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Abstract

Currently, human diseases are classified as they were in the late 19th century, by con-

sidering only symptoms of the affected organ. With a growing body of transcriptomic,

proteomic, metabolomic and genomics data sets describing diseases, we ask whether the

old classification still holds in the light of modern biological data. These large-scale and

complex biological data can be viewed as networks of inter-connected elements.

We propose to redefine human disease classification by considering diseases as systems-

level disorders of the entire cellular system. To do this, we will integrate different

types of biological data mentioned above. A network-based mathematical model will be

designed to represent these integrated data, and computational algorithms and tools will

be developed and implemented for its analysis. In this report, a review of the research

progress so far will be presented, including 1) a detailed statement of the research

problem, 2) a literature survey on relative research topics, 3) reports of on-going work,

and 4) future research plans.
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1. Introduction

Most human diseases can be viewed as a consequence of a breakdown of cellular pro-

cesses. However, the relationships between diseases and the molecular interaction net-

works underlying them remain poorly understood. As more and more transcriptomic,

proteomic, metabolomic and genomics data sets become public available, it is benefi-

cial to improve our understanding of human diseases and diseases relationship based on

these new system-level biological data.

We propose to address the question of integrating different types of large scale bio-

logical data with the aim to redefine disease classification and relationships among dis-

eases. Network-based mathematical models and computational tools will be designed

and implemented for disease classification, and will hopefully lead to improvement of

therapeutics in collaboration with GlaxoSmithKline (GSK).

In consideration of reliable diagnosis and treatment, an accurate classification of hu-

man disease is essential in the area of biology and medical science. Contemporary

classification of human disease dates to the late 19th century, and derives from obser-

vational correlation between pathological analysis and clinical syndromes [1]. Published

by the World Health Organization (WHO), the International Statistical Classification

of Diseases and Related Health Problems (also known by the abbreviation ICD) is con-

sidered as an international standard diagnostic classification, and is used worldwide for

all general epidemiological and many health management purposes [2].

However, with the identification of molecular underpinnings of many disorders, as

well as the further influences of definitive laboratory tests in the overall diagnostic

paradigm, this classification approach has been considered as both a lack of sensitivity

in identifying preclinical disease and a lack of specificity in defining disease unequivocally

[1]. A precise disease classification consistent with modern systems-level data, such as

proteomic, metabolomic and genomics data, will result in better understanding of basis

for disease susceptibility and environmental influence and higher therapeutic efficacy of

disease treatment.

The behavior of most complex systems emerges from the orchestrated activity of

many components that interact with each other through pairwise interactions [3]. The

components can be abstracted as nodes, which are linked by edges indicating the inter-

actions between these components, and these nodes and edges form a network. As most

of biological data are large-scale and complex, networks have been applied to model
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these data, leading to the development of novel quantitative biological network analysis

methods.

Hence, we propose to take a network science approach to presenting various slices of

systems-level biological information in an integrated way that will allow mining of these

complex data. The integrated biological data are proposed to form a hybrid network

and new techniques for analyzing the network will be developed and implemented. We

will use theoretical insights from graph theory, the mathematics of complicated net-

works, along with modern probabilistic models and scientific computing approaches for

developing these new techniques. Additionally, graphlet-based approaches will be ap-

plied to the hybrid model to uncover biological function from the model’s topology and

structure.

In the rest of the report, we will first give a review of literature and relevant re-

search associated with biological network analysis (Chapter 2). Relative topics such

as different types of biological networks, random models, global and local properties of

networks, will be fully explained. Graphlet-based methods will be recalled, along with

their applications for node comparison, network comparison and network alignment.

Chapter 3 will focus on details of on-going projects. In the session biological network

integration, the collection of relevant data will be covered, including detailed descriptions

for some public biological databases that will be used in the project. Additionally, the

structure of integrated network model will be discussed. In the session network analysis

and modeling, the research work done for the response letter to paper “How threshold

behavior affects the use of subgraphs for network comparison” will be presented.

Future research plans will be covered in Chapter 4. We will list the main challenges of

the project, and point out the new techniques to be developed for solving these research

problems. Furthermore, an outline of the dissertation will be included in this chapter.

Chapter 5 will summarize the main points of the report. Other relative work of the

project, such as supplemental materials of Chapter 2 and Chapter 3, can be found in

the appendix.
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2. Literature Review

2.1. Data: Biological Networks

Networks have been used to represent many real-world phenomena including biological

systems. These networks are commonly modeled by graphs. A graph is defined as

a set of objects, called nodes, along with pairwise relationships that link the nodes,

called edges. There are many different types of biological networks representing various

biological phenomenons. One popular example is protein-protein interaction network,

which models the physical interactions among proteins in the cell.

In this section, we will give a introduction of different types of biological networks.

Detailed descriptions of molecular interaction networks will be given in section 2.1.1.

These molecular interaction networks include protein-protein interaction network, tran-

scriptional regulation network, metabolic network, cell signalling network and genetic

interaction network. In section 2.1.2, we will present some other types of biological

networks, for example, disease-gene association network and drug-target association

network.

2.1.1. Molecular Interaction Networks

Molecular interaction networks have been used to model interactions between biolog-

ical molecules. In these networks, nodes represent biological molecules such as genes,

proteins, metabolites, etc., and edges represent physical, chemical, or functional interac-

tions between the biological molecules. Analyses of these molecular interaction networks

will lead to better understanding of entire cellular system.

Protein-protein Interaction Networks

Proteins are important macromolecules of life and understanding the collective behavior

of their interactions is of biological importance [4]. Interaction between two proteins

occurs when they physically bind together, often to perform biological function. As the

core of the entire interactomics system, protein-protein interactions (PPIs) are of central

importance for virtually every process in a living cell. Studies of PPIs can lead to further

understanding of diseases, along with the development of therapeutic approaches.
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Networks are used to model PPIs. In PPI networks, nodes are proteins and undirected

edges exist between pairs of nodes corresponding to proteins that can physically bind

to each other. Figure 2.1a demonstrates a schematic representation of a PPI network.

Some stable protein interactions form protein complexes, which are groups of proteins

that together perform a certain cellular function. There is evidence suggests that protein

complexes correspond to dense subgraphs in PPI networks [5, 6, 7].

(a) A schematic representation of a PPI network (b) A human PPI network

Figure 2.1.: (a) A schematic representation of a PPI network. (b) A human PPI network
with 2,667 interactions amongst 1,529 proteins. PPIs are obtained from
U. Stelzl’s study in 2005 [8], and the PPI network is visualized by using
Cytoscape 2.8.1 [9]

Nowadays, large-scale (high-throughput) experimental techniques (HT) have been

applied to detect PPIs. The two techniques commonly used are yeast two-hybrid

(Y2H) screening [10, 11, 12, 8, 13] and Mass Spectrometry (MS) of purified complexes

[14, 15, 16, 17]. Compared to traditional small-scale biochemical techniques (SS), HT

methods are more standardized, and offer an unbiased view of the entire proteome [4].

Recently, partial PPI networks of some organisms, for example, Homo Sapiens (hu-

man),Saccharomyces Cerevisiae (yeast), Caenorhabditis Elegans (nematode worm) and

Drosophila Melanogaster (fruitfly), have been produced. Figure 2.1b shows a human

PPI network with 2,667 interactions amongst 1,529 proteins. However, due to limita-

tions in experimental techniques, current PPI data sets are noisy and largely incomplete.

Additionally, sampling and data collection biases introduced by human make the PPI

networks quite sparse with some parts being more dense than others (e.g., parts relevant

for human disease) [18].
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Transcriptional Regulation Networks

Transcriptional regulation networks are biochemical networks responsible for regulating

the expression of genes in cells [19]. In a transcriptional regulation network, nodes

represent genes, and directed edges are interactions through which the products of one

gene affect those of another. Figure 2.2 illustrates how to model gene regulation as a

network. As shown in the figure, if transcription factor X, which is protein product

of gene X, binds regulatory DNA regions of gene Y to regulate the production rate

of protein Y, then this process can be modeled as a simple network which contains a

directed edge from node X to node Y.

Figure 2.2.: A schematic representation of a transcription regulation network. The figure
is reproduced from [20]

Metabolic Network

Metabolism is the set of biochemical reactions that allow living organisms to grow

and reproduce, maintain their structures, and respond to their environments. These

biochemical reactions are organized into various of metabolic pathways, which are the

series of successive biochemical reactions for a specific biological function. In a metabolic

pathway, one metabolite (small molecules such as Amino acids) is transformed through

a series of steps into another metabolites, catalyzed by a sequence of enzymes.

Figure 2.3.: A schematic representation of a metabolic network. The figure shows how to
model a simple metabolic pathway (catalyzed byMg2+-dependant enzymes)
as a network. The figure is reproduced from [3]

Metabolism can be modeled as metabolic networks. In a metabolic network, nodes

correspond to metabolites and enzymes, and edges are biochemical reactions that con-
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vert one metabolite into another. The example shown in Figure 2.3 demonstrates how

to model a simple metabolic pathway (catalyzed by Mg2+-dependant enzymes) as a

network. The metabolic pathway illustrated by the first network in figure 2.3 can be

modeled as undirected graph if all interacting metabolites are considered equally. Fur-

thermore, if co-factors are ignored, the network can be simplified as a four-node path

only connecting the main source metabolites to the main products.

Cell Signalling Network

Cell signalling can be considered as a complex communication system that governs basic

cellular activities. The function of communicating with the environment is achieved

through a number of pathways that receive and process signals, not only from the

external environment but also from different regions within the cell [21]. These pathways

are ordered sequences of signal transduction reactions in a cell, and can form the cell

signalling network. In the cell signalling networks, nodes are genes and the edges shows

order of signal transduction reactions in the cell.

Genetic Interaction Network

Proteins or genes can be linked and form a network not only by their physical interaction,

but also their functional associations. The functional association of genes refer to the

phenomenon whereby the mutation of one gene affects the phenotype associated with

the mutation of another gene. For example, Two non-essential genes that cause lethality

when mutated at the same time form a synthetic lethal interaction. Genetic interaction

networks are used modeled the functional association of gene, in which nodes correspond

to genes and edges indicate functional associations of genes.

Large-scale genetic interactions have been detected in model organisms, like Es-

cherichia Coli (bacterium), Baker’s yeast, and Schizosaccharomyces Pombe (fission

yeast). For example, Tong et al. constructed an yeast genetic interaction network

containing 1000 genes and 4000 interactions [22]. Though there are not many studies

on human genetic interactions, knowledge of the genetic interaction networks of other

organisms may be relevant to our understanding of complex human diseases [23].

2.1.2. Disease Networks and Drug Networks

Besides molecular-level data such as protein-protein interactions and genetic interac-

tions, many other biological data can be modeled as networks. For example, a human

disease network can be constructed based on the associations between disorders and

disease genes. Another example is drug-target association network, which is built to
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represent the interactions between drugs and their target proteins. These biological

networks play an important role in network medicine as well as systems pharmacology.

Disease Network

Disease-gene association network is a network that connects genetic disorders and all

known disease genes in the human genome. Figure 2.4 gives an example of a diseasome

bipartite network, in which a disorder and a gene are connected by an edge if mutations

in that gene lead to the specific disorder [24]. The disease-gene association network has

two projections. The first projection is a disease network, in which two genetic disorders

are connected if there is a gene that is implicated in both. The second projection is a

disease gene network, in which two genes are linked by an edge if they are involved in

the same disorder.

Figure 2.4.: Left: human disease network. Center: disease-gene association network.
Right: disease gene network. Circles and rectangles correspond to human
diseases and disease genes, respectively. In the disease-gene association net-
work, the size of a circle is proportional to the number of genes participating
in the corresponding disorder, and the color corresponds to the disorder class
to which the disease belongs. In the human disease network, the width of
a link is proportional to the number of genes that are implicated in both
diseases. In the disease gene network, the width of a link is proportional to
the number of diseases with which the two genes are commonly associated.
The figure is taken from [24].

.

In Goh et al.’s study, the disease-gene association information was obtained from the

Online Mendelian Inheritance in Man (OMIM, see section 3.1.1 for details). The disease-
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gene association network can also be constructed based on the information obtained by

systematic literature mining methods [25]. In Li et al.’s study, diseases were associated

to biological pathways where disease genes were enriched and linked together based on

shared pathways. The human disease network constructed by using this method offers

a pathway-based view of the relationship between disorders.

However, it is noticed that in the human disease network shown in figure 2.4, metabolic

diseases are the most disconnected class in the network. To gain insights of the rela-

tionship between diseases and molecular interaction networks, Lee et al. proposed a

metabolic disease network in which nodes were diseases and two diseases were linked if

mutated enzymes associated with them catalyze adjacent metabolic reactions [26]. The

metabolic disease network was constructed based on the metabolic reactions information

obtained from Kyoto Encyclopedia of Genes and Genomes (KEGG, see section 3.1.1 for

details) and a database of Biochemical Genetic and Genomic knowledgebase of large

scale metabolic reconstructions (BiGG), as well as disease-gene association information

obtained from OMIM. Further more, Medicare records of 13,039,018 elderly patients in

the US were analyzed to exam the co-occurrences of diseases which were linked in the

metabolic disease network.

Drug-target Network

Most drugs act by binding to specific proteins, thereby changing their biochemical

and/or biophysical activities, with multiple consequences on various functions. These

specific proteins are called drug targets, and the identification of interactions between

drugs and target proteins is a key area in genomic drug discovery. Network analy-

ses of drug action have been used in field of systems pharmacology, for understanding

the mechanisms underlying the multiple actions of drugs as well as drug discovery for

complex diseases [27].

Drug-target association network is a network connects drugs and target proteins.

Similar to the disease-gene association network, drug-target association network can

have two projections. In the first projected network, nodes are drugs and drugs are

connected if they share a common protein target. In the second projected network,

nodes are protein targets and two protein targets are linked by an edge if they are

affected by the same drug. Yıldırım et al. built a bipartite graph composed of US

Food and Drug Administration (FDA)-approved drugs and proteins linked by drug-

target binary associations, shown by figure 2.5 [28]. Lists of drugs and corresponding

targets obtained from the DrugBank database (see section 3.1.1 for details) were used

to construct the drug-target association network.
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Figure 2.5.: Drug-target network. Circles and rectangles correspond to drugs and target
proteins, respectively. The size of the drug node is proportional to the
number of targets that the drug has, while the size of the protein node
is proportional to the number of drugs targeting the protein. Drugs are
colored according to their Anatomical Therapeutic Chemical Classification,
and proteins are colored according to their cellular component obtained
from the Gene Ontology database. The figure is taken from [28].

2.2. Methods: Graph Theory for Network Analysis

Theoretical insights from graph theory have been successfully applied to various of

network analysis tasks, including network comparison, network alignment, as well as

network integration. Recall that a graph is defined as a set of objects, called nodes,

along with pairwise relationships that link the nodes, called edges. In graph theory, a

graph is usually denoted by G(V,E), where V is the set of nodes and E ⊆ V × V is

the set of edges. |V | is used to denote the number of nodes, and |E| is used to denote

the number of edges. V (G) is used to represent the set of nodes and E(G) is used to

represent the set of edges. There are two main standards for representing network data,

namely edge list and adjacency matrix. An edge list is simply a list of edges in the

network. An adjacency matrix is an n×n matrix where the entry aij is 1 corresponding

to the presence of an edge connecting node i to node j and 0 corresponding to the

absence of an edge connecting node i to node j. Figure 2.6 demonstrates an example of

how to represent a network G by edge list and adjacency matrix.
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Figure 2.6.: Two main standards for representing network data.

In this section, we will give an introduction to network analysis and modeling meth-

ods that are commonly applied to biological networks. In section 2.2.1, we will talk

about the main computational concepts of network comparison, including global and

local network properties. Then in section 2.2.2, we will describe several main network

models and illustrate their use to solve real biological problems. In section 2.2.3 and

section ??, we will give an overview of the major approaches for network alignment and

network integration, respectively. Finally, some software tools for network analysis will

be presented in section 2.2.4.

2.2.1. Network Comparison

Network comparison aims to identify similarities and differences between data sets or be-

tween data and models. It is regarded as an essential part of biological network analysis.

The task of large-scale network comparison brings on subgraph isomorphism problem,

which is to determine whether a graph G contains a subgraph that is isomorphic to

graph H. However, subgraph isomorphism problem is NP-complete, which means that

no efficient algorithm is known for solving it [29].

Hence, some computable heuristics that we call network properties, are proposed for

biological network comparison. Network properties can be roughly and historically

divided into two categories, global network properties and local network properties.

Global network properties

Global properties include degree distribution, clustering coefficient, average diameter

and various forms of network centralities. These network properties offer an overall

view of the network.

• Degree distribution. The degree of a node in a network is defined as the number of

edges the node has to other nodes. Let P(k) be the percentage of nodes of degree

k in the network. The degree distribution is the distribution of P(k) over all k.
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The simplest network model, for example, Erdös-Rény random graph (see sec-

tion 2.2.2 for details), has a Poisson degree distribution (figure 2.7a). However, it

has been noticed that most networks in the real world have degree distributions

that approximately follow a power law (figure 2.7b). These networks are called

scale-free networks [30] (see section 2.2.2 for details).

(a) Poisson distribution (b) Power law distribution

Figure 2.7.: Poisson distribution and power law distribution.

• Clustering coefficient. A network shows clustering if the probability of a pair

of nodes being adjacent is higher when the two nodes have a common neighbor

[31]. The clustering coefficient Ci of a node i is the proportion of number of edges

between the nodes within its neighborhood (denoted by Ei) divided by the number

of edges that could possibly exist between them,

Ci = 2Ei/ki(ki − 1), (2.1)

where ki is the number of neighbors of i. The average clustering coefficient is

defined as the average of the clustering coefficients of all the nodes i in the network

[32],

C̄ =
1

n

n∑
i=1

Ci. (2.2)

where n is the number of nodes. The distribution of the average clustering co-

efficients of all nodes of degree k in the network over all k is called clustering

spectrum.

• Average diameter. The average diameter of a network is the average of shortest

path lengths over all pairs of nodes in a network. Most large-scale real-world

networks have small diameters, referred to as the small-world property [32].

• Node centralities. There are various measures of the centrality of a node in a

network. For example, degree centrality is defined as the number of edges incident

upon a node, which means high-degree nodes have higher degree centrality than

other nodes. Another example is closeness centrality, which defines nodes with

short paths to all other nodes in the network have high closeness centrality. These

centrality measures are proposed to determine the topological importance of nodes.
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For instance, in PPI networks, nodes with high degree centrality are considered to

be biologically important.

The global network properties mentioned above have been widely used for biological

network comparison. However, these measures are not powerful enough to precisely

describe a network’s topology, as networks with exactly the same value for one network

property can have very different structure. One straightforward example is, considering

a network G which contains 3 triangles, and another network H which contains a 9-node

circle, it is not difficult to find out the two networks have the same number of nodes, the

same number of edges and the same degree distribution. However, these two networks

have very different structure, as demonstrated by figure 2.8.

(a) A network contains 3 triangles. (b) A network contains 9-node circle.

Figure 2.8.: Examples of Networks which have the same size and degree distribution but
very different structure. (a) A network contains 3 triangles. (b) A network
contains 9-node circle. Figures are reproduced from [18].

Furthermore, due to the incompleteness and biases in current biological data, these

global network properties may even mislead the understanding of biological network

topology. Though high throughput experimental methods have yielded large amounts

of biological network data, these networks are currently largely incomplete. As all these

global network properties are calculated based on the entire network, they do not tell

us much about the structure of these incomplete networks. Additionally, the current

biological data may contain biases introduced by sampling techniques which are used to

obtain these biological data. For example, in bait-prey experiments for PPI detection,

if the number of baits is much smaller than the number of preys, all of the baits will be

detected as hubs, and all of the preys will be of low degree [18]. Therefore, it is essential

to perform local statistics on these networks.

Local network properties

As mentioned above, many real-world networks share global network properties such

as small-world and scale-free. Despite these global similarities, networks from different

fields can have very different local structure [33]. Generally speaking, the local properties
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of networks include network motifs and graphlets. Both motifs and graphlets can be

considered as small building blocks of complex networks, and they are widely used in

biological network analysis with the aim to uncover local structure of networks.

The network motifs are those subgraphs that recur in a network at frequencies much

higher than those found in randomized networks [20, 19]. In Milo et al.’s study, several

networks including transcriptional regulation network, food webs, neuron connectivity

network, electronic circuits and World Wide Web, were scanned for all possible 3-node

and 4 node subgraphs (all 3-node subgraphs are listed in figure 2.9), and the number of

occurrences of each subgraph was recorded.

Figure 2.9.: All 13 types of three-node connected subgraphs. The figure is reproduced
from [20].

The identified motifs are insensitive to noise, since they do not change after addition,

deletion, or rearrangement of 20% edges to the network at random [20]. It is shown that

different networks may have different motifs. Moreover, in biological networks, these

motifs are suggested to be recurring circuit elements that carry out key information-

processing tasks [19, 34, 35].

Based on network motifs, an approach to study similarity in the local structure of

networks was proposed in [36]. A real network was compared to a set of randomized

networks with the same degree sequence to calculate the significance profile (SP). For

each 3-node and 4-node subgraph i, the statistical significance was described by the Z

score,

Zi = (Nreali− < Nrandi >)/std(Nrandi), (2.3)

where Nreali is the number of times i appeares in the real network, and < Nrandi >

and std(Nrandi) are the mean and standard deviation of its appearances in the set of

randomized networks. The SP was defined as the vector of normalized Z score,

SPi = Zi/(
∑

Z2
i )1/2. (2.4)

By using this method, several superfamilies of previously unrelated networks were found

with very similar SPs [36].

However, it is noticed that motif-based approaches ignore subnetworks which recur
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at low or average frequencies in a network, and thus are not sufficient for full-scale

network comparison [37]. Moreover, the detection of motifs is highly depending on the

choice of the appropriate null model. For example, if the Erdös-Rény random graph

(see section 2.2.2 for details) is chosen as the null model, every dense subgraph would

be identified as a motif since they do not exist in the ER model network.

Graphlets have been introduced to measure of local structure of network, based on

the frequencies of occurrences of all small induced subgraphs in a network. A subgraph

S of graph G is induced if S contains all edges that appear in G over the same subset

of nodes. A graphlet is defined as a small, connected and induced subgraph of a larger

network [7, 37]. Figure 2.10 lists all 30 graphlets on 2 to 5 nodes. By taking into

account the “symmetries” between nodes of a graphlet, there contain 73 topologically

unique node types across these graphlets, called automorphism orbits. In figure 2.10,

orbits are numbered from 0 to 72, and in a particular graphlet, nodes belonging to the

same orbit are of the same shade.

Figure 2.10.: Graphlets with 2-5 nodes G0,G1, ..., G29. The automorphism orbits are
numbered from 0 to 72, and the nodes belonging to the same orbit are of
the same shade within a graphlet [37, 38].

To uncover the structure of biological network, many graphlets-based methods have

been developed for different network analysis tasks. Graphlet degree vector (denoted by

GDV), which is a generalization of node degree, has been used to measure the similarity

between nodes in a network [37]. Recall that the degree of a node is defined as the

number of edges incident to that node. The graphlet degree vector of a node is a 73

dimensional vector, and the ith element of GDV ui counts how many times the node

u is touched by the particular automorphism orbit i. An example demonstrating the

calculation of the GDV is shown in figure 2.11. Obviously, GDV captures more structural

details than node degree.
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Figure 2.11.: An example demonstrates the calculation of GDV. The GDV of node V2 is
(2,1,1,0,0,1,0...,0), as V2 is touched twice by orbit 0, once by orbit 1, orbit
2 and orbit 5.

Based on GDVs, the signature similarity S(u, v) of two nodes u and v is computed

as,

S(u, v) = 1− 1∑72
i=0wi

(
72∑
i=0

wi × (
|log(ui + 1)− log(vi + 1)|
log(max(ui, vi)) + 2

)). (2.5)

where wi is the weight of orbit i that accounts for dependencies between orbits [38]. Sig-

nature similarities have been applied to PPI networks to detect the similarities between

proteins. It is shown that topologically similar proteins under the measure of GDVs

perform the same biological function [38]. Furthermore, homologous proteins in a PPI

network have a statistically significantly higher GDV similarity than non-homologous

proteins [39].

As described in section 2.2.1, the degree distribution of a network is the distribution

of P(k) over all k, where P(k) is the percentage of nodes of degree k in the network. In

[37], the notion of the degree distribution was generalized to graphlet degree distribution

(GDD). For each of the 73 automorphism orbits shown in figure 2.10, the number of

nodes touching this orbit k times is counted, for each value of k. That means, there is

an associated degree distribution for each of the 73 automorphism orbits. The spectrum

of these graphlet degree distribution measures the local structure property of a network.

Let djG(k) be the sample distribution of the node counts for a given degree k in a

network G and for a particular automorphism orbit j. The sample distribution is scaled

by 1/k to decrease the contribution of larger degrees in a GDD, and normalized to give

a total sum of 1,

N j
G(k) =

djG(k)/k∑∞
l=1 d

j
G(l)/l

. (2.6)

To compare two network G and H, for a particular orbit j, the distance between the

two scaled and normalized distribution is defined as,

Dj(G,H) =
1√
2

(
∞∑
k=1

[N j
G(k)−N j

H(k)]2)
1
2 . (2.7)
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The distance is scaled by 1
√

2 to be between 0 to 1 [40]. The arithmetic agreement

between these two network is,

GDDarith =
1

73

72∑
j=0

(1−Dj(G,H)). (2.8)

The geometric agreement between these two network is,

GDDgeo = (
72∐
j=0

(1−Dj(G,H)))
1
73 . (2.9)

The topological similarity between two networks can be measured based on their GDD

agreement. Furthermore, GDD agreements have been used to search network model that

best fit the real-world networks. It is shown that most of the PPI networks are better

modeled by GEO models than by ER, ER-DD or SF models [37].

2.2.2. Network Models

Network models are crucial for network motif identification, as well as finding cost-

effective strategies for completing interaction maps, which is an active research topic

[18]. There are several network models that are commonly used for biological network

analysis, namely Erdös-Rény random graph (denoted by ER) [41, 42], Erdös-Rény ran-

dom graph with the same degree distribution as the data networks (denoted by ER-DD),

scale-free network (denoted by SF) [30], geometric random graph (denoted by GEO) [43],

geometric gene duplication and mutation model (denoted by GEO-GD) and stickiness

index-based network model (denoted by STICKY) [44].

(a) Erdös-Rény random graph (b) Scale-free network (c) Geometric random graph

Figure 2.12.: Examples of model networks. (a) An Erdös-Rény random graph. (b) A
scale-free network. (c) A geometric random graph. Figures are taken from
[18].

• Erdös-Rény random graphs. Proposed in the late 1950s, Erdös-Rény random

graph is considered as the earliest random network model. In this model, a graph
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is constructed by connecting nodes randomly, which means edges are chosen from

the n(n− 1)/2 possible edges with the same probability p, where n is the number

of nodes. Figure 2.12a gives an example of ER random network. Even though

ER random models are not expected to fit the real networks well, they form a

standard model to compare the data against, as many properties of ER can be

proven theoretically [18, 45].

• Generalized random graphs. It’s noticed that the degree distribution of a real

networks always follows a power law distribution, while a ER random model has a

binomial degree distribution, which can be approximated with Poisson distribution

when the number of nodes is large. As a variation of the ER model, ER-DD model

preserves the degree distribution of data. ER-DD models can be generated by

using “stubs method” proposed in [46].

• Scale-free networks. A scale-free network is a network in which the probability of

number of links per node follows a power law distribution P (k) = k−γ , where k is

the number of links per node and γ is a parameter whose value is typically in the

range 2 < γ < 3 [30]. Starting from three connected nodes, a scale-free network

can be produced by preferential attachment. When a new node is adding into

the network, it prefers to attach to the more connected nodes. As a result of this

process, a few highly connected nodes (hubs) form in the SF model, as shown in

Figure 2.12b.

• Geometric random graphs. To construct a GEO model, nodes are uniformly ran-

domly distributed in a metric space, and two nodes are connected by an edge if the

distance (can be Euclidean distance, Chessboard distance, Manhattan distance,

etc.) between them is within a chosen radius r [43]. Thought GEO models fol-

low Poisson degree distribution, which is not consistent with real networks, GEO

models are shown to provide the better fit to the currently available PPI networks

than ER, ER-DD and SF models, according to local network structure [37, 47, 48].

• Geometric gene duplication and mutation model. For better understanding of

biological networks, especially PPI networks, GEO-GD models, which are GEO

models that incorporate the principles of gene duplications and mutations, is pro-

posed recently [49]. Starting from a small seed network, nodes are duplicated

and placed at the same point in biochemical space as its parent. Controlled by

natural selection, these nodes are either eliminated one, or slowly separated in

the biochemical space. This process allows the child node to inherit most of the

interactions of its parent node, along with some new interactions. GEO-GD mod-

els have been shown as well-fitting network models for currently available PPI

networks [49].

• Stickiness index-based network model. The STICKY model is a random graph

model that inserts a connection according to the degree, or “stickiness”, of the
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two proteins involved [44]. The model is motivated by the assumption that a high

degree protein has many binding domains and a pair of proteins is more likely to

interact if they both have high stickiness indices, where the stickiness index of a

protein can be defined as the normalized degree of a protein. The probability of

an edge between two nodes is the product of their stickiness indices. It is shown

that given a PPI network’s underlying degree information, stickiness model better

fits the network than random graphs that match the degree distribution of the

network [44].

Table 2.1 indicate a comparison of global network properties (degree distribution,

clustering coefficient and average diameter) between the network models described above

and the real-world networks. Many real-world networks are small-world (hence they have

small average diameter and high clustering coefficient) and scale-free (hence they have

power law distribution). GEO-GD, STICKY models are better fit real-world networks

according to these global network properties.

Real ER ER-DD SF GEO GEO-GD STICKY

DD Power law Poisson Power law Power law Poisson Power law Power law

CC High Low Low Low High High High

AD Small Small Small Small Small Small Small

Table 2.1.: Comparison of global network properties between real networks and random
models. Here, DD stands for degree distribution, CC stands for clustering
coefficient and AD stands for average diameter.

2.2.3. Network Alignment

Network alignment is the problem of finding similarities between the structure or topol-

ogy of two or more networks. The aim of network alignment is to find the best way to

fit network G into network H [50]. Figure 2.13 presents an example of an alignment of

two networks H and G.
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Figure 2.13.: An example of an alignment of two networks.

The alignment of biological networks is the process of comparison of two or more

biological networks of the same type to identify subnetworks that are conserved across

species and hence likely to present true functional modules [50]. Analogous to genomic

sequence alignments, biological network alignments can be useful for knowledge transfer,

as we may know a lot about some nodes in one network and almost nothing about the

aligned, topologically similar nodes in the other network [18].

The network alignment problem is related to the subgraph isomorphism problem,

which is NP-complete (see section 2.2.1 for details). Hence, various computable heuris-

tics have been devised for biological network alignment. These heuristics can be roughly

divided into two catalogues, namely local network alignment and global network align-

ment. To align two networks, a local alignment maps independently each local region

of similarity, while a global network alignment uniquely maps each node in the smaller

network to only one node in the larger network.

PathBLAST, which is the earliest network alignment algorithm, was developed to

identify protein pathways and complexes conserved by evolution [51]. To align two

PPI networks of different species, PathBLAST made used of both network topology

and protein sequence similarity of two networks. PathBLAST has been used to iden-

tify orthologous pathways between yeast S. Cerevisiae and bacteria H. pylori. In [52],

PathBLAST was extended to detect conserved protein clusters.

GRAph ALigner (GRAAL) is a global network alignment algorithm based solely on

network topology. A seed-and-extend approach is used in GRAAL algorithm. According

to [48], the steps that GRAAL aligns two networks can be summarized as the following.

• The densest parts of the networks are first aligned. GRAAL chooses a pair of

nodes which has the smallest cost as the initial seed, and aligns then together.

The cost of aligning a node v in network G and a node u in network H is defined
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as,

C(v, u) = 2− ((1− α)× deg(v) + deg(u)

max deg(G) +max deg(H)
+ α× S(v, u)). (2.10)

where deg(v) and deg(u) are the degree of node v and u, respectively, max deg(G)

is the maximum degree of nodes in G, max deg(H) is the maximum degree of

nodes in H, S(v, u) is the signature similarity of v and u, and α is a parameter in

the range of [0,1]. The value of α controls the contribution of node degrees and

node signature similarity to the cost function.

• After aligning the seed nodes, GRAAL builds the spheres of all possible radii

around u and v, where a sphere SG(v, r) of radius r around node u is defined as

the set of nodes {X} that the length of the shortest path between v and x(x ∈ X)

is r.

• For each r, the nodes in SG(u, r) and SH(v, r) are greedily aligned by searching

for unaligned pair of nodes which has the smallest cost according to equation 2.10.

• When all spheres of the seed nodes have been aligned, if there are unaligned nodes

in both networks, GRAAL searches for a new pair of nodes as a new seed (details

are described in [48]) and repeats the greedy alignment process, until each node

of G is aligned to exactly one node in H.

GRAAL has been applied to align the PPI network of yeast and human, and the

alignment result has shown that there are very strong enrichment for the same biological

function in both yeast and human PPI networks [48].

2.2.4. Software Tools for Network Analysis

These days, various of software tools have been developed to perform different biological

network analysis tasks. Some of them are used for network analysis and modeling. For

example, mfinder/mDraw [53], MAVisto [54], and FANMOD [55] were developed for

detecting motifs in networks, Pajek [56] was developed for analyzing global network

properties, and tYNA [57] was developed for analyzing some global and local network

properties. Meanwhile, some of these software tools are used for network alignment and

comparison, including NetAlign [58] and PathBLAST [51], which were developed for

comparing PPI networks via network alignment. Some of these tools are applied to find

and visualize clusters in networks, such as CFinder [59].

One network visualization and analysis software is Cytoscape [9]. It is an open source

bioinformatics platform, and these year, it has become one of the most commonly used

network analysis tool in the world. The core distribution of Cytoscape provides a basic

set of features for data integration and visualization. Additionally, there are many
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additional features are available as plugins. Though Cytoscape is originally developed

for biological research, it can also be used for analyzing other types of networks, such

as social networks.

GraphCrunch [60] is an open source software tool for analyzing large biological and

other real-world networks and comparing them against random graph models. It can

generate random networks with the number of nodes and edges within 1% of those

in the real-world networks for user-specified random graph models. The generators of

ER, ER-DD, GEO, SF, and STICKY models have been implemented in the software.

GraphCrunch can be used to evaluate the fit of a variety of network models to real-

world networks, with respect to a series of global network properties and local network

properties. The global network properties implemented in GraphCrunch include degree

distribution, clustering coefficient, clustering spectrum, average diameter, spectrum of

shortest path lengths. The local network properties implemented are RGF-distance

[61] and GDD agreement. GraphCrunch is available at http://www.ics.uci.edu/

~bio-nets/graphcrunch/.

GraphCrunch 2 [62] is an update version of GraphCrunch 2. Besides the model

networks implemented in GraphCrunch, GEO-GD model and SF-GD model are also

implemented in GraphCrunch. Also, it implements GRAAL algorithm for network

alignment, as well as an algorithm for clustering nodes within a network based solely

on their topological similarities. GraphCrunch 2 is available at http://bio-nets.doc.

ic.ac.uk/graphcrunch2/.
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3. Methodology and On-going Work

This chapter will focus on details of on-going projects. In section 3.1, the collection of

relevant data will be covered, along with detailed descriptions for the biological databases

that will be used in the project. Additionally, the structure of the integrated molecular

interaction network and the hybrid model will be discussed. In section 3.2, the research

work done for the response letter to paper “How threshold behavior affects the use of

subgraphs for network comparison” will be presented.

3.1. Biological Network Integration

Network integration is the process of combining several networks, encompassing interac-

tions of different types over the same set of elements, to study their interrelations [63].

With the development of high-throughput experimental technique, a growing body of

biological data is identified and various biological databases becomes public available.

The information contained in these databases can be used to construct different types

of biological networks, as mentioned in section 2.1.1 and section 2.1.2. Because each

type of these biological network lends insight into a different slice of biological informa-

tion, integrating different network types may paint a more comprehensive picture of the

overall biological system under study [63].

3.1.1. Data Collection

Aiming to redefine human disease classification and relationships between diseases, we

propose to integrate different types of large-scale biological information into a hybrid

network model. These biological data include molecular interaction networks, disease-

gene association information, drug-target association information and electronic patient

medical records. Furthermore, the molecular interaction network includes transcrip-

tional regulation network, metabolic network, cell signaling network, protein-protein

interaction network and genetic interaction network.

Different types of biological information have been collected from different databases,

as listed in table 3.1. Note that though some of the databases contain information for

many model species, currently we only consider the biological information of human.
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Database Biological information contained in the database

BioGRID Protein-protein interaction network, genetic interaction network

HPRD Protein-protein interaction network

KEGG Transcriptional regulation network, metabolic network, cell signaling

network

OMIM Disease-gene association information

Orphanet Disease-gene association information, drug-target association informa-

tion

DrugBank Drug-target association information

ChEMBL Drug-target association information

THIN Electronic medical records

Table 3.1.: Databases planned to be integrated into the hybrid network model. BioGRID
stands for the Biological General Repository for Interaction Datasets, HPRD
stands for Human Protein Reference Database, KEGG stands for Kyoto
Encyclopedia of Genes and Genomes, OMIM stands for Online Mendelian
Inheritance in Man, and THIN stands for The Health Improvement Network.

Biological General Repository for Interaction Datasets (BioGRID)

The Biological General Repository for Interaction Datasets (BioGRID) [64] is a freely

accessible biological database that contains physical interactions (PPIs) and genetic

interactions of major model organism species. The physical and genetic interactions in

BioGRID are curated from focused studies reported in the primary literature, and are

updated monthly.

In BioGRID 3.1.74 (released in March 2011), 35,386 non-redundant protein-protein

interactions among 8,920 human proteins are recorded. However, due to the technical

difficulty in detecting human genetic interactions, the number of human genetic inter-

actions recorded in BioGRID 3.1.74 is only 493, which is obviously not sufficient. Thus,

network alignment methods may be applied to transfer the knowledge of the genetic in-

teraction networks of other model organisms, like yeast, to the human genetic interaction

network.

Human Protein Reference Database (HPRD)

Human Protein Reference Database (HPRD) [65] is a public accessible human pro-

tein database developed by scientists from the Institute of Bioinformatics in Bangalore,

India and the Pandey lab at Johns Hopkins University in Baltimore, USA. HPRD in-

cludes protein-protein interactions, post-translational modifications, enzyme-substrate

relationships and disease associations, and all these information is manually extracted

from the literature by expert biologists [65].
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The current release of HPRD is HPRD 9 (released in April 2010). It contains 37,039

non-redundant physical interactions among 9,465 human proteins.

Kyoto Encyclopedia of Genes and Genomes (KEGG)

The biological information of transcriptional regulation networks, metabolic networks

and cell signalling networks are collected from Kyoto Encyclopedia of Genes and Genomes

(KEGG) [66]. This public available database has been developing by scientists in Kyoto

university and the University of Tokyo since 1995, and nowadays, KEGG has become

one of the most widely used biological databases in the world.

The molecular interaction networks can be construct from KEGG PATHWAY database.

KEGG PATHWAY contains pathway maps, which are manually created from published

materials, of metabolism, genetic information processing, environmental information

processing, cellular processes, human diseases and drug development. There are 236

human pathway maps recorded in the latest release of KEGG (up to June 2011).

Online Mendelian Inheritance in Man (OMIM)

The disease-gene association network can be constructed from Online Mendelian In-

heritance in Man (OMIM) [67]. Mendelian Inheritance in Man was started in the early

1960s, and its online version OMIM was created by a collaboration between the National

Library of Medicine and Johns Hopkins University in 1995.

OMIM is a comprehensive knowledgebase of human genes and genetic disorders. It

consists of overviews of genes and genetic phenotypes, particularly disorders, and is

useful to students, researches, and clinicians [67]. Up to June 2011, OMIM has 13,642

entries describing genes with known sequence and 6727 entries describing phenotypes.

Orphanet

Orphanet is a database dedicated to information on rare diseases and orphan drugs. It

was created upon request of the French Ministry of health and the National Institute of

Health and Medical Research, with the aim to improve management and treatment of

rare diseases. The rare disease information contained in Orphanet is listed in table 3.2.
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Data Availability Description

List of rare diseases Free List including preferred name, syn-

onyms, alpha number.

Identity card of diseases Free Table including Orpha number of the

disease, MIM number, ICD-10 code,

etc.

Classification of rare diseases Not free The clinical classification of rare dis-

eases.

Table of causative genes Not free Table with Orpha number of the dis-

ease and linked causative genes.

Orphan drugs Free Table with Orpha number of the dis-

eases for which the substance is indi-

cated.

Table 3.2.: Rare disease information contained in Orphanet. Note that only the data
relative to the project is listed in the table.

Currently there are 5,954 rare diseases recorded in Orphanet. 2,365 diseases are linked

to 2,364 genes, and more than 200 diseases are linked to 875 substances.

DrugBank

The DrugBank database is a bioinformatics and cheminformatics resource that combines

detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with compre-

hensive drug target (i.e. sequence, structure, and pathway) information [68], released by

University of Alberta. These days, DrugBank has become widely used by pharmacists,

medicinal chemists, pharmaceutical researchers, clinicians, educators and the general

public [69].

The latest version DrugBank 3 (released in January 2011) includes 6,825 drug entries

(1,431 FDA-approved small molecule drugs, 134 FDA-approved biotech (protein/peptide)

drugs, 83 nutraceuticals and 5,210 experimental drugs). 4,434 non-redundant protein

(i.e. drug target, enzyme, transporter, carrier) sequences are linked to the drug entries.

ChEMBL

ChEMBL is another public accessible database that contains drug-target association

information. Established by the European Bioinformatics Institute (EBI), ChEMBL

contains information on protein targets and their associated bioactive small molecules.

Current release ChEMBL-09 (released in February 2011) contains 658,075 drug-like

compounds and their protein targets.
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The Health Improvement Network (THIN)

The Health Improvement Network (THIN) is a research database that contains electronic

patient medical records. These records cover more than three million anonymized pa-

tients in the UK. The THIN database is developed by In Practice Systems Ltd (INPS)

and CSD Medical Research. The content of the THIN database can be organized into

the following categories, as shown in table 3.3

Type of records Desciption

Patient records Information on patient characteristics and registration details

Medical records Information on symptoms, diagnoses and interventions

Therapy records Information on details of prescriptions issued to patients

AHD records Information on preventative health care immunizations and test

results

Consult records Information on consultation details

Staff records Information on staff (clinician, nurse, etc.) details

PVI records Information on postcode-based socioeconomic, ethnicity and envi-

ronmental indicators

Table 3.3.: Catalogues of THIN database. Here, AHD stands for additional health data,
and PVI stands for postcode linked variables

Though the THIN database is not public available, we have collected some sample

data from CSD EPIC (see appendix A for details of the sample data). Table 3.4 lists

the statistics of sample data, compared to the whole THIN database. The sample data

contains approximately 0.02% of the whole THIN database.

Type of records Number of records in sample data Number of records in THIN

Patient records 2,000 9.15 million

Medical records 105,798 454 million

Therapy records 203,666 697 million

AHD records 140,320 644 million

Consult records 200,566 763 million

Staff records 3,645 (no statistics)

PVI records 4,016 (no statistics)

Table 3.4.: Statistics of THIN sample data, compared to the whole dataset.

ICD-10

The 10th revision of International Statistical Classification of Diseases and Related

Health Problems (ICD-10) is considered as an international standard diagnostic classifi-

cation, and is used worldwide for all general epidemiological and many health manage-
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ment purposes [2].

Different from the other collected databases, ICD-10 is not used to construct the

integrated network, but to evaluate and validate our disease re-classification results. As

ICD-10 is based on diagnosis and symptoms, and our new disease classification will be

based on system-level biological networks, the similarity and difference between these

two disease classification may lead to better understanding of human diseases.

Relationship among databases

The databases mentioned above are not isolated from each other. They can be integrated

together based on the biological information they share. For example, OMIM and

BioGRID can be linked by human genes, as genes are contained in both databases.

Figure 3.1 illustrates the relationship among these databases.

Figure 3.1.: Relationship among different types of databases. The large blocks are en-
tities that will be integrated into the hybrid network, and the small blocks
stand for the databases. The block of THIN is shaded as grey to indicate
that we have not collected the data. A database is placed across entities if
the database contains information on these entities. For example, ChEMBL
is put between Human Proteins and Drugs, as it contains information on
protein targets (belongs to human proteins) and compounds (belongs to
drugs). The numbers in brackets show the statistics of the databases.

Besides the biological information mentioned above, some other data sources are also

considered to be integrated into the integrated network. One potential data source

is the human disease network obtained by literature mining methods [25]. Scientific

literature remains a major source of valuable information, hence tools for mining such
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data and integrating it with other sources are of vital interest and economic impact [70].

Other databases such as side effect resource (SIDER) and Reactome may be beneficial

to the project as well. SIDER [71] is a public data source that connects 888 drugs

to 1,450 side effects (phenotypic responses of the human organism to drug treatment),

and Reactome [72] is an expert-authored, peer-reviewed knowledgebase of reactions and

pathways that contains 5234 human proteins, 3,958 protein complexes, 4,247 reactions

and 1,116 pathways in it’s current release.

3.1.2. Integration of Molecular Interaction Networks

Disease can be considered as the result of a modular collection of genomic, proteomic,

metabolomic, and environmental networks that interact to yield the pathophenotype

[1]. An understanding of the functionally relevant genetic, regulatory, metabolic, and

protein-protein interactions in a cellular network will play an important role in under-

standing the pathophysiology of human diseases [73]. Hence, we consider diseases as

systems-level disorders of the entire cellular system, and propose to improve our under-

standing of human diseases and diseases relationship based on system-level molecular

data.

Therefore, to construct the hybrid model, firstly we plan to build a molecular interac-

tion network, by integrating transcriptional regulation network, cell signalling network,

metabolic network, protein-protein interaction network and genetic interaction network.

A schematic representation of the integrated molecular interaction network is shown

by figure 3.2. This integrated network contains two types of nodes, corresponding to

genes (or their protein products) and metabolites, and five types of edges, corresponding

to gene regulation, cell signalling, metabolism, protein-protein interaction and genetic

interaction (genetic interactions are not shown in figure 3.2 as there are no sufficient

human genetic interaction data available so far). Furthermore, in this network, some of

the edges are undirected, such as protein-protein interaction, while some of the edges

are directed, such as transcriptional regulation. The integrated molecular interaction

network then forms the bottom layer of the hybrid model (see section 3.1.3 for details).
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Figure 3.2.: Schematic representation of a possible integration of molecular interaction
network. Here, circles are genes (or their protein products), and rectangles
are metabolites. Different types of edge correspond to different interactions
between genes (or genes and metabolites). Directed edges and undirected
edges both appear in the network. This integrated molecular interaction
network forms the bottom layer of the hybrid model.

We propose extend the graphlet-based methods to analyze this integrated molecular

interaction network. Current graphlet-based methods have been only applied to undi-

rected networks which contain only one type of nodes and one type os edges. Hence,

new techniques need to be developed for analyzing complex networks (see section 4.1.1

for details).

3.1.3. Structure of Hybrid Network Model

As mentioned in section 2.1.2, the human disease network was built based on the as-

sociation between disorders and disease genes. However, the knowledge of disease-gene

association is not sufficient for understanding underlying mechanisms of human dis-

eases, as human diseases are affected by a complex cellular system including genomic,

proteomic, metabolomic, etc.

To gain system-level understanding of human diseases, we propose to map the disease

network to the integrated molecular interaction network, as well as the drug network

and electronic patient records. This leads to the design of the hybrid model, which is a

multi-layer network, as shown in figure 3.3.
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Figure 3.3.: Structure of the proposed hybrid model. Four layers will be contained in the
hybrid model, namely molecular interaction network, drug network, disease
network, and patient records (from bottom to up). Green nodes in layer
0 are genes (or their protein products), while blue nodes are metabolites.
The black circles in layer 2 indicate the clustering of diseases, namely disease
classification.

Layer 0 of the hybrid model is the integrated molecular interaction network discussed

in section 3.1.2, in which nodes are proteins and metabolites, undirected edges stand

for PPIs and directed edges stand for other interactions such as cell signalling or tran-

scriptional regulation. Layer 1 is a drug network, in which nodes are drugs and two

nodes are connected by an edge if these drugs share a common protein target. Nodes in

the molecular interaction network and the drug network can be linked by edges across

layers, based on the drug-target association information obtained from DrugBank and

ChEMBL. Layer 2 of the hybrid model is the disease network, in which nodes are dis-

eases and two diseases are connected by an edge if they are caused by a same gene.

Similarly, nodes in the disease layer can be linked to the nodes in the molecular inter-

action network, based on the information obtained from OMIM and Orphanet. The

upper layer of the hybrid model consists of numbers of electronic patient records. These

patient records can be mapped to the disease network according to the medical records

in THIN, as well as the drug network according to the therapy records.

Analysis of the hybrid model will bring us better understanding of the interrelation-

ships among cellular, disease, drug and patient records. Each disease in the hybrid

model is associated with a subnetwork that contains biological information from dif-

ferent layers. The similarity between two diseases will be calculated not only based

on the topological neighborhood in the disease network, but also based on the inte-

grated topological connectivity between network on different layers (see section 4.1.1 for

details).
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3.2. Network Analysis and Modeling

In the study [37], a systematic measure of structural similarity between large networks

was introduced based on graphlet degree distribution (GDD, see section 2.2.1 for details).

This measure is called GDD agreement (denoted by GDDA in the rest of this section),

which can be either arithmetic or geometric. GDDA has been used to search network

model that better fit the PPI networks. In [37], 14 PPI networks of the eukaryotic

organisms were compared with random network models (ER, ER-DD, GEO, SF), and

the GDDA scores suggested that GEO model better fit the PPI networks than other

models.

This novel network comparison method has raised the interest of the public. In [74],

Rito et al. provided a method for assessing the statistical significance of the fit between

random graph models and biological networks based on non-parametric tests, and ex-

amined the use of GDDA. They concluded that the GDDA score was unstable in the

graph density region between 0 and 0.01, which encompassed most of the PPI networks

currently available. Furthermore, they found that none of the theoretical models con-

sidered in their study (ER, ER-DD and GEO-3D) fitted the PPI data according to their

statistical method.

Since we propose to apply graphlet-based methods to analyze the integrated biological

network (see section 3.1 for details), it is essential for us to validate the use of these

methods, as well as understand the performance of them. We notice that the PPI

networks analyzed in [74] were obtained from early studies, hence all these PPI networks

were old, small and sparse. To examine whether Rito et al.’s conclusion still holds for

latest PPI networks, we apply their methods to the latest PPI networks of yeast, fruitfly,

nematode worm and human. Our results show that these latest PPI networks are not in

the unstable region of GDDA, and we validate that GDDA is appropriate for analyzing

these PPI networks.

In this section, we will first show how GDDA is used for searching network model that

better fit the PPI networks. Then we will list the latest PPI networks we use in this

project, comparing with the PPI networks analyzed in [74]. To identify the unstable

region of GDDA, we calculate and visualize the empirical distribution of GDDA. Finally,

we will assess the fit between model networks and latest PPI networks.

Note that in the rest of this section, GDDA is referred to arithmetic GDDA.

3.2.1. Using GDDA for Network Comparison

GDDA has been applied to many network comparison tasks. As a first step, we repro-

duce the experiment results in [37] to see how GDDA is used to search network model

that better fit the real-world networks. Figure 3.4 shows the GDDA scores between 14
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PPI networks of the eukaryotic organisms Saccharomyces Cerevisiae (yeast), Drosophila

Melanogaster (fruitfly), Caenorhabditis Elegans (nematode worm), and Homo Sapiens

(human), and five network models, namely ER, ER-DD, GEO, SF and STICKY (noted

that STICKY model was not used in [37]). Points in the figure indicate the averages

of GDD agreements between 25 model networks and the corresponding PPI networks,

and the error bars represent one estimated SD below and above the average point. Our

results are consistent with [40]. It shows the highest GDD agreement for the STICKY

and GEO model, followed by SF, ER-DD and ER, which means STICKY and GEO

model better fit the PPI data than other network models.
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Figure 3.4.: Agreements between the 14 PPI networks and their corresponding model
networks. The 14 PPI networks are (from left to right): high-confidence
yeast PPI network obtained from [75] ’YHC’, the top 11,000 PPIs obtained
from [75] ’Y11K’, core yeast PPI network obtained from [10] ’YIC’, yeast
PPI network obtained from [12] ’YU’, the union PPI network of [10] and
[75] ’YICU’, fruitfly PPI network obtained from [76] ’FE’, high-confidence
fruitfly PPI network obtained from [76] ’FH’, worm PPI network obtained
from [77] ’WE’, core worm PPI network obtained from [77] ’WC’, human
PPI network obtained from [8] ’HS’, human PPI network obtained from
[13] ’HG’, human PPI network obtained from BIND [78] ’HB’, human PPI
network obtained from HPRD [65] ’HH’ and human PPI network obtained
from MINT [79] ’HM’. The points in the figure indicate the averages of
GDDAs between 25 model networks and the corresponding PPI networks.
GraphCrunch is used for the calculation of GDDA scores.
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3.2.2. PPI networks considered

In [74], six PPI networks (two of yeast and four of human) were analyzed, as listed in

table 3.5. These PPI networks were compared with three model networks, ER, ER-DD

and GEO-3D, and it was shown the highest GDDA for GEO-3D, followed by ER-DD

and ER models.

Name # of nodes # of edges Density Organism Reference

YIC 796 841 0.00266 S. Cerevisiae Ito et al. [10]

YHC 988 2,455 0.00503 S. Cerevisiae Mering et al. [75]

HS 1,705 3,816 0.00219 H. sapiens Stelzl et al. [8]

HG 3,134 6,725 0.00137 H. sapiens Rual et al. [13]

BG-MS 1,923 3,866 0.00209 H. sapiens BioGRID [64]

BG-Y2H 5,057 9,442 0.00074 H. sapiens BioGRID [64]

Table 3.5.: PPIs analyzed in Rito et al.’s paper. BG-MS is the interaction data obtained
from BioGRID filtered by key words ‘Affinity Capture-MS’, and BG-Y2H is
the interaction data obtained from BioGRID filtered by key words ‘Two-
hybird’. This table is reproduced from [74].

It is notice that the PPI networks listed above are from early studies. For example,

the interactions in YIC were detected by Ito et al. twelve years ago. Therefore, these

PPI networks were old, small and sparse. To see whether the conclusion in [74] holds

for the latest PPIs data, we analyzed the latest available PPI networks of yeast, fruitfly,

nematode worm and human. Table 3.6 lists the details of the PPI networks we analyzed.

Name # of nodes # of edges Density Organism Reference

HS 1,529 2,667 0.002283 H. sapiens Stelzl et al. [8]

HG 1,873 3,463 0.001975 H. sapiens Rual et al. [13]

HH 9,465 37,039 0.000827 H. sapiens HPRD [65]

HR 9,141 41,456 0.000992 H. sapiens Radivojac et al. [80]

HB 8,920 35,386 0.000890 H. sapiens BioGRID [64]

WB 2,817 4,527 0.001141 C. Elegans BioGRID [64]

FB 7,372 24,063 0.000886 D. Melanogaster BioGRID [64]

YB 5,607 57,143 0.003636 S. Cerevisiae BioGRID [64]

Table 3.6.: Details of latest PPIs we analyzed. Note that PPIs HS, HG are also analyzed
in [74], but the number of nodes, edges and graph density are different, as
we remove self-loops, reduplicate interactions and interspecies interactions
from the PPIs data for more precise analysis.

In table 3.6, HS stands for the human PPIs obtained from [8], and the PPIs from

[13] is denotes by HG. HH is the human PPIs download from HPRD [65] (version 9,

released in April 2010). HR stands for the human PPIs collected from [80]. HB, WB, FB
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and YB are the PPIs of human, worm, fruitfly and yeast, obtained from BioGRID [64]

(ver. 3.1.74, released in March 2011). We then compare these PPI networks with seven

network models, namely ER, ER-DD, GEO-3D, GEO-GD, SF, SF-GD and STICKY

model (details of these models are described in section 2.2.2), by calculating the GDDA

scores between PPI networks and models (figure 3.5).

Figure 3.5.: GDDA between latest PPI networks and their corresponding random model
networks.

Our results show the latest network models (sticky, GEO-GD and SF-GD) better fit

the PPI networks than previous models.

3.2.3. Empirical Distributions of GDDA

To examine the use of GDDA for network comparison, Rito et al. generated networks

of 500, 1000 and 2000 vertices with increasing graph density for both ER and GEO-3D

model. There graphs were used as query networks and compared with 50 networks

generated from the same model. We reproduce the results for comparing ER vs. ER

and GEO vs. GEO networks with 500, 1000 and 2000 nodes across a range of graph

densities [0, 0.0105], as shown in figure 3.6.

Our results are consistent with [74]. As shown in figure 3.6, the GDDA score is not

stable in some graph density regions. However, it is partial to say that the GDDA score
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Figure 3.6.: Dependency of GDDA of model vs. model comparisons on the number of
vertices and edges of a network. GDDA of ER vs. ER with 500 and 2000
nodes, GDDA of GEO vs. GEO with 500, 1000 and 2000 nodes are plotted
against graph density, and each value represents the average agreement of
50 networks. One may notice that figure 3.6 is not exactly the same as the
one in Rito et al.’s paper. The reason for this is the randomness of the
model networks, which is also mentioned in [74].

is unstable in a particular graph density region [0, 0.01], not only because the instability

of GDDA is different for each model type, but also because the range of unstable region

shrinks markedly as the increase of graph size (according to number of nodes and number

of edges). For example, according to graph density, the GDDA volatile area for GEO-3D

model with 500 nodes is around [0, 0.005], while for GEO-3D model with 2000 nodes is

narrowed to [0, 0.0015]. To validate this, we also calculate the empirical distributions

of GDDA for graphs with 5000 and 10000 nodes (results are listed in the appendix).

Our results show that for a particular network model, the GDDA unstable region of

networks with large number of nodes is much smaller than the one of networks with

small number of nodes.

For better illustrating the volatility of GDDA scores, we construct a 3D view of

empirical distributions for both ER and GEO-3D model, as shown in figure 3.7 and

figure 3.8.
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Figure 3.7.: 3D view of empirical distributions of GDDA for ER vs. ER comparisons
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Figure 3.8.: 3D view of empirical distributions of GDDA for GEO vs. GEO comparisons
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The PPI networks listed in table 3.6 can be plotted into figure 3.7 and figure 3.8

according to their size and graph density. The latest PPI networks of human, yeast and

fruitfly, namely ‘HB’, ‘HH’, ‘YB’ and ‘FB’, as they all have more than 5,000 nodes and

a graph density higher than 0.0008, obviously they are in the stable region of GDDA,

for both ER model and GEO model. Smaller and earlier PPI networks of human and

worm, namely ‘HS’, ‘HG’, and ‘WB’, are in the stable region for GEO model, but in the

unstable region for ER model. As more and more PPIs have been identified, the size of

PPI network is getting larger, which means GDDA is appropriate for analyzing these

latest PPI networks.

3.2.4. Model Fitness

Rito et al. provided a method for assessing the statistical significance of the fit between

random graph models and biological networks based on non-parametric tests [74]. In

this method, several same model vs. model comparisons with roughly the same number

of nodes and edges are carried out to assess the best obtainable score for this specific case

(GDDA scores are recorded as sample A). GDDA scores are also calculated between the

query network (PPI network) and graphs from the model network (sample B). Model

fit are evaluated by gauging the differences between these two samples.

In [74], Rito et al. concluded that none of the theoretical models considered in their

study (ER, ER-DD and GEO-3D) fitted the PPI data listed in table 3.5, according to

their statistical method. Taking a PPI network as input, we compare the PPI network

with ER, ER-DD, GEO, SF, STICKY models. The results show that there are no overlap

between the GDDA scores recorded in sample A and sample B. It is not surprising, as

none of these network models are supposed to fit the PPI networks perfectly. Recall

that GDDA is proposed to search the network model that better fit the real-world

data. Furthermore, we notice that though there are no overlap of the distribution of

GDDA, distance between the distributions of sample A and sample B is smaller for the

model which better fit the PPI network. Figure B.3a and figure B.3e illustrate that

the histograms of GDDA values between PPI network FB vs. 25 ER model networks

(left) and GDDA of 10 ER networks, each vs. 25 ER models. Figure B.3a illustrates

the histograms of GDDA values between PPI network FB versus 25 ER model networks

(left) and GDDA of 10 ER networks, each versus 25 ER models (right). Figure B.3e

illustrates the histograms of GDDA values between PPI network FB versus 25 STICKY

model networks (left) and GDDA of 10 ER networks, each versus 25 ER models (right).

Obviously, the distance between two sample is much smaller for STICKY model than

ER model.
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Figure 3.9.: Normalized histograms of GDDA values. a) Histograms of GDDA values
between PPI network FB versus 25 ER model networks (left) and GDDA
of 10 ER networks, each versus 25 ER models (right). b) Histograms of
GDDA values between PPI network FB versus 25 STICKY model networks
(left) and GDDA of 10 ER networks, each versus 25 ER models (right).
c) Histograms of GDDA values between PPI network YB versus 25 noisy
GEO-3D model networks (left) and GDDA of 10 noisy GEO-3D networks,
each versus 25 noisy GEO-3D models (right). The noisy GEO-3D models
are generated by deleting 10% of edges from original GEO-3D models. d)
Histograms of GDDA values between PPI network YB versus 25 noisy GEO-
3D model networks (left) and GDDA of 10 noisy GEO-3D networks, each
versus 25 noisy GEO-3D models (right). The noisy GEO-3D models are
generated by deleting 30% of edges from original GEO-3D models.

As current PPI networks are noisy and incomplete, one idea is that the PPI networks

may be better fitted by the model networks which contains noise rather than the original

model. To validate this idea, we generate “noisy model networks”, by adding, deleting,

and rewiring 10%, 20% and 30% of edges in the model networks. Figure B.4d and
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figure B.4f show the histograms of GDDA values between PPI network YB versus 25

noisy GEO-3D model networks and GDDA of 10 noisy GEO-3D networks, each versus

25 noisy GEO-3D models. The noisy GEO-3D models are generated by deleting 10%

(30%) of edges from original GEO-3D models. These results suggest that the noisy

model network may better fit the PPI data. We are now working on this project, and

hopefully we will submit a paper to Bioinformatics in two months.
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4. Future Work

Our future plans will be presented in this chapter. The main research problems will be

listed, along with detailed descriptions of proposed methodology for addressing them.

These research problems include developing methods for analyzing the integrated net-

work, classifying human diseases and implementing new software tools. A proposed

project progress plan and an initial outline of the dissertation are also included in this

chapter.

4.1. Research Problems and Proposed Methodology

4.1.1. Developing New Methods for Network Analysis

The structure of the integrated molecular interaction network (see section 3.1.2 for

details) is complex, since it contains several different types of biological information.

Currently, graphlet-based network analysis methods are mainly applied to undirected

networks which contain only one type of nodes and one type of edges (figure 4.1a). Hence,

we propose to heavily extend these methods for analyzing the integrated network.

As described in section 3.1.2,five types of biological network are proposed to be in-

tegrated into the molecular interaction network, namely transcriptional regulation net-

work, metabolic network, cell signalling network, PPI network and genetic interaction

network.

• There exist networks that have the same nodes, but different types of edges, for

example, PPI network and genetic interaction network. Integration of these net-

works will introduce the problem of analyzing networks which contain different

types of edges (figure 4.1b).

• Since both proteins and metabolites can be modeled as nodes in a metabolic

network (see section 2.1.1 for details), the integrated network may also contains

different types of nodes (figure 4.1c).
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Figure 4.1.: A schematic representation of different types of network integration prob-
lems. (a) A network which contains only one type of nodes and one type of
edges. (b) A network which contains different types of edges. (c) A network
which contains different types of nodes. (d) A network which contains both
undirected edges and directed edges. (e) A network which contains weighted
edges. (f) A weighted network which contains different types of nodes and
edges. Additionally, edges in this network can be directed or undirected.

• Moreover, some of these biological networks are naturally undirected (e.g., PPI

network), while others are directed (e.g., transcriptional regulation network, cell

signalling network). This require to extend graphlet-based methods for analyzing

directed networks and networks which contains both directed and undirected edges

(figure 4.1d).

• Furthermore, there may exist weights on edges. For example, high-confident links

should have higher weights than low-confident links. This problem increases the

need of developing analysis methods for weighted graphs (figure 4.1e).

• Finally, since all these different types of biological networks are proposed to be in-

tegrated into a molecular network, we need to develop new algorithms and tools to

analyze complex networks which include all features described above (figure 4.1f).

The integration of molecular interaction network with disease network, drug network

and patient record leads to the problem of analyzing “layered network”. The layered

network can be viewed as a model that contains several layers, and each of these layers

is a network representing different knowledge. Figure 4.2 gives an example of a layered

network consisting of three networks. Besides links within each layer, links between
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different layers will be constructed from biological data (see section 3.1.3 for details).

Figure 4.2.: An illustration of an integrated “layered network” consisting of three net-
works. Here, the solid lines represent the links within a layer, and the
dashed lines represent the links across different layers.

We propose to extend the definition of graphlet degree vector (GDV, see section 2.2.1

for details) for analyzing these layered networks. While a node’s GDV within the layer

describes topological neighborhood of the node in that particular network, it’s GDV that

go along links between different layers of layered networks describe integrated topological

connectivity between different networks. New methods will be developed to compare

the similarity between nodes in the layered network.

4.1.2. Disease Re-classification

Our aim of this project to get new biological insight that would lead to better classifi-

cation of human diseases. The strategy of disease classification may revelent to graph

clustering problems. Diseases which are classified into the same catalogue can be viewed

the nodes belong to a cluster in the disease network. The similarity measure may be

design based on the “extended GDV” mentioned above.

4.1.3. Implementation of new methods

We propose to develop new tools for analyzing the integrated network. Since the size

of the biological data are very large, the methods to analyze this data must be efficient.

The time complexity of these new algorithms should be at most O(n2). Meanwhile,

all these methods need to be robust to noise, since we already known that all of these

biological networks are noisy and largely incomplete. New tools which implement these

new network analysis methods should be accurate, stable and speedy. We prefer to use

C++ as the coding language, and some C++ class libraries such as LEDA may be used

in our implementation.
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4.2. Project Progress Plan

According to chapter 1, the project includes 1) integrating different biological data,

2) designing a hybrid network to represent the data, 3) developing new algorithms

and software to analysis the hybrid network and redefine disease classification, and 4)

validating the results and writing up. A project progress plan is summarized in table 4.1.

Proposed timeline Proposed research work

July 2011 to December 2011 1) Integrate transcriptional regulation network,

metabolic network, cell signalling network, protein-

protein interaction network and genetic interaction

network into a molecular interaction network. 2) De-

velop new methods to analyze this integrated network.

3) Biological validation of the analysis results.

January 2012 to June 2012 4) Integrate molecular interaction network with dis-

ease network, drug network and patient records. 5)

Design a hybrid network model to represent the data.

July 2012 to December 2012 6) Develop new methods to analyze the hybrid model.

7) Implement new biological network analysis software

based on these new methods. 8) Evaluate the perfor-

mance of the new software.

January 2013 to June 2013 9) Develop new methods for efficient and reliable dis-

ease classification. 10) Biological validation of the

classification results.

July 2013 to October 2013 11) Finish the dissertation.

Table 4.1.: Project progress plan.

4.3. Outline of Dissertation

A proposed outline of the dissertation including chapters and expected section headings

is listed in table 4.2.
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Chapter 1 Introduction

1.1 Motivation

1.2 Introduction to biological networks

1.3 Graph theory for network analysis

1.4 Challenges in biological network research

1.5 Dissertation outline

Chapter 2 Biological Network Integration

2.1 Integration of molecular interaction networks

2.2 The hybrid network model

2.3 Analysis of the hybrid network model

2.4 Results and discussion

Chapter 3 Diseases Re-classification

3.1 Our approach

3.2 Biological validation of our results

3.3 Results and Discussion

Chapter 4 Conclusions

4.1 Summary of the dissertation

4.2 Future work

Table 4.2.: Proposed outline of dissertation.

The proposed chapters in the dissertation includes introduction, biological network

integration, disease re-classification and conclusions. However, this outline is initial and

may be modified. The final dissertation will be organized according to the real research

works.
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5. Conclusion

In this report, we give a statement of our research problem and proposed methods, as

well as a review of the research progress so far. A literature survey which covers relevant

topics on biological network modeling and analysis is presented.

We propose to re-define human disease classification via integration of biological net-

works. To do this, we will design a network-based mathematical model to represent the

integrated biological data, and develop new computational algorithms and tools for its

analysis.

So far, the biological information used for network integration have been collected from

several public available databases. These biological data include molecular interactions,

disease-gene association and drug-target association. The ideas of how to integrate

these data into a hybrid network model and how this model can be used for disease

re-classification, are also discussed in the report.

Our preliminary results include molecular and disease data collection, as well as eval-

uation of GDD agreement measure. We have applied the methods proposed in Rito et

al.s paper to the latest PPI networks, to exam the use of GDD agreement for biological

network comparison. Our results show that though the GDD agreement scores are not

stable in some graph density region, this don’t affect on the analysis of latest PPI data.

We validate that GDD agreement is appropriate for analyzing these PPI networks.

The research problems we will address and the new techniques we will develop are

stated in the future research section. The research project is scheduled, and a proposed

outline of the dissertation is given at the end of the report.
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[18] N. Pržulj, Biological networks uncover evolution , disease , and gene functions,

pp. 1–31.

[19] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, “Network motifs in the transcrip-

tional regulation network of escherichia coli,” Nature Genetics, vol. 31, pp. 64–68,

2002.

[20] R. Milo, S. S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon,

“Network motifs: simple building blocks of complex networks,” Science, vol. 298,

pp. 824–827, 2002.

[21] J. D. Jordan, E. M. Landau, and R. Iyengar, “Signaling networks: the origins of

cellular multitasking.,” Cell, vol. 103, pp. 193–200, Oct. 2000.

[22] A. H. Y. Tong, G. Lesage, G. D. Bader, H. Ding, H. Xu, X. Xin, J. Young,

G. F. Berriz, R. L. Brost, M. Chang, Y. Chen, X. Cheng, G. Chua, H. Friesen,

D. S. Goldberg, J. Haynes, C. Humphries, G. He, S. Hussein, L. Ke, N. Krogan,

Z. Li, J. N. Levinson, H. Lu, P. Mnard, C. Munyana, A. B. Parsons, O. Ryan,

R. Tonikian, T. Roberts, A.-M. Sdicu, J. Shapiro, B. Sheikh, B. Suter, S. L. Wong,

L. V. Zhang, H. Zhu, C. G. Burd, S. Munro, C. Sander, J. Rine, J. Greenblatt,

M. Peter, A. Bretscher, G. Bell, F. P. Roth, G. W. Brown, B. Andrews, H. Bussey,

and C. Boone, “Global mapping of the yeast genetic interaction network,” Science,

vol. 303, no. 5659, pp. 808–813, 2004.

[23] N. Freimer and C. Sabatti, “The human phenome project.,” Nature genetics, vol. 34,

pp. 15–21, May 2003.

[24] K. Goh, M. E. Cusick, D. Valle, B. Childs, M. Vidal, and A.-L. Barabási, “The

human disease network,” PNAS, vol. 104, no. 21, pp. 8685–8690, 2007.

[25] Y. Li and P. Agarwal, “A pathway-based view of human diseases and disease rela-

tionships.,” PloS one, vol. 4, p. e4346, Jan. 2009.

[26] K. Lee, H.-Y. Chuang, A. Beyer, M.-K. Sung, W.-K. Huh, B. Lee, and T. Ideker,

“Protein networks markedly improve prediction of subcellular localization in mul-

tiple eukaryotic species,” Nucl. Acids Res., vol. 6, p. e136, 2008.

[27] S. I. Berger and R. Iyengar, “Network analyses in systems pharmacology.,” Bioin-

formatics (Oxford, England), vol. 25, pp. 2466–72, Oct. 2009.

[28] M. a. Yildirim, K.-I. Goh, M. E. Cusick, A.-L. Barabási, and M. Vidal, “Drug-target

network,” Nature biotechnology, vol. 25, pp. 1119–26, Oct. 2007.

[29] S. Cook, “The complexity of theorem-proving procedures,” in Proc. 3rd Ann. ACM

Symp. on Theory of Computing: 1971; New York, pp. 151–158, Association for

Computing Machinery, 1971.

56



[30] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science,

vol. 286, no. 5439, pp. 509–512, 1999.
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A. Supplemental Materials of

Section 3.1

Sample of Patient Records

Patient records contain information on patient characteristics and registration details.

Sample data: 04XqA19810000014653120080530020000000000000000003N02002008021

1 Patient ID (04Xq) 2 Integrity of data (A for acceptable

record)

3 Year of birth (1981) 4 Family ID (014653)

5 Sex (1 for male) 6 Registration date (2008/05/30)

7 Registration status (02 for perma-

nent)

8 Date of transfer out (all 0s for no

transfer)

9 Extended registration information

(null)

10 Death date (all 0s for no death date)

11 Death information (null) 12 Acceptance type (3 for transfer-in)

13 Registration institute (N for un-

known)

14 Marital (02 for married)

15 Dispensing (null) 16 Prescription exemption (00 for null

record)

17 System date (2008/08/21)

Table A.1.: A sample of patient records.

Sample of Medical Records

Medical records contain information on symptoms, diagnoses and interventions.

Sample data: 00?21995051100000000019192.00R000800000O0000000165YN00CD00CN19991012
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1 Patient ID (00?2) 2 Event date (1995/05/11)

3 Event end date (all 0s for no date

recorded)

4 Data type (01 for medical history)

5 Medical code (9192.00 for registered

child surveillance)

6 Integrity flag (R for acceptable

record)

7 Person entering record ID (0008) 8 Origin of record (all 0s for no record)

9 Episode type (all 0s for no record) 10 Secondary care speciality (0s for no

record)

11 Location of consultation (O for oth-

ers)

12 Text comment ID (00000001)

13 Medical entry (6 for administration) 14 Priority (lookups not yet available)

15 AIS extra information (null) 16 Event recorded in practices (Y for

yes)

17 Private or NHS treatment (N for

NHS)

18 Medical record ID (00CD)

19 Therapy AHD consultation ID

(00CN)

20 System date (1999/10/12)

21 Edited by GP (N for no)

Table A.2.: A sample of medical records.

Sample of Therapy Records

Therapy records contain information on details of prescriptions issued to patients.

Sample data: 00?21998071794794998Y000028100.0000000N0006100000.000501010300000000

0000008-1.00I5Y08Dp05Bj19991012N
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1 Patient ID (00?2) 2 Prescription date (1998/07/17)

3 Drug code (94794998 for Amoxi-

cillin)

4 Integrity flag (Y for acceptable

record)

5 Dosage code (0000028 for one 5ml

spoonsful to be taken three times a

day)

6 Quantity prescribed (100)

7 Duration of the prescription (0 for

null)

8 Private or NHS treatment (N for

NHS)

9 Staff ID (0006) 10 Acute or repeat prescription (1 for

acute)

11 Number of original packs ordered (0

for null)

12 BNF1 from DRUGCODES

(05010103)

13 Repeat prescriptions’ issue sequence

number (0 for null)

14 Maximum number of repeat pre-

scriptions’ issue (0 for null)

15 Pack information (0000008 for ml) 16 Calculated daily dosage (null)

17 Location of consultation (I for

surgery)

18 Source of drug (5 for in practice)

19 Event recorded in practices (Y for

yes)

20 Therapy record ID (08DP)

21 Therapy AHD consultation ID

(05Bj)

22 System date (1999/10/12)

23 Edited by GP (N for no)

Table A.3.: A sample of therapy records.

Sample of AHD Records

Additional health data (AHD) records contain information on preventative health care

immunizations and test results.

Sample data: 00?2199506141002000100Y1IMM001DTPINP0046541.0000I00zc4NN00zc1UCz19991012N
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1 Patient ID (00?2) 2 Event date (1995/06/14)

3 AHD code (1002000100 for ’Diph-

theria’)

4 Integrity flag (Y for acceptable

record)

5 AHD specific data

(1IMM001DTPINP004)

6 Read medical code (6541.00 for first

diphtheria vaccination)

7 Origin of record (0 for no record) 8 Secondary care speciality (0s for no

record)

9 Location of consultation (I for

surgery)

10 Staff ID

11 Text comment ID (00zc) 12 Medical entry (4 for intervention)

13 AHD extra information 14 Event recorded in practices (N for

no)

15 Private or NHS treatment (N for

NHS)

16 AHD record ID (00zc)

17 Therapy AHD consultation ID

(1UCz)

18 System date (1999/10/12)

19 Edited by GP (N for no)

Table A.4.: A sample of AHD records.

Sample of Consult Records

Consult records contain information on consultation details.

Sample data: 3fyX000?2000?200306302003063012560501400100

1 Consultation ID (3fyX) 2 Patient ID (00?2)

3 Staff ID (000?) 4 Event date (2003/06/30)

5 System date (2003/06/30) 6 System time (12:56:05)

7 Type of consultation (014 for repeat

issue)

8 Duration of consultation record open

Table A.5.: A sample of consult records.

Sample of Staff Records

Staff records contain information on staff (clinician, nurse, etc.) details.

Sample data: 00??0011

65



1 Staff ID (00??) 2 Sex (0 for male)

3 Role ID (011 for practice nurse)

Table A.6.: A sample of staff records.

Sample of PVI Records

Postcode linked variables (PVI) records contain information on postcode-based socioe-

conomic, ethnicity and environmental indicators.

Sample data: 00?242445415435420081210

1 Patient ID (00?2) 2 Rural urban classification of wards (4

for urban ¿ 10k less sparse)

3 Quintile of proportion of ward pop-

ulation who define themselves as

White etc.

4 Proportion of ward population with

limiting long-term illness

5 Quintile of estimated level of NO2 6 Quintile of estimated level of partic-

ulate matter

7 Quintile of estimated level of SO2 8 Quintile of estimated level of NOX

9 Quintile of Townsend score 10 Date of update (2008/12/10)

Table A.7.: A sample of PVI records.
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B. Supplemental Materials of

Section 3.2
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(d) ER models with 5000 nodes
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Figure B.1.: Empirical distribution of GDDA for ER vs. ER comparison.
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(a) GEO models with 500 nodes
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(b) GEO models with 1000 nodes
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(d) GEO models with 5000 nodes
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Figure B.2.: Empirical distribution of GDDA for GEO vs. GEO comparison.
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Figure B.3.: Normalized histograms of GDDA values (PPI network FB).
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Figure B.4.: Normalized histograms of GDDA values (YB vs. noisy models).
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Figure B.5.: Normalized histograms of GDDA values (YB vs. noisy models).
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