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In the present study, a set of physics-informed and data-driven approaches are examined6
towards the development of an accurate reduced-order model for a turbulent plane Couette7
flow. Based on the utilisation of the proper orthogonal decomposition (POD), a particular8
focus is given to the development of a reduced-order model where the number of POD9
modes are not large enough to cover the full dynamics of the given turbulent state, the10
situation directly relevant to the reduced-order modelling for turbulent flows. Starting from11
the conventional Galerkin projection approach ignoring the truncation error, three approaches12
enhanced by both physics and data are examined: 1) sparse regression of the POD-Galerkin13
dynamics; 2) Galerkin projection with an empirical eddy viscosity model; 3) Galerkin14
projection with an optimal eddy viscosity obtained from a newly-proposed sparse regression15
- an idea applying the Sparse Identification of Nonlinear Dynamics (SINDy) framework to an16
eddy-viscositymodel. The sparse regression of the POD-Galerkin dynamics does not perform17
well, as the number of POD modes for the given chaotic dynamics appears to be too small.18
While the unsatisfactory performance of the Galerkin projection model with an empirical19
eddy viscosity is observed, the newly proposed approach, which combines the concept of an20
optimal eddy-viscosity closure with a sparse regression, more accurately approximates the21
chaotic dynamics than the other reduced-order models considered. This is demonstrated with22
the mean and time scales of the POD mode amplitudes as well as the first- and second-order23
turbulence statistics.24
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1. Introduction26

1.1. Dynamical systems approach for wall-bounded turbulence27

Coherent structures in turbulent flows have been studied for many decades. These highly28
organised fluid motions in a chaotic flow field often carry significant amount of turbulent29
kinetic energy and momentum. Understanding and modelling of their dynamics have been a30
central challenge in turbulence research. In wall-bounded shear flows, a coherent structure31
was first discovered in the near-wall region (Kline et al. 1967) and many different kinds of32
coherent structures were subsequently observed over the past half century (e.g. Kovasznay33
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et al. 1970; Falco 1977; Head &Bandyopadhay 1981; Jeong et al. 1997; Kim&Adrian 1999;34
del Álamo & Jiménez 2003; Hutchins & Marusic 2007, and many others). The growing35
evidence suggests that these coherent structures are organised in the form of the so-called36
‘attached eddies’ originally hypothesised by Townsend (1956, 1976) for the logarithmic layer:37
coherent structures in the logarithmic layer emerge in the form of a self-similar hierarchy and38
their characteristic length scale is proportional to the distance between the eddy centre and39
the wall (see Hwang & Lee 2020 for a mathematical proof). The attached eddy hypothesis40
can be extended to include the near-wall and outer regions in a broad sense (Hwang 2015),41
and there has been a growing body of evidence supporting this idea over the past decade42
(see the recent review of Marusic & Monty 2019, and the references therein). In particular,43
each of these attached eddies was found to retain a sustaining mechanism independent of the44
others (Flores & Jiménez 2010; Hwang & Cossu 2010c, 2011; Hwang & Bengana 2016).45
This mechanism has been referred to as the ‘self-sustaining process’ and is based on a quasi-46
cyclic interaction of streaks and quasi-streamwise vortices (Hamilton et al. 1995; Waleffe47
1997): 1) amplification of streamwise-elogated streaks by streamwise vortices through the48
lift-up effect (Butler & Farrell 1993; del Álamo & Jiménez 2006; Cossu et al. 2009; Hwang49
& Cossu 2010a,b); 2) breakdown of the amplified streaks via an instability and/or transient50
growth (Hamilton et al. 1995; Schoppa & Hussain 2002; Park et al. 2011; Alizard 2015;51
Cassinelli et al. 2017; de Giovanetti et al. 2017; Lozano-Durán et al. 2021); 3) nonlinear52
regeneration of streamwise vortices (Hamilton et al. 1995; Schoppa & Hussain 2002; Hwang53
& Bengana 2016). A key on-going challenge is to understand the interactions between the54
self-sustaining processes at multiple length scales, and recent studies have suggested that the55
interaction dynamics appear to be dauntingly complex (Cho et al. 2018; Lee & Moser 2019;56
Doohan et al. 2021b).57
The discovery of the self-sustaining process has played a central role in advancing the58

notions of dynamical systems for turbulence research. In particular, it physically underpins59
the existence of non-trivial unstable equilibrium and time-periodic solutions in wall-bounded60
shear flows (Nagata 1990; Waleffe 2001; Kawahara & Kida 2001; Jiménez & Simens61
2001; Waleffe 2003; Faisst & Eckhardt 2003; Wedin & Kerswell 2004; Gibson et al. 2008,62
2009; Hall & Sherwin 2010; Park & Graham 2015; Hwang et al. 2016; Yang et al. 2019;63
Doohan et al. 2019, and many others). These solutions form a state-space skeleton for the64
birth of turbulence through a sequence of local and global bifurcations (Eckhardt et al.65
2007; Kawahara et al. 2012; Graham & Floryan 2020), and their use has been central66
to the description for the temporal dynamics of transition to turbulence (e.g. Kreilos &67
Eckhardt 2012) and for the local behaviour in the spatio-temporal dynamics (see the review68
by Barkley 2016). Furthermore, given that they are exact solutions to the Navier-Stokes69
equations, they provide precise understanding for turbulence dynamics in an interpretable70
and mathematically analysable manner especially compared to the structures obtained with71
conventional conditional average.72
Despite these advances, the computation of the unstable equilibrium and periodic solutions73

are increasingly infeasible as Reynolds number increases. A key reason to this is that the74
typical algorithms used for the search of these solutions are designed to iteratively find the75
initial condition that leads to the same flow field after a given time interval (an arbitrary76
small time interval for equilibrium and a time period for periodic orbits; e.g. Viswanath77
2007; Willis et al. 2013; Farazmand 2016). Apart from the computational cost required for78
the repeated simulations, the numerical convergence of such an algorithm depends on the79
leading Lyapunov exponent of the related chaotic state – it becomes increasingly difficult80
to find an initial flow field which converges with a sufficiently small residual when the81
leading Lyapunov exponent is very large. An approach employed to bypass this difficulty82
was to approximate the complex multi-scale dynamics at high Reynolds numbers with a83
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closure model (e.g. Rawat et al. 2015; Hwang et al. 2016; Yang et al. 2019). Yet, the84
unstable equilibrium and periodic solutions obtained with this strategy are often obtained85
by continuing the existing solutions at low Reynolds numbers, thereby not retaining the key86
multi-scale processes of interest at high Reynolds numbers (e.g. scale interactions). Indeed, a87
very recent work by Doohan et al. (2021a) showed that when turbulence exhibits multi-scale88
behaviours explicitly, most of the equilibrium solutions obtained in this manner do not sit89
anywhere near turbulent state in the physically relevant phase portraits. An obvious way to90
resolve this issue is to compute unstable periodic orbits with sufficiently long time periods, as91
they should be able to capture the key periodic and/or quasi-periodic multi-scale dynamics.92
However, in practice, their computation is much more difficult than that of the equilibrium93
solutions and is practically almost impossible due to the rapidly vanishing convergence of the94
solutions by the increasing Reynolds number. This poses an important challenge in extending95
the notions of dynamical systems for the description of multi-scale behaviours of turbulent96
flows.97
Given this challenge, it is worth mentioning that many of the unstable equilibrium and98

periodic solutions have previously been computed in a highly reduced system even at low99
Reynolds numbers. Indeed, a large number of such solutions have been found in highly100
confined computational domains, in which the full spatio-temporal dynamics in a large101
computational domain would be drastically reduced (Nagata 1990; Waleffe 1995; Kawahara102
& Kida 2001; Jiménez & Simens 2001; Faisst & Eckhardt 2003; Wedin & Kerswell 2004;103
Gibson et al. 2008; Park&Graham 2015; Hwang et al. 2016; Doohan et al. 2019, 2021a). For104
the same rationale, perhaps, the key to tackling the multi-scale dynamics of turbulence using105
the dynamical systems notions may lie in a suitable dimensionality reduction of the given106
turbulent state without losing the core dynamics of interest. The equilibrium and periodic107
solutions to the reduced-order dynamical system can then be obtained much more easily108
using existing techniques, with hope that they can subsequently be used as proxies and/or a109
symbolic description for the multi-scale dynamics of a turbulent system.110

1.2. Reduced-order modelling111

Reduced-order modelling has been a long-standing topic in fluid mechanics, and wall-112
bounded turbulence is a flow configuration to which the earliest modelling efforts were made113
(Aubry et al. 1988; Rempfer & Fasel 1994a). The previous efforts may be classified into two114
categories. One is based on the proper orthogonal decomposition (e.g. Lumley 1967, 1981;115
Sirovich 1987; Holmes et al. 1996), and the reduced-order model is subsequently obtained116
by projecting the Navier-Stokes equations onto the space spanned by the POD modes (i.e.117
Galerkin projection; Aubry et al. 1988; Rempfer & Fasel 1994a,b; Smith et al. 2005). The118
other is equivalent to a heavily truncated spectral approximation to the system of interest119
(Waleffe 1997; Moehlis et al. 2004, 2005; Lagha & Manneville 2007; Chantry et al. 2017;120
Cavalieri 2021), which is often used to study low-dimensional dynamics of bifurcation and121
transition to turbulence. Given the scope of the present study, here we shall employ the122
former approach based on POD modes, as they provide the best orthonormal basis in terms123
of capturing the energy of the given flow fields.124
One of the key challenges in the development of a reduced-order model using the POD125

modes are often associated with the number of POD modes considered and the resulting126
truncation. This problem becomes significant especially for high Reynolds number flows,127
where the small-scale motions, not captured by the chosen PODmodes, play a crucial role in128
the energy cascade and turbulent dissipation. Indeed, one of the most fundamental features129
of turbulence is the exact balance between the production at large scale and the dissipation130
at the small (Kolmogorov) scale. Therefore, not accounting for such small-scale motions131
leads to an excess of energy and/or an erroneous behaviour in the reduced-order model.132
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This issue has often been resolved by incorporating an additional eddy-viscosity model that133
removes the excess in the energy of the reduced-order model (Aubry et al. 1988; Rempfer134
& Fasel 1994b; Couplet et al. 2005; Smith et al. 2005; Noack et al. 2011; Östh et al. 2014;135
Protas et al. 2015). Given the scope of the present study, the approach of Protas et al. (2015)136
is particularly appealing, in which an ‘optimal’ eddy viscosity was proposed to minimise137
the difference between the data from the measurement and from the reduced-order model.138
In this approach, the gradient of the given objective functional is computed over multiple139
time intervals using the adjoint-based formulation. The best-performing eddy viscosity is140
subsequently obtained by updating its value at every time interval, an approach reminiscent141
of the ‘sub-optimal’ control in flow control problem (Choi et al. 1993; Lee et al. 1999). It is142
worth mentioning that such an optimisation problem is ideally formulated with an objective143
functional considering a long time interval. However, the resulting adjoint equation for the144
Lagrange multiplier is mathematically unstable around the chaotic trajectory due to the145
positive leading Lyapunov exponent. This inherently limits the size of the time interval that146
can be used for the gradient calculation. Furthermore, the leading Lyapunov exponent rapidly147
grows with the Reynolds number, forming an important challenge in the application of such148
an approach for high Reynolds numbers – indeed, a similar issue of the time interval in the149
adjoint-based optimisation problem was previously discussed in the context of an optimal150
control problem (e.g. Bewley et al. 2001). Recently, there have been a rapidly growing151
number of studies aiming to identify the governing dynamics solely from simulation and152
experimental data available (e.g. Schmidt & Lipson 2009; Brunton et al. 2016; Loiseau &153
Brunton 2018). In the context of fluid mechanics, a novel approach was proposed by Brunton154
et al. (2016), who accurately identified the governing low-dimensional dynamics of Lorenz155
chaos and the two-dimensional laminar cylinder wake from data. In their study, a reduced-156
order model based on POD modes is identified in a data-driven manner by formulating an157
𝑙1-regularisation-based optimisation which minimises the difference between the full and158
the reduced-order dynamics – the approach referred to as ‘sparse identification of nonlinear159
dynamics (SINDy)’. Furthermore, the SINDy framework has been extended by Loiseau &160
Brunton (2018), who introduced a constraint enforcing energy-preserving nonlinearity by161
reformulating the sparse regression problemwith the Karush-Kuhn-Tucker conditions. There162
is also on-going effort to improve low-dimensional representation of nonlinear dynamics163
by nonlinear correlations in the temporal POD coefficients (Callaham et al. 2021a). For164
high Reynolds number turbulent flows, a recent study by Callaham et al. (2021b), the165
statistical-state dynamics of turbulence in three-dimensional bluff-body wake was modelled166
by combining a normal form amplitude equation with stochastic noise determined using a167
similar sparse regression. This approach based on a simple normal formamplitude equation is,168
however, not attractive for wall-bounded shear flows, as the key coherent structure dynamics169
in this case involves a much more sophisticated global bifurcation (e.g. the crisis bifurcation;170
seeKreilos&Eckhardt 2012) aswell as a rich spatio-temporal dynamics that can be described171
with the concept of thermodynamic phase transition (e.g. Avila et al. 2011; Barkley 2016).172
It is finally worth mentioning that, in the context of turbulence modelling, there have been173
several successful recent efforts made with the use of SINDy for a closure of the Reynolds-174
Averaged Navier-Stokes (RANS) equations (e.g. Beetham & Capecelatro 2020; Schmelzer175
et al. 2020; Beetham et al. 2021). A comprehensive review on the utilisation of machine176
learning approaches for turbulence modelling in RANS and LES (large eddy simulation) can177
also be found in Duraisamy (2021), where the need to augment the given turbulent model178
using machine learning methods with suitable physical constraints was discussed.179
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1.3. Objective of the present study180

The objective of the present study is to develop a reduced-order model more accurate than181
conventional ones for a turbulent state in wall-bounded shear flows. As the first step towards182
this task, we will consider a relatively simple but turbulent system: i.e. the minimal flow183
unit of a plane Couette flow (Hamilton et al. 1995), where the chaotic dynamics is well184
described in terms of the self-sustaining process. Based on the utilisation of POD modes,185
four different approaches will be considered and compared to devise a best performing186
reduced-order model: 1) Galerkin projection with a simple truncation; 2) sparse Galerkin187
regression (i.e. application of SINDy Brunton et al. 2016); 3) Galerkin projection with a188
simple eddy viscosity closure (Smith et al. 2005); 4) Galerkin projection with a SINDy189
closure for the truncation error. In particular, the last approach mentioned here is new and190
proposed by the present study, in which the concept of the optimal eddy viscosity (Protas191
et al. 2015) will be combined with a sparse regression. The idea of calibration of a given192
reduced-order model with an eddy-viscosity closure was previously proposed by several193
studies (e.g. Couplet et al. 2005; Cordier et al. 2010) with different types of regularisations.194
A similar idea was also recently explored in the recent work by Mohebujjaman et al. (2019),195
who applied a data-driven correction to a two-dimensional cylinder flow without an explicit196
physical closure model. In this context, it is worth mentioning that an important benefit of197
the 𝑙1-regularisation used in this study over the common 𝑙2-regularisation is that it prevents198
possible overfit of the eddy viscosity model which might yield an overdamped reduced-199
order model. The 𝑙1-regularisation will also offer a more parsimonious low-dimensional200
description. We will see that this approach enables us to effectively determine an ‘optimal’201
eddy viscosity, significantly improving the accuracy of the low-dimensional model based on202
POD modes.203
This paper is organised as follows. In §2, the equations of motion, the flow geometry and204

the POD modes are introduced. The four reduced-order models are subsequently introduced205
and formulated in §3 and their performance will be examined and mutually compared in §4.206
This paper concludes in §5.207

2. Background208

2.1. Plane Couette Flow (PCF)209

We consider a plane Couette flow (PCF) of an incompressible fluid, where the two walls210
move in opposite directions with the streamwise velocity, ±𝑈𝑤 . The wall-normal distance211
between the two walls is given by 2ℎ. The kinematic viscosity of the fluid is 𝜈, and the212
Reynolds number is defined by 𝑅𝑒 = 𝑈𝑤ℎ/𝜈. The streamwise, wall-normal and spanwise213
coordinates are made dimensionless with ℎ, and they are denoted by x = (𝑥, 𝑦, 𝑧). The two214
walls are set to be located at 𝑦 = ±1. The equations of motion are then given by215

𝜕u
𝜕𝑡

= −(u · ∇)u − 𝑦
𝜕u
𝜕𝑥

− ve𝑥 − ∇𝑝 + 1
𝑅𝑒

∇2u, (2.1)216

where 𝑡 is the time, u = (u, v,w) is the perturbation velocity from the laminar base flow,217
U = (𝑦, 0, 0), 𝑝 the pressure and e𝑥 the unit vector in the streamwise direction.218
To build a reduced-order model, we first perform a DNS confined to a minimal flow219

unit (MFU) (Jiménez & Moin 1991; Hamilton et al. 1995). Following Hamilton et al.220
(1995), the computational domain of (𝐿𝑥 , 𝐿𝑦 , 𝐿𝑧) = (1.75𝜋, 2, 1.2𝜋) is considered at221
𝑅𝑒 = 400. The simulation was performed using channelflow2.0, an open-source DNS code222
(https://www.channelflow.ch/). The code uses the Fourier-Galerkin discretisation in the223
streamwise and spanwise directions and the Chebyshev-tau discretisation in the wall-normal224
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Figure 1: Time trace of 𝑀 (0, 1), 𝑀 (0, 2), 𝑀 (1, 0), 𝑀 (1, 1) (a) for 𝑡 = 1000 − 3000 and
(b) for 𝑡 = 1768 − 1840. (c) Flow snapshots at

𝑡 = 1768, 1778, 1789, 1799, 1809, 1819, 1830, 1840, where the blue and red iso-surfaces
indicate 𝑢 = ±0.65, respectively.

direction. The number of grid points in each spatial direction is given by (𝑁𝑥 , 𝑁𝑦 , 𝑁𝑧) =225
(16, 33, 16) (after dealiasing). A third-order semi-implicit backward difference formula226
(SDBF3) is used for the time-integration scheme. The simulation has been performed by227
setting a zero pressure gradient. The domain size normalised by viscous inner units (denoted228
by the superscript (·)+) is obtained as (𝐿+

𝑥 , 𝐿
+
𝑦 , 𝐿

+
𝑧 ) ≃ (186, 68, 127), in good agreement with229

that in Hamilton et al. (1995).230
Figure 1 shows the DNS results, which exhibits the self-sustaining process (SSP). To231

examine the time evolution of the flow fields, the square root of energy of each plane Fourier232
mode is introduced:233

𝑀 (𝑛𝑥 , 𝑛𝑧) =
(∫ 1

−1
[û2(𝑛𝑥 , 𝑛𝑧 , 𝑦) + v̂2(𝑛𝑥 , 𝑛𝑧 , 𝑦) + ŵ2(𝑛𝑥 , 𝑛𝑧 , 𝑦)] d𝑦

) 1
2

, (2.2)234

where (·̂) denotes the Fourier coefficients for the perturbation velocity, and 𝑛𝑥 and 𝑛𝑧235
define the streamwise and spanwise wavenumbers such that 𝑛𝑥𝛼 and 𝑛𝑧𝛽 (𝛼 = 2𝜋/𝐿𝑥 and236
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𝛽 = 2𝜋/𝐿𝑧). Figure 1(a) shows the time trace featuring the quasi-periodic oscillation at the237
SSP time scale, 𝑇𝑆𝑆𝑃 ≈ 80 − 90. A sequence of flow field snapshots for a single SSP cycle,238
which correspond to the time trace in figure 1(b), are shown in figure 1(c). The initial flow239
field is featured with an amplified state of the high- and low-speed streamwise velocity streaks240
(𝑡 = 1768) (note that the time evolution of the streaks is depicted by 𝑀 (0, 1) in figure 1b).241
The streaks subsequently become unstable (Hamilton et al. 1995) or experience the related242
transient growth (Schoppa & Hussain 2002), leading to their breakdown in a sinuously243
meandering manner. The streak breakdown emerges at 𝑡 = 1809 where the streaks evidently244
disappear. Nonlinear processes subsequently regenerate streamwise vortices, leading to an245
increase in 𝑀 (1, 1). Finally, for 𝑡 = 1819 − 1840, the regenerated streamwise vortices (𝑦 − 𝑧246
cut planes) redistribute the momentum from mean shear, resulting in the formation of new247
streaks especially near the lower wall region. This mechanism is known as the ‘lift-up’ effect.248

2.2. Proper orthogonal decomposition249

The proper orthogonal decomposition (POD) seeks a set of orthonormal functions that250
maximises the ensemble-averaged projection of the velocity perturbation, u (e.g. Holmes251
et al. 1996). The optimisation is performed by solving the following eigenvalue problem:252 ∫

Ω

⟨u(x, 𝑡)u𝐻 (x′, 𝑡)⟩𝚽(𝑛)
𝑛𝑥 ,𝑛𝑧 (x

′)𝑑3x′ = 𝜆
(𝑛)
𝑛𝑥 ,𝑛𝑧𝚽

(𝑛)
𝑛𝑥 ,𝑛𝑧 (x), (2.3)253

where (·)𝐻 is the complex conjugate transpose, ⟨·⟩ an ensemble average, 𝜆 (𝑛)
𝑛𝑥 ,𝑛𝑧 , the254

eigenvalue representing the average kinetic energy contained in each POD mode and𝚽(𝑛)
𝑛𝑥 ,𝑛𝑧255

are the POD modes. Here, the eigenvalue and the corresponding POD modes are indexed by256
a positive integer 𝑛 in decreasing order of the eigenvalue for each pair of the streamwise and257
spanwise wavenumber indices, (𝑛𝑥 , 𝑛𝑧). The perturbation velocities are then represented in258
terms of a linear superposition of the POD modes:259

u(x, 𝑡) =
∞∑︁

𝑛𝑥=−∞

∞∑︁
𝑛𝑧=−∞

∞∑︁
𝑛=1

𝑎
(𝑛)
𝑛𝑥 ,𝑛𝑧 (𝑡)𝚽

(𝑛)
𝑛𝑥 ,𝑛𝑧 (x), (2.4a)260

where 𝑎 (𝑛)
𝑛𝑥 ,𝑛𝑧 (𝑡) is the time-dependent amplitude of each POD mode. Given the translational261

invariance in the streamwise and spanwise directions, Fourier expansions are optimal and262
the POD mode is further written as263

𝚽(𝑛)
𝑛𝑥 ,𝑛𝑧 (x) =

1
√
𝐿𝑥𝐿𝑧

𝑒𝑖 (𝛼𝑛𝑥 𝑥+𝛽𝑛𝑧 𝑧)𝝓 (𝑛)
𝑛𝑥 ,𝑛𝑧 (𝑦), (2.4b)264

where 𝝓 (𝑛)
𝑛𝑥 ,𝑛𝑧 (𝑦) describes the wall-normal structure of each PODmode. Since the velocities265

in physical space are real-valued, the following conjugate symmetries are also satisfied:266

𝑎
(𝑛)
𝑛𝑥 ,𝑛𝑧 (𝑡) = 𝑎

(𝑛)∗
−𝑛𝑥 ,−𝑛𝑧 (𝑡) and 𝚽(𝑛)

𝑛𝑥 ,𝑛𝑧 = 𝚽(𝑛)∗
−𝑛𝑥 ,−𝑛𝑧 , (2.4c)267

where the superscript (·)∗ indicates the complex conjugate. Substituting (2.4a) and (2.4b)268
into (2.3), the eigenvalue problem is simplified to269 ∫ 1

−1
⟨û(𝑛𝑥 , 𝑛𝑧 , 𝑦, 𝑡)û𝐻 (𝑛𝑥 , 𝑛𝑧 , 𝑦′, 𝑡)⟩︸                                    ︷︷                                    ︸

≡R̂

𝝓 (𝑛)
𝑛𝑥 ,𝑛𝑧 (𝑦

′) d𝑦′ = 𝜆
(𝑛)
𝑛𝑥 ,𝑛𝑧𝝓

(𝑛)
𝑛𝑥 ,𝑛𝑧 (𝑦). (2.5)270

The ensemble-averaged covariance R̂ is computed by enforcing the discrete symmetries271
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(𝑛𝑥 , 𝑛𝑧 , 𝑛) (0, 0, 1) (0,±1, 1) (0,±2, 1) (±1, 0, 1) (0,±3, 1) (0, 0, 2) (0,±1, 2)
𝜆 4.481 0.767 0.0574 0.0388 0.0201 0.0159 0.0113
𝐸 [%] 68.4 23.4 1.75 1.18 0.614 0.243 0.345

Table 1: Eigenvalues of the first 7 POD modes, ranked in terms of the eigenvalue of the
POD mode 𝜆. Here, 𝐸 [%] is the total energy content of both (𝑛𝑥 , 𝑛𝑧 , 𝑛) and

(−𝑛𝑥 ,−𝑛𝑧 , 𝑛) wavenumber pairs.

of the PCF:273

I : [u, v,w, 𝑝] (𝑥, 𝑦, 𝑧, 𝑡) = [u, v,w, 𝑝] (𝑥, 𝑦, 𝑧, 𝑡),
P : [u, v,w, 𝑝] (𝑥, 𝑦, 𝑧, 𝑡) = [-u, -v, -w, 𝑝] (−𝑥,−𝑦,−𝑧, 𝑡),
R : [u, v,w, 𝑝] (𝑥, 𝑦, 𝑧, 𝑡) = [u, v, -w, 𝑝] (𝑥, 𝑦,−𝑧, 𝑡),

RP : [u, v,w, 𝑝] (𝑥, 𝑦, 𝑧, 𝑡) = [-u, -v,w, 𝑝] (−𝑥,−𝑦, 𝑧, 𝑡),

(2.6)274

275

where I is the identify transformation, P, a point reflection about the origin, R, a reflection276
about the z-plane, and RP, a 180◦ rotation about the 𝑧-axis. Given the statistically stationary277
nature of the turbulent state and the invariance of the PCF under the discrete group278
transformation in (2.6), the covariance operator is obtained as279

R̂(𝑛𝑥 , 𝑛𝑧 , 𝑦, 𝑦′) =
1
4𝑇

∫ 𝑡0+𝑇

𝑡0

∑︁
T∈D2

(�T : u) (𝑛𝑥 , 𝑛𝑧 , 𝑦, 𝑡) (�T : u)𝐻 (𝑛𝑥 , 𝑛𝑧 , 𝑦′, 𝑡) d𝑡, (2.7)280

where D2 = {I,P,R,RP}.281
For the computation of the POD modes, the ensemble-averaged covariance R̂ is first282

obtained and the eigenvalue problem (2.5) is subsequently solved. Since the ensemble average283
is equivalent to time average for a statistically stationary flow, R̂ is obtained by averaging in284
time over an interval 𝑡 ∈ [−10000, 0] with a sampling time interval Δ𝑡 = 1 (i.e. 𝑡0 = −10000285
and 𝑇 = 10000). Within this time interval, the turbulent state is chosen to be statistically286
stationary. We also note that the typical time period of the SSP is about 𝑇𝑆𝑆𝑃 ≈ 80 − 90,287
implying that more than 100 cycles are considered for the construction of the POD modes.288
Table 1 shows the leading eigenvalues obtained in the present study, and they are found to289
match closely with those reported in Smith et al. (2005). The structures of the 9 leading POD290
modes are also visualised in figure 2.291

3. Reduced-order models292

3.1. POD-Galerkin projection293

To build a reduced-order model, we consider the velocity given by (2.4a) with a finite number294
of POD modes:295

u(x, 𝑡) =
𝑀𝑥∑︁

𝑛𝑥=−𝑀𝑥

𝑀𝑧∑︁
𝑛𝑧=−𝑀𝑧

𝑁𝑝∑︁
𝑛=1

𝑎
(𝑛)
𝑛𝑥 ,𝑛𝑧 (𝑡)𝚽

(𝑛)
𝑛𝑥 ,𝑛𝑧 (x) + u𝑅 (x, 𝑡), (3.1)296

where 𝑀𝑥 , 𝑀𝑧 and 𝑁𝑝 are the numbers of streamwise, spanwise Fourier modes and 𝝓 (𝑛)
𝑛𝑥 ,𝑛𝑧 ,297

respectively. u𝑅 (x, 𝑡) is the residual velocity field that will not be resolved by the reduced-298
order model. After substituting (3.1) into (2.1), the projection onto each POD basis yields299
the following system of ordinary different equations (ODE):300

¤a = La + N(a, a) + T, (3.2)301
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Figure 2: Visualisation of 9 leading POD modes (𝑛𝑥 , 𝑛𝑧 , 𝑛): (a) (0, 0, 1); (b) (0, 1, 1); (c)
(1, 0, 1); (d) (1, 1, 1); (e) (1,−1, 1); (f) (0, 2, 1); (g) (1, 2, 1); (h) (1,−2, 1); (i) (0, 3, 1).
Iso-surfaces of (a,b,d−i) denote 𝑢 = −0.15 (red) and 𝑢 = 0.15 (blue). Iso-surfaces of (c)

denote 𝑤 = 0.15 (teal) and 𝑤 = −0.15 (purple).

where ¤(·) ≡ 𝑑/𝑑𝑡, a ∈ C𝑟 with 𝑟 = [(2𝑀𝑥 + 1) (2𝑀𝑧 + 1)𝑁𝑃 + 1]/2 as the column vector,302

the element of which is given by 𝑎
(𝑛)
𝑛𝑥 ,𝑛𝑧 for −𝑀𝑥 ⩽ 𝑛𝑥 ⩽ 𝑀𝑥 , −𝑀𝑧 ⩽ 𝑛𝑧 ⩽ 𝑀𝑧 and303

1 ⩽ 𝑛 ⩽ 𝑁𝑝, L and N are from the projection of the linear and quadratic nonlinear parts304
of (2.1) onto the finite number of POD modes (for further details on their definitions, see305
Appendix A), and T is the residual term originating from u𝑅 (x, 𝑡). From (3.2), the simplest306
low-dimensional model is obtained by ignoring the residual term: i.e.307

T = 0. (3.3)308

This case shall be referred to as the POD-Galerkin model.309
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3.2. Sparse POD-Galerkin regression310

Several recent studies have proposed to identify L and N directly from the data (Brunton311
et al. 2016; Loiseau & Brunton 2018). If the dimension of the given nonlinear oscillation312
is sufficiently low (e.g. two-dimensional laminar cylinder wake), T can be ignored with the313
use of a small number of POD modes. In this case, L and N can directly be obtained from314
the snapshots of a using a sparse regression technique (i.e. SINDy; e.g. Brunton et al. 2016).315
SINDy is formulated by first collecting a set of time snapshots of the POD amplitudes from316
DNS (e.g. a𝑑𝑛𝑠 (𝑡)) into the following data matrices:318

X =
[
a𝑑𝑛𝑠 (𝑡1) a𝑑𝑛𝑠 (𝑡2) . . . a𝑑𝑛𝑠 (𝑡𝑚)

]𝑇
, (3.4a)319320

and322

¤X =
[
¤a𝑑𝑛𝑠 (𝑡1) ¤a𝑑𝑛𝑠 (𝑡2) . . . ¤a𝑑𝑛𝑠 (𝑡𝑚)

]𝑇
. (3.4b)323324

A set of candidate library functions, Θ(X), is subsequently constructed. In the present study,325
we restrict the library functions to be327

Θ(X) =
[
PL(X) PN(X)

]
=


PL(a𝑑𝑛𝑠 (𝑡1)) PN(a𝑑𝑛𝑠 (𝑡1))
PL(a𝑑𝑛𝑠 (𝑡2)) PN(a𝑑𝑛𝑠 (𝑡2))

...
...

PL(a𝑑𝑛𝑠 (𝑡𝑚)) PN(a𝑑𝑛𝑠 (𝑡𝑚))

 , (3.5a)328

329

where PL(X) and PN(X) denote the linear and quadratic combinations of the state vector330
admitted by the form of L andN in (3.2), respectively. We also introduce a coefficient matrix332

𝚵 =
[
𝚵L 𝚵N

]𝑇
, (3.5b)333334

where 𝚵L and 𝚵N contain the (unknown) coefficients for PL(X) and PN(X). The coefficient335
matrix, 𝚵, is subsequently determined by solving the following convex least squares336
regression problem:338

min
𝚵

∥ ¤X − Θ(X) 𝚵∥2 + 𝛾∥𝚵∥1, (3.6)339
340

where ∥ · ∥2 and ∥ · ∥1 denote the standard ℓ2 and ℓ1 norms, respectively, and 𝛾 is the341
penalty introduced for the sparsity promoting ℓ1-regulariser. An advantage of using an ℓ1-342
regularisation compared to an ℓ2-regularisation is that they tend to prevent data overfit343
by promoting a model with the least complexity (sparse) required to model the dynamics344
(Brunton &Kutz 2019). The optimsation problem in (3.6) can be solved with the well-known345
LASSO (least absolute shrinkage and selection operator) algorithm. For large datasets, an346
alternative based on sequential threshold least squares was recommended instead – i.e. the347
SINDy approach (Brunton et al. 2016). This approach is used in the present study. We note348
that if the given dataset is even larger, the approach proposed by Gelß et al. (2019) may349
further be considered (i.e. multidimensional approximation of nonlinear dynamical systems350
(MANDy)). The sparse regression using a template given by the Galerkin projection will be351
referred to as the POD-SINDy model.352
It is worth mentioning that the optimisation (3.6) was recently proposed to be solved with353

an equality constraint which explicitly enforces the energy conservation in the nonlinear354
operator N (Loiseau & Brunton 2018): i.e. a𝐻N(a, a) = 0. However, this approach will not355
be considered in the present study, where the number of POD modes for the construction of356
a reduced-order model will not necessarily be large enough to fully cover the dimension of357
the given chaotic state. In such a case, the sparse regression in (3.6) implies that the residual358

Rapids articles must not exceed this page length
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term T in (3.2) is modelled as359

T = L𝚫a + N𝚫(a, a), (3.7)360

where LΔ and N𝚫 are the difference in L and N obtained by the Galerkin projection and the361
sparse regression. Therefore, the energy-conservation constraint for the nonlinear operator362
proposed by Loiseau & Brunton (2018) would enforce a𝐻 (N(a, a) +N𝚫(a, a)) = 0. However,363
this is not necessarily desirable in the present case, as will be discussed in the following364
subsection. Hence in §4.2, the library terms for the set of POD modes from the same365
wavenumber space, a𝑛𝑥 ,𝑛𝑧 , are made dependent on the wavenumber of the POD modes as366
is suggestive from a Galerkin projection. The library function will consist of first-order367
polynomials of POD modes from the same wavenumber space. It attempts to model the L𝚫368
terms of the dynamics. The modelling of the N𝚫 terms are accounted for by including the369
combination of POD modes that form a set of second-order polynomials which reflect the370
triadicwavenumber interactions, where (𝑛𝑥 , 𝑛𝑧) = (𝑘𝑥 , 𝑘𝑧)+(𝑚𝑥 , 𝑚𝑧), from a POD-Galerkin371
model.372

3.3. The needs for an eddy-viscosity closure373

Now, we consider a physical model for T. To rationalise the need of such a model, we first374
define a∞ as the solution to (3.2) for infinitely large 𝑀𝑥 , 𝑀𝑧 and 𝑁𝑝. In this case, the residual375
T in (3.2) should vanish, thus a∞ would be identical to those obtained by projecting u from376
DNS onto the PODmodes. Given the energy-conserving nature of the nonlinear term in (2.1)377
(e.g. Joseph 1976), the contribution of the resulting nonlinear term to the change rate of the378
perturbation kinetic energy (a𝐻

∞a∞) should be zero for every time instance, 𝑡, i.e.379

a𝐻
∞N∞(a∞, a∞) = 0, (3.8)380

whereN∞ is the quadratic nonlinear term obtained by considering infinitely large𝑀𝑥 ,𝑀𝑧 and381
𝑁𝑝. We note that (3.8) must also be true even if a∞ is replaced by any arbitrary vector. This382
observation motivated Loiseau & Brunton (2018) to impose a𝐻N(a, a) = 0 as an equality383
constraint into the optimisation problem in (3.6).384
Let us now consider small values of 𝑀𝑥 , 𝑀𝑧 and 𝑁𝑝 which define the size of the reduced-385

order model. In particular, we will assume that 𝑀𝑥 , 𝑀𝑧 and 𝑁𝑝 are not large enough to386
cover the full energy cascade dynamics of the given turbulent state. We define a projection387
operator P𝑙 onto the subspace defined by the small values of 𝑀𝑥 , 𝑀𝑧 and 𝑁𝑝. Then, a∞388
can be decomposed into a∞ = a∞,𝑙 + a∞,ℎ, where a∞,𝑙 = P𝑙 [a∞] and a∞,ℎ = Pℎ [a∞] with389
I0 [·] = P𝑙 [·] + Pℎ [·] (I0 [·] is the identity operator). Using this decomposition and the390
quadratic nature of N∞, (3.8) can be written as391

a𝐻
∞,𝑙

[
N∞(a∞,𝑙 , a∞,ℎ) + N∞(a∞,ℎ, a∞,𝑙) + N∞(a∞,ℎ, a∞,ℎ)

]
392

+ a𝐻
∞,ℎ

[
N∞(a∞,𝑙 , a∞,𝑙) + N∞(a∞,𝑙 , a∞,ℎ) + N∞(a∞,ℎ, a∞,𝑙)

]
= 0, (3.9)393

where the top and bottom lines describe the nonlinear energy transport of the perturbation394
kinetic energy in the P𝑙 and Pℎ subspaces, respectively. Here, we note that the term395
a𝐻
∞,𝑙

N∞(a∞,𝑙 , a∞,𝑙), equivalent to a𝐻N(a, a) expected from (3.2), vanishes due to (3.8), and396

so does a𝐻
∞,ℎ

N∞(a∞,ℎ, a∞,ℎ) (note that the only difference between a𝐻
∞,𝑙

N∞(a∞,𝑙 , a∞,𝑙) and397

a𝐻N(a, a) are their dimension). The top line in (3.9) should indicate the rate of perturbation398
energy transferred from the P𝑙 to the Pℎ subspace. Importantly, the energy cascade from399
large to small scales in the three-dimensional Navier-Stokes equations implies400 〈

a𝐻
∞,𝑙

[
N∞(a∞,𝑙 , a∞,ℎ) + N∞(a∞,ℎ, a∞,𝑙) + N∞(a∞,ℎ, a∞,ℎ)

]〉
< 0 (3.10a)401
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and402 〈
a𝐻
∞,ℎ

[
N∞(a∞,ℎ, a∞,ℎ) + N∞(a∞,ℎ, a∞,𝑙) + N∞(a∞,ℎ, a∞,ℎ)

]〉
> 0 (3.10b)403

for a statistically stationary flow where the ensemble average is equivalent to a time average.404
Indeed, this has been observed in a number of previous studies where the inter-scale energy405
transfer is analysed in detail (e.g. Cho et al. 2018; Lee & Moser 2019; Hwang & Lee 2020;406
Doohan et al. 2021b). Given the equivalence of a𝐻

∞,𝑙
N∞(a∞,𝑙 , a∞,𝑙) to a𝐻N(a, a), a condition407

for T to meet from a physical viewpoint would then be408 〈
a𝐻T

〉
< 0, (3.11)409

indicating that the residual term, T, in (3.2) must contain an energy-removal mechanism.410
The discussion above evidently justifies the use of an eddy viscosity model in many411

previous studies (e.g. Aubry et al. 1988; Rempfer & Fasel 1994a,b; Smith et al. 2005; Östh412
et al. 2014; Protas et al. 2015): i.e.413

T = 𝜈𝑡Da, (3.12)414

where 𝜈𝑡 is a scalar-valued eddy viscosity and D is the Laplacian operator for the reduced-415
order model defined in Appendix A. For 𝜈𝑡 > 0, (3.12) yields a sufficient condition for416
(3.11), as it ensures a𝐻T(= 𝜈𝑡a𝐻D)a < 0 at every time for non-zero a with (𝑛𝑥 , 𝑛𝑧) ≠ (0, 0)417
due to the negative semi-definite nature of D (see Appendix A). In the previous studies,418
various form of eddy viscosity have been introduced and examined. In the present study,419
we will first consider a simple spectral eddy viscosity model similar to the one in Smith420
et al. (2005) where an empirical real-valued constant of 𝜈𝑡 is employed. It is evident that421
the performance of this simple single-valued eddy viscosity model is expected to be limited,422
as there is evidence supporting the complex nature of the inter-modal energy transfer (e.g.423
Couplet et al. 2003; Podvin 2009, see also §4.3). Therefore, this approach here is considered424
for the purpose of comparing with the other models. This approach shall be referred to as425
POD-Galerkin-E model (the ‘E’ stands for an ‘empirical’ eddy viscosity).426

3.4. Sparse optimal eddy-viscosity closure427

Although the eddy viscosity model in (3.12) ensures the physical property that originates428
from the energy cascade of turbulent state, (3.11), it is evidently too crude. Indeed, a𝐻T does429
not have to be negative for every point in time like the one ensured by (3.12) – only its time430
average needs to be negative. Furthermore, there is no physical reason that different POD431
modes should feel the ‘same’ eddy viscosity: for example, the POD modes for large 𝑛𝑥 , 𝑛𝑧432
and 𝑛 are not expected to experience a large amount of energy removal from their dynamics433
by T. More flexible forms of eddy viscosity have therefore been proposed previously (for a434
review, see Östh et al. 2014, where various forms of eddy viscosity have been examined for a435
three-dimensional turbulent bluff-body wake). In particular, Protas et al. (2015) introduced436
the concept of ‘optimal’ eddy viscosity by formulating an adjoint-based optimisation problem437
that minimises the difference between the POD amplitudes from the measurement and the438
reduced-order model. However, as discussed in §1, the application of the adjoint-based439
optimisation to a turbulent flow does not always allow for a sufficient long optimisation time440
interval due to the unstable nature of the adjoint system around a chaotic state. Also, the441
approach of Protas et al. (2015) is still based on a scalar-valued eddy viscosity, although its442
generalisation to a sophisticated form of eddy viscosity is easily possible.443
In the present study, we take an alternative formulation which enables us to consider a long444

time horizon for a similar optimisation problem. In particular, we determine an optimal eddy445
viscosity with the sparse regression in §3.2. For the demonstrative purpose, we consider a446
nonlinear closuremodel forT (Östh et al. 2014; Protas et al. 2015), inwhich a complex-valued447
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eddy viscosity is set to vary with POD modes:448

T = V𝑡Da (3.13a)449

with450

V𝑡 (𝑡) = 𝑒(𝑡)𝑑𝑖𝑎𝑔[c], (3.13b)451

where 𝑒(𝑡) is a scalar-valued function of a that can be chosen for a nonlinear eddy viscosity452
model and c the constant vector to be determined for each 𝑛𝑥 , 𝑛𝑧 and 𝑛. We note that the453
choice of 𝑒 usually ensures V𝑡 to vanish as a becomes zero. In previous studies (e.g. Östh454
et al. 2014; Protas et al. 2015), the perturbation kinetic energy, 𝑒(𝑡) = (a𝐻a)1/2, has often455

been considered. In the present study, a simpler form, 𝑒(𝑡) = |𝑎 (1)
0,0 |, is chosen, given that the456

correspondingmode contains approximately 70% of the total perturbation kinetic energy (see457
table 1). A preliminary test also reveals that this choice makes the optimised reduced-order458
model perform slightly better than that of 𝑒(𝑡) = (a𝐻a)1/2 (see Appendix B).459
Now, we formulate an optimisation problem determining V𝑡 in (3.13b). Using the POD460

mode amplitudes obtained from DNS (i.e. a𝑑𝑛𝑠) and (3.2), the desired residual term of the461
low-dimensional system is given by462

T𝑑𝑛𝑠 (𝑡) ≡ ¤a𝑑𝑛𝑠 (𝑡) − La𝑑𝑛𝑠 − N(a𝑑𝑛𝑠, a𝑑𝑛𝑠), (3.14)463

whereT𝑑𝑛𝑠 indicates the residual term calculatedwith a𝑑𝑛𝑠. Similarly to the sparse regression464
in §3.2, a set of time snapshots of T𝑑𝑛𝑠 (𝑡) is introduced into a data matrix using (3.14):466

Y =
[
T𝑑𝑛𝑠 (𝑡1) T𝑑𝑛𝑠 (𝑡2) . . . T𝑑𝑛𝑠 (𝑡𝑚)

]𝑇
. (3.15a)467468

Given (3.13a), the related library function for the optimisation is subsequently formed to be470

Θ𝑒 (Y) =
[
𝑒𝑑𝑛𝑠 (𝑡1)a𝑑𝑛𝑠 (𝑡1)D 𝑒𝑑𝑛𝑠 (𝑡2)a𝑑𝑛𝑠 (𝑡2)D . . . 𝑒𝑑𝑛𝑠 (𝑡𝑚)a𝑑𝑛𝑠 (𝑡𝑚)D

]𝑇
, (3.15b)471472

where 𝑒𝑑𝑛𝑠 (𝑡) is 𝑒 obtained from DNS. Since we seek a complex-valued constant vector c473
that minimises the difference between T𝑑𝑛𝑠 given by (3.14) and T from the residual model474
in (3.13a), the following optimisation is defined:476

min
c

∥Y − Θ𝑒 (Y) 𝑑𝑖𝑎𝑔[c] ∥2 + 𝛾𝑒∥c∥1, (3.16)477
478

where 𝛾𝑒 is the parameter for the sparsity-promoting ℓ1-regulariser. Like the optimisation479
problem in (3.6), (3.16) is solved by applying the SINDy approach (Brunton et al. 2016). This480
approachwill be referred to asPOD-Galerkin-R model (the ‘R’ stands the determination of an481
eddy viscosity with a sparse ‘regression’). As mentioned in §1, several previous studies (e.g.482
Couplet et al. 2005; Cordier et al. 2010) proposed a similar idea of calibrating the residual483
term, T, using Tikhonov regularisation, an optimisation based on the ℓ2-regularisation. Here,484
the ℓ1-regularisation has a benefit over the ℓ2-regularisation, as it is designed to prevent data485
overfit, offering a parsimonious low-dimensional model. Lastly, we note that setting 𝛾𝑒 → ∞486
results in the POD-Galerkin model, while 𝛾𝑒 → 0 yields the least-square eddy viscosity (for487
a further discussion on the effect of 𝛾𝑒, see Appendix C).488
It is also useful to make some remarks on the least-square sparse regression in (3.16).489

First, the regression (3.16) can now consider a very long sampling time, as it simply relies on490
the POD mode amplitudes, a𝑑𝑛𝑠, taken from DNS. Therefore, it no longer suffers from the491
finite optimisation time-interval issue that one may face in the conventional adjoint-based492
formulation. Second, the regression problem (3.16) can flexibly be formulated by accounting493
for various forms of eddy viscosity, and this can be achieved by adding more library functions494
in (3.15b). Third, the regression (3.16) allows for negative elements of V𝑡 (or c), indicating495
that the ‘backwards scattering’ in the energy cascade can be taken into account. Although496
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Model Physics Model for T Technique for T

POD-Galerkin - 0 -
POD-SINDy - L𝚫a + N𝚫 (a, a) Sparse Regression

POD-Galerkin-E Energy Cascade 𝜈𝑡Da Empirical
POD-Galerkin-R Energy Cascade V𝑇

𝑡 Da Sparse Regression

Table 2: Summary of the reduced-order models.

this issue may cause a potential numerical instability of the resulting reduced-order model,497
it may well be fixed by imposing an additional inequality constraint (e.g. all the element498
of c is greater than or equal to zero). Finally, V𝑡 (or c) in (3.13b) can also be a complex499
vector, given that a is complex. In other words, some ‘dispersive’ effect in the dynamics of500
the reduced-order model can also be added with non-zero imaginary part of V𝑡 .501

4. Results and discussions502

We examine the reduced-order models obtained by applying the approaches in §3 to the PCF503
introduced in §2. In table 2, the extent that each model utilises physical information and data504
from DNS is summarised with the form of the closure. The approach relying on the data505
most is the POD-SINDy model, as it determines all the elements of the operator L𝚫 and506
N𝚫 by solving the regression problem in (3.6). On the other hand, the approach accounting507
for both physics and data to the largest extent would be the POD-Galerkin-R model, as a508
physics-informed and flexible form of T is determined in a data-driven manner.509

4.1. Dimension of the reduced-order model: POD-Galerkin model510

The POD-Galerkin model introduced in §3.1 is first studied to determine a few reference511
reduced-order models. For simplicity, only the most energetic POD mode is taken for each512
𝑛𝑥 and 𝑛𝑧 , and the dimension of the reduced-order model is varied with the number513
of the plane Fourier modes. Three different cases are considered: i) 6-modes with a =514

[𝑎 (1)
0,0 , 𝑎

(1)
0,±1, 𝑎

(1)
0,±2, 𝑎

(1)
±1,0, 𝑎

(1)
±1,±1, 𝑎

(1)
±1,∓1] examined in Smith et al. (2005); ii) 25-modes with515

n(≡ [𝑁𝑝, 𝑀𝑥 , 𝑀𝑧]) = [1, 3, 3] (see (3.1)); iii) 41-modes with n = [1, 4, 4]. Figure 3 shows516
the time trace of the Fourier-mode energy, 𝑀 (𝑛𝑥 , 𝑛𝑧), for the three cases. In all cases, the517
initial condition for a is obtained by projecting a DNS field onto the corresponding POD518
mode subspace. For the 6-mode case, the state vector, a, reaches a non-trivial equilibrium519
state after an oscillatory transient, consistent with the result of Smith et al. (2005) (figure520
3a). Given that the 6-mode model exhibits a stable non-trivial equilibrium (i.e. a ≠ 0), this521
would not be a good reference case to build a low-dimensional model exhibiting chaotic522
dynamics. Considering a larger number of plane Fourier modes (i.e. 25- and 41-modes),523
the state vector, a, of the reduced-order model exhibits a chaotic trajectory (figures 3b,c).524
However, the values of 𝑀 (𝑛𝑥 , 𝑛𝑧) appear to be far off from those in DNS. In particular, the525
secondmost energetic mode of the POD-Galerkinmodel,𝑀 (0, 1), which would represent the526
time evolution of streaks, significantly deviates from DNS. Despite this issue, the presence527
of the chaotic dynamics in the POD-Galerkin models with 25- and 41-modes indicates that528
they would be good reference cases which the other modelling approaches in §3 can further529
be employed. Therefore, the remaining part of the present study will only consider the 25-530
and 41-mode cases.531
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Figure 3: Time trace of 𝑀 (𝑛𝑥 , 𝑛𝑧) of the POD-Galerkin model: (a) 6 modes (Smith et al.
2005); (b) 25 modes; (c) 41 modes.

4.2. Sparse POD-Galerkin regression: POD-SINDy model532

Based on the 25- and 41-mode cases in §4.1, the optimisation problem in (3.6) is solved for533
𝑡 ∈ [−10000, 0] with an sampling interval of Δ𝑡 = 0.5, in order to obtain the corresponding534
POD-SINDy model. The model constructed is subsequently examined by considering an535
additional time interval 𝑡 ∈ [0, 5000]. The relative error of the least-squares regression536
defined in (3.6) is reported in table 3 for the 25-mode model. Here, the relative error is537
defined as538

E𝑃𝑆 =
1

𝑁mode

𝑀𝑥∑︁
𝑛𝑥=−𝑀𝑥

𝑀𝑧∑︁
𝑛𝑧=−𝑀𝑧

𝑁𝑝∑︁
𝑛=1

[ ¤X − Θ(X)𝚵
] (𝑛)
𝑛𝑥 ,𝑛𝑧


2[ ¤X] (𝑛)

𝑛𝑥 ,𝑛𝑧


2

, (4.1)539

where [·] (𝑛)𝑛𝑥 ,𝑛𝑧 indicates the component defined by the POD mode indices given in (2.4a).540
𝑁mode is defined as the number of POD modes used in the sparse regression. We note that541
the relative error is normalised by 𝑁mode such that E𝑃𝑆 ∈ [0, 1]. As expected, the relative542
error reaches the minimum when 𝛾 is zero (least-squares regression). When 𝛾 is increased,543
the relative error becomes larger due to the increased sparsification penalty as defined in544
equation (3.6).545
The 6-mode POD-SINDy model obtained and the 25-mode POD-SINDy model obtained546

in this way is subsequently simulated. It is found that the POD-SINDymodel rapidly blows up547
for 𝑡 ∈ [0, 4], and this behaviour remains unchanged for relatively low values of 𝛾 ∈ [0, 0.1].548
For 𝛾 = 1, only 𝑀 (0, 2) blows up while the rest remains relatively stable, although all the549
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𝛾 0 0.0001 0.001 0.01 0.1 1 10
E𝑃𝑆 (training) 0.69 0.69 0.69 0.69 0.75 0.98 0.99
E𝑃𝑆 (validation) 0.68 0.68 0.68 0.68 0.73 0.98 0.99

𝑁0 (L) 0 0 0 0 31 49 49
𝑁0 (N) 0 0 0 2 78 534 664

Table 3: Relative error of the least-squares regression in (3.6) for the POD-SINDy model
with 25-modes. Here, E𝑃𝑆 is defined in (4.1), which is the summation of the the relative
error of each mode when compared to DNS data, normalised by the total number of POD
modes. The ‘training’ and ‘validation’ in second and third lines imply E𝑃𝑆 from

𝑡 ∈ [−10000, 0] and 𝑡 ∈ [0, 5000], respectively. Also, 𝑁0 (·) indicates the number of zero
terms in the linear operator L and in the nonlinear operator N, except the Reynolds
shear-stress term in the mean equation, in the model. Note that the number of the POD
modes used for the 25-mode POD-SINDy model is 𝑁mode = 49 due to the conjugate
symmetry (i.e. 1 mode for the mean equation and 2 × 24 modes for the fluctuation

equations.
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Figure 4: Time trace of 𝑀 (𝑛𝑥 , 𝑛𝑧) from DNS and the POD-Galerkin-E model with 25
modes (𝜈𝑡 = 0.003).

linear terms are zero in this case (see table 3). For 𝛾 = 10, all the terms in the regression550

from the GP-template are zero, except for the nonlinear terms for the equation for ¤𝑎 (1)
0,0 . The551

application of this approach to the 41-mode case also exhibits a similar behaviour, thus it is552
not pursued any more. The blow-up of the POD-SINDy model was not reported in previous553
studies (e.g. Brunton et al. 2016; Loiseau & Brunton 2018; Rubini et al. 2021). However, it554
is worth mentioning that the dimension of nonlinear oscillations in such cases are low (e.g.555
Lorenz chaos, two-dimensional laminar vortex shedding, and two-dimensional cavity flows).556
As such, the number of POD modes considered in those studies appear to be large enough557
to cover the full nonlinear dynamics using sparse regression. This suggests that the blow-up558
of the POD-SINDy model shown here are presumably caused by the number of POD modes559
that is not large enough to cover the full chaotic dynamics of interest. As discussed in §3.2,560
in this case, the POD-SINDy model takes the residual term T in the form of (3.7), which561
does not necessarily ensure (3.11).562
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𝛾𝑒 0.0003 0.0005 0.001 0.005 0.1
E𝑃𝐺𝑅 (training) 0.93 0.93 0.96 1 1
E𝑃𝐺𝑅 (validation) 0.92 0.92 0.95 1 1

𝑁0 11 15 35 49 49

Table 4: Relative error of the least-squares regression in (3.16) for the POD-Galerkin-R
model with 25 modes. Here, E𝑃𝐺𝑅 is defined in (4.2). The ‘training’ and ‘validation’ in
second and third lines imply E𝑃𝑆 from 𝑡 ∈ [−10000, 0] and 𝑡 ∈ [0, 5000], respectively. As
in Table 3, 𝑁0 indicates the number of zero valued eddy-viscosity terms for 𝑁mode = 49.

4.3. Utilisation of an empirical eddy viscosity: POD-Galerkin-E model563

The POD-Galerkin-E model, which utilises the simple spectral eddy viscosity of Smith564
et al. (2005), is examined by considering a few values of 𝜈𝑡 defined in (3.12): 𝜈𝑡 =565
(0.001, 0.003, 0.005). It is, however, found that the introduction of such a simple eddy566
viscosity closure does not significantly improve the accuracy of the reduced-order model567
compared to the original POD-Galerkin model. Indeed, 𝜈𝑡 = 0.001 is found to be too small568
to influence the original POD-Galerkin model, while 𝜈𝑡 = 0.005 is too large and stabilises569
the chaotic dynamics into a stable non-trivial equilibrium. Here, we present the results for570
𝜈𝑡 = 0.003, which was determined by accounting for this observation like Smith et al.571
(2005). Figure 4 compares the time trace of 𝑀 (𝑛𝑥 , 𝑛𝑧) from DNS with that from the POD-572
Galerkin-E model with 25-modes for 𝜈𝑡 = 0.003. The mean component, 𝑀 (0, 0), which573
contains the largest perturbation energy, exhibits a large difference from that of DNS. In574
fact, this deviation is greater than that of the POD-Galerkin model which does not employ575
any model of T (compare figure 4 with figure 3b). However, it should be mentioned that not576
all of the mode amplitudes exhibit such a deterioration. The POD-Galerkin-E model is also577
found to exhibit a much more improved 𝑀 (1, 1) (compare figure 4 with figure 3b; see also578
table 5), indicating that the utilisation of a suitable eddy viscosity closure would improve the579
performance of a reduced-order model. This will be seen in §4.5.580

4.4. Sparse optimal closure: POD-Galerkin-R model581

We now consider the POD-Galerkin-R model where a flexible form of eddy viscosity is582
determined by solving the least-squares regression problem in (3.16). The regression is583
performed with the data taken for 𝑡 ∈ [−10000, 0] with an sampling interval of Δ𝑡 = 0.5, and584
the model is subsequently examined by considering an additional time interval 𝑡 ∈ [0, 5000].585
Similarly to (4.2), the relative error of the regression is defined as586

E𝑃𝐺𝑅 =
1

𝑁mode − 1

𝑀𝑥∑︁
𝑛𝑥=−𝑀𝑥

𝑀𝑧∑︁
𝑛𝑧=−𝑀𝑧

𝑁𝑝∑︁
𝑛=1

[Y − Θ𝑒 (Y)𝑑𝑖𝑎𝑔[c]] (𝑛)𝑛𝑥 ,𝑛𝑧


2[Y] (𝑛)𝑛𝑥 ,𝑛𝑧


2

(4.2)587

for (𝑛𝑥 , 𝑛𝑧) ≠ (0, 0), and it is reported in table 4 for the 25-mode model. Note that the588
mode with (𝑛𝑥 , 𝑛𝑧) = (0, 0) is excluded from the relative error statistics as no residual589
term was applied to this mode. As expected, the relative error becomes larger as the ℓ1-590
regularisation penalty, 𝛾𝑒, increases. For 𝛾𝑒 > 0.005, E𝑃𝐺𝑅 remains unchanged, indicating591
that the regression would not make any improvement. In the present study, we have chosen592
to present the result for 𝛾𝑒 = 0.0005 which renders the proposed regression sufficiently593
effective, while not allowing for too small values in c that could well be from some numerical594
issues (e.g. sampling time interval). We also ensure that our residual model does not overfit595
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Figure 5: Time trace of 𝑀 (𝑛𝑥 , 𝑛𝑧) from DNS and the POD-Galerkin-R model: (a)
25-modes (𝛾𝑒 = 0.0005); (b) 41-modes (𝛾𝑒 = 0.0001). The misalignment of the initial
condition at 𝑡 = 0 for 𝑀 (1, 1) between the model and DNS data are due to the residual

flow-field not being capture by the POD basis.

our training dataset by comparing the training and validation set error quantitatively as seen596
in table 4.597
Figure 5 shows time trace of 𝑀 (𝑛𝑥 , 𝑛𝑧) from the POD-Galerkin-R model utilising 25- and598

41-modes, and it is compared with that from DNS. The time traces of 𝑀 (𝑛𝑥 , 𝑛𝑧) from the599
POD-Galerkin-R model are now quite close to those from DNS, including the initial time600
evolution of the three most energetic modes (𝑀 (0, 0), 𝑀 (0, 1) and 𝑀 (0, 2) for 𝑡 < 50) –601
note that the Lyapunov time would be expected to be at the order of the smallest time scale602
of the flow (i.e. the Kolmogorov time scale), which is given by 𝑡 ∼ 𝑂 (10) in the present case603
(e.g. Ruelle 1979; Crisanti et al. 1993). This indicates that the performance of this model is604
evidently far superior to that of the POD-Galerkin and the POD-Galerkin-E models. Both of605
the 25- and 41-mode cases of the POD-Galekrin-R model also exhibit a chaotic oscillation606
with the time scale close to that of DNS, observed in figure 8, and which will be discussed607
in §4.5.608

The constant vector c(=𝑐 (𝑛)𝑛𝑥 ,𝑛𝑧 ) used for the eddy viscosity in (3.13b) is also visualised609
in figure 6. We first consider the 25-mode case (figure 6a). Here, we note that the constant610
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Figure 6: Distribution of real (left column) and imaginary (right column) part of 𝑐 (𝑛)𝑛𝑥 ,𝑛𝑧 in
the 𝑛𝑥 − 𝑛𝑧 plane : (a,b) 25-modes (𝛾𝑒 = 0.0005); (c,d) 41-modes (𝛾𝑒 = 0.0001).

vector, c, exhibits a conjugate symmetry because the velocity in this study is real-valued.611
It also appears to be distributed highly symmetrically in the 𝑛𝑥-𝑛𝑧 plane. This originates612
from the R symmetry in (2.6) – the R symmetry imposes the streamwise and wall-normal613

components of 𝝓 (𝑛)
𝑛𝑥 ,𝑛𝑧 and 𝝓

(𝑛)
𝑛𝑥 ,−𝑛𝑧 to be identical and their spanwise component to have the614

opposite signs, while the energy of the streamwise component dominates over the other two615
components (see also figure 7). The real part of c, proportional to the strength of dissipation616
(i.e. the removal of the energy from the given dynamics), is positive for most pairs of617

(𝑛𝑥 , 𝑛𝑧) in the 𝑛𝑥 − 𝑛𝑧 plane, as expected from (3.11). However, there are some 𝑐 (𝑛)𝑛𝑥 ,𝑛𝑧 which618
exhibit negative values, and this is particularly pronounced around (𝑛𝑥 , 𝑛𝑧) = (±3, 0). This619
indicates that allowing for negative elements of c does help to improve the performance620
of the reduced-order model as discussed in §3.4. It is interesting to note that the higher621
streamwise and spanwise independent modes are energised (inverse energy transfer) and622
dissipated (forward energy cascade) respectively, consistent with the findings from Podvin623

(2009). Furthermore, some 𝑐 (𝑛)𝑛𝑥 ,𝑛𝑧 also exhibit non-zero imaginary values. However, their624
amplitudes are overall an order-of-magnitude smaller than those of the real counter part,625

implying that the dispersive effect imposed by the imaginary part of 𝑐 (𝑛)𝑛𝑥 ,𝑛𝑧 would not be626

significant. Finally, the distribution of 𝑐 (𝑛)𝑛𝑥 ,𝑛𝑧 for the 41-mode case (figures 6c,d) shows that627
increasing the number of PODmodes do not significantly change the overall distribution and628

strength of 𝑐 (𝑛)𝑛𝑥 ,𝑛𝑧 in the 𝑛𝑥 − 𝑛𝑧 plane (compare figures 6a,b with 6c,d). We note that as the629
number of POD modes is increased, the eddy viscosity also needs to vanish. However, this is630

not observed in figure 6. Instead, the similar distribution of 𝑐 (𝑛)𝑛𝑥 ,𝑛𝑧 for the 25- and 41-mode631
cases suggests that the eddy viscosity obtained with (3.16) is coherently compensating for632
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Cases # of POD modes ⟨|𝑎 (1)0,0 |⟩ ⟨|𝑎 (1)0,1 |⟩ ⟨|𝑎 (1)0,2 |⟩ ⟨|𝑎 (1)1,1 |⟩

DNS N/A 2.110 0.881 0.230 0.079
POD-Galerkin 25 1.831 (13%) 0.453 (49%) 0.126 (45%) 0.227 (187%)

41 1.772 (16%) 0.421 (52%) 0.127 (45%) 0.239 (203%)
POD-Galerkin-E 25 1.239 (41%) 0.389 (56%) 0.072 (69%) 0.132 (67%)

41 1.268 (40%) 0.210 (76%) 0.055 (76%) 0.085 (8%)
POD-Galerkin-R 25 2.055 (5%) 0.809 (8%) 0.231 (0.4%) 0.111 (41%)

41 1.820 (14.5%) 0.744 (16%) 0.235 (2%) 0.144 (82%)

Table 5: Time-averaged amplitudes of POD modes from DNS and the reduced-order
models. Here, the numbers in the parenthesis indicate the relative error to the values from

DNS.

some physical processes which are not simply resolved by the increase in the number of plane633
Fourier modes (i.e. 𝑀𝑥 and 𝑀𝑧). In this respect, it is worth reminding that the reduced-order634
models in the present study only consider the leading POD mode for each (𝑛𝑥 , 𝑛𝑧). It is635
therefore presumable that the compensation made by the eddy viscosity model is associated636
with the lack of the higher-order POD modes for each (𝑛𝑥 , 𝑛𝑧).637

4.5. Comparison of the reduced-order models638

Having examined all of the reduced-order models introduced in §3, their performance is639
compared in this subsection. Table 5 shows the time-averaged amplitudes of the four leading640
PODmodes from DNS and the reduced-order models, except the POD-SINDy model whose641
solution was found to blow up (see §4.2). We note that the four POD modes contain642
approximately 95% of total perturbation kinetic energy (see table 1). The POD-Galerkin643

model performs sensibly only for the mean component, 𝑎 (1)
0,0 , while the rest of the components644

with (𝑛𝑥 , 𝑛𝑧) ≠ (0, 0) exhibit considerable errors ranging from 50% to 200%. The addition645
of an empirical eddy viscosity does not improve the POD-Galerkin model greatly (i.e. POD-646
Galerkin-E model), since the model still shows errors of 50%-80% across all the four leading647
POD modes. This model may also be viewed to perform most poorly, given the largest errors648

for 𝑎 (1)
0,0 that contains the largest amount of perturbation energy. Finally, the POD-Galerkin-R649

model shows the best performance and it has only a maximum 16% error for the first three650

leading POD modes. Although this model still shows a relatively large error for 𝑎 (1)
1,1 , the651

energy contained by this mode in DNS is only about 1% (see table 1). Therefore, this error652
would be relatively insignificant.653
The mean and turbulent velocity fluctuations from DNS and the reduced-order models654

are compared in figure 7. As expected from table 5, the mean velocity from the POD-655
Galerkin model and the POD-Galerkin-R model shows the best agreement with that from656
DNS. However, the POD-Galerkin model exhibits large differences in the velocity fluctuation657
profiles, while the statistics from the POD-Galerkin-E model are overall damped. A closer658
inspection reveals that the cross-stream andwall-normal turbulence fluctuations are predicted659
better by the 41-modemodel,with a slightly poorer prediction in the streamwisemean velocity660
as compared to the 25 mode model. In any case, the level of agreement of the POD-Galerkin-661
R models in turbulence statistics has not been observed in any of the previous reduced-order662
models in plane Couette flow (e.g. Smith et al. 2005; Cavalieri 2021).663
Next, to assess the dynamical behaviour of the leading PODmodes from the reduced-order664
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Figure 7: Turbulence statistics from DNS and the reduced-order models: (a) streamwise
mean velocity; (b,c,d) root-mean-squared velocity fluctuations.

models, the following temporal auto- and cross-correlations of the main observables defined665
in (2.2) are computed:666

𝐶
(𝑛𝑥 ,𝑛𝑧)
(𝑚𝑥 ,𝑚𝑧) (𝜏) =

⟨𝑀 (𝑡 + 𝜏; 𝑛𝑥 , 𝑛𝑧)𝑀 (𝑡;𝑚𝑥 , 𝑚𝑧)⟩√︃
𝑀2(𝑡; 𝑛𝑥 , 𝑛𝑧)

√︃
𝑀2(𝑡;𝑚𝑥 , 𝑚𝑧)

, (4.3)667

where 𝑀 (𝑡; 𝑛𝑥 , 𝑛𝑧) = 𝑀 (𝑡; 𝑛𝑥 , 𝑛𝑧) − ⟨𝑀 (𝑡; 𝑛𝑥 , 𝑛𝑧)⟩. Figure 8 compares the correlation668
functions of the 25-mode and 41-mode models considered with those of DNS. In general,669

for the temporal correlations of 𝐶 (0,1)
(0,1) , the POD-Galerkin-R model have a closer match to670

the DNS data when compared to POD-Galerkin and POD-Galerkin-E models. The inclusion671

of more POD modes have the effect of improving the correlations of 𝐶 (1,1)
(1,1) especially for672

𝜏 = [−15, 15]. By doing so, we observe a notable improvement of the 𝐶 (1,1)
(0,1) correlations, an673
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Figure 8: Temporal auto- and cross-correlations of: (a) 25-modes (𝛾𝑒 = 0.0005 for the
POD-Galerkin-R model); (b) 41-modes (𝛾𝑒 = 0.0001 for the POD-Galerkin-R model).
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important behaviour expected from the self-sustaining process, as it captures the breakdown674
of a streak structure and the regeneration of the streamwise vortices. Neither the POD-675
Galerkin or the POD-Galerkin-E model was able to closely replicate this behaviour with the676
inclusion of more POD modes.677
Finally, figure 9 shows a time trace of the observables defined in (2.2) and a set of678

flow-field snapshots visualising a self-sustaining process generated by the POD-Galerkin-679
R 41-mode model. The strong streaky motions are apparent in 𝑡 = 1840 − 1857, shown680
as a peak in 𝑀 (0, 1) in figure 9b. The streaks breakdown into a wavy-behaviour from681
𝑡 = 1874− 1891, accompanied by a decrease in 𝑀 (0, 1) and an increase in 𝑀 (1, 0) in figure682
9b. The streaks breakdown completely from 𝑡 = 1909 − 1926 while the quasi-streamwise683
vortices are regenerated, leading to an increase in 𝑀 (1, 1). Finally, the quasi-streamwise684
vortices feed energy to the streaks from 𝑡 = 1943−1960, known as the ’lift-up’ effect.We note685
that the self-sustaining process from the POD-Galerkin-R 41-mode model is qualitatively686
similar to that of figure 1, supporting the good agreements in temporal auto- and cross-687
correlations of figure 8.688

5. Concluding remarks689

In the present study, we have examined a set of physics-informed and data-driven approaches690
towards the development of a low-dimensional model more accurate than the conventional691
ones for turbulent wall-bounded shear flows. Based on the utilisation of POD modes, a692
particular focus is given to the case where the number of the POD modes is not necessarily693
large enough to cover the full dynamics of the given chaotic state. Starting from the694
conventional POD-Galerkin model, three additional approaches have been examined: 1)695
sparse regression of the POD-Galerkin dynamics (POD-SINDy model); 2) POD-Galerkin696
projection with an empirical eddy viscosity model (POD-Galerkin-E model; Smith et al.697
2005); 3) a newly-proposed POD-Galerkin projection with an optimal eddy viscosity698
determined using a spare regression (POD-Galerkin-R model). The sparse regression of699
the POD-Galerkin dynamics has been found to be unsuccessful presumably due to the700
small number of POD modes considered, although this might be able to be improved701
by incorporating the energy-preserving nonlinearity constraint into the model (Loiseau &702
Brunton 2018). In the present study, this issue can be tackled by introducing a data-driven703
eddy-viscosity model for a highly turbulent flow, as the POD-Galerkin projection with a704
sparse optimal viscosity has been found to well approximate the given chaotic dynamics.705
It should be mentioned that this eddy-viscosity model was introduced to have a better706
nonlinear energy balance (3.8) only at large scale spanned by the PODmodes of interest (see707
also discussion in §3.3). In this respect, the data-driven eddy viscosity model here may be708
viewed to be a pragmatic alternative of the the energy-preserving nonlinearity constraint in709
Loiseau & Brunton (2018) for highly turbulent flows.710
The key reason to the success of the POD-Galerkin-R model is that it considers the largest711

amount of physical information: i.e. Galerkin projection and energy cascade. It is important712
to emphasise that the Galerkin projection allows the reduced-order model to inherit the713
mathematical structure of the Navier-Stokes equations. In other words, this feature makes714
the reduced-order model analysable, as it contains all the mathematical elements previously715
utilised to study the flow physics: e.g. linearised dynamics and production/dissipation, etc.716
Having said this, the energy cascade via nonlinear and non-local interactions modelled here717
is still an active and challenging research topic (e.g. Vassilicos 2015), and it may take years718
to gain the full physical understanding, if not possible. The eddy-viscosity model utilised in719
the present study is still very minimal to incorporate the full energy cascade dynamics into720
a reduced-order model. However, a notable point of doing so is that a data-driven approach721
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Figure 9: Time trace of 𝑀 (0, 1), 𝑀 (0, 2), 𝑀 (1, 0), 𝑀 (1, 1) obtained from the
POD-Galerkin-R 41 mode model (a) for 𝑡 = 1000 − 3000 and (b) for 𝑡 = 1840 − 1960. (c)
Flow snapshots at 𝑡 = 1840, 1857, 1874, 1891, 1909, 1926, 1943, 1960, where the blue and

red iso-surfaces indicate 𝑢 = ±0.38, respectively.

(i.e. sparse regression), which itself does not provide any insight into the given flow physics,722
was applied to model the flow physics which is not fully understood. We have shown that723
classical physics-based reduced-order modelling (i.e POD-Galerkin) of a complex process is724
limited, and data-driven approaches can be exploited to improve the reduced-order models.725
It should also be mentioned that there have recently been a surge of data-driven flow726

modelling approaches using optimisation and machine learning (see the recent review by727
Brunton et al. 2020). In the context of reduced-order modelling, utilisation of some machine728
learning algorithms (e.g. reservoir computing) was proposed for the prediction of a chaotic729
dynamical system (e.g. Pathak et al. 2018 and the other recent studies). While such an730
approach may well be practically useful for the prediction of extreme events relevant to731
weather forecasting, it does not offer insights into the flow physics required for modelling732
in a wider context. Indeed, how one would smartly incorporate the known flow physics into733
a data-driven modelling approach has been a central issue of many current investigations,734
especially when the equations of motion (e.g. Navier-Stokes equations) are fully available. In735
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this respect, the utilisation of Galerkin projection in the present study may perhaps provide a736
new opportunity as it directly offers a mathematical structure from the governing equations.737
Indeed, instead of utilising a model given by (3.13), a highly flexible form of model for T738
may well be considered with a machine learning algorithm.739
It is also worth mentioning about the extrapolation capability of the model obtained at740

a given set of parameters to the others. This issue has often been regarded to be generally741
challenging for a model reduction problem. In the present study, the optimal eddy viscosity742
obtained here is, in fact, intricately linked to the physical processes of the given system. The743
optimal value would vary with the change of system parameters (e.g. the Reynolds-number744
dependent role of small scales modelled with the eddy viscosity here). Therefore, further745
efforts need to be made to address this issue in the future.746
Finally, given the original scope of the present paper discussed in §1.1, the natural next747

step of the present study is to apply the approach proposed here to flows at higher Reynolds748
numbers where coherent structures begin to emerge at multiple integral length scales as749
in the attached eddy hypothesis of Townsend (1956, 1976). An obvious issue for this next750
step would lie in the determination of the number of POD modes that capture the core751
interaction dynamics at integral length scales, while effectively excluding the dissipative752
dynamics that can be modelled using the data-driven eddy-viscosity approach here. Once753
this process is completed with an appropriate validation using DNS data, invariant solutions754
(e.g. unstable periodic orbits) of the reduced-order model can subsequently be computed to755
study the multi-scale dynamics. The current hope is that the total degree of freedom of the756
reduced-order model remains at 𝑂 (102 − 103) at a sufficiently high Reynolds number (e.g.757
𝑅𝑒𝜏 ≃ 500 − 1000) to tackle this challenge.758
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Appendix A. Galerkin projection765

The projection of (2.4a) onto the Navier-Stokes equations (2.1) leads to the following system766
of ordinary differential equations:767

¤𝑎 (𝑛)
𝑛𝑥 ,𝑛𝑧 =

𝑁𝑝∑︁
𝑚=1

𝐿
(𝑛,𝑚)
𝑛𝑥 ,𝑛𝑧 𝑎

(𝑚)
𝑛𝑥 ,𝑛𝑧 + N (𝑛)

𝑛𝑥 ,𝑛𝑧 , (A 1a)768

where769

N (𝑛)
𝑛𝑥 ,𝑛𝑧 =

𝑁𝑥∑︁
𝑘𝑥=−𝑁𝑥

𝑁𝑧∑︁
𝑘𝑧=−𝑁𝑧

𝑁𝑝∑︁
𝑘=1

𝑁𝑝∑︁
𝑚=1

𝑁
(𝑛,𝑘,𝑚)
𝑛𝑥 ,𝑛𝑧
𝑘𝑥 ,𝑘𝑧

𝑎
(𝑘)
𝑘𝑥 ,𝑘𝑧

𝑎
(𝑚)
𝑚𝑥=𝑛𝑥−𝑘𝑥
𝑚𝑧=𝑛𝑧−𝑘𝑧

, (A 1b)770
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with772

𝐿
(𝑛,𝑚)
𝑛𝑥 ,𝑛𝑧 = − 1

𝑅𝑒

[(
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+

(
2𝜋𝑛𝑧
𝐿𝑧

)2]
𝛿𝑛𝑚 − 1
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(
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)𝐻𝜙 (𝑛)
1,𝑛𝑥 ,𝑛𝑧

d𝑦,

(A 1c)773

774

and775

𝑁
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= − 1
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d𝑦,

(A 1d)776
Therefore, (A 1) may be written as the following quadratic nonlinear dynamical system form:777

778

¤a = La + N(a, a), (A 2a)779

where a is defined as a column vector, each element of which is given by 𝑎 (𝑛)
𝑛𝑥 ,𝑛𝑧 ,780

La ≡
𝑁𝑝∑︁
𝑚=1

𝐿
(𝑛,𝑚)
𝑛𝑥 ,𝑛𝑧 𝑎

(𝑚)
𝑛𝑥 ,𝑛𝑧 , (A 2b)781

and782

N(a, a) ≡ N (𝑛)
𝑛𝑥 ,𝑛𝑧 . (A 2c)783

Similarly, the diffusion operator used for the eddy-viscosity closure in §3.3 and §3.4 is784
defined as785

Da ≡
𝑁𝑝∑︁
𝑚=1

𝐷
(𝑛,𝑚)
𝑛𝑥 ,𝑛𝑧 𝑎

(𝑚)
𝑛𝑥 ,𝑛𝑧 , (A 3a)786

where787
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∫
𝑦

(
𝑑𝝓 (𝑛)
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𝑑𝑦 (A 3b)788

for (𝑛𝑥 , 𝑛𝑧) ≠ (0, 0) and789

𝐷
(𝑛,𝑚)
𝑛𝑥 ,𝑛𝑧 = 0. (A 3c)790

for (𝑛𝑥 , 𝑛𝑧) = (0, 0), so that the eddy viscosity is not applied to the mean equation. Using791
the diffusion operator above, the eddy viscosity model defined in (3.13) is finally written as792

V𝑡Da ≡ 𝑐
(𝑛)
𝑛𝑥 ,𝑛𝑧 𝑒(𝑡)

𝑁𝑝∑︁
𝑚=1

𝐷
(𝑛,𝑚)
𝑛𝑥 ,𝑛𝑧 𝑎

(𝑚)
𝑛𝑥 ,𝑛𝑧 , (A 4a)793

where 𝑐 (𝑛)𝑛𝑥 ,𝑛𝑧 forms each element of c in (3.13).794

Appendix B. The choice of 𝑒 in §3.4795

Here, we report a POD-Galerkin-R model, in which 𝑒(𝑡) = a𝐻a is considered instead796

of 𝑒(𝑡) = 𝑎
(1)
0,0 . The sparse regression in (3.16) is performed with the DNS data for 𝑡 ∈797

[−10000, 0] and the resulting model is subsequently examined for 𝑡 ∈ [0, 5000]. The time798
trace of 𝑀 (𝑛𝑥 , 𝑛𝑧) from the reduced-order model and from DNS is shown in figure 10.799
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Figure 10: Time trace of 𝑀 (𝑛𝑥 , 𝑛𝑧) from DNS and the POD-Galerkin-R model
(𝛾𝑒 = 0.0005 and 𝑒(𝑡) = a𝐻a) with 25 modes.
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Figure 11: Time trace of 𝑀 (𝑛𝑥 , 𝑛𝑧) from DNS and the POD-Galerkin-R of the 25-mode
model : (a) 𝛾𝑒 = 0.001; (b) 𝛾𝑒 = 0.0005; (c) 𝛾𝑒 = 0.0003.

Overall, the mean of 𝑀 (𝑛𝑥 , 𝑛𝑧) and its oscillation time scale from the reduced-order model800
compare fairly well with those from DNS. The oscillation magnitude of 𝑀 (0, 0) in this case801

is slightly stronger than that from the POD-Galerkin-R model with 𝑒(𝑡) = 𝑎
(1)
0,0 (figure 5a),802

and the oscillation appears to be slightly less chaotic.803

Appendix C. The effect of 𝛾𝑒 on model dynamics.804

The sparsity-promoting ℓ1-regulariser acts as a control parameter balancing between the805
effect of the GP model and the residual model on the overall dynamics. In Figure 11, we806
observe that for 𝛾𝑒 = 0.001, the effect of the residual model adversely affects the temporal807
dynamics as only certain POD modes are being selectively damped. For 𝛾𝑒 = 0.0003, the808
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residual model dominates and the POD modes are strongly coupled to the mean POD mode809
where we obtain oscillatory behaviour due to excessive damping.810
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