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Abstract
Multiparty Session Types (MPST) is a typing discipline for message-passing distributed pro-

cesses that can ensure properties such as absence of communication errors and deadlocks, and
protocol conformance. Can MPST provide a theoretical foundation for concurrent and distrib-
uted programming in “mainstream” languages?

We address this problem by (1) developing the first encoding of a full-fledged multiparty
session π-calculus into standard linear π-calculus, and (2) using the encoding as the foundation
of a practical toolchain for safe multiparty programming in Scala.

Our encoding is type-preserving and operationally sound and complete. Importantly for
distributed applications, it preserves the choreographic nature of MPST and illuminates that
multiparty sessions (and their safety properties) can be precisely represented with a decomposi-
tion into binary linear channels. Previous works have only studied the relation between (limited)
multiparty sessions and binary sessions by orchestration means.

We exploit these results to implement an automated generation of Scala APIs for multiparty
sessions. These APIs act as a layer on top of existing libraries for binary communication channels:
this allows distributed multiparty systems to be safely implemented over binary transports, as
commonly found in practice. Our implementation is also the first to support distributed multiparty
delegation: our encoding yields it for free, via existing mechanisms for binary delegation.
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Figure 1 Game server with 3 clients.

Correct design and implementation of concur-
rent and distributed applications is notoriously
difficult. Programmers have to deal with many
challenges, pertaining to both protocol conform-
ance (do the messages being sent/received respect
a given specification?) and the communication
mechanics (how are the interactions actually per-
formed?). These difficulties are exacerbated by
the potential complexity of interactions between
multiple participants, and in settings where the
communication topology is not fixed.

As an example, consider a common scenario
for a peer-to-peer multiplayer game: the clients,
initially unknown to each other, first connect to
a “matchmaking” server, whose task is to group
players and setup a game session in which they
can interact directly. Fig. 1 depicts this scenario:
Q is the server, expected to set the game for
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three players, Pa, Pb and Pc. To set up a game,
the server sends to each client some networking information (denoted by the s[a], s[b], s[c]
payloads of the PlayA/B/C messages) needed to “introduce” the clients to each other and
allow them to communicate. The clients then proceed according to the main game protocol
(annotated as “Game”): it consists of some initial message exchanges (Info), and a main
game loop, where Pa selects between two possible messages to send to Pb (Mob1AB or Mov2AB)
followed by a message from Pb to Pc, who can choose which message send back to Pa.

As Fig. 1 illustrates, this applications can involve richly structured protocols, with non-
trivial message dependencies between multiple roles, and a changing communication topology
(initially client-to-server, eventually becoming client-to-client). Turning such a high level
specification into an actual implementation is not straightforward—programmers would
greatly benefit from tools and programming aids to statically assist the detection of protocol
violations in source code, and correctly implement the communication topology dynamics.

Multiparty Session Types (MPST) [26] is a theoretical framework allowing for the precise
modelling of such applications. In MPST, participants are abstracted as roles (e.g., game
clients a, b, c) and implemented as session π-calculus processes, that model server/client
programs. In the MPST framework, the “networking information payloads” s[a], s[b], s[c]
can be naturally modelled as multiparty channel endpoints for the game session s. Notably,
channel endpoints can themselves be sent/received: formally, this allows to delegate part
of a multiparty interaction to another process, resulting in a change of the communicating
topology. In our example, the server Q delegates (i.e., sends) the channel endpoint s[b] to
Pb; the latter can then use s[b] to interact with the two processes that own the endpoints
s[a] and s[c] (i.e., Pa and Pc after the other two delegations).

The MPST framework ensures safe interaction via session types: they formalise protocols,
as structured sequences of inputs, outputs and choices. The session typing system assigns
such types to channel endpoints, and type-checks the processes that use them. In our example,
the channel endpoint s[b] could be typed as:

Sb = c!InfoBC(String) . a?InfoAB(String) .
µt.
(
a & {?Mov1AB(Int).c!Mov1BC(Int).t , ?Mov2AB(Bool).c!Mov2BC(Bool).t }

) (1)

Sb says that s[b] must be used to realise the Game interactions of Pb in Fig. 1: first to send
InfoBC(String) to c, then receive InfoAB from a, then enter the recursive game “loop” µt.(. . .).
Inside the recursion, a & {. . .} is a branching from a: depending on a’s choice, the channel will
deliver either Mov1AB(Int) (in which case, it must be used to send Mov1BC(Int) to c, and loop), or
Mov2AB (then, it must be used to send Mov2BC to c, and loop). Analogous types can be assigned
to s[a] and s[c]. The delegation actions are represented by session types like q?PlayB(Sb).end,
which means: from role q, receive a message PlayB carrying a channel endpoint that must be
used according to Sb above; then, end the session. Session type checking ensures that, e.g.,
the process Pb uses its channels as prescribed by the types above—thus safely implementing
the expected channel dynamics and fulfilling the role of b in the game.

Finally, the MPST framework allows to formalise, e.g., the whole Game protocol in Fig. 1
as a global type, and validate that it is deadlock-free; then, via typing, check whether an
ensemble of processes interacts according to the global type (and is, thus, deadlock-free).

MPSTs in practice: challenges The above suggests that MPSTs offer a promising formal
foundation for safe distributed programming, helping to develop concurrent applications
whose interactions are type-safe and deadlock-free. However, bridging the gap between the
abstract theory and a concrete implementation raises several challenges:
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C1. Multiparty session types allow 2, 3 or more roles to interact—but in practice, commu-
nication occurs over binary channels (e.g., TCP sockets). Can multiparty channels be
implemented as compositions of binary channels, while preserving their safety properties?

C2. Multiparty session types are far from the types found in “mainstream” programming
languages, as demonstrated by Sb in (1). Can they be represented, e.g., as objects? If so,
what is their programming interface? And what are the API internals?

C3. How should multiparty delegation be realised, especially in distributed settings?

Unfortunately, the current state-of-the-art in session types has not addressed these chal-
lenges. On one hand, existing theoretical works on encoding multiparty sessions into binary
sessions [7, 8] rely on a workaround by introducing centralised medium (or arbiter) processes
to orchestrate the interactions between the multiparty session roles: hence, they depart from
the choreographic (i.e., decentralised) nature of the MPST framework [26], and preclude
examples such as our peer-to-peer game in Fig. 1. On the other hand, there are no existing
implementations of full-fledged MPST; e.g., [52, 30, 31, 40, 48, 56, 51] only support binary
sessions, while none of [27, 58, 16, 19] support session delegation.

Our approach In this work, we tackle the three challenges above with a two-step strategy:

S1. we develop the first choreographic encoding of a “full-fledged” multiparty session π-calculus
into standard linear π-calculus;

S2. we implement a multiparty session API generation for Scala, based on our encoding.

By step S1, we formally address challenge C1. Linear π-calculus provides a theoretical
framework with channels and types that cater only for binary communication, and each
channel may only be used once for input/output. These “limitations” are key to the
practicality of our approach. In fact, they force us to figure out whether multiparty channels
can be represented by a decomposition into binary linear channels—and whether multiparty
session types can be represented by a decomposition into linear types. The practical payoff
is that linear π-calculus channels/types are amenable for an (almost) direct object-based
representation, as demonstrated in [56]: this tackles challenge C2. Moreover, linear π-calculus
allows to prove whether such a decomposition is “correct”—i.e., whether it preserves type
safety, and whether MPST processes can be encoded so that they only interact on binary
channels, while preserving their original behaviour (thus “inheriting” deadlock-freedom).

In step S2, we generate high-level typed APIs for multiparty session programming,
ensuring their “correctness” by reflecting the types and process behaviours formalised in
step S1. Following the binary decomposition in step S1, we can implement such APIs as a
layer over existing libraries for binary sessions (available for Java [28], Haskell [52, 30, 40],
Links [42], Rust [31], Scala [56], ML [51]), in a way that solves challenge C3 “for free”.

Contributions We present the first encoding (§ 5) of a full multiparty session π-calculus
(§ 2) into standard π-calculus with linear, labelled tuple and variant types (§ 3).

We present a novel, streamlined formulation of MPSTs that clearly separates the glob-
al/local typing levels. This allows us to “close the gaps” between the intricacies of the
MPST theory and the (much simpler) π-calculus, while staying faithful to standard
MPST literature. Via our MPST formulation, we also spot a longstanding issue with type
merging [17] (Def. 2.11; § 2.1 “On Consistency”) and fix it, obtaining a revised subject
reduction for MPSTs (Theorem 2.16).
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At the heart of our encoding there is the discovery that the type safety property of MPST is
precisely characterised as a decomposition into linear π-calculus types (Theorem 6.4). Our
encoding of types preserves duality and subtyping (Theorems 6.1 and 6.2); our encoding of
processes is type-preserving and operationally sound and complete (Theorems 6.3 and 6.6).
We subsume the encodings of binary sessions into π-calculus [13, 14], and support
recursion (§ 4), which was not properly handled in [12]. Further, we show that multiparty
sessions can be encoded into binary sessions choreographically, i.e., while preserving
process distribution (homomorphically w.r.t. parallel composition), in contrast to [7, 8].

In § 7, we use our encoding as formal basis for the first implementation of multiparty sessions
supporting distributed multiparty delegation, over existing Scala libraries. Our implementation
is available (as Open Source software) in [55].

Conventions
In derivations, we use a single/double line for inductive/coinductive rules. Recursive types
µt.T are guarded, i.e., t can only appear in T under a type constructor different from µ.
As usual, we define unf(µt.T )=unf(T{µt.T/t}), and unf(T )=T when T 6=µt.T ′. We adopt
syntactic type equality, and thus distinguish a recursive type from its unfolding. Types are
always closed. We write P→P ′ for process reductions, →∗ for the reflexive+transitive closure
of →, and P6→ iff 6 ∃P ′ such that P→P ′. We assume a basic subtyping 6B capturing e.g.
Int6B Real. For readability, we use blue/red for multiparty/standard π-calculus.

2 Multiparty Session π-Calculus

In this section we illustrate a multiparty session π-calculus [26] complete with recursion,
subtyping [18] and type merging [61, 17]. We adopt a notation based on [10].

I Definition 2.1. The syntax of multiparty session π-calculus processes and values is:
Processes P ,Q ::= 0 | P |Q | (νs)P (inaction, composition, restriction)

c[p]⊕ 〈l(v)〉.P (selection towards role p)
c[p] &i∈I {li(xi).Pi} (branching from role p — with I 6= ∅)
def D inQ | X〈x̃〉 (process definition, process call)

Declarations D ::= X(x̃) = P (process declaration)
Channels c ::= x | s[p] (variable, channel with role p)

Values v ::= c | false | true | 42 | . . . (channel, base value)
fc(P ) is the set of free channels with roles in P , and fv(P ) is the set of free variables in P .

The inaction 0 represents a terminated process. The parallel composition P |Q repres-
ents two processes that can execute concurrently (and possibly communicate). The session
restriction (νs)P delimits the scope of a session s to P . Process c[p]⊕ 〈l(v)〉.P performs a
selection (internal choice) on the channel c towards role p: the labelled value l(v) is sent,
and the execution continues as process P . Dually, process c[p] &i∈I {li(xi).Pi} waits for a
branching (external choice) on the channel c from role p. If the labelled value lk(v) is
received (with k ∈ I), then the execution continues as Pk (with xk holding value v). Note
that for all i ∈ I, variable xi is bound with scope Pi. In both branching and selection, the
labels li (i ∈ I) are all different and their order is irrelevant. Process definition def D inQ
and process call X〈x̃〉 model recursion, with D being a process declaration: the call
invokes X by replacing its formal parameters with the actual ones. We postulate that process
declarations are closed, i.e., in X(x̃) = P , we have fv(P ) ⊆ x̃ and fc(P ) = ∅. A channel
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Figure 2 Multiparty peer-to-peer game. Dashed lines represent session scopes, and circled roles
represent channels with roles. (a) initial configuration; (b) delegation of channel with role s[b] (and
end of session sb); (c) clients directly interacting on session s, after “complete” delegation.

c can be either a variable or a channel with role s[p], i.e., a multiparty communication
endpoint whose user impersonates role p in the session s. Values v can be variables, or
channels with roles, or base values. Note that our syntax is simplified in the style of [18]:
it does not have dedicated input/output prefixes, but they can be easily encoded using &
(with one branch) and ⊕.

I Example 2.2. The following MPST π-calculus process implements the scenario in Fig. 1:

def Loopb(x) = x[a] &
{

Mov1AB(y).x[c]⊕ 〈Mov1BC(y)〉.Loopb〈x〉 , Mov2AB(z).x[c]⊕ 〈Mov2BC(z)〉.Loopb〈x〉
}

in
def Clientb(y) = y[q] & PlayB(z) . z[c]⊕ 〈InfoBC(“...”)〉 . z[a] & InfoBA(y) . Loopb〈z〉 in

(νsa, sb, sc)
(
Q | Pa | Pb | Pc

)
where: Pb = Clientb〈sb[p]〉 (for brevity, we omit the definitions of Pa and Pc)

Q = (νs)
(
sa[q][p]⊕〈PlayA(s[a])〉 | sb[q][p]⊕〈PlayB(s[b])〉 | sc[q][p]⊕〈PlayC(s[c])〉

)
In the 3rd line, sa, sb, sc are the sessions between the server process Q and the clients Pa, Pb, Pc,
which are composed in parallel. Each sessions has 2 roles: q (server) and p (client); e.g., sb

is accessed by the server (through the channel with role sb[q]) and by the client Pb (through
sb[p]); similarly, sa (resp. sc) is accessed by Pa (resp. Pc) through sa[p] (resp. sc[p]), while
the server owns sa[q] (resp. sc[q]). In the body of Q, the server declares a session s (with 3
roles a, b, c) for playing the game. Note that the scope of s does not include Pa, Pb, Pc: see
Fig. 2(a) for a schema of processes and sessions.

The server Q uses the channel with role sb[q] (resp. sa[q], sc[q]) to concurrently send the
message PlayB (resp. PlayA, PlayC) and the channel with role s[b] (resp. s[a], s[c]) to p: i.e., the
server performs a delegation to the client process Pb (resp. Pa, Pc). This way, the client
obtains a channel endpoint to interact in the game session s, interpreting role b (resp. a, c).

The client Pb is implemented by invoking Clientb〈sb[p]〉 (defined in the 2nd line). Here,
y[q] & PlayB(z) means that y (that becomes sb[p] after the invocation) is used to receive PlayB(z)
from q, while z[c]⊕ 〈InfoBC(“...”)〉 means that z (that becomes s[b] after the delegation is
received) is used to send InfoBC(“...”) to c. The game loop is implemented with the recursive
process call Loopb〈z〉 (defined in the 1st line) — which becomes Loopb〈s[b]〉 after delegation.

I Definition 2.3. The operational semantics of multiparty session processes is:
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(R-Comm) s[p][q] &i∈I {li(xi).Pi} | s[q][p]⊕ 〈lj(v)〉.Q → Pj{v/xj} |Q (if j ∈ I and fv(v) = ∅)

(R-Call) def X(x̃) = P in (X〈ṽ〉 |Q) → def X(x̃) = P in (P{ṽ/x̃} |Q)
(if x̃ = x1, . . . , xn, ṽ = v1, . . . , vn, fv(ṽ) = ∅)

(R-Par) P → Q implies P |R→ Q |R (R-Res) P → Q implies (νs)P → (νs)Q
(R-Def) P → Q implies def D inP → def D inQ

(R-Struct) P ≡P ′ and P→Q and Q′≡Q implies P ′→Q′ (with ≡ standard — see § A)

(R-Comm) says that the parallel composition of a branching and a selection process, operating
on the same session s respectively as roles p and q (i.e., via s[p] and s[q]) and targeting
each other (i.e., s[p] is used to branch from q, and s[q] is used to select towards p) reduces
to the corresponding continuations, with a value substitution on the receiver side. (R-Call)
says that a process call X〈ṽ〉 in the scope of def X(x̃) = P in reduces by replacing X〈ṽ〉
with P , and replacing the formal parameters (x̃) with the actual ones (ṽ). The rest of the
rules are standard: reduction can happen under parallel composition, restriction and process
definition, and the reduction relation is closed under structural congruence.

I Example 2.4. The process in Ex. 2.2 reduces as (see also Fig. 2(b), noting the scope of s):
(νsa, sb, sc)

(
Q | Pa | Pb | Pc

)
→

(νsa, sc)
(

(νs)
((
sa[q][p]⊕〈PlayA(s[a])〉 | sc[q][p]⊕〈PlayC(s[c])〉

)
| s[b][c]⊕〈InfoBC(“...”)〉 . . .

)
| Pa | Pc

)
2.1 Multiparty Session Typing
We now illustrate the typing system for the MPST π-calculus, and its properties. We adopt
standard definitions from literature—except for some crucial (and duly noted) adaptations.

The MPST framework fosters a top-down approach where a global type G describes a
protocol involving various roles — such as the game with roles a, b, c in § 1. G is projected
into a set of local types Sa, Sb, Sc, . . . (one per role) that specify how each role is expected
to use its channel endpoint. Local types, in turn, are assigned to communication channels,
and type-check the processes using them. Session typing ensures that processes (1) never go
wrong (i.e., use their channels in a type-safe way), and (2) interact obeying the protocol in
G, by respecting its local projections — thus realising a multiparty, deadlock-free session.

In the following, we provide a revised and streamlined presentation that clearly outlines
the interplay between the global/local typing levels. For this reason, unlike most papers, we
discuss local types first, and global types later, at the end of the section.

Types: Local and Partial Multiparty session types describe the expected usage of a channel,
as a communication protocol involving two or more roles. They allow to declare structured
sequences of input/output actions, specifying who is the source/target role of interaction.

I Definition 2.5 (Types and roles). The syntax of (local) session types is:
S ::= p &i∈I ?li(U i).Si (branching from role p — with I 6= ∅)

p⊕i∈I !li(U i).Si (selection towards role p — with I 6= ∅)
µt.S | t | end (recursive type, type variable, termination)

B ::= Bool | Int | . . . (base type) U ::= B | S (closed) (payload type)

We omit &/⊕ when I is a singleton: p!l1(Int).S1 stands for p⊕i∈{1} !li(Int).Si.
The set of roles in S, denoted as roles(S), is defined as follows:

roles(p⊕i∈I !li(Ui).Si) , roles(p &i∈I ?li(Ui).Si) , {p} ∪
⋃
i∈I roles(Si)

roles(end) , ∅ roles(t) , ∅ roles(µt.S) , roles(S)
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We will write p ∈ S for p ∈ roles(S), and p ∈ S\q for p ∈ roles(S) \ {q}.

The branching type p &i∈I ?li(U i).Si describes a channel that can receive a label li from
role p (for some i ∈ I, chosen by p), together with a payload of type Ui; then, the channel
must be used as Si. The selection p⊕i∈I !li(U i).Si, describes a channel that can choose a
label li (for any i ∈ I), and send it to p together with a payload of type Ui; then, the channel
must be used as Si. The labels of branch/select types are all distinct and their order is
irrelevant. The recursive type µt.S and type variable t model infinite behaviours. end
is the type of a terminated channel (often omitted). Base types B,B′, . . . can be types
like Bool, Int, etc. Payload types U,U ′, . . . are either base types, or closed session types.

I Example 2.6. See the definition and description of session type Sb in § 1 (equation (1)).

To define session typing contexts later on, we also need partial session types.

I Definition 2.7. Partial session types, denoted by H, are:
H ::= &i∈I ?li(Ui).Hi | ⊕i∈I !li(Ui).Hi (branching, selection) (with I 6= ∅, Ui closed)

µt.H | t | end (recursive type, type variable, termination)

A partial session type H is either a branching, a selection, a recursion, a type variable, or a
terminated channel type. Unlike Def. 2.5, partial types have no role annotations: they are
similar to binary session types (but the payloads Ui can be multiparty)—and similarly, they
endow a notion of duality: the outputs of a type match the inputs of its dual, and vice versa.

I Definition 2.8. H is the dual of H, defined as:
⊕i∈I !li(U i).Hi , &i∈I ?li(Ui).Hi &i∈I ?li(U i).Hi , ⊕i∈I !li(Ui).Hi

end , end t , t µt.H , µt.H

The dual of a select type is a branch type with dualised continuations, and vice versa. The
payloads Ui are the same. Duality is the identity on end and on a type variable t, and it is
homomorphic on a recursive partial session type µt.H.

Multiparty session types can be projected onto a role q (Def. 2.9 below): this yields a
partial type that only describes the communications where q is involved. This is technically
necessary for typing rules, as we will see in Def. 2.11 later on.

I Definition 2.9. S � q is the partial projection of S onto q:

end � q , end t � q , t (µt.S) � q ,

{
µt.(S � q) if S � q 6= t′ (∀t′)
end otherwise

(p⊕i∈I !li(Ui).Si) � q ,

{
⊕i∈I !li(Ui).(Si � q) if q = p,
d
i∈I (Si � q) if p 6= q

(p &i∈I ?li(Ui).Si) � q ,

{
&i∈I ?li(Ui).Si � q if q = p,
d
i∈I (Si � q) if p 6= q

where
d

is the merge operator for partial session types:
end u end , end t u t , t µt.H u µt.H ′ , µt.(H uH ′)

&i∈I ?li(Ui).Hi u &i∈I ?li(Ui).H ′i , &i∈I ?li(Ui).(Hi uH ′i)
⊕i∈I !li(Ui).Hi u ⊕j∈J !lj(Uj).H ′j ,(

⊕k∈I∩J !lk(Uk).(Hk uH ′k)
)
⊕
(
⊕i∈I\J !li(Ui).Hi

)
⊕
(
⊕j∈J\I !lj(Uj).H ′j

)
The projection of end or a type variable t onto any role is the identity. Projecting a recursive
type µt.S onto q, means projecting S onto q, if S � q is not some t′; otherwise, the projection is
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∀i ∈ I Ui 6S U
′
i Si 6S S

′
i (S-Brch)

================================
p &i∈I ?li(U i).Si 6S p &i∈I∪J ?li(U ′i).S′i

∀i ∈ I U ′i 6S Ui Si 6S S
′
i (S-Sel)

==============================
p⊕i∈I∪J !li(Ui).Si 6S p⊕i∈I !li(U ′i).S′i

B 6B B
′

======= (S-B)
B 6S B

′
========== (S-End)
end 6S end

S{µt.S/t} 6S S
′

============ (S-µL)
µt.S 6S S

′

S 6S S
′{µt.S′/t

}
============= (S-µR)
S 6S µt.S′

∀i ∈ I Ui 6S U
′
i Hi 6P Hi

′ (S-ParBrch)
==================================

&i∈I ?li(U i).Hi 6P &i∈I∪J ?li(U ′i).Hi′
∀i ∈ I U ′i 6S Ui Hi 6P Hi

′ (S-ParSel)
=================================
⊕i∈I∪J !li(Ui).Hi 6P ⊕i∈I !li(U ′i).Hi′

========== (S-ParEnd)
end 6P end

H{µt.H/t} 6P H
′

============= (S-ParµL)
µt.H 6P H

′

H 6P H
′{µt.H′/t

}
============== (S-ParµR)

H 6P µt.H ′

Figure 3 Subtyping for session types (top) and partial session types (bottom).

end. The projection of a selection p⊕i∈I !li(Ui).Si (resp. branching p &i∈I ?li(Ui).Si) on role
p, produces a partial selection type ⊕i∈I !li(Ui).(Si � p) (resp. branching &i∈I ?li(Ui).Si � p)
with the continuations projected on p. Otherwise, if projecting on q 6= p, the select/branch
is “skipped”, and the projection is the merging of the continuations, i.e.,

d
i∈I (Si � q).

The u operator (introduced in [61, 17]) expands the set of session types whose partial
projections are defined, which allows to type more processes (as we will see in Def. 2.11 and
Ex. 2.14 later on). Crucially, u can compose different internal choices, but not external
choices (because this could break type safety).

Subtyping Session subtyping, intuitively, says that a “smaller” type is “less demanding”: it
types channels that allow for more internal (and impose less external) choices.

I Definition 2.10 (Subtyping). The subtyping 6S on multiparty session types is the largest
relation such that (i) if S 6S S

′, then ∀p∈(roles(S)∪roles(S′)) S�p6PS
′�p, and (ii) is closed

backwards under coinductive rules at the top of Fig. 3. The subtyping 6P on partial session
types is coinductively defined by the rules at the bottom of Fig. 3.

Clause (i) of Def. 2.10 links local and partial subtyping, and ensures that if two types are
related, then their partial projections exist: this will be necessary later, for typing contexts
(Def. 2.11). The gist of Def. 2.10 lies in clause (ii). Rules (S-Brch) and (S-Sel) define subtyping
on branch and select types, respectively. Both rules are covariant in the continuation types,
i.e., Si 6S S

′
i. (S-Brch) is covariant also in the number of branches offered, whereas (S-Sel) is

contravariant. (S-B) relates base types, if they are related by 6B. (S-End) relates terminated
channel types. (S-µL) and (S-µR) are standard: they say that a recursive session type µt.S is
related to S′, iff its unfolding is related, too. The subtyping 6P for partial types is similar,
except for the lack of role annotations (thus resembling the binary session subtyping [21]).

Multiparty Session Typing System Before delving into the session typing rules, we need
to formalise the notions of typing context and typing judgement, defined below.

I Definition 2.11. A session typing context Γ is a partial mapping defined as:

Γ ::= ∅ | Γ, x :U | Γ, s[p] :S (with p 6∈ S)

We say that Γ is consistent iff for all s[p] :Sp, s[q] :Sq ∈ Γ with p 6= q, we have Sp � q 6P Sq � p.
We say that Γ is complete iff for all s[p] :Sp ∈ Γ, q ∈ Sp implies s[q] ∈ dom (Γ). We say
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(T-Name)
un(Γ)

Γ, c :S ` c :S

(T-Basic)
un(Γ) v ∈ B

Γ ` v :B

(T-DefCtx)

Θ, X : Ũ ` X : Ũ

(T-Sub)
Θ · Γ, c :S ` P S′ 6S S

Θ · Γ, c :S′ ` P

(T-Nil)
un(Γ)

Θ · Γ ` 0
(T-Par)

Θ · Γ1 ` P Θ · Γ2 ` Q
Θ · Γ1 ◦ Γ2 ` P |Q

(T-Res)
Θ · Γ,Γ′ ` P Γ′ = {s[p] :Sp}p∈I complete

Θ · Γ ` (νs :Γ′)P

(T-Brch)
∀i ∈ I Θ · Γ, xi :Ui, c :Si ` Pi

Θ · Γ, c :p &i∈I ?li(U i).Si ` c[p] &i∈I {li(xi).Pi}
(T-Sel)

Γ1 ` v :U Θ · Γ2, c :S ` P
Θ · Γ1 ◦ Γ2, c :p⊕ !l(U).S ` c[p]⊕ 〈l(v)〉.P

(T-Def)
Θ, X : Ũ · x̃ : Ũ ` P Θ, X : Ũ · Γ ` Q

Θ · Γ ` def X(x̃ : Ũ) = P inQ
(T-Call)

∀i ∈ {1..n} Γi ` vi :Ui un(Γ)
Θ, X :U1, . . . , Un · Γ1 ◦ . . . ◦ Γn ◦ Γ ` X〈v1, . . . , vn〉

Figure 4 Typing rules for the multiparty session π-calculus.

that Γ is unrestricted, un(Γ), iff for all c ∈ dom(Γ), Γ(c) is either a base type or end. The
typing contexts composition ◦ is the commutative operator with ∅ as neutral element:

Γ1, c :U ◦ Γ2, c
′ :U ′ , (Γ1 ◦ Γ2), c :U, c′ :U ′ (if dom (Γ2) 63 c 6= c′ 6∈ dom (Γ1))

Γ1, x :B ◦ Γ2, x :B , (Γ1 ◦ Γ2), x :B

Note that a typing context can map a channel with role s[p] to a session type S (that cannot
refer to p itself, ruling out “self-interactions”), but not to a base type. Variables, instead, can
be mapped to either session or base types. The clause “∀c :S ∈ Γ : S � p is defined” clause is
discussed below.

On Consistency In Def. 2.11, and in the rest of this work, we emphasise the importance
of consistency of the context Γ for session typing: this condition is, in fact, necessary to
prove subject reduction, and will be central for our encoding (§ 5 and § 6). As an example of
non-consistent typing context, consider s[p] :end, s[q] :p?l(U).S: we have end � q = end 66P
?l(U).S = (p?l(U).S) � p.

Note that our consistency in Def. 2.11 is weaker than the one in previous papers (where it
is sometimes called coherency): we use 6P, instead of (syntactic) type equality =, to relate
dual partial projections. The reason being: if we use =, and allow partial projections with
type merging (Def. 2.9), subject reduction does not hold. Hence, by relaxing our definition,
and proving Theorem 2.16 later on, we fix a longstanding mistake appearing e.g., in [61, 17].

I Definition 2.12 (Session typing judgements). The process declaration typing context Θ
maps process variables X to n-tuples of types Ũ (one per argument of X), and is defined as:

Θ ::= ∅ | Θ, X : Ũ
Typing judgements are inductively defined by the rules in Fig. 4, and have the forms:

for processes: Θ · Γ ` P (with Γ consistent, and ∀c :S ∈ Γ, S � p is defined ∀p ∈ S)
for values: Γ ` v :U for process variables: Θ ` X : Ũ

(T-Name) says that a channel has the type assumed in the session typing context. (T-Basic)
relates base values to their type. (T-DefCtx) says that a process name has the type assumed
in the process declaration typing context. (T-Sub) is the standard subsumption rule, using
6S (Def. 2.10). (T-Nil) says that the terminated process is well typed in any unrestricted
typing context. (T-Par) says that the parallel composition of P and Q is well typed under
the composition of the corresponding typing contexts, as per Def. 2.11. (T-Res) says that
(νs)P is well typed in Γ, if s occurs in a complete set of typed channels with roles (denoted
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with Γ′), and the open process P is well typed in the “full” context Γ,Γ′. For convenience,
we annotate the restricted s with Γ′ in the process, giving (νs :Γ′)P . (T-Brch) (resp. (T-Sel))
state that branching (resp. selection) process on c[p] is well typed if c[p] is of compatible
branching (resp. selection) type, and the continuations Pi, for all i ∈ I, are well typed with
the continuation session types. (T-Def) says that a process definition def X(x̃) = P inQ is
well typed if both P and Q are well typed in their typing contexts enriched with x̃ : Ũ . For
convenience, we annotate x̃ with types Ũ . (T-Call) says that process call X〈v1, . . . , vn〉 is
well typed if the actual parameters v1, . . . , vn have compatible types w.r.t. X.

As mentioned above, we emphasise the importance of consistency by restricting our
process typing judgements to consistent typing contexts—i.e., those that allow to prove
subject reduction. The clause “∀c :S ∈ Γ : S � p is defined” is not usual in MPST papers, but
stems naturally: by requiring the existence of partial projections, the clause rejects processes
that (a) use some channel with role s[p] :S that, for some q ∈ S, cannot be (consistently)
paired with s[q], or (b) contain some variable x :S that, in a consistent and complete Γ,
cannot be substituted by any s[p] :S. Hence, such rejected processes cannot participate in
any complete session (case (a)), or are never-executed “dead code” (case (b)).

I Remark 2.13. Unlike most MPST papers (e.g., [18, 10]), our rule (T-Res) does not
directly map a session s to a global type: this is explained in the next section, “Global Types”.

I Example 2.14. Consider the session type Sb in § 1 (equation (1)), and the client process
Pb = Clientb〈sb[p]〉 from Ex. 2.2. By Def. 2.12, the following typing judgement holds:

Clientb :q?PlayB(Sb), Loopb :µt. a &
{

?Mov1AB(Int).c!Mov1BC(Int).t ,
?Mov2AB(Bool).c!Mov2BC(Bool).t

}
· sb[p] :q?PlayB(Sb) ` Clientb〈sb[p]〉

It says that the channel with role sb[p] is used following type q?PlayB(Sb).end (with a delegation
of a Sb-typed channel); the argument of Clientb has the same type; the argument of Loopb is
used following the game loop. This example cannot be typed without merging u (Def. 2.9):
its derivation requires to compute Sb�c = !InfoBC(String).µt.(!Mov1BC(Int).t u !Mov2BC(Bool).t) =
!InfoBC(String).µt.(!Mov1BC(Int).t⊕!Mov2BC(Bool).t), which is undefined without merging.

The typing rules in Fig. 4 satisfy a subject reduction property (Theorem 2.16) based on
typing context reductions: they reflect the communications required by the types in Γ.

I Definition 2.15. The typing context reduction Γ→ Γ′ is:

s[p] :Sp, s[q] :Sq → s[p] :Sk, s[q] :S′k if
{

unf(Sp) = q⊕i∈I !li(Ui).Si k ∈ I

unf(Sq) = p &i∈I∪J ?li(U ′i).S′i Uk 6S U
′
k

Γ, c :U → Γ′, c :U ′ if Γ→ Γ′ and U 6S U
′

Our Def. 2.15 is a bit less straightforward than the ones in literature: it accommodates
subtyping (hence, uses 6S) and our iso-recursive type equality (hence, unfolds types explicitly).

I Theorem 2.16 (Subject reduction). If Θ · Γ ` P and P → P ′, then there exists Γ′ such
that Γ→∗ Γ′ and Θ · Γ′ ` P ′.

Global Types We conclude this section by discussing global types, that we mentioned in
the opening of § 2.1 and Remark 2.13.

I Definition 2.17. The syntax of global types, ranged over by G, is:
G ::= p→ q :{li(Ui).Gi}i∈I (interaction — with Ui closed)

µt.G | t | end (recursive type, type variable, termination)
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Type p→ q :{li(U i).Gi}i∈I states that role p sends to role q one of the (pairwise distinct)
labels li for i ∈ I, together with a payload Ui (Def. 2.5). If the chosen label is lj , then the
interaction proceeds as Gj . Type µt.G and type variable t model recursion. Type end
states the termination of a protocol. We omit the braces {...} from interactions when I is a
singleton: e.g., a→b : l1(U1).G1 stands for a→b :{li(U i).Gi}i∈{1}.

I Example 2.18. The following global type formalises the Game described in § 1 and Fig. 1:
GGame = b→c : InfoBC(String) . c→a : InfoCA(String) . a→b : InfoAB(String) .

µt.a→b :


Mov1AB(Int).b→c : Mov1BC(Int).c→a :

{
Mov1CA(Int).t ,
Mov2CA(Bool).t

}
,

Mov2AB(Bool).b→c : Mov2BC(Bool).c→a :
{

Mov1CA(Int).t ,
Mov2CA(Bool).t

}


In MPST theory, a global type G with roles pi (i ∈ I) is used to project1 a set of session
types Si (one per role). E.g., projecting GGame in Ex. 2.18 onto b yields the session type Sb

(see (1)). When all such projections Si are defined, and all partial projections of each Si are
defined (as per Def. 2.9), then we can define the projected typing context of G:

ΓG = {s[pi] :Si}i∈I where ∀i ∈ I : Si is the projection of G onto pi
and ΓG can be shown to be: (a) consistent and complete, i.e., can be used to type
the session s by rule (T-Res) (Fig. 4), and (b) deadlock-free, i.e.: ΓG →∗ Γ′G 6→ implies
∀i ∈ I : Γ′G(s[pi])=end. Similarly, it can be shown that ΓG reduces as prescribed by G.

Now, from observation (a) above, we can easily define a “strict” version of rule (T-Res)
(Fig. 4) in the style of [18, 10], where (1) the clause “Γ′ complete” is replaced with “Γ′ is
the projected typing context of some G”, and (2) in the conclusion, the annotation (νs :Γ′)
is replaced with (νs :G). Further, observation (b) allows to prove Theorem 2.19 below, as
shown e.g. in [4]: a typed ensemble of processes interacting on a single G-typed session is
deadlock-free (note: with our rules in Fig. 4, the annotation (νs :G) would be (νs :ΓG)).

I Theorem 2.19 (Deadlock freedom). Let ∅·∅ ` P , where P ≡ (νs :G)
∣∣
i∈IPi and each Pi

only interacts on s[pi]. Then, P is deadlock-free: i.e., P →∗ P ′ 6→ implies P ′ ≡ 0.

Note that the properties above emerge by placing suitable session types Si in the premises of
(T-Res)—but our streamlined typing rules in Fig. 4 do not require it, nor mention G. The
main property of such rules is ensuring type safety (Theorem 2.16). We will exploit this
insight (obtained by our separation of global/local typing) in our encoding (§ 5), preserving
semantics and types (and thus, Theorem 2.19) without explicit references to global types.

3 Linear π-Calculus

The π-calculus is the canonical model for communication and concurrency based on message-
passing and channel mobility. It was created towards the end of 1980’s, with the first paper
published in 1992 [44], followed by various proposals for types and type systems. In this
section we summarise the standard π-calculus with linear types [35]. The contents of this
section are standard, and based on [54]; we present new π-calculus-related results in § 4.

I Definition 3.1. The syntax of π-calculus processes and values is:

1 We use a standard projection with merging [61, 17]: for its definition (not crucial here), see §A.2.
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P ,Q ::= 0 | P |Q | (νx)P (inaction, parallel composition, restriction)
∗P | x〈v〉.P | x(y).P (process replication, output, input)
case v of {li(xi) . Pi}i∈I (variant destruct)
with [li :xi]i∈I =v doP (labelled tuple destruct)

u, v ::= x, y, w, z | l(v) | [li : vi]i∈I (name, variant value, labelled tuple value)
false | true | 42 | . . . (base value)

The inaction process 0, and the parallel composition P |Q are straightforward, and similar
to Def. 2.1. The restriction process (νx)P creates a new name x and binds it with scope
P . The replicated process ∗P represents infinite replicas of P , composed in parallel. The
output process x〈v〉.P uses the name x to send a value v, and proceeds as P ; the input
process x(y).P uses x to receive a value that will substitute y in the continuation P . Process
case v of {li(xi) . Pi}i∈I pattern matches a variant value v, and if it has label li, substitutes xi
and continues as Pi. Process with [li :xi]i∈I =v doP destructs a labelled tuple v, substituting
each xi in P . Values include names, which can be thought of as communication channels
names, base values like false or 42, variant values l(v) and labelled tuples [li : vi]i∈I . For
brevity, we will often write “record” instead of “labelled tuple”.

I Definition 3.2. The π-calculus operational semantics is the relation → defined as:
(Rπ-Com) x〈v〉.P | x(y).Q → P |Q{v/y}
(Rπ-Case) case lj(v) of {li(xi) . Pi}i∈I → Pj{v/xj} (j ∈ I)
(Rπ-With) with [li :xi]i∈I =[li : vi]i∈I doP → P{vi/xi}i∈I

(Rπ-Res) P → Q implies (νx)P → (νx)Q
(Rπ-Par) P → Q implies P |R → Q |R

(Rπ-Struct) P ≡ P ′ ∧ P → Q ∧ Q′ ≡ Q implies P ′ → Q′

(Rπ-Com) models communication between output and input on a name x: it reduces to the
corresponding continuations, with a value substitution on the receiver process. (Rπ-Case) says
that case applied on a variant value lj(v) reduces to Pj , with v in place of xj . (Rπ-With) says
that with reduces to its continuation P with vi in place of each xi, for all i ∈ I. By (Rπ-Res),
(Rπ-Par), reductions can happen under restriction and parallel composition. By (Rπ-Struct),
reduction is closed under structural congruence ≡: its definition is standard (see §A).

π-Calculus Typing We now summarise the π-calculus types and typing rules.

I Definition 3.3 (π-types). The syntax of a π-calculus type T is given by:
T ::= Li(T ) | Lo(T ) | L](T ) (linear input, linear output, linear connection)

](T ) | • (unrestricted connection, no capability)
〈li_Ti〉i∈I | [li :Ti]i∈I (variant, labelled tuple a.k.a. “record”)
µt.T | t | Bool | Int | . . . (recursive type, type variable, base type)

Linear types Li(T ), Lo(T ) denote, respectively, names used exactly once to input/output a
value of type T . L](T ) denotes a name used once for sending, and once for receiving, a
message of type T . ](T ) denotes an unrestricted connection, i.e., a name that can be used
both for input/output any number of times. • is assigned to names that cannot be used for
input/output. 〈li_Ti〉i∈I is a labelled disjoint union of types, while [li :Ti]i∈I (that we will
often call “record”) is a labelled product type; for both, labels li are all distinct, and their
order is irrelevant. As syntactic sugar, we write (Ti)i∈1..n for a record with integer labels
[i :Ti]i∈{1,..,n}. Recursive types and variables, and base types like Bool, are standard.

The predicate lin(T ) (Def. 3.4 below) holds iff T has some linear input/output component.

I Definition 3.4 (Linear/unrestricted types). The predicate lin is inductively defined as:
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(Tπ-Name)
un(Γ)

Γ, x :T ` x :T
(Tπ-Basic)

un(Γ) v ∈ B
Γ ` v :B

(Tπ-LVal)
Γ ` v :T

Γ ` l(v) :〈l_T 〉

(Tπ-LTup)
un(Γ) ∀i ∈ I Γi ` vi :Ti(⊎
i∈I Γi

)
] Γ ` [li : vi]i∈I : [li :Ti]i∈I

(Tπ-Sub)
Γ ` x :T T 6π T

′

Γ ` x :T ′
(Tπ-Nil)

un(Γ)
Γ ` 0

(Tπ-Par)
Γ1 ` P Γ2 ` Q

Γ1 ] Γ2 ` P |Q
(Tπ-Res1)

Γ, x :†(T ) ` P † ∈ {L], ]}
Γ ` (νx)P

(Tπ-Res2)
Γ, x :• ` P
Γ ` (νx)P

(Tπ-Inp)

Γ1 ` x :†(T ) † ∈ {Li, ]}
Γ2, y :T ` P

Γ1 ] Γ2 ` x(y).P
(Tπ-Out)

Γ1 ` x :†(T ) † ∈ {Lo, ]}
Γ2 ` v :T Γ3 ` P
Γ1 ] Γ2 ] Γ3 ` x〈v〉.P

(Tπ-Repl)
Γ ` P un(Γ)

Γ ` ∗P

(Tπ-Case)
Γ1 ` v :〈li_Ti〉i∈I ∀i ∈ I Γ2, xi :Ti ` Pi

Γ1 ] Γ2 ` case v of {li(xi) . Pi}i∈I
(Tπ-With)

Γ1 ` v : [li :Ti]i∈I Γ2, {xi :Ti}i∈I ` P
Γ1 ] Γ2 ` with [li :xi]i∈I =v doP

Figure 5 Typing rules for the linear π-calculus.

lin(Li(T )) lin(Lo(T ))
∃j ∈ I : lin(Tj)
lin(〈li_Ti〉i∈I)

∃j ∈ I : lin(Tj)
lin([li :Ti]i∈I)

lin (T )
lin (µt.T )

We write un(T ) iff ¬ lin(T ) (i.e., T is unrestricted iff is not linear).

I Definition 3.5. Subtyping 6π for π-types is coinductively defined as:
B 6B B

′

======= (S-LB)
B 6π B

′
===== (S-LEnd)
• 6π •

T 6π T
′

============ (S-Li)
Li(T ) 6π Li

(
T ′
) T ′ 6π T

============= (S-Lo)
Lo(T ) 6π Lo

(
T ′
)

∀i ∈ I Ti 6π T
′
i

===================== (S-Variant)
〈li_Ti〉i∈I 6π

〈
li_T ′i

〉
i∈I∪J

∀i ∈ I Ti 6π T
′
i

================== (S-LTuple)
[li :Ti]i∈I 6π

[
li :T ′i

]
i∈I

T{µt.T/t} 6π T ′
============ (S-LµL)
µt.T 6π T ′

T 6π T
′{µt.T ′/t

}
============= (S-LµR)
T 6π µt.T ′

Rule (S-LB) says that 6π includes subtyping 6B on base types. (S-LEnd) relates types without
I/O capabilities. Rule (S-Li) (resp. (S-Lo)) says that linear input (resp. output) subtyping
is covariant (resp. contravariant) in the carried type. (S-Variant) says that subtyping for
variant types is covariant in both carried types and number of components. (S-LTuple) says
that subtyping for labelled tuples, a.k.a records, is covariant in the carried types2. Rules
(S-LµL)/(S-LµR) relate a recursive type µt.T to T ′ iff its unfolding is related to T ′.

I Definition 3.6 (Typing context, type combination). The linear π-calculus typing context Γ
is a partial mapping defined as:

Γ ::= ∅ | Γ, x :T
We write lin(Γ) iff ∃x :T ∈Γ : lin(T ), and un(Γ) iff ¬ lin(Γ). The type combinator ]

is defined on π-types as follows (and undefined in other cases), and is extended to typing
contexts as expected.

Li(T ) ] Lo(T ) , L](T ) Lo(T ) ] Li(T ) , L](T ) T ] T , T if un(T )

(Γ1 ] Γ2)(x) ,

{
Γ1(x) ] Γ2(x) if x ∈ dom(Γ1) ∩ dom(Γ2)
Γi(x) if x ∈ dom(Γi) \ dom(Γj)

2 Subtyping on “full” records allows to add/remove entries [54, §7.3]; but here, “record”=“labelled tuple”.
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letx=v inP , (νz) (z〈v〉.0 | z(x).P ) (where z 6∈ {x} ∪ fn(v) ∪ fn(P ))

(Rπ-Let) letx=v inP → P{v/x} (Tπ-Let)
Γ1 ` v :T Γ2, x :T ` P

Γ1 ] Γ2 ` letx=v inP

(Tπ-Narrow)
Γ, x :T `P T ′6π T

Γ, x :T ′ ` P
(Tπ-MSubst)

∀i ∈ I Γi ` vi :Ti Γ, {xi :Ti}i∈I ` P(⊎
i∈I Γi

)
] Γ ` P{vi/xi}i∈I

Figure 6 “Let” binder (definition, reduction, typing), and narrowing / substitution rules.

The typing rules for the linear π-calculus are given in Fig. 5. Typing judgements have two
forms: Γ ` v :T and Γ`P . (Tπ-Name) says that a name has the type assumed in the typing
context; (Tπ-Basic) relates base values to their types; both rules require unrestricted typing
contexts. (Tπ-LVal) says that a variant value l(v) is of type 〈l_T 〉 if value v is of type T .
(Tπ-LTup) says that a record value [li : vi]i∈I is of type [li :Ti]i∈I if for all i ∈ I, vi is of type Ti.
(Tπ-Sub) is the subsumption rule: if x has type T in Γ, then it also has any supertype of T .
(Tπ-Nil) says that 0 is well typed in every unrestricted typing context. (Tπ-Par) says that the
parallel composition of two processes is typed by combining the respective typing contexts.
(Tπ-Res1) says that the restriction process (νx)P is well typed if P is well typed by augmenting
the context with x : L](T ). By applying Def. 3.6 (]), we have x :L](T ) = x :Li(T ) ] Lo(T ):
this implies that P owns both capabilities of linear input/output of x. Rule (Tπ-Res2) says
that the restriction (νx)P is well typed if P is well typed and x has no capabilities. (Tπ-Inp)
(resp. (Tπ-Out)) say that the input and output processes are well typed if x is a (possibly
linear) name used in input (resp. output), and the carried types are compatible with the
type of y (resp. value v). The typing context used to type the input and output process is
obtained by applying ] on the premises. (Tπ-Repl) says that a replicated process ∗P is typed
in the same unrestricted context that types P . (Tπ-Case) says that case v of {li(xi) . Pi}i∈I
is well typed if the guard value v has variant type, and every Pi is typed assuming xi :Ti, for
all i ∈ I. (Tπ-With) says that process with [li :xi]i∈I =v doP is well typed if v is of record
type such that for all i ∈ I, each vi has the same type as xi, i.e., Ti.

4 Some Typed π-Calculus Extensions and Results

We introduce some definitions and results on typed π-calculus: we will need them in § 5 and
§ 6, to state our encoding and its properties. As we target standard typed π-calculus (§ 3),
all our extensions are conservative, so to preserve standard results (e.g., subject reduction).

“Let” binder, narrowing, substitution Fig. 6 shows several auxiliary definitions and typing
rules. letx=v inP binds x in P , and reduces by replacing x with v in P . It is a macro on
other π-calculus contructs: hence, rules (Rπ-Let)/(Tπ-Let) are based on the reduction/typing
of its expansion (see §A). Rule (Tπ-Narrow) derives from the narrowing lemma [54, 7.2.5].
Rule (Tπ-MSubst) represents zero or more applications of the substitution lemma [54, 8.1.4].

Duality and Recursive π-Types The duality for linear π-types relates opposite but compat-
ible input/output capabilities. Intuitively, the dual of a Li(T ) is Lo(T ) (and vice versa) [14].
Note that the carried type T is the same: i.e., dual types can be combined with ] (Def. 3.6),
yielding L](T ). However, defining duality for recursive π-types is not straightforward: what
is the dual of T = µt.Lo(t)? Is it maybe T ′ = µt.Li(t)? Since ] is not defined for µ-types,
we can check whether it is defined for the unfoldings of our hypothetical duals T and T ′.
Unfortunately, we have unf(T ) = Lo(µt.Lo(t)) and unf(T ′) = Li(µt.Li(t)): i.e., ] is again
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undefined, so T ,T ′ cannot be considered duals. Solving this issue is crucial: in § 5, we will
need to encode recursive partial types, preserving their duality (Def. 2.8) in linear π-types.

What we want is a notion of duality that commutes with unfolding, so that if two recursive
types are dual, and we unfold them, we get a dual pair Lo(T )/Li(T ) that can be combined
with ] (since they carry the same T ). We address this issue by extending the π-calculus
type variables (Def. 3.3) with their dualised counterpart, denoted with t. We allow recursive
types such as µt.Li

(
t
)
(but not µt.. . .), and postulate that when unfolding, t is substituted

by a “dual” type µt.Lo(t), as formalised in Def. 4.1 below. Quite interestingly, our approach
“mirrors” (on π-calculus) the “logical duality” for session types [41] (we will discuss it in § 8).

I Definition 4.1. T is the dual of T , and is defined as follows:
Li(T ) , Lo(T ) Lo(T ) , Li(T ) • , • (t) , t

(
t
)
, t µt.T , µt.T

{
t/t
}

The substitution of T for a type variable t or t is: t{T/t} , T t{T/t} , T

The dual of a linear input type Li(T ) is a linear output type Lo(T ), and vice versa, with the
payload type T unchanged, as expected. The dual of a terminated channel type • is itself.
The dual of a type variable t is t, and the dual of a dualised type variable t is t, implying
that duality on linear π-types is convolutive. The dual of µt.T is µt.T

{
t/t
}
, where type T

is dualised to T , and every occurrence of t is replaced by its dual t by Def. 4.1. Now, the
desired commutativity between duality and unfolding holds, as per Lemma 4.2 below.

I Lemma 4.2. unf
(
T
)

= unf(T ).

I Example 4.3. Let T = µt.Li
(
(t, t)

)
. Then:

unf(T ) = Li
((
µt.Li

(
(t, t)

)
, µt.Li

(
(t, t)

)))
= Li

((
µt.Li

(
(t, t)

)
, µt.Lo

(
(t, t)

)))
; and

unf
(
T
)

= unf
(
µt.Lo

(
(t, t)

))
= Lo

((
µt.Li

(
(t, t)

)
, µt.Lo

(
(t, t)

)))
= unf(T )

By adding dualised type variables in Def. 3.3, we naturally extend the definition of fv(T )
(treating µt.. . . as a binder for both t and t), the subtyping relation 6π in Def. 3.5 (by letting
rules (S-LµL) and (S-LµR) use the substitution in Def. 4.1) and ultimately the typing system
in Def. 3.6. This will allow us to obtain a rather simple encoding of recursive session types
(Def. 5.1), and solve a subtle issue involving duality, recursion and continuations (Ex. 5.3).

The reader might be puzzled about the impact of dualised variables in the π-calculus
theory. We show that dualised variables do not increase the expressiveness of linear π-types,
and do not unsafely enlarge subtyping 6π: this is proved in Lemma 4.4, that allows to erase
dualised variables from recursive π-types. It uses (1) a substitution that only replaces dualised
variables, i.e.: t{t′/t}=t′; (2) the equivalence =π defined as: 6π∩6π−1 (see Def. C.1).

I Lemma 4.4 (Erasure of t). µt.T =π µt.T
{
µt′.T{t′/t}/t

}
, for all t′6∈ fv(T ).

I Example 4.5 (Application of erasure). Take T from Ex. 4.3. By Lemma 4.4, we have:
T =π µt.Li

((
t, µt′.Li

(
(t, t)

)
{t′/t}

))
= µt.Li((t, µt′.Lo((t, t′)))).

Since T =π T
′ implies T 6π T ′ and T ′6π T , Lemma 4.4 says that any µt.T is equivalent to

a µ-type without occurrences of t: i.e., any typing relation with instances of t corresponds to
a t-free one. As a consequence, any typing derivation using t can be turned into a t-free one.
Summing up: adding dualised variables preserves the standard results of typed π-calculus.

Type Combinator
p

Def. 4.6 introduces a type combinator that is a “relaxed” version of ]
(Def. 3.6) allowing for subtyping. We will use it to encode MPST typing contexts (Def. 5.6).
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I Definition 4.6. The π-calculus type combinator C is defined on π-types as follows (and
undefined in other cases), and naturally extended to typing contexts:

Lo(T ) C Li(T ′) , Li(T ) ] Lo(T )
Li(T ′) C Lo(T ) , Li(T ) ] Lo(T )

}
if T 6π T ′ T C T , T if un(T )

(Γ1 C Γ2)(x) ,

{
Γ1(x) C Γ2(x) if x ∈ dom(Γ1) ∩ dom(Γ2)
Γi(x) if x ∈ dom(Γi) \ dom(Γj)

The difference between ] and C is that the former combines linear inputs/outputs with
the same carried type, while C is a more relaxed relation and allows one carried type to be
subtype of the other, and (when defined) yields a linear connection allowing transmission of
values of both carried types. This is shown in Lemma 4.7 and Ex. 4.8 below.

I Lemma 4.7. If T =T1CT2, and T ′1]T ′2 = T , then either (a) T ′1 6π T1 and T ′2 6π T2,
or (b) T ′1 6π T2 and T ′2 6π T1.

Lemma 4.7 says that T1CT2 (when defined) is a type that, when split using ], yields
linear I/O types that are subtypes of the originating T1, T2.

I Example 4.8. Let T1 = Li(Real), T2 = Lo(Int), and T = T1 C T2. We have T = L](Int);
if we let T ′1 ] T ′2 = T , then we get either (a) T ′1 = Li(Int) 6π T1 and T ′2 = Lo(Int) 6π T2,
or (b) T ′1 = Lo(Int) 6π T2 and T ′2 = Li(Int) 6π T1.

5 Encoding Multiparty Session-π into Linear π-Calculus

We now present our encoding of MPST π-calculus into linear π-calculus. It consists of an
encoding of types and an encoding of processes: combined, they preserve the safety properties
of MPST communications, both w.r.t. typing and process behaviour.

Encoding of Types Our goal is to decompose multiparty session channel endpoints into
point-to-point π-calculus channels. One intuitive way to achieve this is to encode MPST
channel endpoints as labelled tuples, such that each role involved in a session maps to a
π-calculus name: i.e., if the labelled tuple has an entry for p, it should map to a name
that allows to send/receive messages to/from some other process, which in turn should be
interpreting the role of p in the originating session. This suggests that an encoded MPST
channel endpoint must be typed as a π-calculus labelled tuple; and since each name appearing
in such tuple is used for communication, it should be typed with a linear input/output type.

I Definition 5.1. The encoding of S into linear π-types is:
JSK , [p : JS � pK]p∈S

where the encoding of the partial projections JS � pK is:
J⊕i∈I !li(Ui).HiK , Lo

(
〈li_(JUiK, JHiK)〉i∈I

)
JBK , B JendK , •

J&i∈I ?li(Ui).HiK , Li
(
〈li_(JUiK, JHiK)〉i∈I

)
JtK , t Jµt.HK , µt.JHK

The encoding of a session type S, namely JSK, is a record that maps each role p ∈ S to
the encoding of the partial projection JS�pK. The encoding of partial projections, in turn,
adopts the basic idea of the encoding of binary, non-recursive session types [34, 14]: it is
the identity on a base type B, while a terminated channel type end becomes •, with no
capabilities. Selection ⊕i∈I !li(Ui).Hi and branching &i∈I ?li(Ui).Hi are encoded as linear
output and input types, respectively, adopting a continuation-passing style (CPS). In both
cases, the carried types are variants: 〈li_(JUiK, JHiK)〉i∈I for select and 〈li_(JUiK, JHiK)〉i∈I
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for branch, with the same labels as the originating partial projections. Such variants carry
tuples (JUiK, JHiK) and (JUiK, JHiK): the first element is the encoded payload type, and the
second (i.e., the encoding of the continuation Hi) is the type of a continuation name: it is
sent together with the encoded payload, and will be used to send/receive the next message
(unless Hi is end). Note that selection sends the dual of JHiK: this is because the sender is
expected to keep interacting according to JHiK, while the recipient must operate dually (cf.
Def. 4.1). E.g., if JHiK requires to send a message, the recipient of JHiK must receive it. The
encodings of a type variable and a recursive type are homomorphic.

Notice that by encoding session types as labelled tuples, we untangle the order of the
interactions among different roles. This order will be, however, recovered by the encoding of
processes, presented later on.

I Example 5.2. Consider the session type S , p!l1(Int).q?l2(S′).end, where S′ ,
r!l3(Bool).q?l4(String).end. By Def. 5.1, the encoding of S is:

JSK = [p : JS � pK, q : JS � qK] = [p : J!l1(Int)K, q : J?l2(S′)K]
= [p : Lo(〈l1_(Int, •)〉), q : Li(〈l2_([r : Lo(〈l3_(Bool, •)〉), q : Li(〈l4_(String, •)〉)], •)〉)]

Recursion, Continuations and Duality We now point out a subtle (but crucial) difference
between Def. 5.1 and the encoding of binary, non-recursive session types in [14]. When
encoding partial selections, our continuation type is the dual of the encoding of Hi, i.e., JHiK;
in [14], instead, it is the encoding of the dual of Hi, i.e., JHiK. This difference is irrelevant
for non-recursive types (Ex. 5.2); but for recursive types, using JHiK would yield the wrong
continuations. Using JHiK, instead, gives the expected result, by generating dualised recursion
variables (cf. Def. 4.1). We explain it in Ex. 5.3 below.

I Example 5.3. Let H = µt.!l(Bool).t. By Def. 5.1, we have:

JHK = Jµt.!l(Bool).tK = µt.Lo
(
〈l_(JBoolK, JtK)〉

)
= µt.Lo

(
〈l_(Bool, t)〉

)
Let us now unfold the encoding of H. By Def. 4.1, we have:

unf(JHK) = unf
(
µt.Lo

(
〈l_(Bool, t)〉

))
= Lo

(
〈l_(Bool, µt.Lo

(
〈l_(Bool, t)〉

){
t/t
}

)〉
)

= Lo
(
〈l_
(

Bool, µt.Li(〈l_(Bool, t)〉)
)
〉
)

This is what we want: since H requires a recursive output of Booleans, its encoding should
output a Boolean, together with a recursive input name as continuation. Hence, the recipient
will receive the first Boolean together with a continuation name, whose type mandates to
recursively input more Bools. If encoding continuations as in [14], instead, we would have:

JHK = µt.Lo
(
〈l_(JBoolK, JtK)〉

)
= µt.Lo(〈l_(Bool, t)〉) (t is not dualised)

unf(JHK) = Lo(〈l_(Bool, µt.Lo(〈l_(Bool, t)〉))〉)
which is wrong: the recipient is required to recursively output Bools. This wrong encoding
would also prevent us from obtaining Theorem 6.1 later on.

Encoding of Typing Contexts In order to preserve type safety, we want to encode a session
judgement (Fig. 4) into a π-calculus typing judgement (Fig. 5). For this reason, we now use
the encoding of session types (Def. 5.1) to formalise the encoding of session typing contexts.

I Definition 5.4. The encoding of a session typing context is:
J∅K,∅ JΘ · ΓK, JΘK, JΓK Jc :UK , JcK :JUK Js[p]K , zs[p]r

Θ, X : Ũ
z
, JΘK,

r
X : Ũ

z
JΓ, c :UK, JΓK, Jc :UK JxK , x JXK , zX

JΓ1 ◦ Γ2K, JΓ1K ] JΓ2K JX :U1, . . . , UnK , JXK :]
(
(JUiK)i∈1..n

)
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When encoding typing contexts, variables (x) keep their name, while process variables (X)
and channels with roles (s[p]) are turned into distinguished names with a subscript: e.g., X
becomes zX . The typing context composition Γ1◦Γ2 (Def. 2.11) is encoded using ] (Def. 3.6):
such an operation is always defined, since the domains of JΓ1K,JΓ2K can only overlap on basic
types. Note that encoded process variables have an unrestricted connection type, carrying
an n-tuple of encoded argument types; encoded sessions, instead, are always linearly-typed.

Encoding Typing Judgements: Overview We can now have a first look at the encoding of
session typing judgements in Fig. 7 (but we postpone the formal statement to Def. 5.7 later
on, as it requires some more technical developments).

Terminated processes are encoded homomorphically. Parallel composition is also
encoded homomorphically — i.e., our encoding preserves the choreographic distribution of
the originating processes. Note that JP KΘ·Γ1 and JQKΘ·Γ2 are the encoded processes yielded
respectively by JΘ · Γ1 ` P K and JΘ · Γ2 ` QK: they exist because such typing judgements
hold, by inversion of (T-Par) (Fig. 4). Similar uses of sub-processes encoded w.r.t. their
typing occur in the other cases. Process declaration def X(x̃ :U) = P inQ is encoded
as a replicated π-calculus process that inputs a value z on a name JXK = zX (matching
Def. 5.4), deconstructs it into x1, . . . , xn (using with, and hence assuming that z is an
n-tuple), and then continues as the encoding of the body P ; meanwhile, the encoding of Q
runs in parallel, enclosed by a delimitation on zX (that matches the scope of the original
declaration). Correspondingly, a process call X〈ṽ〉 is encoded as a process that sends the
encoded values JṽK on zX and ends (in MPST π-calculus, process calls are in tail position).

Selection on c[p] is encoded using information from the session typing context: the fact
that c has type S = p⊕ !l(U).S′ — i.e., JSK is a record type with one entry q :zq for each
q ∈ S. Therefore, the encoding first deconstructs JcK (using with), an then uses the (linear)
name in its p-entry to output on zp. Before performing the output, however, a new name z
is created: it is the continuation of the interaction with p. Then, one endpoint of z is sent
through zp as part of l(JvK, z), which is a variant value carrying a tuple. The other endpoint
of z is kept, and used to rebind JcK (using let) with a “new” record, consisting in all the
entries of the “original” JcK, except zp (which has been used for output). More in detail, the
“new” JcK has an entry for p (mapping p to z) iff S′ still involves p (otherwise, if p 6∈S′, then z
is discarded, since it has type JS′�pK=JendK=•). After let, the encoding continues as JP K.

Symmetrically, branching on c[p] is also encoded using information from the typing
context, i.e., that c has type S = p &i∈I ?li(U i).S′i — and therefore, JSK is a record type
with one entry q :zq for each q ∈ S. As above, the encoded process deconstructs JcK (using
with), an then uses the (linear) name in its p-entry to perform an input zp(y); y is assumed
to be a variant, and is pattern matched to determine the continuation. If y matches li (for
some i ∈ I), and it carries a tuple zi = (xi, z) (where z is a continuation name), then JcK is
rebound (using let) and the process continues as JPiK. The rebinding of JcK depends on li and
the continuation type S′i: the “new” JcK is a record with all the linear names of the “original”
JcK, except zp (which has been used for input); as above, an entry for p will exist (and map p
to z) iff S′i still involves p (otherwise, if p 6∈ S′i, then z has type • and is discarded).

We will explain the encoding of session restriction (νs)P later, after Def. 5.7, as
it requires some technicalities: namely, the substitution σ(Γ′). We can, however, have
an intuition about the role of σ(Γ′) by considering an obvious discrepancy. Consider the
following session π-calculus process, that reduces by communication (cf. Def. 2.3):

Γ, s[p] :S, s[q] :S′ ` s[p][q]&{l(x).P} | s[q][p]⊕ 〈l(v)〉.Q → P{v/x} |Q (2)
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JΓ ` 0K , JΓK ` 0 JΘ · Γ1 ◦ Γ2 ` P |QK , JΘ · Γ1 ◦ Γ2K ` JP KΘ·Γ1 | JQKΘ·Γ2

r
Θ · Γ ` def X(x̃ : Ũ) = P inQ

z

︸ ︷︷ ︸
where x̃ = x1, . . . , xn
and Ũ = U1, . . . , Un

,
JΘ · ΓK `
(νJXK)

(
∗
(
JXK(z).with (xi)i∈{1..n}=z do JP KΘ,X:Ũ ·x̃:Ũ

)
| JQKΘ,X:Ũ ·Γ

)

︷ ︸︸ ︷r
Θ, X : Ũ · Γ1 ◦ . . . ◦ Γn ◦ Γ ` X〈ṽ〉

z
,

r
Θ, X : Ũ · Γ1 ◦ . . . ◦ Γn ◦ Γ

z
` JXK〈(JviK)i∈{1..n}〉.0

JΘ · c :S,Γ1 ◦ Γ2 ` c[p]⊕ 〈l(v)〉.P K︸ ︷︷ ︸
where S = p⊕ !l(U).S′

,
JΘ, c :S,Γ1 ◦ Γ2K `
with

[
q : zq

]
q∈S=JcK do (νz)zp〈l(JvK, z)〉.let JcK=z in JP KΘ·Γ2,c:S′︸ ︷︷ ︸
where z =

{
[p : z, q : zq]q∈S′\p if p ∈ S′[
q : zq

]
q∈S′ otherwise

JΘ · c :S,Γ ` c[p] &i∈I {li(xi).Pi}K︸ ︷︷ ︸
where S = p &i∈I ?li(U i).S′i

,

JΘ, c :S,ΓK ` with
[
q : zq

]
q∈S=JcK do zp(y).case y of

{
li(zi) .with (xi, z) =zi do let JcK=zi in JPiKΘ·Γ′

}
i∈I︸ ︷︷ ︸

where Γ′ = Γ, xi :Ui, c :S′i and zi =
{

[p : z, q : zq]q∈S′
i
\p if p ∈ S′i[

q : zq
]

q∈S′
i

otherwise

JΘ · Γ ` (νs :Γ′)P K︸ ︷︷ ︸
where conn(s,Γ′) = {{p1, q1}, . . . , {pn, qn}}

, JΘ · ΓK ` J(νs)KJP KΘ·Γ,Γ′σ(Γ′)︸ ︷︷ ︸
where J(νs)K = (νz{s,pi,qi})i∈{1..n}

Figure 7 Encoding of typing judgements. Here, JP KΘ·Γ =Q iff JΘ·Γ`P K=JΘ·ΓK`Q.

We would like its encoding to reduce and communicate, too — but it is not the case:

with [r : zr]r∈S=Js[p]K do . . . | with [r : zr]r∈S′=Js[q]K do . . . 6→ (3)

and the reason is that Js[p]K, Js[q]K are “just” record-typed names (respectively zs[p], zs[q], as
per Def. 5.4), whereas with-prefixes only reduce when applied to record values (cf. Def. 3.2).
Hence, to let our encoded terms reduce, we must first substitute Js[p]K, Js[q]K with two records;
moreover, to let the two encoded processes synchronise and exchange JvK, such records must
be suitably defined: we must ensure that the entries for q (in one record) and p (in the other)
map to the same (linear) name. In the following, we show how σ(Γ′) handles this issue.

Reification of Multiparty Sessions By simply translating a channel with role s[p] into a
π-calculus name zs[p], we have not yet captured the insight behind our approach, i.e., the
idea that a multiparty session can be decomposed into a labelled tuple of linear channels
(i.e., π-calculus names), connecting pairs of roles. We can formalise “connections” as follows.

IDefinition 5.5. The connections of s in Γ are: conn(s,Γ) ,
{
{p, q}

∣∣ s[p] :Sp ∈ Γ ∧ q ∈ Sp
}

Intuitively, two roles p, q are connected by s in Γ if p occurs in the type Γ(s[q]) (but q
might not occur in Γ(s[p]); note, however, that q will always occur if Γ is consistent).

Now, as anticipated above, we want to substitute each Js[p]K with a suitably defined
record, composed by π-calculus names; correspondingly, such names must be typed, i.e.,
appear in the typing context: this is addressed in Def. 5.6.

I Definition 5.6 (Reification and decomposition of MPST contexts). The reification of a
session typing context ΓS is the substitution:
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JQK
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Figure 8 Multiparty peer-to-peer game: encoded version of Fig. 2. Lines are binary channels.

σ(ΓS) =
{ [q : z{s,p,q}]q∈Sp/Js[p]K

}
s[p]:Sp∈ΓS

The linear decomposition of ΓS is the π-calculus typing context δ(ΓS), defined as:

δ(ΓS) =
p
s[p]:Sp∈ΓS

{
z{s,p,q} :

q
unf
(
Sp � q

)y}
{p,q}∈conn(s,ΓS)

The π-calculus reification typing rule is (note that ΓS,Γ′S are MPST typing contexts):
JΘ · ΓSK, JΓ′SK ` P

JΘ · ΓSK, δ(Γ′S) ` Pσ(Γ′S)
(Tπ-Reify)

The simplest part of Def.5.6 is σ(ΓS): it is a substitution that, for each s[p] :Sp ∈ ΓS, replaces
Js[p]K with a record containing one entry q :z{s,p,q} for each q∈Sp. Note that if there is also
some s[q] :Sq ∈ ΓS with p∈Sq, then the corresponding record (that replaces Js[q]K) has an
entry p :z{s,q,p} = z{s,p,q} — i.e., p (in one record) and q (in the other) map to the same
name: this realises the intuition of “multiparty sessions as interconnected binary channels”.

The definition of σ(ΓS) was the missing ingredient to formalise our encoding, presented
in Def. 5.7 below. The rest of Def. 5.6 will be used to prove its correctness (Theorem 6.3):
hence, we postpone its explanation to page 21.

I Definition 5.7 (Encoding). The encoding of session typing judgements is given in Fig. 7.
We define JP KΘ·Γ = Q iff JΘ · Γ ` P K = JΘ · ΓK ` Q. Sometimes, we write JP K for JP KΘ·Γ
when Θ,Γ are empty, or clear from the context.

We conclude by explaining the last case in Fig. 7, which was not addressed on p.18.
The process (νs :Γ′)P is encoded by generating one delimitation for each z{s,pi,qi} whenever
{pi, qi} is a connection of s in Γ′ (Def.5.5). Then, P is encoded, and the substitution σ(Γ′) is
applied: it replaces each Js[pi]K, Js[qi]K in JP K with records based on the delimited z{s,pi,qi}.

I Example 5.8. Consider (2). If we delimit s and encode the resulting process, we obtain
a π-calculus process based on (3), enclosed by the delimitations yielded by J(νs)K, and the
substitution σ(s[p] :S, s[q] :S′, . . .). Since the latter replaces Js[p]K, Js[q]K with records whose
entries reflect roles(S) and roles(S′), the encoding can now reduce, firing the two withs.

I Example 5.9. Consider the main server/clients parallel composition in Ex. 2.2:
(νsa, sb, sc)

(
Q | Pa | Pb | Pc

)
where

Q = (νs)
(
sa[q][p]⊕〈PlayA(s[a])〉 | sb[q][p]⊕〈PlayB(s[b])〉 | sc[q][p]⊕〈PlayC(s[c])〉

)
Its encoding is the following process, with s decomposed in 3 linear channels (see also Fig. 8):
(νz{sa,p,q}, z{sb,p,q}, z{sc,p,q})

(
JQK | JPaK | JPbK | JPcK

)
where

JQK = (νz{s,a,b}, z{s,b,c}, z{s,a,c})
(
Jsa[q][p]⊕〈PlayA(s[a])〉K | Jsb[q][p]⊕〈PlayB(s[b])〉K | Jsc[q][p]⊕〈PlayC(s[c])〉K

)
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6 Properties of the Encoding

In this section we present some crucial properties ensuring the correctness of our encoding.

Encoding of Types Theorem 6.1 below says that our encoding commutes the duality
between session types (Def. 2.8) and π-types (Def. 4.1); Theorem 6.2 shows that it also
preserves subtyping.

I Theorem 6.1 (Encoding preserves duality). JHK = JHK.

I Theorem 6.2 (Encoding preserves subtyping). If S6SS
′, then JSK6π JS′K.

Encoding of Typing Judgements Theorem 6.3 shows that the encoding of session typing
judgements into π-calculus typing judgements is valid. As a consequence, a well-typed MPST
process also enjoys the type safety guarantees that can be expressed in standard π-calculus.

I Theorem 6.3 (Correctness of encoding). Γ`v :U implies JΓK`JvK:JUK, Θ `X : Ũ implies
JΘK ` JXK : J̃UK, and Θ·Γ`P implies JΘ·Γ`P K.

The proof is by induction on the MPST typing derivation, which yields a corresponding
π-calculus typing derivation. One simple case is the following, that relates subtyping:

(T-Sub)
Θ · Γ, c :S ` P S′6SS

Θ · Γ, c :S′ ` P
implies

JΘ · Γ, c :S ` P K
q
S′

y
6π JSK

q
Θ · Γ, c :S′

y
` JP KΘ·Γ,c:S

(Tπ-Narrow)
(Fig. 6)

that holds by the induction hypothesis and Theorem 6.2. The most delicate case is the
encoding of session restriction Θ·Γ ` (νs :Γ′)P (Fig. 7): its encoding turns (νs) into a set of
delimited names, used in the substitution σ(Γ′) applied to JP KΘ·Γ,Γ′ ; hence, to prove the
theorem, we need to type such names, i.e., find a context that types JP KΘ·Γ,Γ′σ(Γ′). This is
where δ(Γ′) and (Tπ-Reify) (Def. 5.6) come into play, as we now explain.

More on Def. 5.6 and decomposition By Def. 5.6, The typing context δ(ΓS), when defined,
has an entry z{s,p,q} for each s[p] :Sp ∈ ΓS and q ∈ Sp. Such entries are used to type the
records yielded by σ(ΓS). The type of z{s,p,q} is based on the encoding of the unfolded
partial projection Sp � q, that can can be either •, or Li(T )/Lo(T ) (for some T ). Note that if
there is also some s[q] :Sq ∈ ΓS with q 6= p, the type of z{s,q,p} = z{s,p,q} (when defined) isq
unf
(
Sp � q

)y
C

q
unf
(
Sq � p

)y
. This creates a deep correspondence between the consistency of

ΓS and the existence of δ(ΓS), as shown in Theorem 6.4 below: it says that the precondition
for type safety in MPSTs (i.e., the consistency of ΓS) can be precisely expressed in π-calculus,
and this is captured by the linear decomposition at the roots of our encoding.

I Theorem 6.4 (Precise decomposition). ΓS is consistent if and only if δ(ΓS) is defined.

The final part of Def. 5.6 is the π-calculus typing rule (Tπ-Reify), that uses δ(Γ′S) to type
a process on which σ(Γ′S) has been applied. We explain the rule with a slight simplification.
If we have Γ′S =

{
s[p] :Sp

}
p∈I , then:

δ(Γ′S) =
p

p∈I
{
z{s,p,q} :

q
unf
(
Sp � q

)y}
{p,q}∈conn(s,ΓS) σ(Γ′S) =

{ [q : z{s,p,q}]q∈Sp/Js[p]K
}

p∈I

(Note: δ(Γ′S) is defined iff Γ′S is consistent, by Theorem 6.4). Now, take a set of types{
T(s,p,q)

}
{p,q}∈conn(s,ΓS) such that

⊎
p∈I
{
z{s,p,q} :T(s,p,q)

}
{p,q}∈conn(s,ΓS) = δ(Γ′S) (note T(s,p,q),

T(s,q,p) are distinct) and assume the premise of (Tπ-Reify). The following derivation holds:
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∀q ∈ Sp

(Tπ-Name)
z{s,p,q} :T(s,p,q) ` z{s,p,q} :T(s,p,q) T(s,p,q) 6π

q
Sp � q

y

z{s,p,q} :T(s,p,q) ` z{s,p,q} :
q
Sp � q

y (Tπ-Sub){
z{s,p,q} :JSp � qK

}
q∈Sp

`
[
q : z{s,p,q}

]
q∈Sp

(Tπ-Rec)


p∈I JΘ · ΓSK, JΓ′SK ` P

JΘ · ΓSK, δ(Γ′S) = JΘ · ΓK ] δ(Γ′S) ` Pσ(Γ′S) (Tπ-MSubst - Fig. 6)

In particular, the assumptions T(s,p,q) 6π
q
Sp � q

y
hold by Lemma 4.7, since each T(s,p,q) has

been obtained by splitting δ(Γ′S) (that combines types with C) using ]. The equivalence in
the conclusion holds since dom(JΘ · ΓSK) ∩ dom(δ(Γ′S)) = ∅. Summing up: if the (Tπ-Reify)
premise holds, then the above derivation holds, which proves the conclusion of (Tπ-Reify).

Now, we can finish the proof of Theorem 6.3 for the case Θ·Γ ` (νs :Γ′)P . Assuming
that the judgement holds, we also have Θ · Γ,Γ′ ` P and Γ′ complete (by the premise of
(T-Res), Fig. 4): hence, Γ′ is consistent, and δ(Γ′) is defined (by Theorem 6.4). Assuming
that JΘ·Γ,Γ′ ` P K holds (by the induction hypothesis), we obtain:

JΘ · ΓK, JΓ′K ` JP KΘ·Γ,Γ′

JΘ · ΓK, δ(Γ′) ` JP KΘ·Γ,Γ′σ(Γ′)
(Tπ-Reify)

where δ(Γ′) types all the (delimited) names z{s,p,q} given by J(νs)K. We can now conclude
by applying (Tπ-Res1) to delimit such names (cf. Fig. 5 — note that this is allowed by the
completeness of Γ′): we get JΘ · ΓK ` J(νs)KJP KΘ·Γ,Γ′σ(Γ′), i.e., we match Fig. 7.

Finally, notice (from Fig. 7) that our encoding of processes uses some typing information.
In principle, a process could be typed by applying the rules in multiple ways (especially
(T-Sub) in Fig. 4), and one might wonder whether an MPST process could have multiple
encodings. Proposition 6.5 says that this is not the case: the reason is that the only typing
information being used is the set of roles in each session type, which does not depend on the
typing rule — and is constant w.r.t. subtyping (i.e., S6SS

′ implies roles(S)=roles(S′)).

I Proposition 6.5. If Θ · Γ ` P and Θ′ · Γ′ ` P , then JP KΘ·Γ = JP KΘ′·Γ′ .

Encoding and Reduction One usual way to assess that an encoding is “behaviourally
correct” (i.e., a process and its encoding behave “in the same way”) consists in proving
operational correspondence. Roughly, it says that the encoding is: (1) complete, i.e., any
reduction of the original process is simulated by its encoding; and (2) sound, i.e., any
reduction of the encoded process matches some reduction of the original process. This is
formalised in Theorem 6.6, where with−−−→ denotes a reduction induced by (Rπ-With) (Def. 3.2).

I Theorem 6.6 (Operational correspondence). If ∅ ·∅ ` P , then:
1. (Completeness) P→∗P ′ implies ∃x̃, P ′′ such that JP K→∗ (νx̃)P ′′ and P ′′ = JP ′K;

2. (Soundness) JP K→∗P∗ implies ∃x̃,P ′′,P ′ s.t. P∗→∗(νx̃)P ′′, P→∗P ′ and JP ′K with−−−→∗P ′′.

The statement of Theorem 6.6 is standard [22, §5.1.3]. Item 1 says that if P reduces to
P ′, then the encoding of the former can reduce to the encoding of the latter. Item 2 says
(roughly) that no matter how the encoding of P reduces, it can always further reduce to
the encoding of some P ′, such that P reduces to P ′. Note that when we write JP ′K, we
mean JP ′K∅·∅, which implies ∅ ·∅ ` P ′ (cf. Def. 5.7). The restricted variables x̃ in items 1-2
are generated by the encoding of selection (Fig. 7): it creates a (delimited) linear name to
continue the session. To see why item 2 uses with−−−→∗, consider the following MPST process:

∅ · Γ, s[p] :S ` s[p][q]&{l(x).P} 6→ (the process is stuck)
If we encode it (and apply σ(Γ, s[p] :S) as per Ex. 5.8), we get a π-calculus process that gets
stuck, too — but only after firing one internal with-reduction:
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with [r : zr]r∈S=
[
r : z{s,p,r}

]
r∈S do zq(y). . . . with−−−→ z{s,p,q}(y). . . . 6→

This happens whenever a process is deadlocked, and even if it is closed (as in item 2 of
Theorem 6.6). This is because in Fig. 7, the “atomic” branch/select operations of MPSTs are
encoded with multiple steps in linear π-calculus: first with for deconstructing the tuple of
linear channels, and then input/output. In general, if an MPST process is stuck, its encoding
fires one with for each stuck branch/select, then blocks on a corresponding input/output.

Theorem 6.6 yields an immediate corollary pertaining deadlock freedom:

I Corollary 6.7. P is deadlock-free if and only if JP K is deadlock-free, i.e.: JP K→∗ P ′ 6→
implies ∃Q ≡ 0 such that P ′ = JQK.

As a consequence, our encoding allows to transfer Theorem 2.19 to π-calculus processes.

I Corollary 6.8. Let ∅·∅ ` P , where P ≡ (νs :G)
∣∣
i∈IPi and each Pi only interacts on s[pi].

Then, JP K is deadlock-free.

7 From Theory to Implementation

We can now show how our encoding directly guides the implementation of a toolchain for
generating safe multiparty session APIs in Scala, including distributed delegation. We continue
our Game example from § 1, focusing on player b: we sketch the API generation and an
implementation of a client, following the results in § 6. Our approach is to: (1) exploit type
safety and distribution provided by an existing library for binary session channels, and then
(2) treat the ordering of communications across separate channels in the API generation.

Scala and lchannels Our Scala toolchain is built upon the lchannels library [56]. lchannels

provides two key classes, Out[T] and In[T], whose instances must be used linearly (i.e., once)
to send/receive (by method calls) a T-typed message: i.e., they represent channel endpoints
with π-calculus types Lo(T ) and Li(T ) (Def. 3.3). This approach enforces the typing of
I/O actions via static Scala typing; the linear usage of channels, instead, goes beyond the
capabilities of the Scala typing system, and is therefore enforced with run-time checks.

lchannels delivers messages by abstracting over various transports: local memory, TCP
sockets, Akka actors [39]. Notably, lchannels promotes session type-safety through a
continuation-passing-style encoding of binary session types [56] that is close to our en-
coding of partial projections (formalised in Def.5.1). Further, lchannels allows to send/receive
In[T]/Out[T] instances for binary session delegation [56, Ex. 4.3]; on distributed message trans-
ports, instances of In[T]/Out[T] can be sent remotely (e.g., via the Akka-based transport).

Type-safe, distributed multiparty delegation By Theorem 6.3 and Def. 5.1 and The-
orem 6.4, we know that the game player session type Sb in our example (see (1)) provides
the type safety guarantees of a tuple of (linear) channels, whose types are given by the
encoded partial projections of Sb onto a,c (Def. 2.9). This suggests that, using lchannels, the
delegation of an Sb-typed channel (as in § 1) could be rendered in Scala as:

In[PlayB] with definitions: case class PlayB(payload: Sb)
case class Sb(a: In[InfoAB],c: Out[InfoBC])

i.e., as a linear input channel carrying a message of type PlayB, whose payload has type Sb;
Sb, in turn, is a Scala case class, which can be seen as a labelled tuple, that maps a,c to
I/O channels—whose types derive from JSb�aK and JSb�cK (in fact, they carry messages of
type InfoAB/InfoBC). In this view, Sb is our Scala rendering of the encoded session type JSbK.
As said above, lchannels allows to send channels remotely—hence, also allows to remotely
send tuples of channels (e.g., instances of Sb); thus, with this simple approach, we obtain
type-safe distributed multiparty delegation of an JSbK-typed channel tuple “for free”.
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Multiparty API Generation Corresponding to the π-calculus labelled tuple type yielded
by the type encoding JSbK, the Sb class outlined above can ensure communication safety, i.e.,
no unexpected message will be sent or received on any of its binary channels. Like JSbK,
however, Sb, so far, does not convey ordering of communications across channels, i.e., the
order in which its fields, a and c, should be used. (Indeed, JSbK may type π-processes using
its separate channels in any order while preserving basic safety.) To recover the “desired”
ordering of communications, and implement it correctly, we can refine our classes so that:

(1) each multiparty channel class (e.g., Sb) exposes a send() or receive() method, according
to the I/O action expected by the multiparty type (Sb);

(2) the implementation of such method uses the binary channels as per our process encoding.

E.g., consider again Sb and Sb. Sb requires to send towards c, so Sb could provide the API:
case class Sb(a: In[InfoAB], c: Out[InfoBC]) {

def send(v: String) = { // v is the payload of InfoBC message
val c′ = c !! InfoBC(v)_ // lchannels method: send v, and return continuation
S′b(a, c′) } } // return a "continuation object"

Now, Sb.send() behaves exactly as our process encoding in Fig. 7 (case for selection ⊕): it
picks the correct channel from the tuple (in this case, c), creates a new tuple S′b where c
maps to a continuation channel, and returns it — so that the caller can use it to continue the
multiparty session interaction. The class S′b should be similar, with a receive() method that
uses a for input (by following the encoding of &). This way, a programmer is correctly led to
write, e.g., val x = s.send(...).receive() (using method call chaining)—whereas attempting,
e.g., s.receive() is rejected by the Scala compiler (method undefined). These send()/receive()

APIs are mechanical, and can be automatically generated: we did it by extending Scribble.

Scribble-Scala Toolchain Scribble is a practical MPST-based language and tool for de-
scribing global protocols [57, 62]. To implement our results, we have extended Scribble
(both the language and the tool) to support the full MPST theory in § 2, including, e.g.,
projection, type merging and delegation (not previously supported). Our extension allows
protocols with the syntax in Fig. 9 (left), by augmenting Scribble with a projection operator
@; then, it computes the projections/encodings explained in §5, and automates the Scala API
generation as outlined above (producing, e.g., the Sb, S’b,. . . classes and their send/receive

methods). This approach reminds the Java API generation in [27] — but we follow a formal
foundation and target the type-safe binary channels provided by lchannels (that, as shown
above, takes care of most irksome aspects — e.g., delegation). As a result, the Pb client in
Fig. 1 can be written as in Fig. 9 (right); and although conceptually programmed as Fig. 2,
the networking mechanisms of the game will concretely follow Fig. 8.

Our implementation is Open Source, and is available in [55].

8 Conclusion and Related Works

We presented the first encoding of a full-fledged multiparty session π-calculus into standard π-
calculus (§5), and used it as the foundation of the first implementation of multiparty sessions
(based on Scala API generation) with support for distributed multiparty delegation, on top of
existing libraries (§ 7). We proved that a consistent session typing context is characterised by
a decomposition into linear π-calculus types (Theorem 6.4): i.e., the type safety property of
MPSTs is precisely captured by standard π-calculus. We encode types by preserving duality
and subtyping (Theorems 6.1 and 6.2); our encoding of processes is type-preserving, and
operationally sound and complete (Theorems 6.3 and 6.6); hence, our encoding preserves the
type-safety and deadlock-freedom properties of MPST (Cor. 6.8). These results ensure the
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global protocol ClientA(role p, role q) {
PlayA(Game@a) from q to p; } // Delegation payload

global protocol ClientB(role p, role q) {
PlayB(Game@b) from q to p; }

global protocol ClientC(role p, role q) {
PlayC(Game@c) from q to p; }

global protocol Game(role a, role b, role c) {
InfoBC(String) from b to c;
InfoCA(String) from c to a;
InfoAB(String) from a to b;
rec t { choice at a {

Mov1AB(Int) from a to b;
Mov1BC(Int) from b to c;
choice at c { Mov1CA(Int) from c to a; continue t; }

or { Mov2CA(Bool) from c to a; continue t; }
} or {
Mov2AB(Bool) from a to b;
Mov2BC(Bool) from b to c;
choice at c { Mov1CA(Int) from c to a; continue t; }

or { Mov2CA(Bool) from c to a; continue t; }
} } }

def P_b(c_bin: In[binary.PlayB]) = { // Cf. Ex. 2.2
// Wrap binary chan in generated multiparty API
Client_b(MPPlayB(c_bin))

}

def Client_b(y: MPPlayB): Unit = {
// Receive Game chan (wraps binary chans to a/c)
val z = y.receive().p // p is the payload field
// Send info to c; wait info from a; enter loop
Loop_b(z.send(InfoBC("...")).receive())

}

def Loop_b(x: MPMov1ABOrMov2AB): Unit = {
x.receive() match { // Check a’s move

case Mov1AB(p, cont) => {
// cont only allows to send Mov1BC
Loop_b(cont.send(Mov1BC(p)))

}
case Mov2AB(p, cont) => {

// cont only allows to send Mov2BC
Loop_b(cont.send(Mov2BC(p)))

}}} // If e.g. case Mov2AB missing: compiler warn

Figure 9 Game example (from § 1). Left: Scribble protocols for client/server setup sessions, and
main Game (matching Ex. 2.18). Right: Scala client for player b, using Scribble-generated APIs, and
mimicking the processes in Ex. 2.2 (for a more natural implementation on the same API, see §A.5).

correctness of our (encoding-based) Scala implementation. Moreover, our encoding preserves
process distribution (i.e., is homomorphic w.r.t. parallel composition); correspondingly, our
implementation of multiparty sessions is decentralised and choreographic.

Implementations of Session Types (for Mainstream Languages) We mentioned the im-
plementations of binary sessions for a range of “mainstream” languages in § 1. Notably,
[52, 30, 31, 40, 48, 56, 51] sought to realise benefits from session types in the native host
language, without language extensions, to avoid hindering their use in practice. To do so,
one approach (employed e.g. in [56, 51]) is the combination of static typing of I/O actions
on channels, and run-time checking of linear channel usage. We adopt this idea in our
implementation (§ 7). The Haskell-based works, instead, exploit its richer typing facilities to
statically enforce linearity—but incur various expressiveness/usability compromises according
to the particular strategy for embedding session types.

By contrast, implementations of multiparty sessions are, to date, limited, in part due to the
intricacies of the multiparty theory (e.g., the interplay between projections, mergability and
consistency), and practical issues (e.g., realising the multiparty session abstraction over binary
transports, including distributed delegation), as discussed in § 1. [27] proposes MPST-based
API generation for Java based on communicating FSMs and has no formalisation, unlike
our implementation—which follows directly from our formal encoding. [58] was the first
implementation of MPST, based on extending Java with special-purpose session primitives.
[16, 19] developed MPST-influenced networking APIs in Python and Erlang, respectively;
[46] implemented recovery strategies in Erlang (based on Scribble). [16, 19, 46] focus on
purely dynamic MPST verification by run-time monitoring. [47, 45] extended [16] with actors
and timed specifications, respectively. [43] uses a dependent MPST theory for verifications
of MPI programs. Crucially, none of these MPST-based implementations support delegation
(nor merging of choice projections, as needed by our running Game example—cf. Ex. 2.14).

Encodings of Session Types and Processes [15] encodes binary session π-calculus into an
augmented π-calculus with branch/select constructs. [14], by following [34], and [20] encode
non-recursive, binary session π-calculus, respectively into linear π-calculus, and the Generic
Type System for π-calculus [29], and prove correctness w.r.t. typing and reduction. All the
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above works investigate binary and (except [15]) non-recursive session types, while in this
paper we study the encoding of multiparty session types, subsuming binary ones; and unlike
[15], we target standard π-calculus. We encode branching/selection using variants as in
[14, 12], but our treatment of recursion, and the rest of the MPST theory, is novel.

The only works studying an encoding of multiparty sessions into binary sessions are
[8, 7]: they adopt an orchestrated approach, by adding centralised medium/arbiter processes.
Moreover, they target session calculi and not π-calculus, with a wider gap towards implement-
ation. In [49] a restricted class of global types is used to extract “characteristic”, deadlock-free
π-calculus processes—without addressing session calculi, nor proving operational properties.

Recursion and Duality The interplay between recursion and duality has been a thorny
issue in session types literature, thus requiring our careful treatment in §4. [6] and [1] noticed
that the standard duality in [25] does not commute with the unfolding of recursion when
type variables occur as payload, e.g., µt.!t.end. To solve this issue, [6, 1] define a new notion
of duality, called complement in [1], that is used in the encoding of recursive binary session
types into linear π-types [12]. Unfortunately, [2] later noticed that even complement does not
commute, e.g., when unfolding µt.µt′.!t.t′. As said in § 4, to encode recursive session types
we encounter similar issues in the π-types. The reason seems quite natural: in π-calculus,
types do not distinguish between “payload” and “continuation”, and, in the case of recursive
linear inputs/outputs, type variables necessarily occur as “payload”, e.g. µt.Lo(t). Since,
in the light of [2], we could not adopt the approach of [12], we proposed a solution similar
to [41]: introduce dualised type variables t. [41] also sketches a property similar to our
Lemma 4.4. The main difference is that, we add dualised variables to π-types (while [41]
adds t to session types). An alternative approach is given in [56]: recursive session types
are encoded as non-recursive linear I/O types with recursive payloads. This avoids dualised
variables (e.g., Lo(µt.Li(t)) instead of µt.Lo

(
t
)
), but at the price of complicating Def. 5.1.

Most importantly, [56] tackles only the encoding of recursive types and not processes.

Future work On the practical side, we plan to study whether Scala language extensions
could provide stronger static channel usage checks E.g., [24, 23] (capabilities) could allow
to ensure that a channel endpoint is not used after being sent; [53, 59] (effects) could allow
to ensure that a channel endpoint is actually used in a given method. We also plan to
extend our multiparty API generation approach beyond Scala and lchannels, targeting other
languages and implementations of binary sessions/channels [52, 30, 31, 40, 48, 51].

On the theoretical side, our encoding provides a basis for reusing theoretical results and
tools between MPST π-calculus and standard π-calculus. E.g., by leveraging Cor. 6.7, we
could now study deadlock-freedom of processes with interleaved multiparty sessions (studied
in [3, 9, 11]) by applying π-calculus deadlock detection methods to their encodings [36, 33, 60].
Moreover, we can prove that our encoding is barb-preserving: hence, we plan to study its full
abstraction properties w.r.t. barbed congruence in session π-calculus [38, 37] and π-calculus.
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P |Q ≡ Q | P (P |Q) |R ≡ P | (Q |R) P | 0 ≡ P (νs)0 ≡ 0

(νs)(νs′)P ≡ (νs′)(νs)P (νs)P |Q ≡ (νs)(P |Q) (if s /∈ fc(Q)) def D in 0 ≡ 0

def D in (νs)P ≡ (νs)def D inP (if s /∈ fc(P ))

def D in (P |Q) ≡ (def D inP ) |Q (if dpv(D) ∩ fpv(Q) = ∅)

def D in def D′ inP ≡ def D′ in def D inP
(if (dpv(D) ∪ fpv(D)) ∩ dpv(D′) = (dpv(D′) ∪ fpv(D′)) ∩ dpv(D) = ∅)

Figure 10 Structural congruence for the multiparty session π-calculus.

A Auxiliary Definitions

A.1 Structural Congruence for Multiparty Session π-Calculus
The operational semantics of multiparty session processes is based on the notion of structural
congruence ≡, given in Fig. 12. We write “s 6∈ fc(P )” to mean that there does not exist a p such
that s[p] ∈ fc(P ). We use fv(D) to denote the set of free variables in D. We use dpv(D) to denote
the set of process variables declared in D, and fpv(P ) for the set of process variables which occur
free in P .

Most of the rules of structural congruence are standard. The first two lines in Fig. 12 show the
commutativity and associativity of the relation w.r.t. parallel composition and restriction and 0
used as the neutral element w.r.t. parallel composition, restriction and process definition. The last
three lines in Fig. 12 describe how a process definition can be rearranged w.r.t. restriction, parallel
composition and process definition, respectively. These rules make use of well-formedness criteria on
the free names and variables in the process definition, which are given as side conditions.

A.2 Global Types
We now provide the formal definition of projection of a global type onto a role.

I Definition A.1. The projection of G onto a role q, written G � q, is:

(
p→ p′ :{li(Ui).Gi}i∈I

)
� q ,


p′ ⊕i∈I !li(Ui).(Gi � q) if q = p′

p′ &i∈I ?li(Ui).(Gi � q) if q = p′
d
i∈I (Gi � q) if p 6= q 6= p′

(µt.G) � q ,

{
µt.(G � q) if G � q 6= t′ (∀t′)
end otherwise

t � q , t end � q , end

where u is the merge operator on session types, defined as:

p &i∈I ?li(Ui).Si u p &j∈J ?lj(Uj).S′j ,
p &k∈I∩J ?lk(Uk).(Sk u S′k) & p &i∈I\J ?li(Ui).Si & p &j∈J\I ?lj(Uj).Sj

p⊕i∈I !li(Ui).Si u p⊕i∈I !li(Ui).Si , p⊕i∈I !li(Ui).Si

end u end , end µt.S u µt.S′ , µt.(S u S′) t u t , t

The projection of global types onto session types gives branch and select types, as well as recursion
and termination, which are the multiparty session types given in Def. 2.5. The intuition behind it
follows the same lines as Def. 2.9.

The merge operation [61, 17], as for partial projections, makes local projections defined in more
cases.
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A.3 Structural Congruence for Standard π-Calculus
In order to complete the operational semantics for the π-calculus, we need the structural congruence
relation, ≡; it is defined as the smallest congruence relation on processes that satisfies the axioms
given in Fig. 11.

P |Q ≡ Q | P
(P |Q) |R ≡ P | (Q |R)

P | 0 ≡ P

(νx)0 ≡ 0
(νx)(νy)P ≡ (νy)(νx)P
(νx)P |Q ≡ (νx)(P |Q) (x /∈ fv(Q))

∗P ≡ P | ∗P

Figure 11 Structural congruence for the standard π-calculus.

The first three axioms say that the parallel composition of processes is commutative, associative
and uses process 0 as the neutral element. The next three axioms involve restriction: the first
of the sequence is used to collect vacuous restrictions, by saying that restriction can be removed
from the terminated process, the second says that restriction is commutative and the third is the
main one, scope extrusion, saying that the scope of a restriction can be extended to other parallel
processes provided that no free names are captured. The last axiom states that replication can be
“decomposed” into a parallel composition of a copy of the process itself and the persistent replicated
process.

A.4 “Let” binder reduction and typing
The “let” binder is just a macro based on standard π-calculus constructs. Hence, its reduction and
typing follow the expansion of its definition (Fig. 6):

letx=v inP = (νz) (z〈v〉.0 | z(x).P ) (where z 6∈ {x} ∪ fn(v) ∪ fn(P ))
→ (νz) (0 | P{v/x}) ≡ (νz)0 | P{v/x} ≡ P{v/x}

(Tπ-Out)
Γ1 ` v :T ` 0

(Tπ-Nil)

Γ1, z :Lo(T ) ` z〈v〉.0
Γ2, x :T ` P

Γ2, z :Li(T ) ` z(x).P
(Tπ-Inp)

Γ1 ] Γ2, z :Lo(T ) ] Li(T ) ` z〈v〉.0 | z(x).P
(Tπ-Par)

Γ1 ] Γ2 ` letx=v inP = (νz) (z〈v〉.0 | z(x).P )
(Tπ-Res1)
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A.5 Multiparty API Generation for Scala
The following code shows an alternative (and more natural) implementation of the b-playing game
client in Fig. 9 (right): albeit using the same Scribble-generated APIs, it does not try to mimic the
processes in Ex. 2.2.
def client(s: In[binary.PlayB]) = {

// Wrap binary chan in multiparty session obj
val c = MPPlayB(s)
// Receive multiparty game channel
val g = c.receive().p
// Send info to C; wait info from a
val i = g.send(InfoBC("...")).receive()
loop(i.cont) // Game loop

}

def loop(g: MPMov1ABOrMov2AB): Unit = {
g.receive() match { // Check a’s move

case Mov1AB(p, cont) => {
// cont only allows to send Mov1BC
val g2 = cont.send(Mov1BC(p))
loop(g2) // Keep playing

}
case Mov2AB(p, cont) => {

// cont only allows to send Mov2BC
val g2 = cont.send(Mov2BC(p))
loop(g2) // Keep playing

} } } // If case Mov1AB or Mov2AB is missing: compiler warn
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B Multiparty Session Types

B.1 Structural Congruence for Multiparty Session π-Calculus
The operational semantics of multiparty session processes is based on the notion of structural
congruence ≡, given in Fig. 12. We write “s 6∈ fc(P )” to mean that there does not exist a p such
that s[p] ∈ fc(P ). We use fv(D) to denote the set of free variables in D. We use dpv(D) to denote
the set of process variables declared in D, and fpv(P ) for the set of process variables which occur
free in P .

Most of the rules of structural congruence are standard. The first two lines in Fig. 12 show the
commutativity and associativity of the relation w.r.t. parallel composition and restriction and 0
used as the neutral element w.r.t. parallel composition, restriction and process definition. The last
three lines in Fig. 12 describe how a process definition can be rearranged w.r.t. restriction, parallel
composition and process definition, respectively. These rules make use of well-formedness criteria on
the free names and variables in the process definition, which are given as side conditions.

B.2 Global Types
We will now formally introduce global types and give the definition of projection onto a role.

I Definition B.1. The syntax of global types, ranged over by G, is:

G ::= p→ q :{li(Ui).Gi}i∈I (interaction — with Ui closed)
µt.G | t | end (recursive type, type variable, termination)

Type p→ q :{li(U i).Gi}i∈I states that role p sends one of the labels li for i ∈ I, together with a
payload, to role q. Labels are pairwise distinct. If such label is lj , then the continuation proceeds as
Gj . Type µt.G is a recursive type, where type variables t, t′, . . . are guarded, namely they appear
only under type prefixes. Finally, type end states the termination of a session. We may omit the
braces {...} from an interaction when I is a singleton, e.g., to write a→b : l1(U1).G1 instead of
a→b :{li(U i).Gi}i∈{1}.

The relation between global types and session types is formalised by the notion of projection,
given below.

I Definition B.2. The projection of G onto a role q, written G � q, is:

(
p→ p′ :{li(Ui).Gi}i∈I

)
� q ,


p′ ⊕i∈I !li(Ui).(Gi � q) if q = p′

p′ &i∈I ?li(Ui).(Gi � q) if q = p′
d
i∈I (Gi � q) if p 6= q 6= p′

(µt.G) � q ,

{
µt.(G � q) if G � q 6= t′ (∀t′)
end otherwise

t � q , t end � q , end

P |Q ≡ Q | P (P |Q) |R ≡ P | (Q |R) P | 0 ≡ P (νs)0 ≡ 0

(νs)(νs′)P ≡ (νs′)(νs)P (νs)P |Q ≡ (νs)(P |Q) (if s /∈ fc(Q)) def D in 0 ≡ 0

def D in (νs)P ≡ (νs)def D inP (if s /∈ fc(P ))

def D in (P |Q) ≡ (def D inP ) |Q (if dpv(D) ∩ fpv(Q) = ∅)

def D in def D′ inP ≡ def D′ in def D inP
(if (dpv(D) ∪ fpv(D)) ∩ dpv(D′) = (dpv(D′) ∪ fpv(D′)) ∩ dpv(D) = ∅)

Figure 12 Structural congruence for the multiparty session π-calculus.
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where u is the merge operator on session types, defined as:

p &i∈I ?li(Ui).Si u p &j∈J ?lj(Uj).S′j ,
p &k∈I∩J ?lk(Uk).(Sk u S′k) & p &i∈I\J ?li(Ui).Si & p &j∈J\I ?lj(Uj).Sj

p⊕i∈I !li(Ui).Si u p⊕i∈I !li(Ui).Si , p⊕i∈I !li(Ui).Si

end u end , end µt.S u µt.S′ , µt.(S u S′) t u t , t

The projection of global types onto session types gives branch and select types, as well as recursion
and termination, which are the multiparty session types given in Def. 2.5. The intuition behind it
follows the same lines as Def. 2.9.

The merge operation [61, 17], as for partial projections, makes local projections defined in more
cases.

B.3 Properties of Partial Session Types
I Definition B.3 (Open Subtyping for Partial Session Types). The relation 6OP between partial session
types is inductively defined by the following rules:

∀i ∈ I Hi 6OP H
′
i

(S-OParBrch)
&i∈I ?li(U i).Hi 6OP &i∈I∪J ?li(Ui).H ′i

∀i ∈ I Hi 6OP H
′
i

(S-OParSel)
⊕i∈I∪J !li(Ui).Hi 6OP ⊕i∈I !li(Ui).H ′i

H 6OP H
′

(S-OParµ)
µt.H 6OP µt.H ′

(S-OPart)
t 6OP t

(S-OParEnd)
end 6OP end

I Corollary B.4. 6OP is reflexive.

Proof. For all H, we can prove H 6OP H by easy structural induction on H. J

I Proposition B.5. If µt.H1 6OP µt.H2, then H1{µt.H1/t} 6OP H2{µt.H2/t}.

Proof. Assume µt.H1 6OP µt.H2. Without loss of generality, assume that all bound variables in
µt.H1 are pairwise distinct, and similarly for µt.H2 (otherwise, the requirement can be met via
α-conversion — i.e., this is a form of Barendregt convention). Such a relation can only hold by
(S-OParµ), and therefore we have some derivation D such that:

D


...

H1 6OP H2

µt.H1 6OP µt.H2
(S-OParµ)

We can inductively rewrite D by replacing each occurrence of H 6OP H ′ with H{µt.H1/t} 6OP

H ′{µt.H2/t}. This way, we obtain a new derivation D′ where:
1. each instance of the axiom (S-OPart) with t 6OP t in D becomes µt.H1 6OP µt.H2 (which holds

by hypothesis) in D′;
2. the conclusion of D′ is H1{µt.H1/t} 6OP H2{µt.H2/t}.
Hence, D′ proves the thesis. J

I Lemma B.6. Let H,H ′ be closed partial session types. Then, H 6OP H
′ implies H 6P H

′.

Proof. Consider the following relation:

R = R1 ∪ R2

R1 =
{

(H,H ′)
∣∣ H,H ′ closed and H 6OP H

′}
R2 =

{
(H1{µt.H1/t}, µt.H2), (µt.H1, H2{µt.H2/t})

∣∣ µt.H1, µt.H2 closed and µt.H1 6OP µt.H2
}

We first prove that R is closed backwards under the rules obtained from Def. 2.10, by replacing
each occurrence of 6P with R. For each (H,H ′) ∈ R, we have two cases:
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(H,H ′) ∈ R1. We know that H,H ′ are closed and H 6OP H
′. Therefore, we proceed by cases

on the rule in Def. B.3 that concludes H 6OP H
′:

(S-OPart). This case is absurd: it would imply H = H ′ = t, which contradicts the
hypothesis that H,H ′ are closed;
(S-OParEnd). We have H = H ′ = end, which satisfies rule (S-ParEnd);
(S-OParBrch). We have H = &i∈I ?li(Ui).Hi 6OP &i∈I∪J ?li(Ui).H ′i = H ′, and we need
to show that (H,H ′) satisfies rule (S-ParBrch). We observe, for all i ∈ I:

Hi, H
′
i are closed (otherwise, H or H ′ would not be closed) (4)

Hi 6OP H
′
i (from the premise of (S-OParBrch)) (5)

Hi R H ′i (from (4) and (5), by definition of R1) (6)
Ui 6S Ui (by reflexivity of 6S) (7)

Hence, from (6) and (7) we conclude that (H,H ′) satisfies rule (S-ParBrch);
(S-OParSel). We have H = ⊕i∈I∪J !li(Ui).Hi 6OP ⊕i∈I !li(Ui).H ′i = H ′, and we need to
show that (H,H ′) satisfies rule (S-ParSel). We observe that, for all i ∈ I:

Hi, H
′
i are closed (otherwise, H or H ′ would not be closed) (8)

Hi 6OP H
′
i (from the premise of (S-OParSel)) (9)

Hi R H ′i (from (8) and (9), by definition of R1) (10)
Ui 6S Ui (by reflexivity of 6S) (11)

Hence, from (10) and (11) we conclude that (H,H ′) satisfies rule (S-ParSel);
(S-OParµ). We have H = µt.H1 6OP µt.H2 = H ′, and we need to show that (H,H ′)
satisfies both rules (S-ParµL) and (S-ParµR). We observe that:

(H1{µt.H1/t}, µt.H2) ∈ R2 ⊆ R (by definition of R2 and R) (12)
(µt.H1, H2{µt.H2/t}) ∈ R2 ⊆ R (by definition of R2 and R) (13)

Therefore, we conclude that (H,H ′) satisfies both (S-ParµL) (by (12)) and (S-ParµR) (by
(13)).

(H,H ′) ∈ R2. We know that H,H ′ are closed, and either:

H = H1{µt.H1/t}, H ′ = µt.H2, and µt.H1 6OP µt.H2. In this case, we need to show that
(H,H ′) satisfies rule (S-ParµR). We observe that:

H1{µt.H1/t}, H2{µt.H2/t} are closed (otherwise, H or H ′ would not be closed)
(14)

H1{µt.H1/t} 6OP H2{µt.H2/t} (by µt.H1 6OP µt.H2 and Proposition B.5)
(15)

(H1{µt.H1/t}, H2{µt.H2/t}) ∈ R1 ⊆ R (from (14), (15), and by definition of R1 and R)
(16)

Therefore, we conclude that (H,H ′) satisfies rule (S-ParµR);
H = µt.H1, H ′ = H2{µt.H2/t}, and µt.H1 6OP µt.H2. In this case, we need to show that
(H,H ′) satisfies rule (S-ParµL): the proof is symmetric w.r.t. the previous case.

We have shown that R is closed backwards under the rules obtained from Def. 2.10. Therefore,
since 6P is the largest relation closed backwards under such rules, we have R ⊆ 6P. We also know
that for all closed H,H ′ such that H 6OP H ′, we have (H,H ′) ⊆ R1 ⊆ R ⊆ 6P: we conclude
H 6P H

′. J

I Lemma B.7. For any finite set of partial session types {Hi}i∈I , if H
∗ =

d
i∈I Hi is defined, then

∀k ∈ I : H∗ 6P Hk.
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Proof. Assuming that H∗ is defined, we choose any Hk (with k ∈ I) and proceed by structural
induction on Hk:

base case Hk = end. By Def. 2.9, we must have H∗ = end and ∀i ∈ I : Hi = end (otherwise,
H∗ would be undefined). We conclude H∗ 6OP Hk, by (S-OParEnd);
base case Hk = t. By Def. 2.9, we must have H∗ = t and ∀i ∈ I : Hi = t (otherwise, H∗ would
be undefined). We conclude H∗ 6OP Hk, by (S-OPart);
inductive caseHk = &j∈J ?lj(Uj).Hkj . By Def.2.9, we must haveH∗ = &j∈J ?lj(Uj).

(d
i∈I Hij

)
and ∀i ∈ I : Hi = &j∈J ?lj(Uj).Hij (otherwise, H∗ would be undefined). By the induction
hypothesis, ∀j ∈ J :

d
i∈I Hij 6OP Hkj : we conclude H∗ 6OP Hk, by (S-OParBrch);

inductive case Hk = ⊕j∈Jk !lj(Uj).Hkj . By Def. 2.9, we must have:

H∗ = ⊕j∈J∗ !lj(Uj).
(d

i∈I Hij
)
⊕
⊕

i∈I

(
⊕j∈Ji\J∗ !lj(Uj).Hij

)
where J∗ =

⋂
i∈IJi

and ∀i ∈ I : Hi = ⊕j∈Ji !lj(Uj).Hij (otherwise, H∗ would be undefined). By the induction
hypothesis, ∀j ∈ J∗∩Jk :

d
i∈I Hij 6OP Hkj ; moreover, ∀j ∈ Jk \J∗ : Hkj 6OP Hkj (by Cor.B.4).

We conclude H∗ 6OP Hk, by (S-OParSel);
inductive case Hk = µt.H ′k. By Def. 2.9, we must have H∗ = µt.(

d
i∈I H

′
i) and ∀i ∈ I : Hi =

µt.H ′i (otherwise, H∗ would be undefined). By the induction hypothesis,
d
i∈I H

′
i 6OP H

′
k: we

conclude H∗ 6OP Hk, by (S-OParµ).
J

I Proposition B.8. For all partial types H,H ′, H 6P H
′ iff unf(H) 6P H

′ iff H 6P unf(H ′)
iff unf(H) 6P unf(H ′).

Proof. We split the statement in three parts, and prove them separately:
(H 6P H

′ iff unf(H) 6P H
′) Let H = µt1.. . . µtm.H�, with H� 6= µt′.. . .. We first prove the

following statement:

∀n ∈ 0..m : H 6P H
′ iff H∗{µt1....µtn.H∗/t1} . . . {µtn.H∗/tn} 6P H

′ where H∗ = µtn+1.. . . µtm.H�

(17)

The proof proceeds by induction on n. The base case n = 0 is trivial, and holds by reflexivity of
6P. In the inductive case n = n′ + 1, we have (by the induction hypothesis):

H 6P H
′ iff µtn.H∗{µt1....µtn′ .µtn.H∗/t1} . . . {µtn′ .µtn.H∗/tn′} 6P H

′ (18)

We can notice that, by the coinductive rule (S-ParµL) in Def. 2.10, the RHS of the “iff” in (18)
holds if and only if :

H∗{µt1....µtn′ .µtn.H∗/t1} . . . {µtn′ .µtn.H∗/tn′}{µtn.H∗/tn} 6P H
′

which is the thesis.
We conclude observing that, when n = m (i.e., H is completely unfolded, bringing at the top-level
H� 6= µt′.. . .) we have proved H 6P H

′ iff unf(H) 6P H
′.

(H 6P H
′ iff H 6P unf(H ′)) The proof is symmetric w.r.t. the case above, and uses (S-ParµR);

(H 6P H
′ iff unf(H) 6P unf(H ′)) From the previous cases we have:

unf(H) 6P H iff H 6P H and H ′ 6P H
′ iff H ′ 6P unf

(
H ′
)

and by transitivity of 6P, we conclude H 6P H
′ iff unf(H) 6P unf(H ′).

J

I Proposition B.9. unf
(
H
)

= unf(H).
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Proof. Let H = µt1.. . . µtm.H�, with H� 6= µt′.. . .. We first prove the following statement:

∀n ∈ 0..m : H∗
{
µt1....µtn.H∗/t1

}
. . .
{
µtn.H∗/tn

}
= H∗{µt1....µtn.H∗/t1} . . . {µtn.H∗/tn}

where H∗ = µtn+1.. . . µtm.H�

The proof proceeds by induction on n. The base case n = 0 is trivial, while in the inductive case
n = n′ + 1 we have:

µtn.H∗
{
µt1....µtn′ .µtn.H∗/t1

}
. . .
{
µtn′ .µtn.H∗/tn′

}
= µtn.H∗{µt1....µtn′ .µtn.H∗/t1} . . . {µtn′ .µtn.H∗/tn′} (by the i.h.)

µtn.H∗
{
µt1....µtn′ .µtn.H∗/t1

}
. . .
{
µtn′ .µtn.H∗/tn′

}
= µtn.H∗

{
µt1....µtn′ .µtn.H∗/t1

}
. . .
{
µtn′ .µtn.H∗/tn′

}
(by Def. 2.8)

and we obtain the thesis by further unfolding µtn.. . . in the LHS and RHS above.
We conclude observing that, when n = m (i.e., H is completely unfolded, bringing at the top-level

H� 6= µt′.. . .) we have proved unf
(
H
)

= unf(H). J

I Proposition B.10. For all session types S and roles p, unf(S) � p = unf(S � p).

Proof. Let S = µt1.. . . µtm.S�, with S� 6= µt′.. . .. We first prove the following statement:

∀n ∈ 0..m : (S∗{µt1....µtn.S∗/t1} . . . {µtn.S∗/tn}) � p = (S∗ � p){µt1....µtn.(S∗ � p)/t1} . . . {µtn.(S∗ � p)/tn}
where S∗ = µtn+1.. . . µtm.S�

We proceed by induction on n. The base case n = 0 is trivial, while in the inductive case n = n′ + 1
we have:

(µtn.S∗{µt1....µtn′ .µtn.S∗/t1} . . . {µtn′ .µtn.S∗/tn′}) � p =
(µtn.S∗ � p){µt1....µtn′ .(µtn.S∗ � p)/t1} . . . {µtn′ .(µtn.S∗ � p)/tn′}

(by the i.h.) (19)

At this point we have two cases, based on the partial projection of recursive types in Def. 2.9. If
S∗ � p 6= t′ (for all t′), then (µtn.S∗ � p) = µtn.(S∗ � p), and we get:

µtn.
(
(S∗{µt1....µtn′ .µtn.S∗/t1} . . . {µtn′ .µtn.S∗/tn′}) � p

)
=

(µtn.S∗ � p){µt1....µtn′ .(µtn.S∗ � p)/t1} . . . {µtn′ .(µtn.S∗ � p)/tn′}
(by Def. 2.9)

and we obtain the thesis by further unfolding µtn.. . . in the LHS and RHS above.
Otherwise, if S∗ � p = t′ (for some t′), then (µtn.S∗ � p) = end. Therefore, on the RHS of (19)

we have:

(µtn.S∗ � p){µt1....µtn′ .(µtn.S∗ � p)/t1} . . . {µtn′ .(µtn.S∗ � p)/tn′} = end{µt1....µtn′ .end/t1} . . . {µtn′ .end/tn′} = end
(20)

Moreover, since in this case we must have t′ ∈ fv(S∗), then we also have one of the following:

(S∗{µt1....µtn′ .µtn.S∗/t1} . . . {µtn′ .µtn.S∗/tn′}) � p = tn or (21)
(S∗{µt1....µtn′ .µtn.S∗/t1} . . . {µtn′ .µtn.S∗/tn′}) � p = end (if t′ 6= tn, i.e., t′ = ti for some i ∈ 1..n′)

(22)

Now, if (21) holds, we get:

(µtn.S∗{µt1....µtn′ .µtn.S∗/t1} . . . {µtn′ .µtn.S∗/tn′}) � p = end (by Def. 2.9)

that, together with (20), by further (vacuously) unfolding both terms once, gives us end = end
(which is our thesis).

Otherwise, if (22) holds, we get:

(µtn.S∗{µt1....µtn′ .µtn.S∗/t1} . . . {µtn′ .µtn.S∗/tn′}) � p = µtn.end (by Def. 2.9)

that, together with (20), by further unfolding both terms once, gives us end = end (which is our
thesis).

We conclude observing that, when n = m (i.e., H is completely unfolded, bringing at the top-level
H� 6= µt′.. . .) we have proved unf(S) � p = unf(S � p). J
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I Proposition B.11. S 6S S
′ implies roles(S) = roles(S′).

Proof. Assume S 6S S
′. By contradiction, assume that roles(S) 6= roles(S′), i.e., ∃q ∈ S′ but q 6∈ S

(the proof for S 3 p 6∈ S′ is similar, but uses (T-Sel) in the following). We can observe that S, S′
cannot be related by (S-End) (otherwise we would have S = S′ = end, and thus q 6∈ roles(S′) = ∅).
Moreover, q cannot be the top-level role of any rule applied in the derivation of S 6S S

′ (otherwise
we would have S′ 3 q ∈ S). Hence, the derivation for S 6S S

′ must have at least one occurrence of
(T-Brch) with some (but not all) branches on the RHS containing q, i.e.:

p &i∈I ?li(U i).Si 6S p &i∈I∪J ?li(U ′i).S′i, with q ∈ S′k for some k ∈ J , and q 6∈ S′i for some
i ∈ I (otherwise, q would necessarily be the top-level role at some point in the derivation). Then,
we have two cases: either S′k � q is not defined, or S′k � q is defined, but S′k � q 6= end — which
implies that it cannot be merged with S′i � q = end. In both cases, we obtain that S′ � q is not
defined, which violates clause (i) of Def. 2.10, and therefore implies S 66S S

′ — contradiction.
J

I Proposition B.12. Let S, S′ be closed session types. If S 6S S
′, then for all p also S � p 6P S

′ � p.

Proof. By Def.2.10 (clause (i)), we already know that ∀p∈(roles(S)∪roles(S′)), we have S�p6PS
′�p.

Since p in the statement is universally quantified, we are left to prove it for all p 6∈ (roles(S)∪roles(S′)).
By Proposition B.11, we know that p ∈ S iff p ∈ S′: hence, by Def. 2.9, we obtain that for all
p 6∈ (roles(S)∪roles(S′)), S � p = end 6P end = S′ � p. J

I Proposition B.13. If S � q is defined and closed, and either unf(S) = p &i∈I ?li(Ui).Si or unf(S) =
p⊕i∈I !li(Ui).Si with p 6= q, then ∀k ∈ I: S � q 6P Sk � q.

Proof. Assume that S � q is defined and closed. We have two cases:
unf(S) = p &i∈I ?li(Ui).Si. By Def. 2.9, unf(S) � q =

d
i∈I (Si � q); moreover, by Lemma B.7,

∀k ∈ I :
d
i∈I (Si � q) 6OP Sk � q. Noticing that ∀k ∈ I : Sk � q is closed (otherwise, S � q

would not be closed), by Lemma B.6 we get ∀k ∈ I : unf(S) � q 6P Sk � q, and therefore (by
Proposition B.10) unf(S � q) 6P Sk � q; then, by Proposition B.8, we conclude S � q 6P Sk � q;
S = p⊕i∈I !li(Ui).Si. By Def. 2.9, S � q =

d
i∈I (Si � q): the proof is similar to the previous

case.
J

I Proposition B.14. If (Γ, x :U) is consistent, then Γ is consistent.

Proof. The proof is straightforward, by noticing that Def. 2.11 on consistency does not depend on
x :U . J

I Proposition B.15. If (Γ, s[p] :S) is consistent, then Γ is consistent.

Proof. Assume that Γ, s[p] :S is consistent. By Def. 2.11, it means that ∀s[q], s[r] ∈ dom (Γ, s[p] :S):
q 6= r implies Γ(s[q]) � r 6P Γ(s[r]) � q. Since dom (Γ) = dom (Γ, s[p] :S) \ {s[p]}, we also have that
∀s[q], s[r] ∈ dom (Γ): q 6= r implies Γ(s[q]) � r 6P Γ(s[r]) � q. Hence, by Def. 2.11, we conclude that
Γ is consistent. J

I Corollary B.16. If (Γ1,Γ2) is consistent, then Γ1 and Γ2 are consistent.

Proof. By repeatedly applying Proposition B.14 and Proposition B.15 to remove all entries of Γ1

from (Γ1,Γ2), we prove that Γ2 is consistent. With the symmetric procedure, we prove that Γ1 is
consistent. J

I Corollary B.17. If (Γ1 ◦ Γ2) is consistent, then Γ1 and Γ2 are consistent.

Proof. Similar to the proof of Cor. B.16, except that we might have entries of the form x :B (which
are not relevant for consistency, as per Def. 2.11) appearing in both Γ1 and Γ2. J

I Proposition B.18. If Γ, s[p] :S is consistent and S 6S S
′, then Γ, s[p] :S′ is consistent.
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Proof. Assume that Γ, s[p] :S is consistent, and take any S′ such that S 6S S
′. By Def.2.11, we know

that ∀s[q] :Sq ∈ dom (Γ) : Sq � p 6P S � q; moreover, by Proposition B.12, we have ∀q : S � q 6P S � q.
Therefore, by transitivity of 6P, we also have ∀s[q] :Sq ∈ dom (Γ) : Sq � p 6P S

′ � q, and by Def. 2.11,
we conclude that Γ, s[p] :S′ is consistent. J

I Corollary B.19. If Γ1,Γ2 is consistent and Γ2 6S Γ′2, then Γ1,Γ′2 is consistent.

Proof. By induction on the size of Γ2. The base case (Γ2 = ∅) is trivial, while the inductive case is
proved by the induction hypothesis, and Proposition B.18. J

I Corollary B.20. If Γ1 ◦ Γ2 is consistent and Γ2 6S Γ′2, then Γ1 ◦ Γ′2 is consistent.

Proof. Similar to the proof of Cor.B.19, except that Γ1,Γ2 and Γ′2 can have (possibly shared) entries
mapping some x to a basic type (which are not relevant for consistency, as per Def. 2.11). J

I Proposition B.21. If Γ→∗ Γ′, then dom (Γ) = dom (Γ′).

Proof. We first verify the following statement, by induction on the size of dom (Γ):

Γ→ Γ′ implies dom (Γ) = dom (Γ′) (23)

Then, we can prove the main statement, by induction on the length of the sequence of reductions in
Γ→∗ Γ′. The base case is trivial (we have 0 reductions, and Γ = Γ′), while in the inductive case, we
apply the induction hypothesis and (23). J

I Lemma B.22. If Γ→ Γ′ and Γ is consistent (resp. complete), then so is Γ′.

Proof. Assume that Γ is consistent. We proceed by induction on the derivation of Γ→ Γ′, as per
Def. 2.15:

base case Γ = s[p] :Sp, s[q] :Sq → s[p] :Sk, s[q] :S′k = Γ′, with unf(Sp) = q⊕i∈I !li(Ui).Si,
unf(Sq) = p &i∈I∪J ?li(U ′i).S′i, k ∈ I and Uk 6S U

′
k. We observe:

Sp � q 6P Sp � q (by hypothesis and Def. 2.11)
unf
(
Sp � q

)
6P unf(Sq � p) (by (S-ParµL) and (S-ParµR))

unf(Sp � q) 6P unf(Sq � p) (by Proposition B.9)
unf(Sp) � q 6P unf(Sq) � p (by Proposition B.10)

(q⊕i∈I !li(Ui).Si) � q 6P (p &i∈I∪J ?li(U ′i).S′i) � p (by hypothesis)
⊕i∈I !li(Ui).(Si � q) 6P &i∈I∪J ?li(U ′i).(S′i � p) (by Def. 2.9)
&i∈I ?li(Ui).(Si � q) 6P &i∈I∪J ?li(U ′i).(S′i � p) (by Def. 2.8)
∀k ∈ I : Sk � q 6P S′k � p (by (S-ParBrch))

and we conclude that Γ′ is consistent;
inductive case Γ = Γ1, c :U → Γ′1, c :U ′ = Γ′, with U 6S U

′. In this case, c might be either
a variable x, or a channel with role s[r]. If c = x, the thesis holds trivially by the induction
hypothesis, since x :U and x :U ′ are not relevant for consistency (Def. 2.11). Instead, if c = s[r],
both U and U ′ must be session types (by Def. 2.11). Therefore, we have Γ = Γ1, s[r] :Sr →
Γ′1, s[r] :S′r = Γ′, with:

Γ1 → Γ′1 (24)
Sr 6S S

′
r (25)

From (24), we can observe that Γ1,Γ′1 must have the form:

Γ1 = s[p] ::Sp, s[q] ::Sq, Γ0 (26)
Γ′1 = s[p] ::S′p, s[q] ::S′q, Γ′0 (27)
where s[p] ::Sp, s[q] ::Sq → s[p] ::S′p, s[q] ::S′q and Γ0 6S Γ′0 (28)
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Therefore:

Γ = Γ1, s[r] :Sr = s[p] ::Sp, s[q] ::Sq, Γ0, s[r] :Sr is consistent (by hypothesis and (26))
(29)

s[p] ::Sp, s[q] ::Sq, Γ′0, s[r] :S′r is consistent (from (29), (28), and Cor. B.19)
(30)

Γ′0, s[r] :S′r is consistent (by (30) and Cor. B.16)
(31)

s[p] ::S′p, s[q] ::S′q, Γ′0 is consistent (by (27), (24) and the induction hypothesis)
(32)

s[p] ::S′p, s[q] ::S′q and s[p] ::S′p, Γ′0 and s[q] ::S′q, Γ′0 are consistent (by (32) and Cor. B.16)
(33)

Hence, to prove that Γ′ = s[p] :S′p, s[q] :S′q,Γ′0, s[r] :S′r is consistent, from (27) and (33) we can
see that we are left to prove that both s[p] ::S′p, s[r] ::S′r and s[q] ::S′q, s[r] ::S′r are consistent. By
Def. 2.11, it means that we need to prove:

S′p � r 6P S
′
r � p and S′q � r 6P S

′
r � q (34)

From (28) and Def. 2.15, we have two sub-cases:

unf(Sp) = q⊕i∈I !li(Ui).Si and unf(Sq) = p &i∈I∪J ?li(U ′i).S′i. Then:

for some k ∈ I, S′p = Sk and S′q = S′k (by Def. 2.15)
(35)

unf(Sp) � r 6P S
′
p � r and unf(Sq) � r 6P S

′
q � r (by (35) and Proposition B.13)

(36)

S′p � r 6P unf(Sp) � r and S′q � r 6P unf(Sq) � r (by (36) and Proposition D.1)
(37)

unf(Sp) � r 6P Sr � p and unf(Sq) � r 6P Sr � q (by hypothesis (consistency of Γ) and Def. 2.11)
(38)

Sr � p 6P S
′
r � p and Sr � q 6P S

′
r � q (by (25) and Proposition B.12)

(39)

S′p � r 6P S
′
r � p and S′q � r 6P S

′
r � p (by (37), (38), (39) and transitivity of 6P)

(40)

unf(Sq) = p &i∈I∪J ?li(U ′i).S′i and unf(Sp) = q⊕i∈I !li(Ui).Si. The proof is symmetric w.r.t.
the previous case.

Hence, we have proved (34); from (34), (31) and (32), by Def. 2.11 we conclude that Γ′ is
consistent.
For the second part of the statement, assume that Γ is complete: we can prove that Γ′ is also

complete by induction on the derivation of Γ → Γ′, as per Def. 2.15. The key observation if that
for each s[p] ∈ dom (Γ), we also have s[p] ∈ dom (Γ′) (by Proposition B.21), and roles(Γ′(s[p])) ⊆
roles(Γ(s[p])). J

I Corollary B.23. If Γ1,Γ2 is consistent and Γ1 →∗ Γ′1, then Γ′1,Γ2 is consistent.

Proof. Assume all the hypotheses, and let n be the length of the sequence of reductions in Γ1 →∗ Γ′1.
In the base case (n = 0) the thesis holds trivially. In the inductive case n = n′ + 1, we have:

Γ1 → · · · →︸ ︷︷ ︸
n′ times

Γ∗1 → Γ′1

and by the induction hypothesis, Γ∗1,Γ2 is consistent. This implies that Γ′1,Γ2 is consistent: we
prove such a fact with a further induction on the size of Γ2. In the base case (Γ2 = ∅) we conclude
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immediately by Lemma B.22. In the inductive case we have Γ2 = Γ0, c :U ; by applying the induction
hypothesis we get that Γ′1,Γ0 is consistent, and we examine the shape of the additional entry c :U
and its consistency w.r.t. Γ′1,Γ0, similarly to the inductive case in the proof of Lemma B.22. In all
cases, we conclude that Γ′1,Γ2 is consistent. J

I Corollary B.24. If Γ1 ◦ Γ2 is consistent and Γ1 →∗ Γ′1, then Γ′1 ◦ Γ2 is consistent.

Proof. Similar to the proof of Cor.B.23, except that Γ1,Γ′1 and Γ2 can have (possibly shared) entries
mapping some x to a basic type (which are not relevant for consistency, Def. 2.11). J

I Proposition B.25. For all multiparty session processes P , P ′, if Θ · Γ ` P and P ≡ P ′, then
Θ · Γ ` P ′.

Proof. The proof proceeds by induction on the structural congruence ≡, defined in Fig. 12. J

I Lemma B.26 (Substitution lemma). If Θ · Γ, x :U ` P , Γ′ ` v :U and Γ ◦ Γ′ is consistent, then
Θ · Γ ◦ Γ′ ` P{v/x}.

Proof. The proof is by induction on the typing derivations, with a case analysis on the last rule
applied. J

I Definition B.27 (Context subtyping). For all multiparty session typing contextes ΓS,Γ′S, the
relation ΓS 6S Γ′S holds iff dom (ΓS) = dom (Γ′S) and ∀c ∈ dom (ΓS) : ΓS(c) 6S Γ′S(c). We define
the following multiparty session typing rule, corresponding to 0 or more consecutive applications of
(T-Sub):

Θ · ΓS ` P Γ′S 6S ΓS

Θ · Γ′S ` P
(T-MSub)

Proposition B.30 below will allow us to consider only one form of “normalised” typing derivation
for multiparty session processes (the first one in the statement), where (possibly vacuous) instances of
(T-MSub) appear as premises of (T-Par), but not vice versa. This allows rewrite a typing derivation
by “pushing” (T-MSub) towards the leaves, until reaching a sub-process that cannot be further
decomposed using the parallel composition |.

I Proposition B.28. If Θ · Γ ` P1 | P2, then ∃Γ1,Γ′1,Γ2,Γ′2 such that Γ = Γ1 ◦ Γ2, Γ1 6S Γ′1,
Γ2 6S Γ′2, Θ · Γ′1 ` P1 and Θ · Γ′2 ` P2. Moreover:

(T-Par)

(T-MSub)
Θ · Γ′1 ` P1 Γ1 6S Γ′1

Θ · Γ1 ` P1

(T-MSub)
Θ · Γ′2 ` P2 Γ2 6S Γ′2

Θ · Γ2 ` P2

Θ · Γ1 ◦ Γ2 ` P1 | P2

iff

(T-Par)
Θ · Γ′1 ` P1 Θ · Γ′2 ` P2

Θ · Γ′1 ◦ Γ′2 ` P1 | P2 Γ1 ◦ Γ2 6S Γ′1 ◦ Γ′2
Θ · Γ1 ◦ Γ2 ` P1 | P2

(T-MSub)

iff

(T-Par)
Θ · Γ′1 ` P1

Θ · Γ′2 ` P2 Γ2 6S Γ′2
Θ · Γ2 ` P2

(T-MSub)

Θ · Γ′1 ◦ Γ2 ` P1 | P2 Γ1 ◦ Γ2 6S Γ′1 ◦ Γ2

Θ · Γ1 ◦ Γ2 ` P1 | P2
(T-MSub)

iff

(T-Par)
(T-MSub)

Θ · Γ′1 ` P1 Γ1 6S Γ′1
Θ · Γ1 ` P1 Θ · Γ′2 ` P2

Θ · Γ1 ◦ Γ′2 ` P1 | P2 Γ1 ◦ Γ2 6S Γ1 ◦ Γ′2
Θ · Γ1 ◦ Γ2 ` P1 | P2

(T-MSub)
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Proof. The first part of the statement is straightforward by inversion of (T-Par) (by Def.B.27). and
adding a (possibly vacuous) instance of (T-Sub), as in the last case in the statement after “moreover”.
The “iff” relations among the typing derivations are also straightforward: the hypotheses of one
derivation imply all the others, and if one hypothesis is falsified, none of the derivations hold. J

I Proposition B.29. Θ · Γ1 ` (νs :Γ2)P , then ∃Γ′1,Γ′2 such that Γ1 6S Γ′1, Γ2 6S Γ′2, and Γ′1 ◦ Γ′2 `
P . Moreover:

(T-Res)
(T-MSub)

Θ · Γ′1 ◦ Γ′2 ` P Γ1 ◦ Γ2 6S Γ′1 ◦ Γ′2
Θ · Γ1 ◦ Γ2 ` P

Θ · Γ1 ` (νs :Γ2)P iff
Γ1 6S Γ′1

Θ · Γ′1 ◦ Γ′2 ` P Γ2 6S Γ′2
Θ · Γ′1 ◦ Γ2 ` P

(T-MSub)

Θ · Γ′1 ` (νs :Γ2)P
(T-Res)

Θ · Γ1 ` (νs :Γ2)P
(T-MSub)

Proof. The first part of the statement is straightforward by inversion of (T-Res) (by Def. B.27).
and adding a (possibly vacuous) instance of (T-MSub), as in the first case in the statement after
“moreover”. The “iff” relations among the typing derivations are also straightforward: the hypotheses
of one derivation implies the other, and if one hypothesis is falsified, none of the derivations hold. J

I Proposition B.30 (Subtyping normalisation). If Θ · Γ ` P , then there exist a derivation that proves
the judgement by only applying rule (T-MSub) on the conclusions of (T-Brch), (T-Sel) and
(T-Call).

Proof. Assume that we have a derivation D concluding Θ · Γ ` P , that does not match the thesis:
if it is just an instance of (T-Brch), (T-Sel) and (T-Call), we conclude by simply adding a
vacuous instance of (T-MSub). Otherwise, D must have one of the shapes in Proposition B.28 or
Proposition B.29, and we can “push” (T-MSub) towards the leafs (where (T-Brch), (T-Sel) and
(T-Call) occur) by recursively rewriting it in the first form of the statements. J

I Theorem 2.16 (Subject reduction). If Θ · Γ ` P and P → P ′, then there exists Γ′ such that
Γ→∗ Γ′ and Θ · Γ′ ` P ′.

Proof. By induction on the derivation of the reduction P → P ′:
base case (R-Comm). We have P = Q1 |Q2, and:

Q1 = s[p][q]&j∈I{lj(xj).Q′′1j}
Q2 = s[q][p]⊕ 〈lk(v)〉.Q′′2
P = Q1 |Q2 → Q′′1k{v/xk} |Q′′2 = P ′ (k ∈ I) (41)

Therefore, for some k ∈ I, by inversion of (T-Par) and (T-Brch)/(T-Sel), allowing (possibly
vacuous) instances of (T-MSub) as per Proposition B.30, there exist Γ1,Γ2 such that Γ = Γ1 ◦ Γ2,
and Γ�1,Γ�2,Γ�1 ′,Γ�2 ′ such that:

(T-MSub)
(T-Brch)

∀j ∈ I Θ · Γ�1
′
, xj :U ′j , s[p] :S′j ` Q′′1j

Θ · Γ�1 ` s[p][q]&j∈I{lj(xj).Q′′1j} Γ1 6S Γ�1
Θ · Γ1 ` s[p][q]&j∈I{lj(xj).Q′′1j}

Γ2 6S Γ�2

Γv ` v :U ′′ Θ · Γ�2
′
, s[q] :S′′ ` Q′′2

Θ · Γ�2 ` s[q][p]⊕ 〈lk(v)〉.Q′′2
(T-Sel)

Θ · Γ2 ` s[q][p]⊕ 〈lk(v)〉.Q′′2
(T-MSub)

Θ · Γ1 ◦ Γ2 ` Q1 |Q2 = s[p][q]&j∈I{lj(xj).Q′′1j} | s[q][p]⊕ 〈lk(v)〉.Q′′2
(T-Par)

(42)

Γ�1 = Γ�1
′
, s[p] :Sp where Sp = q &j∈I ?lj(U ′j).S′j (43)

Γ�2 = Γv ◦ Γ�2
′
, s[q] :Sq where Sq = p⊕ !lk(U ′′).S′′ for some k ∈ I (44)
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Notice that:

Γ =
(
Γ∗1, s[p] :S∗p

)
◦
(
Γ∗v ◦ Γ∗2, s[q] :S∗q

)
where

{
Γ∗1 6S Γ�1 ′, S∗p 6S Sp,

Γ∗v 6S Γv, Γ∗2 6S Γ�2 ′, S∗q 6S Sq
(by (42), (43), (44))

(45)

From the consistency of Γ = Γ1 ◦ Γ2, and since Γ1 6S Γ�1 and Γ2 6S Γ�2 with Γv ` v :U ′′, we
also have:

U ′′ 6S U
′
k (from (43) and (44)) (46)

Now, let:

Γ′ = Γ′1 ◦ Γ′2 where Γ′1 = Γ�1
′ ◦ Γv, s[p] :S′k and Γ′2 = Γ�2

′
, s[q] :S′′ (47)

Before proceeding, we prove Γ→ Γ′ (and therefore, Γ→∗ Γ′):

1. we first observe that:

s[p] :S∗p , s[q] :S∗q → s[p] :S′k, s[q] :S′′ (48)

since Γ is consistent by hypothesis, and therefore unf
(
S∗p
)
� q and unf

(
S∗q
)
� p have at least lk

in common, with compatible payload types as per Def. 2.15) ;
2. then, let:

Γ† = Γ∗1 ◦ Γ∗v ◦ Γ∗2 Γ′† = Γ�1
′ ◦ Γv ◦ Γ�2

′

(i.e., Γ† and Γ′† are respectively Γ and Γ′ without their entries for s[p], s[q]). We can prove
the following statement:

s[p] :S∗p , s[q] :S∗q ,Γ† → s[p] :S′k, s[q] :S′′,Γ′† (and thus, Γ→∗ Γ′) (49)

by induction on the size of Γ† (which is also the size of Γ′†): the base case (Γ† = Γ′† = ∅)
follows by (48), while in the inductive case we apply the induction hypothesis, and use the
subtyping relations in (45) to conclude by the inductive rule of Def. 2.15.

We can now continue proving the main statement, observing:

Γ′ is consistent (by (49) and Lemma B.22) (50)
Θ · Γ�1

′
, xk :U ′k, s[p] :S′k ` Q′′1k (i ∈ k) (from (42), premise of (T-Brch)) (51)

Θ · Γ�1
′
, xk :U ′′, s[p] :S′k ` Q′′1k (i ∈ k) (by (51), (46) and (T-Sub)) (52)

Γv ` v :U ′′ (from (42), premise of (T-Sel)) (53)
Γ�1
′
, s[p] :S′k ◦ Γv is consistent (by (50), (47) and Cor. B.17) (54)

Θ · Γ�1
′
, s[p] :S′k ◦ Γv ` Q′′1k{v/xk} (i ∈ k) (by (52), (53), (54) and Lemma B.26) (55)

Therefore, by (47), using (55) and the remaining premise of (T-Sel) in (42), we conclude by
typing the reduct in (41) as follows:

Θ · Γ ` P →
Θ · Γ�1

′ ◦ Γv, s[p] :S′k ` Q′′1k{v/xk} Θ · Γ�2
′
, s[q] :S′′ ` Q′′2

Θ · Γ′ ` Q′′1k{v/xk} |Q′′2 = P ′
(T-Par)

base case (R-Call). We have:

P = def X(x1, . . . , xn) = QX in (X〈v1, . . . , vn〉 |Q) → def X(x1, . . . , xn) = QX in (QX{vi/xi}i∈{1..n} |Q) = P ′
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Let x̃ = x1, . . . , xn and Ũ = U1, . . . , Un. By inversion of (T-Res), (T-Par) and (T-Call),
allowing a (possibly vacuous) instance of (T-MSub) as per Proposition B.30, we have Γ = Γ1 ◦ Γ2

with Γ1 6S Γ�1 = Γ�1,1 ◦ · · · ◦ Γ�1,n, such that:

(T-Def)

Θ, X : Ũ · x̃ : Ũ ` QX

(T-MSub)
(T-Call)

Θ, X : Ũ ` X : Ũ ∀i ∈ {1..n} Γ�1,i ` vi :Ui
Θ, X : Ũ · Γ�1 ` X〈v1, . . . , vn〉 Γ1 6S Γ�1

Θ, X : Ũ · Γ1 ` X〈v1, . . . , vn〉 Θ, X : Ũ · Γ2 ` Q
Θ, X : Ũ · (Γ1 ◦ Γ2) ` X〈v1, . . . , vn〉 |Q

(T-Par)

Θ · Γ ` def X(x1, . . . , xn) = QX in (X〈v1, . . . , vn〉 |Q)

Observe that from Θ, X : Ũ · x̃ : Ũ ` QX , by applying Lemma B.26 n times (noticing that
each time we get a consistent context) we obtain Θ, X : Ũ · Γ�1 ` QX{vi/xi}i∈{1..n}, and thus
Θ, X : Ũ · Γ1 ` QX{vi/xi}i∈{1..n} (by Γ1 6S Γ�1 and (T-MSub)), and therefore:

(T-Def)
Θ, X : Ũ · x̃ : Ũ ` QX

Θ, X : Ũ · Γ1 ` QX{vi/xi}i∈{1..n} Θ, X : Ũ · Γ2 ` Q
Θ, X : Ũ · (Γ1 ◦ Γ2) ` QX{vi/xi}i∈{1..n} |Q

(T-Par)

Θ · Γ ` def X(x1, . . . , xn) = QX in (QX{vi/xi}i∈{1..n} |Q) = P ′

and we conclude by letting Γ′ = Γ;
inductive case (R-Par). We have P = P1 | P2 → P ′1 | P2 = P ′, with P1 → P ′1 (from the rule
premise). By inversion of (T-Par), we have Γ = Γ1 ◦ Γ2 such that:

(T-Par)
Θ · Γ1 ` P1 Θ · Γ2 ` P2

Θ · Γ1 ◦ Γ2 ` P1 | P2 = P

By the induction hypothesis, ∃Γ′1 such that Γ1 →∗ Γ′1 and Θ,Γ′1 ` P ′1. By Cor. B.24, we have
that Γ′1 ◦ Γ2 is consistent. Hence, we conclude by letting Γ′ = Γ′1 ◦ Γ2, obtaining:

(T-Par)
Θ · Γ1 ` P ′1 Θ · Γ2 ` P2

Θ · Γ′ ` P ′1 | P2 = P ′

inductive case (R-Res). We have P = (νs :Γ�)P ′ → (νs)P ′′ = P ′, with P ′ → P ′′, Γ� =
{s[p] :Sp}p∈I (for some I), and Θ · Γ ◦ Γ� ` P ′ (from the rule premise). By the induction
hypothesis, ∃Γ′′ such that:

Γ ◦ Γ� →∗ Γ′′ and Θ · Γ′′ ` P ′′ (56)

By Proposition B.21, we know that dom (Γ′′) = dom (Γ ◦ Γ�) = dom (Γ ◦ {s[p] :Sp}p∈I), and
therefore:

for some Γ′,Γ�′ with dom (Γ′) = dom (Γ) and Γ�′ = {S′p}p∈I , Γ′′ = Γ′ ◦ Γ�′ (57)

Hence, we can rewrite the typing context reduction in (56) as:

Γ ◦ Γ� →∗ Γ′ ◦ Γ�′ (58)

and therefore,

Θ · Γ′ ◦ Γ�′ ` P ′′ (by (58), (57) and (56)) (59)

By Def. 2.12, the validity of the typing judgement in (59) implies that Γ′ ◦ Γ�′ is consistent, and
therefore, by Cor. B.24, Γ′ is consistent. Hence, we conclude by:

(T-Res)
Θ · Γ′ ◦ Γ�′ ` P ′′

Θ · Γ′ ` (νs :Γ�′)P ′′ = P ′
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inductive case (R-Def). We have P = def X(x̃) = QX inQ → def X(x̃) = QX inQ′ = P ′,
with Q→ Q′ (from the rule premise). By inversion of (T-Def), we get:

(T-Def)
Θ, X : Ũ · x̃ : Ũ ` QX Θ, X : Ũ · Γ ` Q

Θ · Γ ` def X(x̃) = QX inQ

By the induction hypothesis, ∃Γ′ : Γ→∗ Γ′ and Θ, X : Ũ · Γ′ ` Q′, and we conclude by:

(T-Def)
Θ, X : Ũ · x̃ : Ũ ` QX Θ, X : Ũ · Γ′ ` Q′

Θ · Γ′ ` def X(x̃) = QX inQ′ = P ′

inductive case (R-Struct). We have P ≡ Q and Q′ ≡ P ′, with Q→ Q′ (from the rule premise).
By Proposition B.25, Θ · Γ ` Q; by the induction hypothesis, ∃Γ′ : Γ→∗ Γ′ and Θ · Γ′ ` Q′; by
Proposition B.25, we conclude Θ · Γ′ ` P ′.

J
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C Proofs for § 4

I Lemma 4.2. unf
(
T
)

= unf(T ).

Proof. We first show that the LHS of the statement is defined iff the RHS is defined, too. Obviously,
T is defined iff unf

(
T
)
is defined. Moreover, by Def. 4.1, T is defined iff T is a (possibly recursive)

linear input/output type, or •: hence, T is defined iff unf(T ) is a (non-recursive) linear input/output
type, or •: this implies that T is defined iff unf(T ) is defined. Summing up: unf

(
T
)
is defined iff

unf(T ) is defined.
Let us now assume that T is defined. If T is not a µ-type, i.e., T 6= µt.T ′ (for some T ′), the

statement holds trivially by Def. 4.1: in fact, we have unf
(
T
)

= T = unf(T ). Otherwise, when
T = µt.T ′, by Def. 4.1 we have T = µt.T ′ = µt.T ′

{
t/t
}
. Let us examine the one-step unfolding of T

(i.e., we do not (yet) unfold T ′ if it is a µ-type):

T ′
{

t/t
}{

µt.T ′{t/t}/t
}

= T ′
{
µt.T ′{t/t}/t

}
= T ′

{
µt.T ′{t/t}{t/t}/t

}
= T ′

{
µt.T ′{t/t}{t/t}/t

}
=
{
µt.T ′{t/t}{t/t}/t

}
= T ′

{
µt.T ′/t

}
We can observe that if we dualise the one-step unfolding of T = µt.T ′ (i.e., if we dualise

T ′
{
µt.T ′/t

}
), we get the same result:

T ′
{
µt.T ′/t

}
= T ′

{
µt.T ′/t

}
Now, if we take T ′

{
µt.T ′/t

}
and its dual T ′

{
µt.T ′/t

}
= T ′

{
µt.T ′/t

}
= T ′

{
µt.T ′/t

}
we can repeat

the reasoning above; we can further iterate along all the successive one-step unfoldings, until we
reach a non-µ-type: at each step, the one-step unfolding of the dualised type matches the dual of
the one-step-unfolded type. Hence, we conclude unf

(
T
)

= unf(T ). J

I Definition C.1. The relation =π for π-types is coinductively defined as:

====== (=π-LB)
B =π B

===== (=π-LEnd)
• =π •

T =π T
′

============ (=π-Li)
Li(T ) =π Li

(
T ′
) T ′ =π T

============= (=π-Lo)
Lo(T ) =π Lo

(
T ′
)

∀i ∈ I Ti =π T
′
i

==================== (=π-Variant)
〈li_Ti〉i∈I =π

〈
li_T ′i

〉
i∈I

∀i ∈ I Ti =π T
′
i

================== (=π-LTuple)
[li :Ti]i∈I =π

[
li :T ′i

]
i∈I

T{µt.T/t} =π T
′{µt′.T ′/t′

}
===================== (=π-Lµ)

µt.T =π µt′.T ′

I Remark C.2. Def. C.1 is actually stronger than required for Lemma 4.4: it implies 6π ∩ 6π−1

(see Proposition C.4 below), but restricts unfolding of recursion so that related types can only unfold
“in unison” (by rule (=π-Lµ)).

I Proposition C.3. =π is reflexive.

I Proposition C.4. If T =π T
′, then T 6π T ′ and T ′ 6π T .

Proof. We first prove the thesis for T 6π T ′. Consider the following relation:

R = R1 ∪R2

R1 = { (T , T ′) | T =π T
′ }

R2 =
{

(T{µt.T/t}, µt′.T ′), (µt.T , T ′
{
µt′.T ′/t′

}
)
∣∣ µt.T =π µt′.T ′

}
We can easily prove that R is closed backwards under the rules in Def. 3.5. For all (T1, T2) ∈ R, we
have either:
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(T1, T2) ∈ R1. Then, we proceed by cases on the coinductive rule in Def. C.1 concluding
T1 =π T2. Most cases are straighforward: we show that they satisfy a corresponding rule in
Def. 3.5, and the relations in the coinductive premises involve pairs of elements (T ′1, T ′2) that
belong to R1 ⊆ R. The inly exception is:

(=π-Lµ). Then, T1 = µt.T and T2 = µt′.T ′, and we have to show that R satisfies both
rules (S-LµL) and (S-LµR) in Def. 3.5: we conclude observing that the required pairs
(T{µt.T/t}, µt′.T ′) and (µt.T , T ′

{
µt′.T ′/t′

}
) belong to R2 ⊆ R;

(T1, T2) ∈ R2. We have either:

T1 = T{µt.T/t} and T2 = µt′.T ′. We have to satisfy rule (S-LµR): we conclude observing
that the required pair of types (T{µt.T/t}, T ′

{
µt′.T ′/t′

}
) belongs to R1 ⊆ R, by (=π-Lµ);

T1 = µt.T and T2 = T ′
{
µt′.T ′/t′

}
. Similar to the previous case: we have to satisfy rule

(S-LµL), and conclude by observing that the required pair belongs to R1 ⊆ R, by (=π-Lµ).

Summing up, we have shown that R is closed backwards under the rules for 6π; and since 6π
is the largest relation closed backwards under such rules, we have R ⊆ 6π. Hence, since T =π T

′

implies (T , T ′) ∈ R1 ⊆ R, we conclude that T =π T
′ implies T 6π T ′.

The proof of the statement for T ′ 6π T is symmetric. J

I Lemma 4.4 (Erasure of t). µt.T =π µt.T
{
µt′.T{t′/t}/t

}
, for all t′6∈ fv(T ).

Proof. Let T ′ = T
{
µt′.T{t′/t}/t

}
(for some t′ 6∈ fv(T )), and consider the following relation:

R = Rµ ∪ R∗ ∪ Rµ ∪ R∗

Rµ =
{

(µt.T , µt.T ′), (T{µt.T/t}, T ′
{
µt.T ′/t

}
)
}

R∗ =
{

(TA{µt.T/t}, TB
{
µt′.T{t′/t}/t

}{
µt.T ′/t

}
)
∣∣ TA{µt.T/t} =π TB{µt.T/t}

}
Rµ =

{ (
µt.T

{
t/t
}
, µt′.T

{
t′/t
}{

µt.T ′/t
})
,(

T
{

t/t
}{

µt.T{t/t}/t
}
, T
{

t′/t
}{

µt.T ′/t
}{

µt′.T{t′/t}{µt.T ′/t}/t′
}) }

R∗ =
{

(TA
{

t/t
}{

µt.T{t/t}/t
}
, TB

{
t′/t
}{

µt.T ′/t
}{

µt′.T{t′/t}{µt.T ′/t}/t′
}

)
∣∣ TA{µt.T/t} =π TB{µt.T/t}

}
We prove that R is closed backwards under the rules obtained from Def. C.1 by replacing each
occurrence of =π with R. For each pair of types (T1, T2) ∈ R, we have the following cases:

(T1, T2) ∈ Rµ. We have the following sub-cases:

T1 = µt.T and T2 = µt.T ′. We need to satisfy rule (=π-Lµ): we conclude by noticing that
(T{µt.T/t}, T ′

{
µt.T ′/t

}
) ∈ Rµ ⊆ R;

T1 = T{µt.T/t} and T2 = T ′
{
µt.T ′/t

}
= T

{
µt′.T{t′/t}/t

}{
µt.T ′/t

}
. Since T{µt.T/t} =π

T{µt.T/t} (by reflexivity of =π, Proposition C.3), by definition of R∗ we have (T1, T2) ∈ R∗:
we study this case below;

(T1, T2) ∈ R∗. We have T1 = TA{µt.T/t} and T2 = TB
{
µt′.T{t′/t}/t

}{
µt.T ′/t

}
, for some TA, TB

such that:

TA{µt.T/t} =π TB{µt.T/t} (60)

We proceed by cases on the rule in Def. C.1 concluding (60), examining the possible shapes of
TA and TB , and showing that R∗ is closed backwards under the same rule. Case (=π-LEnd) is
trivial, and most other cases are simple: by the coinductive premises of the selected rule, we
obtain one or more relations of the form T ′A{µt.T/t} =π T

′
B{µt.T/t} (for some T ′A, T ′B), and in

each case we conclude that
(
T ′A{µt.T/t}, T ′B

{
µt′.T{t′/t}/t

}{
µt.T ′/t

})
belongs to R∗. The only

exception is when (60) is the conclusion of (=π-Lµ), and TA,TB are either:

TA = TB = t. In this case, we have T1 = µt.T and T2 = µt.T ′, and by definition of Rµ,
(T1, T2) ∈ Rµ: we study this case above;



XX:50 A Linear Decomposition of Multiparty Sessions

TA = TB = t. In this case, we have T1 = µt.T = µt.T
{

t/t
}
and T2 = µt′.T

{
t′/t
}{

µt.T ′/t
}
.

By definition of Rµ, we have (T1, T2) ∈ Rµ: we study this case below;
TA = t, TB = t, or TA = t, TB = t. These cases imply T = •, and we conclude that
(T1, T2) satisfies rule (=π-LEnd);

(T1, T2) ∈ Rµ. We have 2 sub-cases, and one is proved similarly to the forst case of (T1, T2) ∈ Rµ
(i.e., by satisfying rule (=π-Lµ)). The remaining (and most interesting) case is:

T1 = T
{

t/t
}{

µt.T{t/t}/t
}
and T2 = T

{
t′/t
}{

µt.T ′/t
}{

µt′.T{t′/t}{µt.T ′/t}/t′
}
. Since T{µt.T/t} =π

T{µt.T/t} (by reflexivity of =π, Proposition C.3), by definition of R∗ we have (T1, T2) ∈ R∗:
we study this case below;

(T1, T2) ∈ R∗. We have T1 = TA
{

t/t
}{

µt.T{t/t}/t
}
and T2 = TB

{
t′/t
}{

µt.T ′/t
}{

µt′.T{t′/t}{µt.T ′/t}/t′
}
,

for some TA, TB such that:

TA{µt.T/t} =π TB{µt.T/t} (61)

The proof is similar to that for (T1, T2) ∈ R∗ above: we proceed by cases on the rule in
Def. C.1 concluding (61), examining the possible shapes of TA and TB , and showing that
R∗ is closed backwards under the same rule. Case (=π-LEnd) is trivial, and most other
cases are simple: by the coinductive premises of the selected rule, we obtain one or more
relations of the form T ′A{µt.T/t} =π T ′B{µt.T/t} (for some T ′A, T ′B), and in each case we conclude
that (T ′A

{
t/t
}{

µt.T{t/t}/t
}
, T ′B

{
t′/t
}{

µt.T ′/t
}{

µt′.T{t′/t}{µt.T ′/t}/t′
}

) belongs to R∗. The only
exception is when (61) is the conclusion of (=π-Lµ), and TA,TB are either:

TA = TB = t. In this case, we have:

T1 = t
{
µt.T{t/t}/t

}
= µt.T

{
t/t
}

= µt.T
{

t/t
}{

t/t
}

= µt.T
{

t/t
}{

t/t
}

= µt.T
{

t/t
}{

t/t
}

= µt.T
T2 = µt.T ′

{
µt′.T{t′/t}{µt.T ′/t}/t′

}
= µt.T ′ (since t′ 6∈ fv(T ′))

Hence, by definition of Rµ, we get (T1, T2) ∈ Rµ: we study this case above;
TA = TB = t. In this case, we have:

T1 = t
{
µt.T{t/t}/t

}
= µt.T

{
t/t
}

T2 = t′
{
µt.T ′/t

}{
µt′.T{t′/t}{µt.T ′/t}/t′

}
= µt′.T

{
t′/t
}{

µt.T ′/t
}

Hence, by definition of Rµ, we get (T1, T2) ∈ Rµ: we study this case above;
TA = t, TB = t, or TA = t, TB = t. These cases imply T = •, and we conclude that
(T1, T2) satisfies rule (=π-LEnd).

We have shown that R is closed backwards under the rules obtained from Def. C.1. Therefore,
since =π is the largest relation closed backwards under such rules, we have R ⊆ =π. We also know
that (µt.T , µt.T ′) ⊆ Rµ ⊆ R ⊆ =π: we conclude µt.T =π µt.T ′. J

C.1 Quasi-Linearity and Confluence
We now characterise a confluent fragment of linear π-calculus: we will use it later on, to prove the
operational correspondence of our encoding.

I Definition C.5 (Quasi-linearity). The predicate qlin(T ) is defined as:

T ∈ B ∪ {Li
(
T ′
)
, Lo
(
T ′
)
, L]
(
T ′
)
, •}

qlin(T )
∀i ∈ I qlin(Ti)

qlin(〈li_Ti〉i∈I)
∀i ∈ I qlin(Ti)

qlin([li :Ti]i∈I)
qlin(T )

qlin(µt.T )

We say that T is quasi-linear iff qlin(T ). We say that a typing judgement Γ ` P is quasi-linear
iff it has a derivation such that, for each Γ′, x :T ` P ′ occurring in it, either: (a) qlin(T ), or
(b) T = ](T ′) and P ′ ∈ {Q , x(y).Q , ∗(x(y).Q) |Q′} where x can occur in Q,Q′ only as x〈v〉 with
x 6∈ fn(v). We say that P is quasi-linear iff ∃Γ, P ′ such that P ′ ≡ P and Γ ` P ′ holds and is
quasi-linear.
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Intuitively, Def. C.5 says that if a type T is quasi-linear, then it does not harbour unrestricted
communication capabilities. If a typed process P is quasi-linear, then each name x is quasi-linear
(item (a)), or is unrestricted but used in a syntactically-constrained way (item (b)). The constraints
of item (b) are quite standard, and ensure that x is uniformly ω-receptive [54, §8.2]: for all
synchronisations on x, each transmitted value is processed immediately, and in the same way, by one
process that spawns a new replica for each input on x — while x is only used for output elsewhere.
Note that e.g. P ′ = x(y).0 | ∗(x(y).0) violates item (b), but is quasi-linear since P ′ ≡ ∗(x(y).0)
(which satisfies the definition). Quasi-linearity is preserved along reductions (Proposition C.6) and
implies confluence (Lemma C.7) — intuitively, because synchronisations are deterministic, as they
can only involve linear names [35, Theorem 4.4.1], or ω-receptive names.

I Proposition C.6. If P is quasi-linear and P →∗ P ′, then P ′ is quasi-linear.

I Lemma C.7 (Quasi-linear processes are confluent). If P is quasi-linear, P→P1 and P→P2, then
either P1≡P2 or ∃P3 such that P1→P3 and P2→P3.

I Proposition C.6. If P is quasi-linear and P →∗ P ′, then P ′ is quasi-linear.

Proof. We first prove that:

P → P ′ implies that P ′ is quasi-linear (62)

We first observe that, by Def. C.5 P must be typed by some context Γ, and there exist P0 ≡ P such
that Γ ` P0 is quasi-linear. Since P0

α−→ P ′ (for some α), by standard subject reduction on linear
π-calculus [35, Theorem 4.3.1], there exists some Γ′ (whose definition depends on Γ and α) such
that Γ′ ` P ′. We then proceed by induction on the derivation of the transition P0

α−→ P ′:
in the base case of synchronisation with α = x and x linear, we observe that Γ′(x) = • and
∀y ∈ dom (Γ) \ {x} : Γ′(y) = Γ(y) (i.e., no new unrestricted communication capabilities are
introduced); moreover, P ′ still respects item (b);
in the base case of synchronisation with α = x and x unrestricted, we observe that Γ′ = Γ (i.e.,
no new unrestricted communication capabilities are introduced); then, we use item (b) of Def.C.5
to determine the shape of P0, and verify that P ′ still respects item (b);
in the base cases with α ∈ {case,with, let}, we have Γ′ = Γ (i.e., no new unrestricted
communication capabilities are introduced); then we verify that P ′ still respects item (b);
the other inductive cases hold by applying the induction hypothesis.
We can now prove the main statement. Let n be the length of the sequence of transitions

P →∗ P ′: in the base case (n = 0) the statement holds trivially, while the inductive case (n = n′+ 1)
it follows by the induction hypothesis and (62). J

I Proposition C.8 (Linear synchronisations are confluent). If Γ, x :L](T ) ` P , P x−→ P ′ and P x−→ P ′′,
then P ′ ≡ P ′′.

Proof. See [35, Theorem 4.4.1]. J

I Lemma C.9 (Quasi-linear synchronisations are confluent). If Γ, x :](T ) ` P is quasi-linear, P x−→ P1

and P x−→ P2, then either P1 ≡ P2, or ∃P3 such that P1
x−→ P3 and P2

x−→ P3.

Proof. We can only get a synchronisation on x if we have, by Def. C.5::

P ≡ (νz̃)
(
∗x(y).Q | x〈v〉.Q′ |R

)
≡ (νz̃)

(
x(y).Q | x〈v〉.Q′ | ∗(x(y).Q) |R

)
where x 6∈ z̃ and Q,Q′, R can only use x for output. Considering the synchronisation P x−→ P1, we
get:

P1 ≡ (νz̃)
(
Q{v/y} | Q′ | ∗(x(y).Q) |R

)
Let us now examine the synchronisation P x−→ P2. We have two cases:
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if it coincides with the synchronisation P x−→ P1, we trivially conclude P1 ≡ P2;
otherwise, if a different synchronisation leads to P2, we must have R ≡ x〈v′〉.R′ |R′′ (i.e.,
another output is enabled on x), and thus:

P1 ≡ (νz̃) (Q{v/y} | Q′ | ∗(x(y).Q) | x〈v′〉.R′ |R′′) ≡ (νz̃) (Q{v/y} | x(y).Q | Q′ | x〈v′〉.R′ | ∗(x(y).Q) | R′′);
P2 ≡ (νz̃)

(
Q
{
v′/y
}
| x〈v〉.Q′ | R′ |R′′

)
≡ (νz̃)

(
x(y).Q | Q

{
v′/y
}
| x〈v〉.Q′ | R′ | ∗(x(y).Q) | R′′

)
.

Therefore, letting P3 = (νz̃)
(
Q{v/y} | Q

{
v′/y
}
| Q′ | R′ | ∗(x(y).Q) | R′′

)
, we conclude P1

x−→
P3 and P2

x−→ P3.
J

I Corollary C.10 (Partial confluence). If P is quasi-linear, P x−→ P1 and P α−→ P2 (for any α), then
either P1 ≡ P2 or ∃P3 such that P1

α−→ P3 and P2
x−→ P3.

Proof. (Sketch) The proof is similar to [35, Theorem 4.4.3], which assumes x to be linearly-typed,
and depends on Proposition C.8. The only difference is that in our statement, x might be an
unrestricted name; in this case, the result still holds by the quasi-linearity hypothesis, and by
Lemma C.9. J

I Proposition C.11. If α ∈ {with, case, let}, P α−→ P1 and P
β−→ P2 (for any β), then either

P1 ≡ P2, or ∃P3 such that P1
β−→ P3 and P2

α−→ P3.

Proof. Let α = with. We have: :

P ≡ (νz̃)
(
with [li :xi]i∈I =[li : vi]i∈I doP | Q

) with−−−→ (νz̃) (P{vi/xi}i∈I | Q) ≡ P1

Let us now examine the reduction P β−→ P2. We have two cases:
if it coincides with the reduction P α−→ P1, we trivially conclude P1 ≡ P2;

otherwise, if a different reduction leads to P2, we must have Q β−→ Q′, and:

P
β−→ (νz̃)

(
with [li :xi]i∈I =[li : vi]i∈I doP | Q′

)
≡ P2

Therefore, letting P3 = (νz̃) (P{vi/xi}i∈I | Q′), we conclude P1
β−→ P3 and P2

α−→ P3.
The proofs for α = case and α = let are similar. J

I Lemma C.7 (Quasi-linear processes are confluent). If P is quasi-linear, P→P1 and P→P2, then
either P1≡P2 or ∃P3 such that P1→P3 and P2→P3.

Proof. Assume that P is quasi-linear. The statement follows from Cor. C.10 and Proposition C.11,
which cover all possible transitions of P . J

I Corollary C.12 (Quasi-linear processes are confluent (II)). If P is quasi-linear, P →∗ P1 and P → P2,
then either P2 →∗ P1, or ∃P3 such that P1 → P3 and P2 →∗ P3.

Proof. Assume that P is quasi-linear. Let n be the length of the sequence of transitions P →∗ P1.
We proceed by induction on n:

base case n = 0. We have P1 ≡ P , and therefore conclude by letting P3 = P2;
inductive case n = n′ + 1. Take P ′1 such that P →∗ P ′1 → P1, with n′ transitions in P →∗ P ′1.
By the induction hypothesis, either:

P2 →∗ P ′1. In this case, we conclude P2 →∗ P1;
∃P ′3 such that P ′1 → P ′3 and P2 →∗ P ′3. In this case, notice that P ′1 is quasi-linear (from
P →∗ P ′1 and by Proposition C.6); therefore, since P ′1 → P ′3 and P ′1 → P1, by Lemma C.7 we
have either:
∗ P ′3 ≡ P1. In this case, from P2 →∗ P ′3 we conclude P2 →∗ P1;



A. Scalas, O. Dardha, R. Hu, N. Yoshida XX:53

∗ ∃P ′′3 such that P ′3 → P ′′3 and P1 → P ′′3 . In this case, by letting P3 = P ′′3 , we conclude
P1 → P3 and P2 →∗ P3.

J

I Lemma 4.7. If T = T1CT2, and T ′1]T ′2 = T , then either (a) T ′1 6π T1 and T ′2 6π T2, or
(b) T ′1 6π T2 and T ′2 6π T1.

Proof. By Def. 4.6, T is defined only if either:
T1 = T2 = T ∗, for some un(T ∗). In this case, we also have T = T ′1 = T ′2 = T ∗, and we trivially
obtain both items (a) and (b);
T1, T2 are respectively a linear input and output type, or vice versa. Then, again by Def. 4.6,
we have two sub-cases:

T1 = Lo(T ∗1 ), T2 = Li(T ∗2 ), and T ∗1 6π T ∗2 . In this case, T = Li(T ∗1 ) ] Lo(T ∗1 ) = L](T ∗1 ), and
we have either:
∗ T ′1 = Lo(T ∗1 ) and T ′2 = Li(T ∗1 ). Then, we conclude T ′1 6π T1 and T ′2 6π T2, i.e., case (a)

of the statement;
∗ T ′1 = Li(T ∗1 ) and T ′2 = Lo(T ∗1 ). Then, we conclude T ′1 6π T2 and T ′2 6π T1, i.e., case (b)

of the statement;
T1 = Li(T ′1), T2 = Lo(T ′2), and T = T ′2 6π T

′
1. The proof is similar to the previous case.

J
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D Properties of Encoding of Types

D.1 Auxiliary Results
I Proposition D.1. Let H,H ′ be partial session types. Then, H 6P H

′ iff H ′ 6P H.

Proof. Follows by the standard properties of duality for binary session types [21]. J

I Definition D.2. type(p, [p : T , q : Tq]q∈I) = T .

D.2 Subtyping and Encoding
I Theorem 6.2 (Encoding preserves subtyping). If S6SS

′, then JSK6π JS′K.

Proof. By Proposition B.11, since S 6S S
′, then roles(S) = roles(S′). We construct a relation

R , RS ∪RT ∪RU ∪RP ∪Ri ∪Ro, where its subcomponents are defined as follows:

RS , {(JSK, JS′K) | S 6S S
′}

RT , {(T , T ′) | ([p :Tp]p∈I ,
[
p :T ′p

]
p∈I

) ∈ RS and ∃q such that type(q, [p :Tp]p∈I) = T and type(q,
[
p :T ′p

]
p∈I

) = T ′}

RU , {(JUK, JU ′K) | U 6S U
′}

RP , {(JHK, JH ′K) |H 6P H
′}

Ri , {(T1, T2) | (Li(T1), Li(T2)) ∈ RP }

Ro , {(T2, T1) | (Lo(T1), Lo(T2)) ∈ RP }

We first prove that R is closed backwards under the rules of 6π, given by Def. 3.5. We examine all
the elements of R, by inspecting all its subsets.

For each pair (JUK, JU ′K) ∈ RU we have the following cases:
U ≤B U ′ meaning that types U,U ′ are basic types. Since the encoding of basic types is the
identity function, then by subtyping ≤B we conclude that the pair (JUK, JU ′K) satisfies rule
(S-LB).
In all other cases U,U ′ must be closed session types and thus (JUK, JU ′K) ∈ RS : we study this
case below:.
For each pair (JSK, JS′K) ∈ RS , we know that S 6S S

′, and recalling that they are closed session
types, we have the following cases, depending on the coinductive rule in Def. 2.10 concluding S 6S S

′:
Case (S-End). We have JSK = JS′K = •. Hence, we conclude that the pair (JSK, JS′K) = (•, •)
satisfies rule (S-LEnd).
Case (S-µL). We have S = µt.S′′ 6S S

′; hence, by Def. 5.1, JSK = µt.T ′′, where T ′′ = JS′′K. By
the premise of (S-µL) we also have S′′

{
µt.S′′/t

}
6S S

′, which implies:

(JS′′
{
µt.S′′/t

}
K, JS′K) ∈ RS ⊆ R (63)

Now, we observe:

JS′′
{
µt.S′′/t

}
K = JS′′K

{
Jµt.S′′K/t

}
(by Lemma D.5)

= JS′′K
{
µt.JS′′K/t

}
(by Def. 5.1)

= T ′′
{
µt.T ′′/t

}
(since T ′′ = JS′′K)

From (63) we also have (T ′′
{
µt.T ′′/t

}
, JS′K) ∈ RS ⊆ R. Hence, the pair (JSK, JS′K) =

(µt.T ′′, JS′K) satisfies rule (S-Lµ).
Case (S-µR). Similar to case (S-µL), except that this time we have S′ = µt.S′′. Then, we let
T ′′ = JS′′K and we obtain the pair (JSK, JS′K) = (JSK, µt.T ′′), which satisfies rule (S-Rµ).
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Cases (S-Brch) and (S-Sel). We have:

JSK = [p :Tp]p∈S JS′K =
[
p :T ′p

]
p∈S′

Let I = roles(S) = roles(S′). For all p ∈ I, we have (Tp, T
′
p) ∈ RT ⊆ R. We conclude that the

pair (JSK, JS′K) satisfies rule (S-LTuple).
For each pair (T , T ′) ∈ RT there is corresponding pair ([p :Tp]p∈I ,

[
p :T ′p

]
p∈I

) ∈ RS and there
exists q such that type(q, [p :Tp]p∈I) = T and type(q,

[
p :T ′p

]
p∈I

) = T ′; hence, there are S and S′

such that S 6S S
′ and

JSK = [p :Tp]p∈S JS′K =
[
p :T ′p

]
p∈S′

Let I = roles(S) = roles(S′). By Def. 5.1 we have that for all p ∈ I,

Tp = JS � pK T ′p = JS′ � pK

By Def. 5.1 and by Def.D.2 we have that T = JS � qK and T ′ = JS′ � qK. By Proposition B.12, since
S 6S S

′, then for all p ∈ S also S � p 6P S
′ � p. In particular, since q ∈ S, also S � q 6P S

′ � q. Then,
we have that (S � q, S � q) ∈ RP : this case is studied below.

For each pair (JHK, JH ′K) ∈ RP , we know that H 6P H
′. We proceed by cases on the coinductive

rule in Def. 2.10 that concludes H 6P H
′:

Case (S-ParEnd). We have H = H ′ = end, and therefore, JHK = JH ′K = •. We conclude that
the pair (JHK, JH ′K) = (•, •) satisfies rule (S-LEnd).
Case (S-ParµL). We have H = µt.H ′′ 6P H

′; hence, by Def.5.1, JHK = µt.T ′′, where T ′′ = JH ′′K.
By the premise of (S-ParµL) we also have H ′′

{
µt.H′′/t

}
6P H

′, implying:

(JH ′′
{
µt.H′′/t

}
K, JH ′K) ∈ RP (64)

Now, we observe:

JH ′′
{
µt.H′′/t

}
K = JH ′′K

{
Jµt.H′′K/t

}
(by Lemma D.6)

= JH ′′K
{
µt.JH′′K/t

}
(by Def. 5.1)

= T ′′
{
µt.T ′′/t

}
(since T ′′ = JH ′′K)

From Equation (64) we have (T ′′
{
µt.T ′′/t

}
, JH ′K) ∈ RP . Hence, the pair (JHK, JH ′K) =

(µt.T ′′, JH ′K) satisfies rule (S-LµL).
Case (S-ParµR). Symmetrical to case (S-ParµL), except that we have H ′ = µt.H ′′: we let
T ′′ = JH ′′K, and we obtain that the pair (JHK, JH ′K) = (JHK, µt.T ′′) satisfies rule (S-LµR).
Cases (S-ParBrch) and (S-ParSel). In these cases, we have either:
Case (S-ParBrch). In this case, for some T1, T2, we have JHK = Li(T1) and JH ′K = Li(T2), and
therefore (T1, T2) ∈ Ri ⊆ R. We conclude that the pair (JHK, JH ′K) satisfies rule (S-Li).
Case (S-ParSel). In this case, for some T1, T2, we have JHK = Lo(T1) and JH ′K = Lo(T2), and
therefore (T2, T1) ∈ Ro ⊆ R. We conclude that the pair (JHK, JH ′K) satisfies rule (S-Lo).
For each pair (T1, T2) ∈ Ri there is a corresponding pair (Li(T1), Li(T2)) ∈ RP , and there exist

H,H ′ such that

JHK = Li(T1) JH ′K = Li(T2) (65)

and H 6P H
′. Equation (65) and Def. 5.1 imply that H and H ′ are partial branch types. So, the

only case to consider is rule (S-ParBrch) and we have that:

H = &i∈I ?li(Ui).Hi H ′ = &i∈I∪J ?li(U ′i).H ′i
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By the premise of (S-ParBrch), for all i ∈ I it is the case that Ui 6S U
′
i and Hi 6P H

′
i. Then, for

all i ∈ I:

(JUiK, JU ′iK) ∈ RU ⊆ R (JHiK, JH ′iK) ∈ RP ⊆ R

By the encoding of partial branch types:

JHK = Li(T1) implies T1 = 〈li_(JUiK, JHiK)〉i∈I JH ′K = Li(T2) implies T2 =
〈
li_(JU ′iK, JH ′iK)

〉
i∈I∪J

We can conclude that the pair (T1, T2) satisfies rule (S-Variant).

For each pair in (T2, T1) ∈ Ro there is a corresponding pair (Lo(T1), Lo(T2)) ∈ RP and there
exist H,H ′ such that

JHK = Lo(T1) JH ′K = Lo(T2) (66)

and H 6P H
′. Equation (66) and Def. 5.1 imply that H and H ′ are partial select types. So, the

only case to consider is rule (S-ParSel) and we have that:

H = ⊕i∈I∪J !li(Ui).Hi H ′ = ⊕i∈I !li(U ′i).H ′i

By the premise of rule (S-ParSel), for all i ∈ I. U ′i 6S Ui and Hi 6P H
′
i. By Proposition D.1 we

have that H ′i 6P Hi. Then, for all i ∈ I:

(JU ′iK, JUiK) ∈ RU ⊆ R (JH ′iK, JHiK) ∈ RP ⊆ R

By the encoding of partial select type:

JHK = Lo(T1) implies that T1 =
〈
li_(JUiK, JHiK)

〉
i∈I∪J

JH ′K = Lo(T2) implies that T2 =
〈
li_(JU ′iK, JH ′iK)

〉
i∈I

We can conclude that the pair (T2, T1) satisfies rule (S-Variant).
We have thus proved that R is closed backwards under the rules of 6π — and since 6π is

the largest relation closed backwards under such rules, this implies R ⊆ 6π. We prove the main
statement observing that, since S 6S S

′ implies (JSK, JS′K) ∈ RS ⊆ R ⊆ 6π, then S 6S S
′ implies

JSK 6π JS′K. J

I Corollary D.3. H 6P H
′, then JHK 6π JH ′K.

Proof. Assume H 6P H
′. The statement follows by the proof of Theorem 6.2, where the relation

RP contains the pair (JHK, JH ′K); this implies (JHK, JH ′K) ∈ RP ⊆ R ⊆ 6π, and therefore,
JHK 6π JH ′K. J

D.2.1 Duality and Encoding
I Lemma D.4. Let H be a (possibly open) partial session type. Then, JHK

{
t/t
}

t∈fv(H) = JHK
{

t/t
}

t∈fv(H) =
JHK
{

t/t
}

t∈fv(H).

Proof. Simple induction on the structure of H. We use Def. 4.1 and the substitution of dualised
variables. J

I Theorem 6.1 (Encoding preserves duality). JHK = JHK.

Proof. We prove a more general statement: let H be a (possibly open) partial session type. Then
JHK = JHK

{
t/t
}

t∈fv(H). The case for a closed partial type H follows as a corollary by the fact that
fv(H) = ∅ (and thus, the substitution applied on JHK is vacuous).

The proof proceeds by induction on the structure of H.
H = end. By Def. 2.8 we have that end = end. We conclude by Def. 5.1 and by Def. 4.1 and
the fact that fv(end) = ∅.
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H = t.
By Def. 2.8 we have that t = t. By Def. 5.1 we have JtK = JtK = t. By Def. 4.1 we have that
JtK = (t) = t. Then t

{
t/t
}

= t, which concludes this case.

H = &i∈I ?li(Ui).Hi.
By Def. 2.5 we know that each Ui is ether a base type or a closed session type; hence fv(H) =
∪i∈I fv(Hi). By Def. 2.8 we have that H = ⊕i∈I !li(Ui).Hi. By Def. 5.1 we have that JHK =

J⊕i∈I !li(Ui).HiK = Lo
(〈

li_(JUiK, JHiK)
〉
i∈I

)
.

By induction hypothesis for all i ∈ I, JHiK = JHiK
{

t/t
}

t∈fv(Hi). We rewrite the above as

JHK = Lo
(〈

li_(JUiK, JHiK
{

t/t
}

t∈fv(Hi))
〉
i∈I

)
By Lemma D.4 we conclude

JHK = Lo
(〈
li_(JUiK, JHiK

{
t/t
}

t∈fv(Hi))
〉
i∈I

)
(67)

On the other hand, by Def. 5.1 we have that JHK = J &i∈I ?li(Ui).HiK = Li
(
〈li_(JUiK, JHiK)〉i∈I

)
.

By Def. 4.1 we have JHK = Li
(
〈li_(JUiK, JHiK)〉i∈I

)
= Lo

(
〈li_(JUiK, JHiK)〉i∈I

)
. Then, by type

substitution for all t ∈ fv(H), we have that

JHK
{

t/t
}

t∈fv(H) = Lo
(〈
li_(JUiK, JHiK

{
t/t
}

t∈fv(Hi))
〉
i∈I

)
(68)

By comparing Equation (67) and Equation (68) we conclude this case.

H = ⊕i∈I !li(Ui).Hi. By Def. 2.5 we know that each Ui is ether a base type or a closed session
type; hence fv(H) = ∪i∈I fv(Hi). By Def. 2.8we have that H = &i∈I ?li(Ui).Hi By Def. 5.1 we
have that JHK = J &i∈I ?li(Ui).HiK = Li

(〈
li_(JUiK, JHiK)

〉
i∈I

)
.

By induction hypothesis for all i ∈ I, JHiK = JHiK
{

t/t
}

t∈fv(Hi). We rewrite the above as

JHK = Li
(〈
li_(JUiK, JHiK

{
t/t
}

t∈fv(Hi))
〉
i∈I

)
(69)

On the other hand, by Def.5.1 we have that JHK = J⊕i∈I !li(Ui).HiK = Lo
(〈
li_(JUiK, JHiK)

〉
i∈I

)
By Def.4.1 we have JHK = Lo

(〈
li_(JUiK, JHiK)

〉
i∈I

)
= Li

(〈
li_(JUiK, JHiK)

〉
i∈I

)
. Then, by type

substitution for all t ∈ fv(H), we have that

JHK
{

t/t
}

t∈fv(H) = Li
(〈
li_(JUiK, , JHiK

{
t/t
}

t∈fv(Hi))
〉
i∈I

)
(70)

By comparing Equation (69) and Equation (70) we conclude this case.

H = µt′.H ′. We have that fv(H) = fv(H ′) \ {t′}. By Def. 2.8 we have that H = µt′.H ′. By
Def. 5.1 we have that Jµt′.H ′K = µt′.JH ′K. By induction hypothesis JH ′K = JH ′K

{
t/t
}

t∈fv(H′).
This implies,

JHK = µt′.JH ′K = µt′.JH ′K
{

t/t
}

t∈fv(H′) (71)

On the other hand, JHK = Jµt′.H ′K = µt′.JH ′K. By Def. 4.1 we have that

JHK = µt′.JH ′K = µt′.JH ′K
{

t′/t′
}

(72)

We have the following:

JHK
{

t/t
}

t∈fv(H) =
(
µt′.JH ′K

{
t′/t′
}){

t/t
}

t∈fv(H′)\{t′} (by Equation (72) and the fact that fv(H) = fv(H ′) \ {t′})
= µt′.JH ′K

{
t/t
}

t∈fv(H′) (since fv(H ′) \ {t′} ∪ {t′} = fv(H ′))
= JHK (by Equation (71))

which concludes this case.
J
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D.2.2 Substitution and Encoding
I Lemma D.5. Let S, S′ be session types. Then, JS

{
S′/t
}
K = JSK

{
JS′K/t

}
.

Proof. By induction on the structure of S. J

I Lemma D.6. Let H,H ′ be partial session types. Then, JH
{
H′/t
}
K = JHK

{
JH′K/t

}
.

Proof. By induction on the structure of H. J

The following lemma gives the relation between the type combinator ] and the standard ‘,’
operator in linear π-typing contexts.

I Lemma D.7. If Γ1 ] Γ2 is defined and dom(Γ1) ∩ dom(Γ2) = ∅, then also Γ1,Γ2 is defined.

Proof. Immediate by the combination of typing contexts given in Def. 3.6. J

The following definition is an extends Def. 2.11 to accommodate the notion of linear session
typing context.

I Definition D.8 (Linear and Unrestricted Session Typing Context). We say that Γ is unrestricted,
un(Γ), iff for all c ∈ dom(Γ), Γ(c) is either a base type or end, otherwise we say that Γ is linear,
lin(Γ).

I Proposition D.9. Let ΓS be a session typing context and q be either lin or un. Then, q(ΓS) if and
only if q(JΓSK).

Proof. The result follows immediately by Def.D.8 and Def. 3.6. J
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u

ww
v

(T-Basic)
un(Γ) v ∈ B

Γ ` v :B

}

��
~ ,

(Tπ-Basic)
un(JΓK) v ∈ B

JΓK ` v :B

u

ww
v

(T-Name)
un(Γ)

Γ, c :S ` c :S

}

��
~ ,

(Tπ-Name)
un(JΓK)

JΓ, c :SK ` Jc :SK

u

ww
v

(T-DefCtx)

Θ, X : T̃ ` X : T̃

}

��
~ ,

(Tπ-Name)
un(JΘK)

r
Θ, X : T̃

z
`

r
X : T̃

z

u

ww
v

(T-Nil)
un(Γ)
Γ ` 0

}

��
~ ,

(Tπ-Nil)
un(JΓK)
JΓK ` 0

u

ww
v

(T-Par)
Θ · Γ1 ` P Θ · Γ2 ` Q

Θ · Γ1 ◦ Γ2 ` P |Q

}

��
~ ,

JΘ · Γ1K ` P JΘ · Γ2 ` QK

JΘ · Γ1 ◦ Γ2K ` JP KΘ·Γ1 | JQKΘ·Γ2

(Tπ-Par)

where x̃ = x1, . . . , xn
and Ũ = U1, . . . , Un︷ ︸︸ ︷u

ww
v

(T-Def)
Θ, X : Ũ · x̃ : Ũ ` P Θ, X : Ũ · Γ ` Q

Θ · Γ ` def X(x̃ :U) = P inQ

}

��
~ ,

(Tπ-Repl)
un
(r

Θ, X : Ũ
z)

(Tπ-Name) r
X : Ũ

z
`

r
X : Ũ

z

(Tπ-Name)
z : (JUiK)i∈{1..n} ` z : (JUiK)i∈{1..n}

r
Θ, X : Ũ · x̃ : Ũ ` P

z

JΘK, JXK :]
(

(JUiK)i∈{1..n}
)
, z : (JUiK)i∈{1..n} ` with (xi)i∈{1..n}=z do JP KΘ,X:Ũ ·x̃:Ũ

(Tπ-With)

JΘK, JXK :]
(

(JUiK)i∈{1..n}
)
` JXK(z).with (xi)i∈{1..n}=z do JP KΘ,X:Ũ ·x̃:Ũ

(Tπ-Inp)

JΘK, JXK :]
(

(JUiK)i∈{1..n}
)
` ∗
(
JXK(z).with (xi)i∈{1..n}=z do JP KΘ,X:Ũ ·x̃:Ũ

) r
Θ, X : Ũ · Γ ` Q

z

JΘ · ΓK, JXK :]
(

(JUiK)i∈{1..n}
)
` ∗
(
JXK(z).with (xi)i∈{1..n}=z do JP KΘ,X:Ũ ·x̃:Ũ

)
| JQKΘ,X:Ũ ·Γ

(Tπ-Par)

JΘ · ΓK ` (νJXK)
(
∗
(
JXK(z).with (xi)i∈{1..n}=z do JP KΘ,X:Ũ ·x̃:Ũ

)
| JQKΘ,X:Ũ ·Γ

) (Tπ-Res1)

where ṽ = v1, . . . , vn
and Ũ = U1, . . . , Un︷ ︸︸ ︷u

ww
v

(T-Call)
Θ ` X : Ũ ∀i ∈ {1..n} Γi ` vi :Ui un(Γ)

Θ, X : Ũ · Γ1 ◦ . . . ◦ Γn ◦ Γ ` X〈ṽ〉

}

��
~ ,

r
Θ, X : Ũ ` X : Ũ

z(Tπ-LTup) ∀i ∈ {1..n} JΓi ` vi :UiK⊎
i∈{1..n} JΓiK ` (JviK)i∈{1..n} : (JUiK)i∈{1..n}

un(JΓK)
JΓK ` 0

(Tπ-Nil)

r
Θ, X : Ũ · Γ1 ◦ . . . ◦ Γn ◦ Γ

z
` JXK〈(JviK)i∈{1..n}〉.0

(Tπ-Out)
u

ww
v

(T-Sub)
Θ · Γ, c :S ` P S′ 6S S

Θ · Γ, c :S′ ` P

}

��
~ ,

(Tπ-Narrow)
JΘ · Γ, c :S ` P K JS′K 6π JSK

JΘ · Γ, c :S′K ` JP KΘ·Γ,c:S

u

ww
v

(T-Brch)
Θ · Γ, xi :Ui, c :S′i ` Pi ∀i ∈ I
Θ · c :S,Γ ` c[p] &i∈I {li(xi).Pi}

}

��
~

︸ ︷︷ ︸
where S = p &i∈I ?li(U i).S′i

,

(Tπ-Name)
Jc :SK ` Jc :SK

(Tπ-Name)
zp :JS � pK ` zp :JS � pK

(Tπ-Name)
y :〈li_(JUiK, JS′i � pK)〉i∈I ` y :〈li_(JUiK, JS′i � pK)〉i∈I ∀i ∈ I


(Tπ-Name)

zq :JS � qK ` zq :JS � qK JS � qK6πJS′i � qK

zq :JS � qK ` zq :JS′i � qK (Tπ-Sub)


q∈S\p

if S′i�p 6= end; otherwise, un(z :
q
S′i�p

y
)︷ ︸︸ ︷

(Tπ-Name)

z :JS′i � pK ` z :JS′i � pK

{zq :JS � qK}q∈S\p, z :JS′ � pK ` zi :JS′K
(Tπ-LTup)

JΘ · Γ, xi :Ui, c :S′i ` PiK
JΘ · ΓK, xi :JUiK, {zq :JS � qK}q∈S\p, z :JS′i � pK ` let JcK=zi in JPiKΘ·Γ,xi:Ui,c:S′i

(Tπ-Let)

JΘ · ΓK, zi : (JUiK, JS′i � pK) , {zq :JS � qK}q∈S\p ` with (xi, z) =zi do let JcK=zi in JPiKΘ·Γ,xi:Ui,c:S′i

(Tπ-With)

JΘ · ΓK, {zq :JS � qK}q∈S\p, y :〈li_(JUiK, JS′i � pK)〉i∈I ` case y of
{
li(zi) .with (xi, z) =zi do let JcK=zi in JPiKΘ·Γ,xi:Ui,c:S′i

}
i∈I

(Tπ-Case)

JΘ · ΓK, {zq :JS � qK}q∈S ` zp(y).case y of
{
li(zi) .with (xi, z) =zi do let JcK=zi in JPiKΘ·Γ,xi:Ui,c:S′i

}
i∈I

(Tπ-Inp)

JΘ, c :S,ΓK ` with
[
q : zq

]
q∈S=JcK do zp(y).case y of

{
li(zi) .with (xi, z) =zi do let JcK=zi in JPiKΘ·Γ,xi:Ui,c:S′i

}
i∈I

(Tπ-With)

︸ ︷︷ ︸
where zi =

{
[p : z, q : zq]q∈S′

i
\p if p ∈ S′i[

q : zq
]

q∈S′
i

otherwise

Figure 13 Encoding of multiparty session typing judgements (part 1).
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(T-Sel)
Γ1 ` v :U Θ · Γ2, c :S′ ` P

Θ · c :S,Γ1 ◦ Γ2 ` c[p]⊕ 〈l(v)〉.P

}

��
~

︸ ︷︷ ︸
where S = p⊕ !l(U).S′

,

(Tπ-Name)
Jc :SK ` Jc :SK

(Tπ-Out)

(Tπ-Name)
zp :Lo

(〈
l_(JUK, JS′ � pK)

〉)
` zp :Lo

(〈
l_(JUK, JS′ � pK)

〉)(Tπ-LVal)
(Tπ-Sub)

(Tπ-Name)
z :Junf(S′ � p)K ` z :Junf(S′ � p)K Junf(S′ � p)K 6π JS′ � pK

z :Junf(S′ � p)K ` z :JS′ � pK JΓ1 ` v :UK

JΓ1K, z :Junf(S′ � p)K ` l(JvK, z) :
〈
l_(JUK, JS′ � pK)

〉


(Tπ-Name)

zq :JS � qK ` zq :JS � qK JS � qK6πJS′i � qK

zq :JS � qK ` zq :JS′i � qK (Tπ-Sub)


q∈S\p

if S′�p 6= end; otherwise, un(z :
q
S′�p

y
)︷ ︸︸ ︷

Junf(S′ � p)K 6π JS′ � pK z :Junf(S′ � p)K ` z :Junf(S′ � p)K
(Tπ-Name)

z :Junf(S′ � p)K ` z :JS′ � pK
(Tπ-Sub)

{zq :JS′ � qK}q∈S\p, z :JS′ � pK ` z :JS′K
(Tπ-LTup)

JΘ · Γ2, c :S′ ` P K

JΘ · Γ2K, {zq :JS � qK}q∈S\p, z :Junf(S′ � p)K ` let JcK=z in JP KΘ·Γ2,c:S′
(Tπ-Let)

JΘ · Γ1 ◦ Γ2K, {zq :JS � qK}q∈S\p, zp :Lo
(〈
l_(JUK, JS′ � pK)

〉)
, z :Junf(S′ � p)K ] Junf(S′ � p)K ` zp〈l(JvK, z)〉.let JcK=z in JP KΘ·Γ2,c:S′

JΘ · Γ1 ◦ Γ2K, {zq :JS � qK}q∈S ` (νz)zp〈l(JvK, z)〉.let JcK=z in JP KΘ·Γ2,c:S′
(Tπ-Res*)

JΘ, c :S,Γ1 ◦ Γ2K ` with
[
q : zq

]
q∈S=JcK do (νz)zp〈l(JvK, z)〉.let JcK=z in JP KΘ·Γ2,c:S′

(Tπ-With)︸ ︷︷ ︸
where z =

{
[p : z, q : zq]q∈S′\p if p ∈ S′[
q : zq

]
q∈S′ otherwise

u

ww
v

(T-Res)
Θ · Γ,Γ′ ` P Γ′ = {s[p] :Sp}p∈I

Θ · Γ ` (νs :Γ′)P

}

��
~ ,

JΘ · Γ,Γ′ ` P K

JΘ · ΓK, δ(Γ′) ` JP KΘ·Γ,Γ′σ(Γ′)
(Tπ-Reify)

...
(Tπ-Res1)

JΘ · ΓK, z{s,p1,q1} :
q
unf
(
Sp1 � q1

)y
C

q
unf
(
Sq1 � p1

)y
` (νz{s,pi,qi})i∈{2..n}JP KΘ·Γ,Γ′σ(Γ′)

(Tπ-Res1)

JΘ · ΓK ` J(νs)KJP KΘ·Γ,Γ′σ(Γ′)
(Tπ-Res1)︸ ︷︷ ︸

where conn(s,Γ′) = {{p1, q1}, . . . , {pn, qn}} and J(νs)K = (νz{s,pi,qi})i∈{1..n}

Figure 14 Encoding of multiparty session typing judgements (part 2).
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I Theorem 6.3 (Correctness of encoding). Γ`v :U implies JΓK` JvK:JUK, Θ `X : Ũ implies JΘK `
JXK : J̃UK, and Θ·Γ`P implies JΘ·Γ`P K.

Proof.(A) The thesis for Γ`v :U follows immediately by the encoding of rules (T-Basic) and
(T-Name) in Fig. 13. Note that, in the premises of the encoded typing derivation, we use
Proposition D.9.

(B) The thesis for Θ`X : Ũ follows immediately by the encoding of rules (T-DefCtx) in Fig.13. Note
that the premise un(JΘK) holds because, by Def. 5.4, JΘK only contains names with unrestricted
types.
The thesis for Θ·Γ`P is proved by induction on the derivation of the judgement, producing a

π-calculus derivation that concludes JΘK, JΓK ` JP KΘ′·Γ′ (for some Θ′,Γ′ depending on the rule from
Fig. 4). The possible cases are shown Fig. 13 and Fig. 14: in all cases, each encoded derivation is
supported by premises that hold either by (A) or (B) above, or by the induction hypothesis. Here
we discuss the crucial points of each case:

(T-Def) and (T-Call). The derivations are self-explanatory. We just point out that the premise
of (Tπ-Nil) in the latter holds by Proposition D.9;
(T-Brch). The derivation is mostly self-explanatory, except for the topmost premises. The
application of (Tπ-Sub) are needed to provide the required types to the names used to compose
zi. Each relation holds because, for all q ∈ S \ p, we know that S � q 6P S′i � q holds by
Proposition B.13, which implies JS � qK 6π JS′i � qK by Cor. D.3. The (Tπ-Name) instance is
only yielded when S′i�p 6= end, which implies that z is used to compose zi (note that, in this
case, to avoid cluttering the notation we are omitting a premise un(∅) required by (Tπ-LTup));
otherwise, by Def. 5.1 we have JS′i�pK = •, and the premise is replaced by un(z :•), since z is not
used to compose zi;
(T-Sel). The derivation is, again, mostly self-explanatory. The type of the continuation name
z is either • (and in this case, (Tπ-Res*) stands for (Tπ-Res2)) or a linear connection type
L](T ), where T is the carried type of the encoding of the unfolded partial projection S′ � p
(and in this case, (Tπ-Res*) stands for (Tπ-Res1)). In the second case, the unfolding ensures
that Junf(S′ � p)K and Junf(S′ � p)K yield dual types Li(T )/Lo(T ) that can be composed with ]
(remind that ] is not defined on µ-types). To correctly deal with such unfolding, the derivation
has a branch with an instance of (Tπ-Sub) and premise Junf(S′ � p)K 6π JS′ � pK, that is necessary
because the type of the variant being sent along zp requires the type of the continuation to
be exactly JS′ � pK. Similarly, the derivation has another branch with (Tπ-Sub) and premise
Junf(S′ � p)K 6π JS′ � pK: this is necessary because, when composing z, the latter requires z
to have exactly type JS′ � pK. Similarly to the encoding of (T-Brch), the instance of (Tπ-
Name)/(Tπ-Sub) on the right (that types z) is only generated if S′�p 6= end, which implies that
z is used to compose z in (Tπ-LTup) (otherwise, z is not used and the premise of (Tπ-LTup) is
replaced by un(z :•));
(T-Sub) and (T-Res). These cases are discussed after the statement of Theorem 6.3 (page 21).
In the latter, note that the instances of (Tπ-Res1) can be applied because by consistency
and completeness of Γ′, and by Def. 5.6, for all i ∈ 1..n, Junf(Spi � qi)K C Junf(Sqi � pi)K =
Li(T ) ] Lo(T ) = L](T ) (for some T ).

J
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E Operational Correspondence
Lemma E.1 says that our encoding yields quasi-linear π-calculus processes (Def.C.5). In fact, sessions
are encoded as (quasi-)linearly-typed π-calculus names, and the only unrestricted names are yielded
by process declarations, under the constraints of Def. C.5 (item (b)).

I Lemma E.1. If Θ · Γ ` P , then JΘ · Γ ` P K is quasi-linear.

Lemma E.1 implies that our encoding produces confluent π-calculus processes, as per The-
orem E.8.

In this section, we reuse and extend several results from [35]. For this purpose, we introduce
slightly adapted notions of normal form (Def. E.2) and annotated transition (Def. E.5).

I Definition E.2 (Guarded and normal-form processes). A π-calculus process is guarded iff it is
either an input, output, case, record destructor, or let-binder. A process P is in normal form iff
P = (νx̃) (P1 | . . . | Pm | ∗Q1 | ∗Qn) where P1, . . . , Pm are guarded.

I Proposition E.3 (Existence of normal form). For any process P there is some Q in normal form
such that P ≡ Q.

Proof. See [35, Lemma 4.1.3] and [54, Exercise 1.2.10]. J

I Proposition E.4. For all π-calculus processes P , P ′, Γ ` P and P ≡ P ′ implies Γ ` P ′.

Proof. Standard result (see e.g. [35, Lemma 4.1.1]). J

I Definition E.5 (Annotated transitions). Transition annotations are ranged over by α, β, . . ., and
are defined as:

α, β, . . . ::= x | case | with | let | τ

We define the annotated reduction relation α−→ between π-calculus processes as follows:

(Rπ-ComA) x〈v〉.P | x(y).Q x−→ P |Q{v/y}
(Rπ-CaseA) case lj(v) of {li(xi) . Pi}i∈I

case−−−→ Pj{v/xj} (j ∈ I)
(Rπ-WithA) with [li :xi]i∈I =[li : vi]i∈I doP with−−−→ P{vi/xi}i∈I

(Rπ-Let) letx=v inP let−−→ P{v/x}
(Rπ-ResA1) P

α−→ Q implies (νx)P τ−→ (νx)Q (if α = x)
(Rπ-ResA2) P

α−→ Q implies (νx)P α−→ (νx)Q (if α 6= x)
(Rπ-ParA) P

α−→ Q implies P |R α−→ Q |R
(Rπ-StructA) P ≡ P ′ ∧ P

α−→ Q ∧ Q′ ≡ Q implies P ′
α−→ Q′

I Lemma E.1. If Θ · Γ ` P , then JΘ · Γ ` P K is quasi-linear.

Proof. By easy analysis of Figures 13 and 14. Note that case (b) of Def. C.5 covers the encoding of
(T-Def) (which produces the ](T ′)-typed x in (νx) (∗(x(y).Q) |Q′)) and (T-Call) (which can only
occur within the scope of (T-Def), and produces the only uses of x, as outputs in Q,Q′). J

I Remark E.6. Lemma E.1 implies that the encoded typing derivations for (T-Def) and (T-Call)
in Fig. 13 could have been further strengthened by adopting the specialised types and typing rules for
ω-receptiveness [54, §8.2.2]. However, we preferred to keep the typing rules in Fig. 5 as simple as
possible.

I Corollary E.7. If Θ · Γ ` P , then JΘK, δ(Γ) ` JP Kσ(Γ) is quasi-linear.

Proof. By Lemma E.1, JΘ · Γ ` P K is quasi-linear. By Def. 5.6, we have:

JΘ · Γ ` P K

JΘK, δ(Γ) ` JP Kσ(Γ)
(Tπ-Reify)
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where the conclusion is obtained by replacing all names in dom(JΓK) with labelled tuples of linearly-
typed names, introduced in the typing context by δ(Γ). (as discussed on page 21). Therefore, by
Def. C.5, all names introduced in the conclusion have a quasi-linear type; moreover, the syntactic
structure of JP Kσ(Γ) is the same of JP K: we conclude that JP Kσ(Γ) is quasi-linear, according to
Def. C.5. J

I Theorem E.8 (Encoding is confluent). Whenever JP KΘ·Γσ(Γ)→∗ P1 and JP KΘ·Γσ(Γ)→∗ P2,
then ∃P3 such that P1→∗P3 and P2→∗P3.

Proof. Note that, Cor. E.7, JP Kσ(Γ) is quasi-linear; and by Proposition C.6, all its reducts are
quasi-linear. Letting n be the length of the sequence of reductions in JP KΘ·Γσ(Γ)→∗ P2, we proceed
by induction on n:

base case n = 0. We have P2 = JP KΘ·Γσ(Γ), and we conclude by letting P3 = P1;
inductive case n = n′ + 1. We have JP KΘ·Γσ(Γ)→∗ P∗ → P2, and by the induction hypothesis,
either:

P∗ ≡ P1. We conclude by letting P3 = P2;
∃P ′3 such that P1→∗P ′3 and P∗→∗P ′3. By P∗ → P2 and Cor. C.12, we have either:
∗ P2 →∗ P ′3. We conclude by letting P3 = P ′3;
∗ ∃P ′′3 such that P ′3 →∗ P ′′3 and P2 →∗ P ′′3 . We conclude by letting P3 = P ′′3 .

J

I Definition E.9 (Context narrowing). Γ 6π Γ′ holds iff dom (Γ) = dom (Γ′) and ∀x ∈ dom (Γ),
either: (a) Γ(x) 6π Γ′(x), or (b) Γ(x) = Li(T ) ] Lo(T ) = Γ′(x).

I Definition E.10 (Multi-narrowing). The multi-narrowing typing rule for π-calculus is:

Γ ` P Γ′ 6π Γ
Γ′ ` P

(Tπ-MNarrow)

I Proposition E.11. Rule (Tπ-MNarrow) is sound.

Proof. Assume Γ ` P and Γ′ 6π Γ. We can rewrite the proof of Γ ` P into a proof concluding
Γ′ ` P , noticing that, by Def. E.9, for all x ∈ dom Γ, we have either:

clause (a): Γ′(x) 6π Γ(x). In this case, the proof of Γ ` P can be adapted to use Γ′(x) instead
of Γ(x), by applying of the classical narrowing lemma [54, 7.2.5];
clause (b): Γ(x) = T1 ] T2 = Γ′(x). In this case, the proof proof of Γ ` P can be trivially
adapted to use Γ′(x) instead of Γ(x).

J

IDefinition E.12 (Context subtyping). We define the encoding of an instance of (T-MSub) (Def.B.27)
as:

u

ww
v

(T-MSub)
Θ · ΓS ` P Γ′S 6S ΓS

Θ · Γ′S ` P

}

��
~ =

(Tπ-MNarrow)
JΘ · ΓS ` P K

q
Θ · Γ′S

y
6π JΘ · ΓSK

q
Θ · Γ′S

y
` JP KΘ·ΓS

I Proposition E.13. If Θ · Γ ` P by rule (T-MSub), then JΘ · Γ ` P K holds.

Proof. By induction on the typing derivation of Θ · Γ ` P , noticing that dom (JΘ · ΓK) = dom (JΘ · Γ′K),
and ∀x ∈ dom (JΓK) : JΓK(x) 6π JΓ′K(x) by Def. B.27 and Theorem 6.2. J

I Theorem 6.4 (Precise decomposition). ΓS is consistent if and only if δ(ΓS) is defined.



XX:64 A Linear Decomposition of Multiparty Sessions

Proof. ( =⇒ ). Assume that ΓS is consistent. We proceed by induction on the size of ΓS. In the
base case ΓS = ∅, we simply conclude noticing that δ(ΓS) = ∅. For the inductive case, for some Γ′S
we have ΓS = Γ′S, s[p] :Sp, with δ(Γ′S) defined (by the induction hypothesis), and two possibilities:
6 ∃q 6= p such that s[q] ∈ dom (Γ′S) (i.e., s does not occur in Γ′S). This implies z{s,p,q} 6∈
dom (δ(Γ′S)); therefore, by Def. 5.6, we conclude that δ(ΓS) is defined as:

δ(ΓS) = δ
(
Γ′S
)

C z{s,p,q} :Junf(Sp � q)K = δ
(
Γ′S
)
, z{s,p,q} :Junf(Sp � q)K

∃q 6= p such that s[q] :Sq ∈ Γ′S. This implies Γ′S = Γ′′S , s[q] :Sq. By Def. 2.11, we also have
Sp � q 6P Sq � p, and therefore:

q
Sp � q

y
6π JSq � pK (by Cor.D.3)

unf
(q
Sp � q

y)
6π unf(JSq � pK) (by (S-LµL) and (S-LµR))

This implies that we can have three cases:

unf
(q
Sp � q

y)
= unf(JSq � pK) = •. This implies unf(JSp � qK) = unf(JSq � pK) = •;

unf
(q
Sp � q

y)
= Li(T ) and unf(JSq � pK) = Li(T ′) with T 6π T ′. By Theorem 6.1, this implies

unf(JSp � qK) = Li(T ) = Lo(T );
unf
(q
Sp � q

y)
= Lo(T ) and unf(JSq � pK) = Lo(T ′) with T ′ 6π T . By Theorem 6.1, this

implies unf(JSp � qK) = Lo(T ) = Li(T ).

In all cases, we can verify that unf(JSp � qK) C unf(JSq � pK) is defined, by Def. 4.6. Therefore,
by Def. 5.6, noticing that z{s,q,p} = z{s,p,q} 6∈ dom (δ(Γ′′S )), and that δ(Γ′′S ) is defined (by the
induction hypothesis), we conclude that δ(ΓS) is defined as:

δ(ΓS) = δ
(
Γ′′S
)
, z{s,p,q} :unf(JSp � qK) C unf(JSq � pK)

( ⇐= ). We prove the contrapositive. Assume that δ(ΓS) is not defined. Examining Def. 5.6,
we can see that this can only occur if some application of C is not defined, i.e., there exist some
s[p] :Sp, s[q] :Sq ∈ Γ′S with p 6= q such that unf(JSp � qK) C unf(JSq � pK) (i.e., the type for z{s,p,q}) is
not defined. By Def. 4.6, we can have the following four cases:

unf(JSp � qK) = • and unf(JSq � pK) 6= •;
unf(JSp � qK) 6= • and unf(JSq � pK) = •;
unf(JSp � qK) = Li(T ) and unf(JSq � pK) 6= Lo(T ′) with T ′ 6π T ;
unf(JSp � qK) = Lo(T ) and unf(JSq � pK) 6= Li(T ′) with T 6π T ′.

In all cases, we obtain:

unf(JSp � qK) 66π unf(JSq � pK)

unf
(
JSp � qK

)
66π unf(JSq � pK) (by Lemma 4.2)

unf
(q
Sp � q

y)
66π unf(JSq � pK) (by the contrapositive of Cor.D.3)

q
Sp � q

y
66π JSq � pK (by contrapositive of (S-LµL) and (S-LµR))

Sp � q 66P Sq � p (by the contrapositive of Proposition B.8)

Hence, by Def. 2.11, we conclude that ΓS is not consistent. J

I Proposition E.14. If ΓS 6S Γ′S, then σ(ΓS) = σ(Γ′S).

Proof. Assume ΓS 6S Γ′S. Then:

dom (ΓS) = dom (Γ′S) and ∀s[p] ∈ dom (ΓS) : ΓS(s[p]) 6S Γ′S(s[p]) (by Def. B.27)
s[p] ∈ dom (ΓS) : roles(ΓS(s[p])) = roles(Γ′S(s[p])) (by Proposition B.11)
conn(s,ΓS) = conn(s,Γ′S) (by Def. 5.5)

Therefore, by Def. 5.6, we conclude σ(ΓS) = σ(Γ′S). J
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I Proposition E.15. If Γ ` P , then fn(P ) ⊆ dom (Γ) and ∀x ∈ (dom (Γ) \ fn(P )) : un(Γ(x)).

Proof. By induction on the derivation of Γ ` P . J

I Proposition E.16. If Θ · Γ ` P , then fc(P ) ⊆ dom (Γ) and ∀c ∈ (dom (Γ) \ fc(P )) : Γ(c) = end.

Proof. By induction on the derivation of Θ · Γ ` P . J

I Proposition E.17. If Θ · Γ ` P and Θ′ · Γ′ ` P , then:
1. ∀c ∈ (dom (Γ) ∩ dom (Γ′)) : roles(Γ(c)) = roles(Γ′(c));
2. ∀c ∈ (dom (Γ) \ dom (Γ′)) : roles(Γ(c)) = ∅.
3. ∀c ∈ (dom (Γ′) \ dom (Γ)) : roles(Γ′(c)) = ∅.

Proof. Item 1 is proved by induction on the derivation of Θ · Γ ` P , noticing that Θ,Θ′ are irrelevant
for the statement, while Γ,Γ′ can only differ by adding/removing an instance of rule (T-Sub), so
that Γ(c) 6S Γ′(c) or Γ′(c) 6S Γ(c); in both cases, we conclude by Proposition B.11. Items 2 and 3
are a consequence of Proposition E.16. J

I Proposition 6.5. If Θ · Γ ` P and Θ′ · Γ′ ` P , then JP KΘ·Γ = JP KΘ′·Γ′ .

Proof. By inspecting Fig. 7, we can observe that the only typing information used to generate
JP KΘ·Γ and JP KΘ′·Γ′ is the set of participants involved in each open session (for processes typed by
(T-Brch), (T-Sel), (T-Res)), and this does not change between Γ and Γ′, by Proposition E.17. J

I Proposition E.18. If Θ · Γ ` P , (i) x :T ∈JΘK implies T =](T ′) and (ii) x :T ∈JΓK implies qlin(T ).

Proof. Straightforward by Def. 5.4. J

I Definition E.19 (Guarded and normal-form processes). A multiparty session process is guarded iff
it has the form s[q][p]⊕ 〈l(v)〉.P ′ or s[p][q] &i∈I {li(xi).Pi}. A multiparty session process P is in
normal form iff

P = def D̃ in (νs̃∗)
(
Q1 | . . . |Qm | Y1〈ṽ1〉 | . . . | Ym′〈ṽm′〉

)
where Q1, . . . , Qm are guarded.

I Proposition E.20. If Γ ` P with−−−→ P ′, then Γ ` P ′.

Proof. Standard subject reduction property for π-calculus with linear types (see [54, Theorem
8.1.5]). J

I Proposition E.21. If Θ · Γ ` P ,
(i) x :T ∈JΘK implies T =](T ′) and
(ii) x :T ∈δ(Γ) implies qlin(T ) ∈ {Li(T ′), Lo(T ′), L](T ′)} (for some T ′).

Proof. Straightforward by Proposition E.18 and Def. 5.6. J

I Proposition E.22. If Θ · Γ ` P ≡ P ′, then JP KΘ·Γ ≡ JP ′KΘ·Γ and JP KΘ·Γσ(Γ) ≡ JP ′KΘ·Γσ(Γ).

Proof. We can prove JP KΘ·Γ ≡ JP ′KΘ·Γ by induction on the derivation of P ≡ P ′. Then, the last
part of the statement is straightforward. J

I Lemma E.23. If Θ · Γ ` P :

(Tπ-Reify)
JΘ · Γ ` P K

JΘK, δ(Γ) ` JP Kσ(Γ)
with−−−→∗

P0 → P ∗

implies that ∃x̃, P ′′,Γ′, P ′
such that P∗ →∗ (νx̃)P ′′
and

(Tπ-Reify)q
Θ · Γ′ ` P ′

y

JΘK, δ
(
Γ′
)
`

q
P ′

y
σ
(
Γ′
) with−−−→∗

P ′′

and P → P ′.
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Proof. Assume Θ · Γ ` P . We first collect several facts that we will use in the proof later on. By
structural equivalence [10, Proof of Theorem 1], and by Proposition B.25, we have:

Θ · Γ ` def D̃ in (νs̃∗)(Q1 | . . . |Qm | QY ) ≡ P where D̃ = X1(x̃1) = PX1 , . . . , Xn(x̃1) = PXn
(73)

for some X1, . . . , Xn, PX1 , . . . , PXn , guarded (Def. E.19)Q1, . . . , Qm and QY = Y1〈ṽ1〉 | . . . | Ym′〈ṽm′〉
(74)

From (73), by Proposition E.22 and Def. 5.7, we have:

JP KΘ·Γ ≡ (νJX1K) . . . (νJXnK)J(νs̃∗)K ( JQ1KΘX ·Γ1 | . . . | JQmKΘX ·Γm | JQY KΘX ·ΓY | PX )
(75)

where Γ1 ◦ . . . ◦ Γm ◦ ΓY = Γ and ΘX = Θ, X1 : Ũ1, . . . , Xn : Ũn and ∀i ∈ 1..m′ : Yi ∈ dom (Θ)
(76)

and ΓY = ΓY1 ◦ . . . ◦ ΓYm′
(77)

and where J(νs̃∗)K is a sequence of restrictions yielded by the encoding of (T-Res) (Fig. 14), and

PX = ∗
(
JX1K(z).with (x̃1) =z do JPX1KΘ,X1:Ũ1·x̃1:Ũ1

)
| . . . | ∗

(
JXnK(z).with

(
x̃n
)

=z do JPXnKΘ,X1:Ũ1,...,Xn:Ũn·x̃n:Ũn

)
(78)

i.e., PX is a parallel composition of input-guarded replicated processes, corresponding to the encodings
of PX1 , . . . , PXn .

From (74) and Def. E.19, for all i ∈ 1..m, we have:

for some ci, q, I: Qi = ci[q]&j∈I{lj(xj).Q′′ij} or for some c′i, p: Qi = c′i[p]⊕ 〈l(v)〉.Q′′i
(79)

This implies that for all i ∈ 1..m (to avoid cluttering the notation, in the following we will omit an
i-index on Sc and Sc′ , which will be clear from the context):

ci in (79) must be typed by some branching type Sc = q &j∈Ii ?lj(U ′j).S′j
c′i in (79) must be typed by some selection type Sc′ = p⊕ !l(U ′′).S′′

Moreover, we can assume that ΘX · Γi ` Qi holds by a (possibly vacuous) subtyping on ci or c′i, as
per Proposition B.30:

(T-MSub)
ΘX · Γ�i ` Qi Γi 6S Γ�i

ΘX · Γi ` Qi where (by Def. B.27) dom (Γi) = dom (Γ�i ), and


Γi(ci) 6S Γ�i (ci) = Sc

or
Γi(c′i) 6S Γ�i (c′i) = Sc′

(80)

At this point, we can observe that each with-reduction in JP KΘ·Γσ(Γ) with−−−→∗ P0 can only
be induced by some with-prefix occurring in JQ1KΘX ·Γ1 , . . . , JQmKΘX ·Γm in (75); moreover, since
Q1, . . . , Qm are typed by (T-Brch)/(T-Sel), by examining Fig. 13 we can see that for all i ∈ 1..m,
JQiKΘX ·Γi has exactly one top-level with-prefix, followed by an input/output on a linearly-typed
name.

We will now focus on those i ∈ 1..m where ci and c′i above are channels with roles: omitting
some indexing on i ∈ 1..m, we consider ci = s[p] typed by some Sp (for some s, p) or c′i = s′[q] typed
by some Sq (for some s′, q) (the cases where ci/c′i are session-typed variables are similar). Note that
(80) becomes:

(T-MSub)
ΘX · Γ�i ` Qi Γi 6S Γ�i

ΘX · Γi ` Qi where


Γi(s[p]) 6S Γ�i (s[p]) = Sp

or
Γi(s′[q]) 6S Γ�i (s′[q]) = Sq

(81)
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Summing up, for all i ∈ 1..m where ci, c′i in (79) are channels with roles, we have the following
properties and encodings of Qi (note that (T-MSub) in (80) is encoded as (Tπ-MNarrow), as per
Def. E.12):

for some s, p, q, I, Sp, Qi = s[p][q]&j∈I{lj(xj).Q′′ij} with Γi(s[p]) 6S Sp = q &j∈I ?lj(U ′j).S′j and

JQiKΘX·Γiσ(Γi) =

with [r:zr]r∈Sp
=Js[p]K do zq(y).case y of

lj(zj) .with (xj ,z)=zj do
let Js[p]K=zj in

q
Q′′ij

y
ΘX ·Γ�i {S′j/s[p]},xj :U′j


j∈I

σ(Γi)

where ∀j ∈ I : zj =

{
[q : z, r : zr]r∈S′

j
\q if q ∈ S′j

[r : zr]r∈S′
j

otherwise

or
for some s′, p, q, Sq, Qi = s′[q][p]⊕ 〈li(v)〉.Q′′i with Γi(s′[q]) 6S Sq = p⊕ !l(U ′′).S′′ and
JQiKΘX ·Γiσ(Γi) =

(
with [r : zr]r∈Sq

=Js′[q]K do (νz)zp〈li(JvK, z)〉.let Js′[q]K=z in JQ′′i KΘX ·Γ�i {S′′/s′[q]}\v
)

σ(Γi)

where z =

{
[p : z, r : zr]r∈S′′\p if p ∈ S′′

[r : zr]r∈S′′ otherwise

(82)

By applying the substitutions σ(Γi) in (82), for all i ∈ 1..m we get either (note that Js[p]K and
Js′[q]K are rebound by let):

JQiKΘX ·Γiσ(Γi) =

with [r:zr]r∈Sp
=
[
r:z{s,p,r}

]
r∈Sp

do zq(y).case y of

lj(zj) .with (xj ,z) =zj do let Js[p]K=zj in
(q
Q′′ij

y
ΘX ·Γ�i {S′j/s[p]},xj :U′j

)
(
σ(Γi)\dom (σ(s[p] :Sp))

)

j∈I

or
JQiKΘX ·Γiσ(Γi) =

with [r : zr]r∈Sq
=
[
r : z{s′,q,r}

]
r∈Sq

do (νz)zp〈li(JvK, z)〉.let Js′[q]K=z in
(
JQ′′i KΘX ·Γ�i {S′′/s′[q]}\v

)(
σ(Γi) \ dom (σ(s′[q] :Sq))

)
(83)

Hence, there exist Q′1, . . . , Q′m such that (to save some symbols, we will now redefine zj and z
by taking the corresponding definitions in (82) and applying the substitutions induced by with):

JP KΘ·Γσ(Γ) ≡ (νJX1K) . . . (νJXnK)J(νs̃∗)K ( JQ1KΘX ·Γ1 σ(Γ1) | . . . | JQmKΘX ·Γmσ(Γm) | JQY KΘX ·ΓY σ(ΓY ) | PX )
with−−−→∗ (νJX1K) . . . (νJXnK)J(νs̃∗)K

(
Q′1 | . . . |Q′m | JQY KΘX ·ΓY σ(ΓY ) | PX

)
≡ P0

(84)

where ∀i ∈ 1..m



Q′i = JQiKΘX ·Γiσ(Γi)
or
JQiKΘX ·Γiσ(Γi)

with−−−→ Q′i with JΘXK, δ(Γi) ` Q′i (by Proposition E.20)

where



Q′i = z{s,p,q}(y).case y of
{
lj(zj) .with (xj ,z) =zj do let Js[p]K=zjin

(q
Q′′ij

y
ΘX ·Γ�i {S′j/s[p]},xj :U′j

)
σ(Γi\s[p])

}
j∈I

where ∀j ∈ I : zj =

{
[q : z, r : z{s,p,r}]r∈S′

j
\q if q ∈ S′j[

r : z{s,p,r}
]

r∈S′
j

otherwise

or

Q′i = (νz)z{s′,q,p}〈li(JvK, z)〉.let Js′[q]K=z in
(
JQ′′i KΘX ·Γ�i {S′′/s′[q]}\v

)
σ(Γi\s′[q])

where z =

{
[p : z, r : z{s′,q,r}]r∈S′′\p if p ∈ S′′[
r : z{s′,q,r}

]
r∈S′′

otherwise
(85)
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We can now proceed by cases on α in the annotated reduction P0
α−→ P ∗ (according to Def. E.5):

α ∈ {case, let}. These cases are impossible, and the statement hold vacuously. In fact, these
reductions can only be fired by an occurrence of case or let, and we can verify that such prefixes
do not appear at top-level in Q′1, . . . , Q′m, nor JQY KΘX ·ΓY σ(ΓY ), nor PX . Hence, for all P0 such
that JP KΘ·Γσ(Γ) with−−−→∗ P0, we have P0 6

case−−−→ and P0 6
let−−→;

α = with. We have P0
with−−−→ P∗, and thus JP KΘ·Γσ(Γ) with−−−→∗ P∗: we conclude by letting

x̃ = ∅, P ′′ = P∗, Γ = Γ′, P = P ′;
α = x (for some x). Since by Proposition E.20 we have JΘK, δ(Γ) ` P0, we also know that
x ∈ dom (JΘK, δ(Γ)) (by Proposition E.15). By Proposition E.21 we have two sub-cases:

x :](T ) ∈ JΘK. This case is absurd. In fact, by (76) it would imply x 6= JXjK (for all j ∈ 1..n);
moreover, it would require an unrestricted output on x, which implies x = JYiK for some
i ∈ 1..m′ (by (84), (85), and (74)). Finally, it would imply a synchronisation with a process
guarded by an unrestricted input on JYiK occurring in P0 — which contradicts (84);
x :L](T ) ∈ δ(Γ). We have x :Li(T ) ] Lo(T ) ∈ δ(Γ), and it implies that two processes Q′i, Q′j
(from (84) and (85)) synchronise on some x, performing respectively an input and an output.
Without loss of generality, let i = 1 and j = 2. By Def. 5.6, it means that σ(Γ) replaces some
zs[p] and zs′[q] in JP KΘ·Γ with labelled tuples of channels v1, v2 such that x = v1(q) = v2(p) =
z{s,p,q}, which implies s = s′. Correspondingly, by Def. 5.6, δ(Γ) combines (using C) the the
encodings of two unfolded partial projections, that after being split with ], yield Li(T ) and
Lo(T ) above. More precisely, considering that (by (76)) Γ is split into Γ1 ◦ Γ2 ◦ . . . ◦ Γm ◦ . . .,
we have:

x = σ(Γ)(s[p])(q) = σ(Γ1)(s[p])(q) = σ(Γ)(s[q])(p) = σ(Γ2)(s[q])(p) = z{s,p,q} (by Def. 5.6)
Γ is consistent (by hypothesis)

(86)
Γ1 ◦ Γ2 is consistent (by (86), (76) and Cor. B.17)

(87)
for some s, p, q, Sp, Sq: Γ(s[p]) = Γ1(s[p]) and Γ(s[q]) = Γ2(s[q])

Γ1(s[p]) � q 6P Γ2(s[q]) � p (by (86) and (87))
(88)

unf
(
Γ1(s[p]) � q

)
6P unf(Γ2(s[q]) � p) (by (88) and Proposition B.8)

(89)

Now, the fact that Q′1 performs an input on z{s,p,q} implies that Q1 performs a branching on
s[p][q], which means (by inverting (T-Brch)) that Q1 is typed by some Sp that is a branching
from q, and Γ1(s[p]) 6S Sp. Symmetrically, the fact that Q′2 performs an output on z{s,p,q}
implies that Q2 performs a selection on s[q][p], which means (by inverting (T-Sel)) that Q2

is typed by some Sq that is a selection towards p, and Γ2(s[q]) 6S Sq. From (89), and the
observation that Sp,Sq are respectively a branching and selection type, we have (for some I∗):

unf(Γ1(s[p])) = q &j∈I∗ ?lj(U∗j ).S∗j 6S Sp and unf(Γ2(s[q])) = p⊕j∈I∗ !lj(U∗j ).S∗∗j 6S Sq and ∀j ∈ I∗ : S∗j � q = S∗∗j � p
(90)

Now, we can notice that Sp, Sq,Γ1,Γ2,Γ�1,Γ�2, Q1, Q2 match the corresponding definitions in
Equation (42) on page 44 (in the proof of Theorem 2.16 — subject reduction for multiparty
session typed processes). In the rest of the present proof, we will thus refer to results that
follow Equation (42) (in particular, (43), (44) and (46)) applying them to (85), to study the
synchronisation on x = z{s,p,q} between Q′1 and Q′2.
Let σ(v :U) = ∅ (i.e., the empty substitution) if U = B (otherwise, Def. 5.6 applies). We can
see that the synchronisation on x gives the following reductions, where the linear names given
by the reified instantiation of v is passed from Q′2 to Q′1 (we exploit the fact that U ′′ 6S U

′
k
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by (46), and thus σ(v :U ′k) = σ(v :U ′′) by Proposition E.14):

JΘXK, δ(Γ1) ] δ(Γ2) ` Q′1 |Q′2
x−→

(νz)

 case lk(JvK, z) of
{
lj(zj) .with (xj ,z) =zj do let Js[p]K=zj in

(q
Q′′1j

y
ΘX ·Γ�1

′,s[p]:S′
j
,xj :U′j

)
σ(Γ1\s[p])

}
j∈I

σ(v :U ′k)

| let Js[q]K=z in
(
JQ′′2 KΘX ·Γ�2

′,s[q]:S′′

)(
σ(Γ2\s[q]) \ dom (σ(v :U ′′))

)
 case−−−→ with−−−→

(νz)

 let Js[p]K=zk in
(
JQ′′1kKΘX ·Γ�1

′,s[p]:S′
k
,xk:U′

k

)
σ(Γ1\s[p])σ(v :U ′k){JvK/xk}

| let Js[q]K=z in
(
JQ′′2 KΘX ·Γ�2

′,s[q]:S′′

)
σ(Γ2\s[q]\v)

 let−−→ let−−→

(νz)

 (
JQ′′1kKΘX ·Γ�1

′,s[p]:S′
k
,xk:U′

k
{JvK/xk}

)
σ(Γ1\s[p])σ(v :U ′k){zk/Js[p]K}

|
(
JQ′′2 KΘX ·Γ�2

′,s[q]:S′′

)
σ(Γ2\s[q]\v){z/Js[q]K}


(91)

Now, notice that, from Equation (85), we have:

zk =

{
[q : z, r : z{s,p,r}]r∈S′

k
\q if q ∈ S′k[

r : z{s,p,r}
]

r∈S′
k

otherwise z =

{
[p : z, r : z{s,q,r}]r∈S′′\p if p ∈ S′′[
q : z{s,q,r}

]
q∈S′′

otherwise

(92)

If we replace z with z{s,p,q} in (92), from (45), (47) and Proposition E.14 we observe that:

σ(Γ1\s[p])σ
(
v :U ′k

){
zk {z{s,p,q}/z}/Js[p]K

}
= σ

(
Γ1
{
S′
k/s[p]

})
σ
(
v :U ′k

)
= σ

(
Γ�1
′ ◦ Γv, s[p] :S′k

)
= σ

(
Γ′1
)

(93)

σ(Γ2\s[q]\v)
{
z{z{s,p,q}/z}/Js[q]K

}
= σ

(
Γ2
{
S′′/s[q]

}
\v
)

= σ
(
Γ�2
′
, s[q] :S′′

)
= σ

(
Γ′2
)
(94)

Moreover, by applying the substitutions in the processes in (91), by (47) and (55) we get:

q
Q′′1k

y
ΘX ·Γ�1

′,s[p]:S′
k
,xk:U′

k
{JvK/xk} =

q
Q′′1k{v/xk}

y
ΘX ·Γ′1

q
Q′′2

y
ΘX ·Γ�2

′,s[q]:S′′ =
q
Q′′2

y
ΘX ·Γ′2
(95)

Now, by α-renaming (νz) into (νz{s,p,q}) in (91), and applying (93), (94) and (95), we get:

JΘXK, δ(Γ1) ] δ(Γ2) ` Q′1 |Q′2 →∗ (νz{s,p,q})
(q
Q′′1k{v/xk}

y
ΘX ·Γ′1

σ
(
Γ′1
)
|

q
Q′′2

y
ΘX ·Γ′2

σ
(
Γ′2
))

(96)

= (νz{s,p,q})
(q
Q′′1k{v/xk} | Q′′2

y
ΘX ·Γ′1◦Γ

′
2

)
(97)

Now, from the reductions in (91), and by (96) and (84), we get:

P0 →∗

(νJX1K) . . . (νJXnK)J(νs̃∗)K
(

(νz{s,p,q})
(q
Q′′1k{v/xk}

y
ΘX ·Γ′1

σ
(
Γ′1
)
|

q
Q′′2

y
ΘX ·Γ′2

σ
(
Γ′2
))
| Q′3 | . . . |Q′m | JQY KΘX ·ΓY σ(ΓY ) | PX

)
(98)

Hence, if we let:

P ′′ = (νJX1K) . . . (νJXnK)J(νs̃∗)K
( q

Q′′1k{v/xk}
y

ΘX ·Γ′1
σ
(
Γ′1
)
|

q
Q′′2

y
ΘX ·Γ′2

σ
(
Γ′2
)
| Q′3 | . . . |Q′m | JQY KΘX ·ΓY σ(ΓY ) | PX

)
(99)

we obtain:

P0 →∗ (νz{s,p,q})P ′′ (by (99) and (98))
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Furthermore, notice that:

Γ1 ◦ Γ2 ` Q1 | Q2 → Γ′1 ◦ Γ′2 ` Q′′1k{v/xk} | Q′′2 (from (97))
(100)

Θ · Γ ` P → Θ · Γ′1 ◦ Γ′2 ◦ Γ3 ◦ . . . ◦ Γm ` def D̃ in (νs̃∗)
(
Q′′1k{v/xk} | Q′′2 | Q3 | . . . | QY

)
(from (73), (76) and (100))

(101)

Hence, if we let:

Γ′ = Γ′1 ◦ Γ′2 ◦ Γ3 ◦ . . . ◦ Γm and P ′ = def D̃ in (νs̃∗)
(
Q′′1k{v/xk} | Q′′2 | Q3 | . . . | QY

)
(102)

we obtain:

(Tπ-Reify)
q
Θ · Γ′ ` P ′

y

JΘK, δ
(
Γ′
)
`

q
P ′

y
σ
(
Γ′
) with−−−→∗ P ′′ (by (84), (85) and (99))

Summing up, we prove the statement by taking:
∗ x̃ = z{s,p,q};
∗ P ′′ as defined in (99);
∗ Γ′ as defined in (102);
∗ P ′ as defined in (102);

α = τ . By Def. E.5, this reduction can only be induced by a synchronisation on some delimited
name x. By (75), we have two cases:

x is delimited in J(νs̃∗)K. Therefore, there is some s ∈ s̃∗ whose encoding yields a delimitation
for x. In this case, after opening (νs) by inverting (T-Res), we fall back into a case similar to
that for α = x and x :L](T ) ∈ δ(Γ) above: we get an encoded π-calculus typing derivation
where x is linearly-typed, and corresponds to a reduction between some s[p][q]/s[q][p]. We
prove this case as above, and conclude by re-applying the delimitation (νs), and taking:
∗ x̃ = z{s,p,q};
∗ P ′′ as in (99);
∗ Γ′ = Γ (since the reduction occurs on a delimited session s);
∗ P ′ as in (102);
x is delimited in (νJX1K) . . . (νJXnK), yielded by the encodings of def X1(x̃1) = PX1 in . . .def Xn(x̃1) = PXn in . . .
in (73), and thus by the encoding of (T-Def) in Fig.13. Without loss of generality, let x = JX1K
(otherwise, the proof is similar). If we open the delimitation (νJX1K) by looking at the premise
of (Tπ-Res1) in the encoded derivation, we can see that x = JX1K has an unrestricted type
]
(r
Ũ1

z)
, and is used for input by a replicated process in PX , as shown in (78); therefore, the

τ -reduction under analysis is induced by a synchronisation on x with another process that
uses x :]

(r
Ũ1

z)
for output. By examining Fig. 13, we can see that such a process can only

be produced by the encoding of (T-Call): this implies that QY in (73) and (74) contains a
process X1〈ṽ1〉, whose arguments are typed as Ũ1. Without loss of generality, let Y1 = X1 in
(74), which implies:

ΓY1 = ΓX1 ` ṽ1 : Ũ1 (by (75), (77) and inversion of (T-Call)) (103)

Applying these findings in (84), we obtain:

JP KΘ·Γσ(Γ) with−−−→∗ (104)

P0 ≡ (νJX1K) . . . (νJXnK)J(νs̃∗)K
(
Q′1 | . . . |Q′m | JX1〈ṽ1〉KΘX ·ΓX1

σ(ΓX1 ) | JQY ′KΘX ·ΓY ′σ(ΓY ′) | PX
)

(105)
where QY ′ = Y2〈ṽ2〉 | . . . | Ym′〈ṽm′〉 and ΓY ′ = ΓY2 ◦ . . . ◦ ΓY ′m
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Now, letting P0 synchronise, we get:

P0
τ−→ (νJX1K) . . . (νJXnK)J(νs̃∗)K

(
Q′1 | . . . |Q′m |

(
with (x̃1) = J̃v1K do JPX1KΘ,X1:Ũ1·x̃1:Ũ1

)
σ(ΓX1 ) | JQY ′KΘX ·ΓY ′σ(ΓY ′) | PX

)
with−−−→

(νJX1K) . . . (νJXnK)J(νs̃∗)K
(
Q′1 | . . . |Q′m |

(
JPX1KΘ,X1:Ũ1·x̃1:Ũ1

)
σ(ΓX1 )

{
J̃v1K/x̃1

}
| JQY ′KΘX ·ΓY ′σ(ΓY ′) | PX

)
=

(νJX1K) . . . (νJXnK)J(νs̃∗)K
(
Q′1 | . . . |Q′m |

(s
PX1

{
ṽ1/x̃1

}{

Θ,X1:Ũ1·ΓX1

)
σ(ΓX1 ) | JQY ′KΘX ·ΓY ′σ(ΓY ′) | PX

)
(by (103)+Lemma B.26)

= P ′′

Now, from (73), and from the proof of Theorem 2.16 (case (R-Call)) we have:

Θ · Γ ` P → Θ · Γ′ ` P ′ = def D̃ in (νs̃∗)
(
PX1

{
x̃1/ṽ1

}
| . . . |Qm | QY ′

)
with Γ′ = Γ

(Tπ-Reify)
q
Θ · Γ′ ` P ′

y

JΘK, δ
(
Γ′
)
`

q
P ′

y
σ
(
Γ′
) with−−−→∗ P ′′ (106)

Hence, we conclude by taking:
∗ x̃ = ∅;
∗ P ′′ as above;
∗ Γ′ = Γ
∗ P ′ as in (106).

J

I Lemma E.24 (Operational soundness of encoding). If Θ · Γ ` P :

(Tπ-Reify)
JΘ · Γ ` P K

JΘK, δ(Γ) ` JP Kσ(Γ)
→∗ P ∗

implies that ∃x̃, P ′′,Γ′, P ′
such that P∗ →∗ (νx̃)P ′′ and

(Tπ-Reify)q
Θ · Γ′ ` P ′

y

JΘK, δ
(
Γ′
)
`

q
P ′

y
σ
(
Γ′
) with−−−→∗ P ′′

and Θ · Γ ` P →∗ P ′.

Proof. Let m be the length of the sequence of reductions JΘK, δ(Γ) ` JP Kσ(Γ) →∗ P∗. We proceed
by induction on m:

base case m = 0. We have Γ∗ = JΘK, δ(Γ) and P∗ = JP Kσ(Γ). We conclude by letting x̃ = ∅,
P ′′ = P∗, Γ′ = Γ, and P ′ = P ;
inductive case m = m′ + 1. Take P ′∗ such that:

JΘK, δ(Γ) ` JP Kσ(Γ)
m′ times︷ ︸︸ ︷
→ · · · → P ′∗ → P∗ (107)

By the induction hypothesis, ∃x̃�, P ′′� ,Γ�, P�, n� such that:

Θ · Γ ` P →∗ Θ · Γ� ` P� and P ′∗ →∗ (νx̃�)P ′′� and
(Tπ-Reify)

JΘ · Γ� ` P�K
JΘK, δ(Γ�) ` JP�Kσ(Γ�)

with−−−→∗ P ′′�

(108)

By Proposition C.6, P ′∗ is quasi-linear. Therefore, from (107) and (108), by Cor. C.12, we have
either:

P∗ →∗ P ′′� . In this case, we conclude by letting x̃ = x̃�, P ′′ = P ′′� , Γ′ = Γ�, and P ′ = P�;
∃P ′′∗ such that P∗ →∗ P ′′∗ , and (νx̃�)P ′′� → P ′′∗ . In this case, the latter transition implies
P ′′∗ ≡ (νx̃�)P ′′∗∗ (for some P ′′∗∗), and (by inverting rule (Rπ-Res) once per element of x̃�)
P ′′� → P ′′∗∗. Therefore, by (108) and Lemma E.23, we know that ∃x̃∗∗, P ′′,Γ′, P ′ such that
Θ · Γ� ` P� →∗ Θ · Γ′ ` P ′, and:

P ′′∗∗ →∗ (νx̃∗∗)P ′′ and
(Tπ-Reify)

q
Θ · Γ′ ` P ′

y

JΘK, δ
(
Γ′
)
`

q
P ′

y
σ
(
Γ′
) with−−−→∗ P ′′
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Therefore, by letting x̃ = x̃� x̃∗∗, we conclude Θ · Γ ` P →∗ Θ · Γ′ ` P ′, and:

P∗ →∗ (νx̃)P ′′ and
(Tπ-Reify)

q
Θ · Γ′ ` P ′

y

JΘK, δ
(
Γ′
)
`

q
P ′

y
σ
(
Γ′
) with−−−→∗ P ′′

J

I Lemma E.25. Θ · Γ ` P → P ′ implies that ∃Γ′, x̃, P ′′ such that:

(Tπ-Reify)
JΘ · Γ ` P K

JΘK, δ(Γ) ` JP Kσ(Γ) →∗ (νx̃)P ′′ and
(Tπ-Reify)

q
Θ · Γ′ ` P ′

y

JΘK, δ
(
Γ′
)
`

q
P ′

y
σ
(
Γ′
)

= P ′′

Proof. By induction on the derivation of P → P ′. In the base cases (R-Comm) and (R-Call), the
shape of Γ′ can be determined from the proof of Theorem 2.16 (page 44), and correspondingly, x̃
and P ′′ can be determined from a simplification of the proof of Lemma E.23, by simplifying (73)
so that it only contains the processes under study (without other with−−−→∗-reducing processes). The
inductive cases follow by the induction hypothesis. J

I Lemma E.26 (Operational completeness of encoding). Θ · Γ ` P →∗ P ′ implies that ∃Γ′, x̃, P ′′
such that:

(Tπ-Reify)
JΘ · Γ ` P K

JΘK, δ(Γ) ` JP Kσ(Γ) →∗ (νx̃)P ′′ and
(Tπ-Reify)

q
Θ · Γ′ ` P ′

y

JΘK, δ
(
Γ′
)
`

q
P ′

y
σ
(
Γ′
)

= P ′′

Proof. Let m be the length of the sequence of reductions in Θ · Γ ` P →∗ P ′. We prove a slightly
stronger statement with the additional clause: “∃n such that (νx̃) = (νx1) . . . (νxn)”. We proceed
by induction on m:

base case m = 0. We trivially conclude by letting Γ′ = Γ, P ′ = P , and n = 0;
inductive case m = m′ + 1. Take Γ∗,Θ∗, P∗ such that:

Θ · Γ ` P
m′ times︷ ︸︸ ︷
→ · · · → Θ · Γ∗ ` P∗ → Θ · Γ′ ` P ′

By the induction hypothesis, for some n∗ we have:

(Tπ-Reify)
JΘ · Γ ` P K

JΘK, δ(Γ) ` JP Kσ(Γ) →∗
JΘ · Γ∗ ` P∗K

JΘK, δ(Γ∗) ` JP∗Kσ(Γ∗)
(Tπ-Reify)

Γ′′∗ ` (νx′1) . . . (νx′n∗)JP∗Kσ(Γ∗)
(Tπ-Res)×n∗

(109)

Moreorer, from Θ · Γ∗ ` P∗ → Θ · Γ′ ` P ′, by Lemma E.25 we get (for some n∗∗):

(Tπ-Reify)
JΘ · Γ∗ ` P∗K

JΘK, δ(Γ∗) ` JP∗Kσ(Γ∗) →∗

q
Θ · Γ′ ` P ′

y

JΘK, δ
(
Γ′
)
`

q
P ′

y
σ
(
Γ′
) (Tπ-Reify)

Γ′′′ ` (νx′′1 ) . . . (νx′′n∗∗)
q
P ′

y
σ
(
Γ′
) (Tπ-Res)×n∗∗

(110)

Note that each transition in (110) is preserved when fired inside the n∗ delimitations taken from
(109), via n∗ applications of rule (Rπ-Res). Therefore, letting n = n∗+n∗∗, xi = x′i (∀i ∈ 1..n∗)
and xj+n∗ = x′′j (∀j ∈ 1..n∗∗), we conclude:

(Tπ-Reify)
JΘ · Γ ` P K

JΘK, δ(Γ) ` JP Kσ(Γ) →∗

q
Θ · Γ′ ` P ′

y

JΘK, δ
(
Γ′
)
`

q
P ′

y
σ
(
Γ′
) (Tπ-Reify)

Γ′′ ` (νx1) . . . (νxn)
q
P ′

y
σ
(
Γ′
) (Tπ-Res)×n
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J

Items (1) and (2) of Theorem E.27 below use σ(Γ) to allow reductions of encoded open channels
with roles (cf. Ex. 5.8). Note that when we write JP ′KΘ·Γ′ , we imply Θ · Γ′ ` P ′ (cf. Def. 5.7).

I Theorem E.27 (Open operational correspondence). If Θ · Γ ` P and fv(P ) = ∅:
1. (Completeness) P →∗ P ′ implies ∃Γ′, x̃, P ′′ such that JP KΘ·Γσ(Γ) →∗ (νx̃)P ′′ and P ′′ =

JP ′KΘ·Γ′σ(Γ′);

2. (Soundness) JP KΘ·Γσ(Γ)→∗P∗ implies ∃x̃, P ′′,Γ′, P ′ :P∗→∗ (νx̃)P ′′ , P→∗P ′ and JP ′KΘ·Γ′σ(Γ′) with−−−→∗
P ′′.

I Theorem E.27 (Open operational correspondence). If Θ · Γ ` P and fv(P ) = ∅:
1. (Completeness) P →∗ P ′ implies ∃Γ′, x̃, P ′′ such that JP KΘ·Γσ(Γ) →∗ (νx̃)P ′′ and P ′′ =

JP ′KΘ·Γ′σ(Γ′);

2. (Soundness) JP KΘ·Γσ(Γ)→∗P∗ implies ∃x̃, P ′′,Γ′, P ′ :P∗→∗ (νx̃)P ′′ , P→∗P ′ and JP ′KΘ·Γ′σ(Γ′) with−−−→∗
P ′′.

Proof. We prove the following equivalent formulation of the statement:
1. (Completeness) Θ · Γ ` P →∗ P ′ implies that ∃Γ′, x̃, P ′′ such that:

(Tπ-Reify)
JΘ · Γ ` P K

JΘK, δ(Γ) ` JP Kσ(Γ) →∗ (νx̃)P ′′ and
(Tπ-Reify)

q
Θ · Γ′ ` P ′

y

JΘK, δ
(
Γ′
)
`

q
P ′

y
σ
(
Γ′
)

= P ′′

2. (Soundness) If Θ · Γ ` P :
(Tπ-Reify)

JΘ · Γ ` P K

JΘK, δ(Γ) ` JP Kσ(Γ)
→∗ P ∗

implies that ∃x̃, P ′′,Γ′, P ′
such that P∗ →∗ (νx̃)P ′′ and

(Tπ-Reify)q
Θ · Γ′ ` P ′

y

JΘK, δ
(
Γ′
)
`

q
P ′

y
σ
(
Γ′
) with−−−→∗ P ′′

and Θ · Γ ` P →∗ P ′.
Item 1 holds by Lemma E.26. Item 2 holds by Lemma E.24. J

I Theorem 6.6 (Operational correspondence). If ∅ ·∅ ` P , then:
1. (Completeness) P→∗P ′ implies ∃x̃, P ′′ such that JP K→∗ (νx̃)P ′′ and P ′′ = JP ′K;

2. (Soundness) JP K→∗P∗ implies ∃x̃,P ′′,P ′ s.t. P∗→∗(νx̃)P ′′, P→∗P ′ and JP ′K with−−−→∗P ′′.

Proof. Direct consequence of Theorem E.27, noticing that σ(∅) is vacuous. J
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