:v]]|s2[o:w]),

(s2!(w); P|s1[o:€] | safo:€], P|si[o:€]|s2]0:W]),
(P|si[o:€]|s2[o:€], P|si]o:€]|s2]0:€]),
(P|sifo:€]|s2[o:w], P|sifo:€]]|s2[o:w]),
(P|si[o:v]|s2[o:€], P|si[o:v]]|sa[o:€])}

gives the result.

3. Case s?(x).s2(y).P|s[i:€] % s2(y).s?(x).P|s[i:€].
On both processes we can observe a s?(v) transition and get s?(x).s?(y).P | s[i:
v =5 52(y). P{v/x} | s[i:€] and s?(w).s2(v). P | s[i:v] = s?(x). P{v/y} | s[i:¢].
From the substitution, we have that both processes are not bisimilar.

4. Case 517(x).522(y).P|si[i:€]|s2[i:€] = 2(y).512(x).P|si[i:€]]|s2[1i:€].

Relation

R={ (s12(x).522(y)- P | s1[1:€] [ s2[i:€] , 522(y)-517(x). P |51 [i:€] | s2[i€]),
(512(x).522(y). P | s1[1:V] | s2[i:€], $22(p).512(x). P | s1[1:v] | s2[i:€]),
(512(x).522(y). P | s1[i:€] | s2[i:w], $22(y).512(x). P | si[i:€] | s2[i:w]),
(512(x).522(y). P | sp[1:v] | sa[i:w], $22(y).512(x). P |s1[1:v] | s2[i:w]),
(27(y).P|si[i:€]|s2]i:€], $22(y).512(x).P|s1[1:V]|s2][i:€]),
(512(x).522(y). P | si[i:€] | s2[i:w], $12(x).P|si[i:€]|s2[i:€]),
(27(y).P|si[i:€]|s2[i:w], P|si[i:€]]|s2]i:€]),
(Plsi[i:€]]s2[iz€], s1?2(x).P|si[i:V]]|s2]i:€]),
(5270)-P | s1[1:8] |52 1] » 5270 51200)-P [ 51 [1:9] | 321 :w]),
(512(x).522(v). P [ s1 [1:v] | s2[i:w] , 512(x). P [ sy [1:v] | s2[1:€]),
(Plsi[i:e][s2[i:e], Plsi[i:e][s2[i:€])}

gives the result.

E.3 Arrived Operators in the 7-Calculi

In this subsection, we define two arrive inspected calculi that try to simulate block-
ing and order-preserving properties as the synchronous and asynchronous w-calculi,
respectively.

For the synchronous 7-calculus, we have blocking and order-preserving input and
output and for the asynchronous 7-calculus we have non-blocking and non-order pre-
serving input and output.

In the context of the synchronous 7-calculus, we cannot easily define the arrived
operator without a slight compromise of the non blocking input property, due to the
asynchronous nature of the arrived operator on the input queue of an endpoint.

The synchronous 7-calculus can be represented asynchronously by having channel
buffers of size one.

Syntax of the Synchronous-like 7-Calculus with Arrive.

P:=0 | ale] | a(x).P | a(v).P | PP | (va)P | if arriveda then P else P
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Labelled Transition Semantics of the Synchronous 7-Calculus with Arrive.

aw).p 2 p a(x). Plafe] “ a(x).Plap]  a(x).P|alv] —s P{v/x}
PP 0N =0 PSP 050, t=0 P5 Pagm
P05 P0 PIO 5 (vbn(L,O)(PIQ)  (vm)P L5 (v)P!
P p P=uP P L0
(va)P wl p P50

if arrived a then P else Qlalg] — Qla[e]

if arrived a then P else Qla[v] — Pla[]

In the synchronous 7-calculus with arrived operator, channel buffers have size of
one and we can receive a value from the environment, only if a corresponding process
is ready to receive on the buffer channel.

To demonstrate the compromise done in to achieve this definition consider

ax).P M P/
a?(v)
a(x).P|ale] —— P{v/x} | ale]

The first process is in the classic synchronous 7 calculus. We can only observe one
input action. For the second system we observe an asynchronous input action. First
a message is put in the communication buffer and then the actual receive happens.
Between the two transition an arrive inspection can happen.

The asynchronous 7-calculus with arrived operator is easier to be defined in a

queue context. The idea here is to have endpoints that use a random policy for message
exchange:

Syntax of the Asynchronous 7-Calculus with Arrive.
P:=0 | ale] | a(x).P | a{v) | PIP | (va)P | if arrived a then P else P

Labelled Transition Semantics of the Asynchronous 7-Calculus with Arrive.

a) o alf] “® affr-n)

- .
@(2).P | aliiy - hi-Bs] — P{hijx} | aliiy i) L= ON(0) =0

Pl -5 P'lQ
pLpPoLoi=r P -5 Pagm
PlQ 5 (v bn(£,0))(P'|Q)) (vm)P -5 (vn)P!
p I pr P=qP P 50

(vr)p 4 p )

if arrived a then P else Qlale] — Qlale]

if arrived a then P else Qlalh-h] — P|a[h]
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The above definition disallows the order preserving property in the system but keeps
the non blocking property as required by the asynchronous 7z-calculus.
Figure 7 shows that the arrive construct behaves the same on all of the calculi.

F Appendix for Selectors
F.1 Mapping

The selector operator is discussed in detailed along with its reduction properties and
applications in [15]. In this section we present an ESP encoding of the selector.

We can extend ESP with the selector operations, with the following reduction se-
mantics.

new selector rin P — (vr)(P | sel(r, €)) register(s,r);P|sel(r,5) — P|sel(r,5-5')
let x = select(r) in typecase x of {(x;:T;) : P;}ics | sel(r, s -5) | §'[S,i:H]

— P{s'/x;} | sel(r,5) | §'[S,i:h] (h+#€)
let x = select(r) in typecase x of {(x;:T;) : Pi}ics | sel(r, s’ -5) | 5’ [i:€]

— let x =select(r) in typecase x of {(x;:T;) : P }ier | sel(r, 5 ') | s’ [1: €]

where in the third line S and T; satisfies the condition for typecase in Figure 3. We also
include the structural rules with garbage collection rules for queues as (v r)sel(r, €) = 0.
Operator new selector r in P (binding r in P) creates a new selector sel(r, €), named r
and with the empty queue €. Operator register(s’,r); P registers a session channel s to
r, adding s’ to the original queue 5. let x =select(r) in typecasex of {(x;:T;) : P }ics
retrieves a registered session and checks the availability to test if an event has been trig-
gered. If so, find the match of the type of s’ among {T;} and select P;; if not, the next
session is tested.

We now show this behaviour can be easily encoded by combining arrival predicates
and typecase. Below we omit type annotations.

[new selector r in PJ f (v b)(b(r).b(7).[P] | b: [€]) [[register(s,r);P]] = Fl{s);[P]

[let x = select(r) in typecase x of {(x;:S;) : P }ier]] oo Select(rF)

[sel(r,5-5)] & rlo:5] | F[1:5]

def Select(xx) = x?(y); if arrived y then typecase y of{(x;:S;) : [P;]] }ier
else x!(y);Select(xx) in Select(rF)
The use of arrived is the key to avoid blocked inputs, allowing the system to proceed
asynchronously. The operations on the collection need to carry session channels, hence
the use of delegation (linear channel passing) is essential [11]. We can easily check
that the embedding operationally simulates the selector given above as the extension of
ESP, and that, under a suitable bisimulation, that it is semantically faithful.

F.2 Typing

The typing rules for the selector are naturally suggested from the ESP-typing of its
encoding. We write the type for a user of a selector storing channels of type T, by
sel(T), and the type for a selector itself by sel(T). For simplicity we assume these
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types do not occur as part of other types. The linear environment A now includes two
new type assignments, r:sel(T) and r:sel(T). The typing rules for the selector follow.

I'+P>A-r:sel(T) I'FPrA-risel(T) S<T ]

(Selector) (Register)

I' +new selector rin TP>A I' Fregister(s,r);P>A-r:sel(T)-s:S
Viell'FP>Ar:sel(T)x:S; S;<T

I'tlet x = select(r) in typecase x of {(x;:S;) : P, }ie;>A-r:sel(T)

(Select)

The typing rule for the selector queue is similar to the runtime typing for a shared
input queue. cf. Appendix C. By setting [[A] as the compositional mapping such that
[r:sel(T)] is given as r:S,-F:S, where S, = uX.!(T); X, and otherwise identity, as
well as extending the notion of error to the internal typecase of the select command, we
obtain, writing ESP™ for the extension of ESP with the selector:

Proposition F.1 (Soundness of Selector Typing Rules).

1. (Type Preservation) I' - P> X in ESPTif and only if I" - [ P] > [ Z].
2. (Soundness) P = P’ implies [|[P]| = [P']; and P — P implies [[P] —* [P].
3. (Safety) A typable process in ESP™ never reduces to the error.

Full proofs and further discussion are given in [15].

G Appendix: Lauer-Needham Transform

This appendix gives the detailed illustration of the Lauer-Needham transformation. Our
translation uses the notations in Figure 13 for brevity, including: pairs, polyadic input-
s/outputs [25], a refined typecase, a refined selector, and an environment as used in the
standard CPS transform. All of them are easily encodable in the eventful calculus in
[15].

The formal mapping follows. Below we say a process is positive if it is either an
acceptor, an input, a branching or a definition, and is blocking if it is positive and is not
a definition. The subject of a positive term is the initial channel name if it is blocking,
and the initial process variable if it is a definition.

Definition G.1 (Lauer-Needham Transform). Let xa(w : S); P be a simple server.
Then the mapping ZA [xa(w : S); P]| is inductively defined by the rules in Figure 13,
assuming the following annotation on P: the subjects of distinct positive subterms in P
are labelled with distinct numerals from 1 to n, as in e.g. xm?(y);Q (then we say the
prefix is blocking at x1), such that 1 to n —m are used for the prefixes and the rest
for the definitions (n > m > 0). We also assume all environments have the same fields
named by the (free and bound) variables occurring in P which we assume to be pairwise
distinct.

As outlined in the main section, the main map ZA4 [xa(w : S); P]| consists of:

1. An event loop Loop(o,q) which denotes a loop invoked at o without parameters. It
also uses a selector queue q. It is composed with 0, initiating the loop.

2. A selector queue g{a,co) named g with a single element (a, o).

3. A collection of code blocks CodeBlocks(a,0,q,¢), each defined using an auxiliary
map Z[R] and [Q,y]. Its behaviour is illustrated below.
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LN [ra(w:S):P] & (vo,q,3)( Loop(o,q) | 3 | gla.co) | CodeBlocks(a,0,4,2) )
where Py, .., P, are the positive sub-terms of P; Py,..,P,_, the
blocking ones whose subjets are respectively typed Sy, .., Sy—m;
and o, g and ¢ = ¢]..c,, are fresh and pairwise distinct.

Loop(o,q) &l 0. letw= select(q) in typecase w of {
(x:8,z:env): newy:envinZz(y),
(x:81, y:env, z:S,env): Z{x,y), ...
(x:Sp—m,y:env,z: Sy_m,env) : Z{x,y)
}
CodeBlocks(a,0,q,&) < B[a(w:S):P] | [, ZIP]
Blxa(w:S).P] o xco(y).a(w':S).update(y,w,w'); register(q,a,co); [P,y]
A 2z:7).0] € wei(¥,y)¥2().update(y,z,?); update(y,x,.2); [0.)]
i def
B {12 0})] = #ai(,y)x' {1 update(y.x.X); [Q;)]};

[x!{e): 0.y] & et ' = [x], inx'1([e],): update(y,x,x): [Q.)]
def

[x!{k); 0,¥] = letx' = [x]y in 1et K = [«]y in X' K'Y, update(y, xk,x'k'); [0, V]
[val;;0.y] & 1et z =[xy inzal;;[Q,)]
[b(z:5):0.5] & b(Z : $):update(y.2,7): [Q.7]
[10,y] & 1etx =[], inregister(q,x, c;,y):3 (Q s blocking at x(!))
[0y €5

Fig. 13. Translation Function for Lauer-Needham Transform

The initial execution of ZA [xa(w : S); P] starts from the event-loop. It fetches a chan-
nel at which a message has arrived by select: what it finds in the selector queue is
checked and typed by the typecase construct from [15] (as illustrated in Appendix A).
Initially it will only find a request via a. After finding it, the loop then creates a brand
new environment and jumps to the initial code block at cy, passing the environment.

Once invoked, the initial code block, Z[a(w:S); P], receives a fresh session chan-
nel through the buffer of a, saves it in the environment, and moves to [[P,y]]. The code
[P,y] carries out “instructions” from P, using the environment denoted by y to inter-
pret variables. After completing all the consecutive non-blocking actions (invocations,
outputs, selections, conditionals and recursions) starting from the initial input, the code
will reach a blocking prefix or 0. If the former is the case, it registers that blocking
session channel, the associated continuation and the current environment in a selector
queue. Then the control flow returns to the event loop.

The event loop then tries to sense the arrival of a message again by scanning the reg-
istered channels (shared and session). Assume it finds a message via a session channel
this time. It then decides its type by typecase and invokes the corresponding contin-
uation code block, passing the session channel and the environment. The code block,
which has the shape %[ P;] for a blocking sub-term P, of P, now receives the message
via the passed session channel, saves it in the passed environment, and continues with
the remaining behaviour until it reaches a blocking action, in the same way as illustrated
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for the initial code block. The combination of a typecase and a session channel passing
above enables the protection of session type abstraction, ensuring type and communi-
cation safety.

G.1 Lauer-Needham Transform properties

The translation TE [xa(w : S); P]) radically changes the original code organisation. How-
ever the two technical underpinnings of our event-based formalism, types and bisimula-
tions, offer a firm and tractable basis to reason about these processes, relating the event-
based code to the original server. Below we discuss the key properties of our translation
and its extensions. We say a closed typed process is sequential if its arbitrary well-typed
multi-step transition derivative has at most one redex pair.

Proof for Lemma 4.4

Lemma. xa(w : S);R | al€] is confluent.

Proof. R is confluent by definition.

A derivative of xa(w: S);R | ale]is Ry | ... | Ry | xa(w:S);R | al€] | [Tkessi[i:
hii,0 hoi) =Ry | ... | Ry | xa(w:S);R|a(w:S);R | ale]| [Tner Sm[i:him,0: hom) Where
I={1,...,n}, which counts the session endpoints in the system.

Processes Ry, ..., R, do not share any names, so process:
Ri|...|Ry|a(w:S);R|ale]| [lnesSm|i:him;0:hom) is confluent by Lemma (D.1).

From structural congruence we conclude that the entire process is confluent. a

Proof for Lemma 4.5

Lemma. TE[*a(w:S);P |ale]] is confluent.

Proof. The structure of the transformation is constructed out of session transitions =
and transitions on shared names. As we will see the transitions on shared names are
confluent.

An ambiguous transition is the arrive transition defined in the selector used in the
Loop process. We need to show that for the arrive derivative of the initial transformation
the process follows the definition of confluent processes. Consider the process:

P = if arrived s; then typecase s; of{...} else Select | a[5]
| sel((sk, i)y (k-1 Ek-1,6-1)) | [T Sm[L:him, 02 hom] | CodeBlocks

mel

where I = {1,...,n}, which counts the session endpoints in the system.

When vector ﬁ;-i = g(for some i) then it is trivial to show the definition of confluence
processes by showing a bisimulation on the resulting processes.

In the case where i?ii = € and assuming that /; = 5;?(v) we have to show the confluent
transitions and show that the resulting processes are bisimilar. We do a case analysis on

. . !
the possible transitions ==.
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Case [, = 5;2(V/).

2
p P = if arrived s; then typecase s; of{...} else Select | a[s] |

sel{(si: i) (k1 G-trcemt)) | [T s (22 hims 02 hom] |
mel—{i,j}

s; [i:h?j,o:h;j] | si [i:hi,i v,o:hzi] | CodeBlocks

5;200) .
P ="P,=Q|als3] | sel((s2,EksCon)s - s (526-1, E2k—1,2%1)) |
IT  smli:hoim,0:hoom] | si[i:h2si,0:hai] | s [1:haij V' 0:hagj]

mel—{i,j}

with:

. 12 -
m=j Jhpy,-V = hZim “hoim

- r - - r
1<m<n, hjy= hg[m “h2imy hoom = h20m hom

From the confluence definition, we have that:

5;20v)
P P =0 [ als'] | sel (5,60, €h)s o (ko1 6-1,¢k-1)) |
[1 h:m7o hom] |Sl [1 h;,ao hm] |S] [1 h:],o /’l/ }
mel—{i,]}

“,‘? Vv =
Py 2 P 0 | als?] | sel{(s}, E ) (oo EL e ) |

[T smlihl, 0mhh,) | si[ich 0] | s;[i:h);,0:h0 ]
mel—{i,j}

with:

—

s=251-5

—

- ’ - 7
m=j hpmV ="hjm- him
1<m<nhjy,= hlzm h,mahf;m hiom * hom
s =5 §

— oo i7 7

=i hyy-v= thm R

m
1 <m<nhym=hl, W H =l _h,
— 2im = My, im’ 20m " F2om

At this point we need to show that P’ ~ P":
Let the symmetric relation % such that:

% = {(P,Q)|P, Q have the form of P’, P" respectively }

?

Assume that P#ZQ and P — %20 P'. Then we can always observe Q
PRQ .
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Suppose P M P’. Then by combining the relation between the buffers of P and Q,

we have Q ""JQ Q' orif sy [o: €] then O :M Q' and P’ZQ' in both cases.

We have similar results for a(s) and @(s). as well as in the bounded objects actions.

The last case is also trivial. Suppose P — P'. Then Q = Q' and P’ ZQ'.

This completes the case when I, = s5;7(v'). The case for I = s;?(V') is similar. So
is the case for I = a(s). Cases lp = s;1(v),l» = s;!(v) follow the same arguments. Case
I, = a(s) cannot happen by the specification of thread elimination.

Shared transitions should also be confluent. Suppose
Ci(s, &) | sel(s, g, ¢;) | Buffers(l) | Codeblocks. From here the confluence definition is
trivial to be observe.

All other derivatives of TE[xa(w : S); P | a[€]] are confluent due to the presence of
= transition.

By the confluence definition the result follows. a

Proof for Lemma 4.6

Lemma Let

P=(v Eor)(Lﬁoop|C_?deBlocks|r<(s17§17c1),...,(si,é,»,c,-)7(sj,.’;'ﬁcj),...,(sn,én,cn» | als]
| TLncSm[i:him,0:hom)) and

P, = (v cor)(Loop | CodeBlocks | r{(s1,&1,¢1),.-.,(5j,&j,¢)), (51, &ir¢i) - -5 (s Enscn)) | als]
| Hmelsm [i:h;mao h;mD

Then P; = P».
Proof. Assume a relation % such that

Q] = (V &)r)(Loop | CodeBlocks ‘ r<(sk7€kack)a---7(Si7§ivci)a(Sjvéjacj)w~~a(sk—17<§k—lack—1)> |
als] | [T sm (3 tims 02 rom)),

mel
Qz = (V Z"O}”)(LOOp | CodeBlocks ‘ V<(Sk, ék,ck), ey (Sj, ‘gj,Cj), (Si, é,’,C,’)7 N (skfhékfhckfl» |
a[ﬂ | Hsm [j-:h;nao:h:m])

mel

and P].%Pz, Q]%Qz.

We want to show that % is an upto-expansion relation.

From Lemma 4.5 we have that Q, 0>, P; and P are confluent.

The requirement of typing holds, since both processes have the same typing due to
the existence of the same endpoints in both related processes.

For every observable action ¢ the case is trivial, since if Q; LN Q] then Q> LI
Q.

It remains to show the case for / = 1.

If 01 — Q)] then

Q> = Q) = (v @or)(Loop | CodeBlocks | (..., (sx_1,&—1,cx—1)s (St, Es )5 - -+

(5j:&1:¢)), (50 &) | al] | T sm[L: s 0: 1))

mel
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and

Q) = (v cor)(Loop | CodeBlocks | (..., (sk—1,&—1,ck-1), (5, & k), - -+

(shéiaci)?(sj’éﬁcj» |a[§1 | Hsm [i:h_g;wo;th])

mel

and Q| Z (), as required. 0

Proof for Theorem 4.7

Theorem Let xa(w : S);R | a[e] be a simple server. Then *a(w : S); P ~ TE[[xa(w :
S):P | ale]].

Proof. Assume a relation .’ such that

P=Ri|...|R,| *a(x).R|al]| [lnessm[i:h,,0:0,]
Q = (v éor)(Loop | CodeBlocks | r{(s1,&1,¢1), .-, (sn, Enycn)) | al5]
‘ Hmel Sm [i :h;m’ o: hi)m])
and (P,Q) € .7
with Ry, ..., R, blocking subterms of R

We will show that . is an upto-expansion relation.
From Lemmas 4.4 and 4.5, we verify the first requirement.

I'ta:(S),['FRox:S, I'tals]>5:S
I't+a(x).R|aff]>a-5:S

I F [ier(Ri | si[d:hir, 0 hoi)) > [ier 532
T'FRy|...|Ry| xa(x).R|Buffers(l) | als|>a [l 5::Si-5:8

V R € InputSubTerms(R),[" F [R,y]>0, ' = Z[R] >0
I' - CodeBlocks>0

I' - Looprr:S,-7:S7

I Ties(si[i:hi,0choi] | 7l ]| FL . ]) STl 528w r:Sp - 728!
'+ (v 0ér)(Loop | CodeBlocks | a[s] | Buffers(I) | r(si¥i))>a-[lic;5i:Si-5:8

We can check both processes have the same typing.

For the case when observing external actions, the result is trivial since one process
can simulate the other.

For I = 7 we have:
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If

(v Cor) (Loop | CodeBlocks | r{(s1,&1,¢1)s- -, (S, Enycn)) | al8] | Tlmer Sm [i:h?m,o:hgm}) —

—

(V Z"Oi‘) (P ‘ V<(S1,é1,€1)7...,(Smémcn» |a[§] | Hmelsm [i:hgm’OZhgm])

then .
/

Ri|...|Ru| *a(x).R| Hmelsm[i:hgmﬂ‘j:flom]:_'>
Ry |...|Ry| *a(x).R|als] | [TnerSm[i:h,,0:h,,]

om

with R) to be a blocking subprocess of R and

(v or) (P r{(s1,&1,¢1), . (5, Enscn)) | @8] | Thes S [1:H],, 0:h0,]) = B B
(v cor) (Loop | CodeBlocks | r{(s2,82,¢2),...,(s1,E1,¢1)) | a[s] | [Tnes Sm ik, 0:h,,])

as required.
Now for the symmetric direction we have that if:

Ri| ... |Ry| #a(x).R|als] | Thuersmli:H],,0:h,,] —
Ri|...|R| ... |Ry| xa(x).R|als] | [Tnersm[i:h,, 01,

then we can use Lemma 4.6 to choose a bisimilar process to the event server with a
permuted selector such that

(v Cor) (Loop | CodeBlocks | r{(si, &, ¢i)s--) | als] | TTmer Sm [i:hf:ﬁ,o:hzm]) =
(v cor) (Loop | CodeBlocks | r(..., (si,&i,ci)) | als] | TTnerSm[1:h,,, 0:h,,]

and
Ri|...|R|...|Ry| xa(x).R|al5] | Hmelsm[i:hgm,o:hgm]:>
Ry | ... |R/| ... |Ry| *a(x).R|als'] | [TnesSm(i:h,,0:h,]

The resulting processes are related by .7
Then we conclude the case with Lemma 3.11.
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