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Global photosynthesis is increasing with elevated atmospheric
CO2 concentrations, a response known as the CO2 fertilization
effect (CFE), but the key processes of CFE are not constrained and
therefore remain uncertain. Here, we quantify CFE by combining
observations from a globally distributed network of eddy covari-
ance measurements with an analytical framework based on three
well-established photosynthetic optimization theories. We report
a strong enhancement of photosynthesis across the observational
network (9.1 gC m22 year22) and show that the CFE is responsible
for 44% of the gross primary production (GPP) enhancement since
the 2000s, with additional contributions primarily from warming
(28%). Soil moisture and specific humidity are the two largest con-
tributors to GPP interannual variation through their influences on
plant hydraulics. Applying our framework to satellite observations
and meteorological reanalysis data, we diagnose a global CO2-
induced GPP trend of 4.4 gC m22 year22, which is at least one-third
stronger than the median trends of 13 dynamic global vegetation
models and eight satellite-derived GPP products, mainly because
of their differences in the magnitude of CFE in evergreen broad-
leaf forests. These results highlight the critical role that CFE has
played in the global carbon cycle in recent decades.

CO2 fertilization effect j photosynthesis j GPP j optimization theory j
carbon and water coupling

Vegetation photosynthesis is responsible for the largest flux
of carbon from the atmosphere into the biosphere (1).

Both theory and experimental observations show that the
resulting gross primary production (GPP) increases with rising
atmospheric CO2, a process known as the CO2 fertilization
effect (CFE) (2–8). The CFE plays a strong role in offsetting
anthropogenic emissions by directly increasing the terrestrial
carbon assimilation rate. It affects both the global carbon (6)
and water budgets (9), which leads to changes in temperature
and precipitation, and indirectly affects climate change through
vegetation–climate feedbacks (10) by increasing plant growth
(11). Understanding the CFE is thus critical to understanding
the evolution of Earth’s climate.

Despite the importance of global photosynthesis, however,
there are few long-term records of observationally inferred
GPP in natural environments. This leads to large uncertainty in
the magnitude of photosynthetic change over time and the
CFE (4, 12–14). Eddy covariance (EC), a measurement of gas
exchange deployed at hundreds of ecosystems worldwide, pro-
vides estimates of photosynthesis that could contain informa-
tion on the CFE (14). Estimating CFE from such observations
is challenging, however, because of the large confounding
effects from climatic variability of natural environments and the
short duration of measurements at many sites. Studies that have
attempted to isolate the CFE from carbon fluxes have been lim-
ited either to simple statistical approaches that preclude causative
attribution (15, 16) or to process-based approaches that, despite
capturing the sign of responses, report widely varying sensitivities
(17, 18). This uncertainty has led to debate regarding the magni-
tude of the CFE, as evidenced by the large spread between

satellite- and Earth system model (ESM)–based CFE estimates
(19–23). Indeed, because of the lack of observational evidence at
the ecosystem scale, many GPP products based on satellite-
derived metrics do not explicitly account for CFE (20, 24, 25),
while current representations of CFE also vary markedly among
ESMs (26–28).

Here, we leverage globally distributed EC observations and rean-
alysis data to detect and attribute CFE using an eco-evolutionary
optimality (EEO) framework. This framework reconciles three well-
established optimization theories in combination with Fick’s law and
the Farquhar-von Caemmerer-Berry (FvCB) photosynthesis model
(29), constraining photosynthesis and key intermediate variables,
namely stomatal conductance (g) (30, 31), intercellular leaf CO2

concentration (ci) (32, 33), and photosynthetic capacity (34–38)
(see Materials and Methods for general descriptions and SI
Appendix for derivations). The framework can analytically diag-
nose GPP and its sensitivity to seven measurable variables, namely
atmospheric CO2 concentration (ca), leaf area index (LAI), air
temperature (Ta), volumetric soil water content (SWC), specific
humidity (qa), incident shortwave radiation (SWin), and surface
pressure (P), without the need to prescribe biome-specific photo-
synthetic properties (35). Our results show an overall increase in
photosynthesis at measurement sites worldwide and attribute a
large proportion of the increase to the effect of rising CO2.

Significance

The magnitude of the CO2 fertilization effect on terrestrial
photosynthesis is uncertain because it is not directly
observed and is subject to confounding effects of climatic
variability. We apply three well-established eco-evolutionary
optimality theories of gas exchange and photosynthesis,
constraining the main processes of CO2 fertilization using
measurable variables. Using this framework, we provide
robust observationally inferred evidence that a strong CO2

fertilization effect is detectable in globally distributed eddy
covariance networks. Applying our method to upscale pho-
tosynthesis globally, we find that the magnitude of the CO2

fertilization effect is comparable to its in situ counterpart
but highlight the potential for substantial underestimation
of this effect in tropical forests for many reflectance-based
satellite photosynthesis products.
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Strong CO2-Induced Increase in Site-Scale Photosynthesis. Three
metrics are used to quantify and assess the response of GPP
to CO2.

• βCO2 (gC m�2 year�1 ppmv�1) is the partial differential sensi-
tivity of GPP to CO2 for given environmental conditions (i.e.,
∂GPP
∂ca in Eq. 1). It is directly diagnosed by the EEO framework,
which decouples the confounding effects on GPP from other
environmental conditions.

• βlnapp is a dimensionless, apparent logarithmic GPP response
ratio to CO2 following Ref. 8 for comparison with other stud-
ies (Eq. 3). Changes in GPP include both CO2 and non-CO2

effects.
• βlndir is a dimensionless, direct logarithmic GPP response ratio

to CO2, which means changes in GPP include CO2 effects
only. Confounding effects are neglected or analytically
decoupled through ideal experimental manipulations such as
free-air CO2 enrichment (FACE) experiments or partial
derivative approaches. It shares the same equation as βlnapp,
and is only used for comparison with other studies.

We find a strong increasing trend of GPP measured across
632 site-years of observations in the EC network of 9.1 gC m�2

year�2 between 2001 and 2014 [interquartile range (IQR) ∈
[8.5, 11.5], P < 0.01, βlnapp = 1.24]. This EC-inferred trend is cap-
tured by our EEO framework (8.3 gC m�2 year�2, IQR ∈ [7.0,
9.4], P < 0.01, βlnapp = 1.12) (Figs. 1A and 2A). Both βlnapp values
are relatively high compared with expectations from measured
direct responses to CO2 (i.e., βlndir) but are similar to several
published indirect apparent GPP proxies (8): carbonyl sulfide
records (βlnapp = 0.95) (39), ice-core measurements of atmo-
spheric O2 isotopes (βlnapp = 1.3) (40), and satellite monitoring
of water-use efficiency (βlnapp = 1.1) (41). Since βlnapp is derived
from natural environments and influenced by CO2 and climate
variability, it differs from the direct βlndir discussed later. The
detected overall trends are robust to the uncertainty caused by
filtering of low-quality data, and the uneven distribution of sites
and site-years (SI Appendix, Fig. S2). Variations in the
EC-inferred GPP due to partitioning methods and friction
velocity filtering methods have a minimal effect on the EEO-
inferred GPP (shaded area in Fig. 1A), where the former is
used to calibrate the canopy upscaling of the latter. In general,
the EEO-inferred GPP reproduces the interannual variability
(IAV) of the EC-inferred GPP (Pearson’s r = 0.91) (Fig. 1A; SI
Appendix, Fig. S1). The high level of agreement from annual
(Fig. 1B) to monthly (SI Appendix, Fig. S3) scales supports the
use of the EEO framework for attribution analysis.

To quantify the GPP trends contributed by different factors,
we use the EEO framework to perform a univariate sensitivity
analysis (SI Appendix, Fig. S4). The aggregated trend from indi-
vidual factors (10.3 gC m�2 year�2, IQR ∈ [7.7, 11.0]) is similar
to the EEO-inferred and EC-inferred trends (Fig. 2A). We find
a strong direct contribution from ca at the site level, which
accounts for 44% (4.5 gC m�2 year�2, P < 0.001) of the aggre-
gated GPP trend (Fig. 2A). We also diagnosed another overall
CO2-induced GPP trend using the partial differential approach
(4.9 gC m�2 year�2, the first term on the right-hand side of
Eq. 1), resulting in a small difference (0.4 gC m�2 year�2) com-
pared with the univariate analysis. We then convert the esti-
mate from the univariate analysis, which corresponds to a direct
response ratio (βlndir) of 0.61 for GPP to CO2. This βlndir is lower
than those light-saturated leaf-level analyses in FACE experi-
ments (βlndir = 0.79) (4, 8) and those using deuterium isotopom-
ers (βlndir = 1.0) (8, 42) but is comparable to a theoretical βlndir of
0.6 in Ref. 8 that considers canopy radiative transfer, suggesting
a coexisting of light-saturated and light-limited photosynthesis
over our study sites. CFE is stronger under light-saturated con-
ditions but is present regardless of light conditions (27, 28). An
increase in ca eventually elevates leaf ci through optimization
(SI Appendix, Eq. S16), which in the FvCB scheme leads to
higher light use efficiency and carbon assimilation rates (7, 32).

In addition to ca, Ta plays the second most important role,
accounting for 28% (2.9 gC m�2 year�2, P < 0.05) of the aggre-
gated trend (Fig. 2A), mainly because of the effect of warming
on photosynthetic capacity, i.e., the maximum rate of Rubisco
activity, Vcmax, and the maximum rate of electron transport,
Jmax (Fig. 2C) (38). Although increasing temperature negatively
affects GPP through, for example, vapor pressure deficit
(VPD) and some biochemical reaction pathways (Fig. 2C),
these negative effects are weaker than the positive effects of
temperature (Fig. 2 A and B). SWC and specific humidity, as
proxies for plant water supply and atmospheric water demand,
together contribute 14% of the aggregated trend (0.91 and
0.50 gC m�2 year�2, P > 0.05) but are statistically insignificant.
These two factors (i.e., SWC and qa), however, are the largest
contributors to GPP IAV, and their contributions (median values
are 48 and 33 gC m�2 year�1, respectively; Fig. 2B) are an order
of magnitude larger than those of the GPP trends (Fig. 2A).
These results are consistent with previous data and ESM-driven
studies on plant responses to water (43–47) and are further sup-
ported by observations that GPP anomalies are regulated by sto-
matal conductance and leaf ci, as plants attempt to maximize their
efficiency of carbon gain per unit water loss (30, 32, 48, 49).

A B

Fig. 1. The EEO-inferred GPP reproduces the trend and IAV of site-scale EC-inferred GPP. (A) Trends and interannual variations. GPP anomaly is defined
as the deviation from climatological mean during the study period, further averaged across all 68 sites (see anomalies for individual sites in SI Appendix,
Fig. S1). Blue numbers indicate the number of sites with available GPP. The shaded area represents the range of variation due to partitioning and friction
velocity filtering methods in EC-inferred GPP (gray), and their corresponding variability propagated to the EEO-inferred GPP through canopy upscaling
calibration (light red). Solid lines are the ensemble mean of EC-inferred GPP based on the above methods (black) and the resulting EEO-inferred GPP
(red). (B) Scatter plot of EEO-inferred and EC-inferred GPP. Dashed lines indicate best-fit lines.
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Other factors, such as long-term changes in LAI and radia-
tion, could also lead to changes in GPP across the EC network.
However, we find a small and statistically insignificant trend in
GPP due to increased LAI (0.88 gC m�2 year�2; Fig. 2A),
which is consistent with a previous study that solely considered
the response of GPP to changes in LAI (50). This small LAI-
induced trend in GPP is comparable to the LAI trend, both of
which are on the order of & year�1 (51), although our frame-
work diagnoses a large underlying sensitivity of GPP to LAI
(mean ∂GPP

∂LAI = 119, intersite SD = 178, unit: gC m�2 year�1). In
addition, light saturation in canopy radiative transfer (52) may
lead to a low LAI-induced GPP trend as leaf area increases do
not effectively translate to increases in the fraction of absorbed
photosynthetically active radiation at high LAI (3, 20). For the
changes in incoming shortwave radiation, their contribution to
the aggregated GPP is also small (0.43 gC m�2 year�2; Fig. 2A)
since there is no large trend in radiation over the study sites at
the annual scale. Therefore, we conclude that neither changes
in LAI nor radiation significantly contribute to the observed
upward trend in GPP. The effect of changes in surface pressure
is also negligible (Fig. 2 A and B).

Effects of CO2 Fertilization at the Global Scale. To examine global
CFE patterns, we apply our framework to Moderate Resolution
Imaging Spectroradiometer (MODIS) LAI and European
Centre for Medium-Range Weather Forecasts Reanalysis Ver-
sion 5 – Land data (hereafter, ERA5-land). Here, our EEO
framework is calibrated by the ensemble mean of all eight
satellite-derived GPP products. We then assess both the GPP
trend directly estimated by the EEO framework and the under-
lying differential sensitivities, which themselves can be used to
reconstruct a composite trend estimate (Eq. 1). The two
approaches show almost identical apparent GPP trends of
about 4.7% decade�1 (P < 0.001) relative to their mean GPP
throughout 2001 and 2016 (A0 and A1 in Fig. 3A). The result-
ing CO2-induced GPP trend is about 4.1% decade�1 (4.4 gC
m�2 year�2, P < 0.001) (A2 in Fig. 3A; SI Appendix, Fig. S5).
We note that the fractional contribution of ca to the apparent
GPP trend at the global-scale analysis may be uncertain, and
we do not report it because of the uncertainties in apparent
GPP trend caused by the uncertain trends in climate forcings.
However, estimates of the CO2-induced GPP trends (A2 in Fig.
3, calculated as the product of βCO2 and Δca) are independent
of the uncertainties in the climate forcing trends because of the
nature of our partial differential approach: 1) The spatial varia-
tion of βCO2 is rational because the climate forcings well cap-
ture their spatial variations at the global scale (53–55), and 2)
Δca is derived from the National Oceanic and Atmospheric
Administration (NOAA)’s observations with high confidence.
As a result, after excluding the spatial heterogeneity introduced
by LAI and canopy structure, we show a good agreement when
comparing the leaf-level CO2-induced GPP trend at the global-
scale analysis with their EC site counterparts (r = 0.88; SI
Appendix, Fig. S6A).

We compare our CO2-induced GPP trends (A2 in Fig. 3)
with simulations from 13 dynamic global vegetation models
(DGVMs) and eight satellite-derived GPP products during
their overlap period (2001 to 2016). Our estimates are at the
upper end of their trend distribution, at least one-third stronger
than their median (Fig. 3A). The lower GPP trends in the
median of DGVMs (B1) and satellite-derived products (C1) is
likely due to their smaller CFE in evergreen broadleaf forests
(EBFs) (Fig. 3B). Our EEO framework suggests similar relative
GPP trends caused by CO2 among all C3 species (including
EBFs), ranging from 4.3 to 5.1% decade�1 (A2 in Fig. 3B). We
further replace the ensemble mean of all satellite-derived GPP
with each individual product to calibrate the EEO framework,
finding a small spread in the diagnosed CO2-induced relative

B

C

A

Fig. 2. GPP trend and IAV are dominated by different factors at site-
scale. (A) Probability density of GPP trends by 50% resampling of site-
years for each site for 200,000 times (see illustration in SI Appendix,
Fig. S3D). Attribution of GPP trends is computed by univariate sensitivity
analysis. The other variables are kept as the climatological mean of their
study period. Blue * and × indicate statistically significant (P < 0.05) and
insignificant trends in the estimated GPP, respectively. The hollow circles,
thick black vertical lines, and gray horizontal lines are the median, IQR,
and mean of trends. “EC-inferred”: GPP trends estimated from the EC net-
work. “EEO-inferred”: GPP trends directly estimated by the EEO frame-
work. “Aggregated”: sum of GPP trends for each factor from the sensitiv-
ity analysis. (B) GPP IAV is proxied by the product of partial derivatives of
GPP to control factors and IAVs of control factors. Partial derivatives are
diagnosed using climatological means of the control factors and IAVs are
defined as 1 SD of the data with long-term trends removed. (C) GPP IAV
induced by temperature IAV through different pathways. K is the
Michaelis-Menten coefficient, Γ* is the CO2 compensation point, and η* is
the ratio of water viscosity under ambient air temperature to a reference
temperature at 298.15 K. In B and C, each violin consists of values from
68 sites.
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GPP trends (SI Appendix, Table S2), despite the fact that these
individual satellite GPP products used for calibration vary
markedly (global GPP in 2001 with a minimum of MODIS Col-
lection 5.5 [MOD-C55] at 104 Pg C year�1 and a maximum of
Pmodel-s0 at 131 Pg C year�1). In EBFs, it is noteworthy that
the satellite GPP products that only consider the indirect CFE
on satellite reflectance, but not the direct CFE on gas exchange
[i.e., FluxCom, MOD-C55, MOD-C6, and vegetation photosyn-
thesis model (VPM)], do not report an increasing GPP trend
(Fig. 3B). Their GPP trends are not a proxy of CFE because
they model GPP solely based on climate forcings and leaf
greenness or its surrogates. The climate forcings in reanalysis
data may show negative impacts on GPP because of excessive
temperature and drought stress in the tropics (see the EBF col-
umn in SI Appendix, Table S3), and the weak trends in leaf
greenness cannot fully extrapolate the direct CFE effect
because of the saturation of reflectance in EBFs (56–62). While
the choice of climate forcing could introduce some uncertain-
ties to our CFE estimates, we find similar diagnostic results
with another forcing dataset [i.e., Climatic Research Unit and
Japanese 55-year Reanalysis (CRU-JRA55) in SI Appendix,
Fig. S7]. Furthermore, we calculate βlnapp and βlndir for the global-
scale analysis (SI Appendix, Table S3), which results in the same
conclusions as those using the relative GPP trend metric.

The Partial Differential Sensitivity of GPP to CO2. To further char-
acterize the underlying CFE, we show the spatial distribution
of βCO2, which disentangles the confounding effects from other
factors. The magnitude of βCO2 is largest in hot and humid
regions at the annual scale (Fig. 4A). Since the CO2 trend is
assumed to be constant worldwide, the spatial pattern of βCO2

represents that of CO2-induced GPP trends (A2 in SI

Appendix, Fig. S5). At the ecosystem level, βCO2 is highest in
EBFs at about 5.8 gC m�2 year�1 per ppmv CO2, followed by
croplands and other forests from the temperate to boreal
regions at about 2.2 gC m�2 year�1 per ppmv CO2 (Fig. 4B).
EBFs have the longest growing season, and their high tempera-
ture and radiation determine the high photosynthetic capacity
(Vcmax and Jmax) and thus βCO2 (4, 28, 35). On the other hand,
croplands cultivated in mild regions also have high photosyn-
thetic capacity (63) and additional resource inputs from human
management, including multiple cropping and irrigation (51),
leading to a relatively high annual βCO2. Compared with C3
plants, our results suggest a positive but much weaker βCO2 in C4
plants (3, 4, 13), on the order of 0.6 gC m�2 year�1 per ppmv
CO2, because the C4 CO2 pump inhibits the benefit of CFE (49).

According to plant photosynthesis optimization theories and
gauged by the GPP magnitude estimated from an EC network
or satellites, our EEO framework analytically constrains the
sensitivity of GPP to CO2 (i.e., βCO2) from the gas exchange
perspective. Our results suggest that the analytical solution of
βCO2 is insensitive to the GPP uncertainty used for calibration
of the framework (Fig. 1A; SI Appendix, Table S2) and largely
unaffected by interannual fluctuations of climatic conditions in
recent years (Fig. 4B). This highlights the advantage of the
EEO framework in that the partial derivatives decouple the
confounding effects of climate on CFE. A recent study using
regression methods showed a 40% decline in CFE from 1982 to
2015 (16). However, their key findings are subject to the large
temporal uncertainty in the satellite data and limited by the
causal ambiguity of their regression (64–66). In addition, our
EEO framework assumes that plants coordinate nutrient
investment to optimize photosynthetic capacity (Vcmax and Jmax)
with environmental constraints (34–37), rather than prescribing

A

B

Fig. 3. Trends in EEO-inferred, DGVM, and satellite-derived GPP at the global and ecosystem scales relative to their respective mean GPP from 2001 to 2016.
(A) All biomes. (B) Individual biomes, including EBFs, other forests (OF), short woody vegetation (SW), grasslands (GRA), croplands (CRO), and C4 vegetation
(C4). “A0”: estimated directly from our EEO framework. “A1”: diagnostic trends composited from partial derivatives using the EEO framework. “A2”: diagnos-
tic CO2-induced trends through the partial derivative approach using the EEO framework. “B1”: 13 DGVM models, all forcing time-varying. “B2”: 13 DGVM
models, CO2 only. “C1”: eight satellite-derived GPP products. For B1, B2, and C1, the bars represent their median. The gray bars represent GPP trends consider-
ing all effects. The red bars represent GPP trends caused by CO2 only. BEPS, Boreal Ecosystem Productivity Simulator; BESS, Breathing Earth System Simulator.
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specific values for plant functional types. Photosynthetic capac-
ity not only controls the slope of the GPP response to CO2 but
also strongly influences it by determining whether photosynthe-
sis is light saturated or light limited (27, 28). We explore the
influence of coordination at different timescales, comparing the
results with the EC-inferred GPP (Fig. 1A; SI Appendix, Fig.
S8), and adopt a decadal coordination to the environments in
the peak LAI month for nutrient investment (67, 68) while
adjusting the enzyme kinetics monthly with temperature (38).
These assumptions result in a fixed reference Jmax/Vcmax ratio
for each site (or grid) over the study period while still allowing
both to vary spatially to account for different growing climates.
The decadal coordination allows for the presence of light-
saturated and light-limited photosynthesis because the coordi-
nation is set at a much longer timescale than the stomatal and
leaf ci optimization (35). Under these conditions, the EEO
framework diagnoses a large proportion of marginally light-
saturated photosynthesis, which responds more strongly to
changes in ca than does light-limited photosynthesis (27, 28).
Specifically, 63 to 69% of C3 canopy photosynthesis originates
from light-saturated conditions for all seasons using the ERA5-
land forcing. Together, these features explain the high βCO2 pre-
dicted by our framework and also lead to a good agreement
with the overall trend in EC-inferred GPP and supported by
multiple independent studies (39–42).

Conclusion
We detect a large increase in GPP from a globally distributed
EC network. Our EEO framework successfully captures the

trends and IAVs in the EC-inferred GPP. The site-scale analysis
suggests that CO2 is the dominant contributor to the GPP
trends, while SWC and specific humidity control the IAVs.
Using this framework to scale the GPP globally, the estimated
absolute CO2-caused GPP trend is comparable to its
EC-inferred counterpart and translates this CO2 fertilization
effect to a global increase in photosynthesis of 4.1% decade�1

since the 2000s (or 5.1 PgC decade�2 for global sum, 4.4 gC
m�2 year�2 for global average). However, our EEO framework
diagnoses a high CFE compared with the median values of the
DGVMs and the satellite-derived GPP products, with the larg-
est disagreement in tropical forests. These tropical forests are
responsible for about one-third of global GPP, and thus, an
accurate estimation of CFE in tropical forests is critical to
global carbon cycle modeling. Finally, we urge expansion of the
currently sparse EC observing network in tropical ecosystems
to improve understanding of their physiological responses to
CO2 and climate change.

Materials and Methods
EEO Framework for GPP and CFE. We derive a parsimonious EEO framework
that constrains plant photosynthesis and water loss at a monthly scale. In addi-
tion to attributing changes in GPP through factorial simulations, the frame-
work allows for partial differential sensitivity of GPP to atmospheric CO2 and
various measurable environmental conditions. This is particularly important
as neither GPP nor CFE can be measured directly in the natural environment,
and the apparent changes in GPP are due to the confounding effect of
changes in CO2 and other environmental conditions. We use Fick’s law and
FvCB photosynthesis model as the governing equations for leaf-level photo-
synthesis. Photosynthesis is then constrained by three well-established opti-
mization theories, which are widely supported by theoretical and empirical
evidence (3, 4, 30, 32, 34–37, 44, 48, 69–73). Reconciling these optimization
theories aims to constrain key variables in photosynthesis (33), such as the
marginal water-use efficiency (mWUE) (74), stomatal conductance (g), leaf
intercellular CO2 concentrations (ci), and photosynthetic capacity. Details of
the EEO framework are derived in the SI Appendix, Text S1 to S7. We briefly
summarize the concept of this framework below.

According to Fick’s law of mass transfer, neglecting the leaf boundary
layer and mesophyll resistances, leaf-level photosynthesis is the product of
stomatal conductance (g) and the gradient between atmospheric (ca) and
leaf intercellular CO2 concentrations (ci). For a first intuitive guess, an
increase in ca can lead to increased photosynthesis. However, plants actively
optimize the tradeoff between carbon gain and water loss. Optimization
partially offsets the direct photosynthetic benefits of elevated ca by indi-
rectly reducing g and increasing ci to increase the carbon gain per unit
water loss eventually.

• Theory 1 states that vegetation maximizes the sum of carbon gain and
water loss through optimizing g in response to changing environment (30).

• Theory 2 states that vegetation minimizes the summed cost of transpira-
tion and carboxylation per unit carbon assimilation through optimizing
ci (32).

Specifically, theory 1 constrains g, and theory 2 constrains ci. Combining
theories 1 and 2 provides a direct constraint on the mWUE. The optimization
of g and ci should be sufficient and necessary because not only can the varia-
tion in g affect ci by controlling the inflow rate of ambient CO2 (30), but also
the variation in ci can regulate stomatal aperture by adjusting guard cell mem-
brane potential (4, 75, 76). To further consider the water stress on photosyn-
thesis, we use a logistic function to approximate the change of mWUE with
SWC (SI Appendix, Fig. S9) (33, 49, 72, 77). This directly allows the framework
to incorporate the impact of SWC into the photosynthetic optimization pro-
cesses (SI Appendix, Fig. S10) by calibrating a site-specific constant (i.e., ζo; SI
Appendix, Text S4).

In terms of the biogeochemical response, we assume that plants optimize
nutrient allocation in response to the elevated CO2 and their growing environ-
ment. We use the photosynthetic coordination theory (theory 3) to constrain
how plants optimize their nutrient investment, which allows for the estima-
tion of photosynthetic capacity (i.e., Vcmax and Jmax) without prescribing biome
types (34–37).

• Theory 3 states that at a longer timescale than theories 1 and 2, plants
adjust reference photosynthetic capacity to a nearly equal limitation of
photosynthesis under average daytime conditions by ribulose-1,5-

A

B

Fig. 4. Average sensitivity of annual GPP to CO2 over 2001 to 2018. (A)
Spatially distributed sensitivity of GPP to CO2. (B) Ecosystem-level sensitiv-
ity of GPP to CO2. Black error bars indicate 1 SD spatial variation. Red error
bars indicate 1 SD temporal variation. The EEO framework is calibrated by
the ensemble mean of eight satellite-derived GPP products.
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bisphosphate carboxylase (Rubisco) activity and ribulose-1,5-bisphosphate
(RuBP) regeneration (interchangeable with light saturated and light lim-
ited, respectively) (34–37).

In other words, the coordination theory states that leaf nutrient content is
regulated to reflect photosynthetic capacity, which is opposite to the hypoth-
esis that photosynthetic capacity is limited by leaf nutrient content (78).
Although the theory is well supported by multiple studies (34–37), determin-
ing the causation between the photosynthetic capacity and leaf nutrient con-
tent, or indeed a third alternative of finding common factors that limit the
two, warrants further investigation (78). Nevertheless, the coordination the-
ory captures the correlation between photosynthetic capacity and leaf nutri-
ent content and implies that nutrient limitation should be implicit in LAI (37).
We tested different timescales of the photosynthetic capacity coordination
with respect to the monthly optimization of g and ci and compared our results
with the EC-derived GPP (SI Appendix, Fig. S8). We use the timescale that
best captures the trend and IAV of the EC-derived GPP (Fig. 1A) as the basis
of our analysis. That is, the reference rates of Vcmax and Jmax acclimate to
the average environment of the peak LAI month during the study period
(67, 68). For the other months, Vcmax and Jmax are a function of tempera-
ture and their reference values (38). Therefore, our framework allows the
photosynthetic capacity to be optimized to the changing atmospheric CO2

and meteorological conditions on a decadal timescale, and the photosyn-
thesis is roughly colimited by Rubisco and RuBP. Other timescales explored
include reference Vcmax and Jmax values optimized according to 1) year-to-
year variation of peak month CO2 + average of peak month meteorologi-
cal conditions during the study period, 2) year-to-year variation of peak
month CO2 and meteorological conditions, 3) month-to-month variation
of CO2 + average of peak month meteorological conditions during the
study period, and 4) month-to-month variation of CO2 and meteorological
conditions. These represent a range of acclimation timescales, from short-
term monthly and annual acclimation to longer-term decadal acclimation.

In order to preserve the parsimonious and analytical nature of the EEO
framework, leaf-level photosynthesis is upscaled by LAI using a big-leaf
approach. Changes in LAI implicitly account for canopy-scale effects of grow-
ing season extensions, recovery from disturbance, and succession. The upscal-
ing factor for light extinction, denoted as j G μð Þ

μ j, represents the monthly
average canopy shape (G) and solar zenith angle (μ) of a particular location (SI
Appendix, Text S5). This factor is obtained by calibration with the EC-inferred
GPP for site-scale analysis and satellite-derived GPP for global-scale analysis.
j G μð Þ

μ j for each month is then kept constant without year-to-year variation.
We stress that the statistical significance of annual trends and interannual var-
iations in EEO-inferred GPP are not caused by calibration but by the seven
forcing variables: ambient CO2 concentration (ca), LAI, air temperature (Ta),
volumetric SWC, specific humidity (qa), incident shortwave radiation (SWin),
and surface pressure (P). We finally evaluate the EEO framework qualitatively,
whichmeets six of the seven criteria proposed by Ref. 72 (SI Appendix, Text S6).

A key benefit of the analytical framework, in addition to allowing a direct
estimate of GPP, is that it can be used to assess the partial derivatives of GPP
to different variables, which can further be used to reconstruct a composite
estimate of GPP changes for attribution analysis. The following equation can
express the change in GPP and sensitivities of GPP tomultiple factors:

ΔGPP ¼ ∂GPP
∂ca

Δca þ ∂GPP
∂LAI

ΔLAIþ ∂GPP
∂Ta

ΔTa þ ∂GPP
∂SWC

ΔSWC

þ ∂GPP
∂qa

Δqa þ ∂GPP
∂SWin

ΔSWin þ ∂GPP
∂P

ΔP,
[1]

where ΔGPP is the GPP change; ∂GPP
∂ca Δca is the direct CFE; ∂GPP

∂ca is the partial
derivative of GPP to CO2, which reflects the absolute response of GPP to unit
change in CO2; and so on. We treat these variables as independent forcings to
different physiological processes within the EEO framework, but these physio-
logical processes eventually interact to influence the gas exchange. For those
larger-scale land–atmosphere interactions, the covariances between the forc-
ing variables are implicit in their measurements (or reanalysis data). We
denote ∂GPP

∂ca as βCO2 for simplicity. The symbol Δ can either be the interannual
variation or long-term trend. To decompose the sensitivity of GPP to Ta into
different pathways (i.e., Fig. 2C), we additionally use the chain rule of calculus,
as follows.

∂GPP
∂Ta

¼ ∂GPP
∂D

∂D
∂Ta

þ ∂GPP
∂Vcmax

Vcmax

∂Ta
þ ∂GPP

∂K
∂K
∂Ta

þ ∂GPP
∂Γ�

∂Γ�

∂Ta
þ ∂GPP

∂η�
∂η�

∂Ta
, [2]

whereD is VPD, Vcmax should be replacedwith Jmax if the photosynthesis is light
limited, K is the Michaelis-Menten coefficient, Γ* is the CO2 compensation
point, and η* is the ratio of water viscosity under ambient air temperature to a
reference temperature at 298.15 K. The full analytical form of the partial deriv-
atives can be retrieved from theMATLAB script in the SI Appendix.

To compare with other studies, we compute the changes in GPP relativized
by changes in CO2 with ametric used in Ref. 8:

βln ¼ ln
GPPe
GPPs

� �
= ln

ca,e
ca,s

� �
, [3]

where GPPs and ca,s are of values in the starting year and GPPe and ca,e are of
values in the ending year. A βln value of a unity indicates direct proportionality
GPP response to CO2.We remind that this βln factor is only for intercomparison
purposes; it is not a partial derivative and does not, by default, isolate the
response of GPP to factors other than CO2 as βCO2 does. Since our framework
can analytically attribute the trends to individual factors, we distinguish direct
CO2 responses, βlndir , from apparent "CO2 responses," βlnapp.

FLUXNET Dataset. In this study, site-scale EC-inferred GPP and meteorological
forcings are provided by the FLUXNET2015 Tier 1 dataset, and the uncertain-
ties associated with this dataset have been previously reviewed (14). To calcu-
late the EEO-inferred GPP (and its sensitivities to various factors), we use air
temperature “TA_F,” incoming shortwave radiation “SW_IN_F,” surface pres-
sure “PA_F,” VPD “VPD_F” (convertible to specific humidity), and volumetric
SWC “SWC_F_MDS_1” in the dataset as inputs. The EEO framework performs
calculations on amonthly basis for daytime averages.

1. Filtering of meteorological data. We only use data in which air tempera-
ture, incoming shortwave radiation, and VPD are measured or gap filled
with good quality [i.e., quality flag (QF) is 0 or 1]. The same filtering is also
applied to the EC-inferred GPP (i.e., FLUXNET2015 GPP).

2. Calculation of monthly daytime averages. We first compute the monthly
average of the variables at a given half-hour/hour and aggregate them to
monthly daytime averages. Daytime is determined by the nighttime flag
(QF = 0) provided by the dataset and further checked with the half-hourly/
hourly shortwave radiation (>0Wm�2).

3. Calculation of reference EC-inferred GPP. In order to compare our results
with EC-inferred GPP, we use the mean of “GPP_NT_VUT_MEAN,”
“GPP_DT_VUT_MEAN,” “GPP_NT_CUT_MEAN,” and “GPP_DT_CUT_MEAN”
as the main reference of EC-inferred GPP. In addition, we also use the indi-
vidual EC-inferred GPP based on different partitioning and friction velocity
filtering methods to analyze the corresponding GPP uncertainty propaga-
tion (shaded area in Fig. 1A).

4. Exclusion of low-quality monthly data. We exclude all the monthly aver-
ages with less than 50% good-quality timestamps or negative GPP.

5. Aggregation of annual GPP. Since the quality filtering from steps 1 to 4
may lead to data gaps, in annual aggregations, we ensure that no sites
have more than one missing value of EEO-inferred GPP and EC-inferred
GPP during the growing season (defined as monthly climatological mean
EC-inferred GPP > 30 gC m�2 mo�1). If there is one and only one such miss-
ing value during a year, EEO-inferred and EC-inferred GPP will be filled by
their corresponding low-quality data without the filtering of step 4. Other-
wise, that particular year will be excluded.

6. Calculation of GPP annual anomalies. We compute the annual anomalies
of the EEO-inferred GPP and EC-inferred GPP for each site independently
across the observational network (SI Appendix, Fig. S1) and aggregate the
anomalies across sites (Fig. 1A).

7. Last, our evaluations are performed for those sites with more than 5 y of
good-quality data at the annual scale.

After the preprocessing, there are 68 qualified flux sites (632 site-years)
from 2001 to 2014, covering 10 different biome types, including croplands
(10), closed shrublands (1), deciduous broadleaf forests (11), EBFs (4), ever-
green needleleaf forests (18), grasslands (12), mixed forest (6), open shrub-
lands (2), savannas (1), and woody savannas (3) (SI Appendix, Table S1). In the
site-scale analysis, all biome types are treated as C3 species because of lack of
information. The GPP trends of site-scale analysis are examined by the Mann-
Kendall test (R package: https://cran.r-project.org/web/packages/zyp/index.
html). An overall uncertainty of the site-scale GPP trends is characterized
by the IQR of trends through resampling of site-years (Fig. 2A; SI Appendix,
Fig. S3D). In addition, we calculated the IQRs due to site heterogeneity by
resampling of sites (SI Appendix, Fig. S3 B and E) and due to the uneven distri-
bution of sites and site-years over the study period by randomly shuffling the
first-year data (SI Appendix, Fig. S3 C and F). The shaded area in Fig. 1A shows
the variations in the EC-inferred GPP due to the partitioning and frictional
velocity filtering methods and their propagation to the EEO-inferred GPP. On
the other hand, we analyze the dataset without the quality filtering in steps
1, 2, and 4. This allows a comparison of our EEO-inferred GPP with the fully
gap-filled FLUXNET data (SI Appendix, Fig. S3A), ensuring that the resulting
findings are not due to data filtering.
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Global Meteorological Forcing Datasets. Our main global-scale results are
computed using the ERA5-land hourly data (2001 to 2018, 0.1° × 0.1°, https://
cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac). We use
the following variables: “2m temperature,” “surface solar radiation down-
ward,” “surface pressure,” “2m dew point temperature” (converted to spe-
cific humidity), and “volumetric soil water layers 1 and 2” (0 to 28 cm). We
convert them to a monthly daytime average by examining the downward sur-
face solar radiation (>20Wm�2) and resampling to 0.5° × 0.5°.

We estimate another EEO-inferred GPP using CRU-JRA55 forcing (2001 to
2018, 0.5° × 0.5°, https://catalogue.ceda.ac.uk/uuid/13f3635174794bb98cf8ac
4b0ee8f4ed) for comparison. We use the following variables: “temperature at
2m,” “maximum temperature at 2m,” “downward solar radiation flux,”
“pressure,” and “specific humidity.” Since there is no volumetric SWC in CRU-
JRA55, we adopt it from ERA5-land. Daytime temperature is averaged from
“temperature at 2m” and “maximum temperature at 2m.”

MODIS Leaf Area Index. We use Collection 6 MODIS LAI as our LAI inputs (52).
We refine the MODIS Terra and Aqua LAI (8-d frequency, 500 m) by checking
their quality flags following a previous study (51). The quality of this dataset
has been extensively validated (55) and reported elsewhere (51, 79). We con-
vert the original 8-d LAI into monthly frequencies. For the flux-site analysis,
we match the 500-m LAI to each site’s longitude and latitude and average
over in a 3 × 3 window (1.5 km × 1.5 km). For the global-scale analysis, we con-
vert the 500-m LAI into 0.5° × 0.5°.

Atmospheric CO2. We use the monthly average atmospheric CO2 concentra-
tion from the Mauna Loa Observatory and the South Pole Observatory pro-
vided by NOAA's Earth System Research Laboratory (https://www.esrl.noaa.
gov/gmd/ccgg/trends/).

DGVM Gross Primary Production. DGVM outputs from the Trends in Net Land-
Atmosphere Exchange (TRENDY-v6) project are used in this study (http://dgvm.
ceh.ac.uk/node/9) (1). Here, we use two model experiments from TRENDY-v6,
either varying CO2 only (time-invariant “preindustrial” climate and land use
mask, S1) or varying CO2, climate, and land use (all forcing time-varying, S3).
We exclude Sheffield DGVM (SDGVM) as it has an unrealistic sudden drop in
GPP after 2007. More details are documented in SI Appendix, Table S4.

Satellite-Derived GPP Products. The following GPP products are used: 1)
Boreal Ecosystem Productivity Simulator (80), 2) Breathing Earth System Simu-
lator (81), 3) FluxCom (82), 4) and 5) MODIS Collection 5.5 (MOD-C55) and
Collection 6 (MOD-C6) (83), 6) photosynthesis model (Pmodel-s0) (44), 7)
photosynthesis–respiration model (PRmodel) (7), and 8) VPM (84). The ensem-
ble global mean GPP of all these eight products through 2001 to 2016 is about

119 PgC y�1. More details about these products are documented in SI
Appendix, Table S4.

Land Cover Maps. In order to analyze the spatial pattern of our diagnosed
results, we use Collection 6 MODIS yearly product as the reference land cover
map (2001 to 2018, 0.05° × 0.05°) (85). We refine the yearly maps for the study
period into a single map and resample to 0.5° × 0.5° by taking the mode class
of each grid cell. We aggregate the International Geosphere-Biosphere Pro-
gram classification types into five C3 biomes (EBFs, other forests, short woody
vegetation, grasslands, croplands) and one C4 biome (SI Appendix, Fig. S11).
There is no biome aggregation for EBFs. Other forests are aggregated from
deciduous broadleaf forests, mixed forests, evergreen needleleaf forests,
deciduous needleleaf forests, and woody savannas. Short woody vegetation
includes closed shrublands, open shrublands, savannas, and permanent wet-
lands. Croplands include croplands and cropland/natural vegetation mosaics.
Finally, grids with greater than 50% C4 vegetation are labeled as C4 according
to the ISLSCP II C4 vegetation percentage (https://daac.ornl.gov/cgi-bin/
dsviewer.pl?ds_id=932).

Data Availability. The following data were used in this work: FLUXNET2015:
https://fluxnet.org/data/fluxnet2015-dataset/; MODIS LAI: https://lpdaac.usgs.
gov/products/mod15a2hv006/ and https://lpdaac.usgs.gov/products/myd15a
2hv006/; ERA5-land: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.
24381/cds.e2161bac; CRU-JRA55: https://catalogue.ceda.ac.uk/uuid/13f3635
174794bb98cf8ac4b0ee8f4ed; TRENDY-v6: http://dgvm.ceh.ac.uk/node/9/;
MODIS land cover: https://lpdaac.usgs.gov/products/mcd12c1v006/; ISLSCP II C4
vegetation percentage: https://daac.ornl.gov/ISLSCP_II/guides/c4_percent_
1deg.html; NOAA Atmospheric CO2: https://www.esrl.noaa.gov/gmd/ccgg/
trends/; BESS GPP: https://www.environment.snu.ac.kr/bess-flux; MOD-C55
GPP: https://www.ntsg.umt.edu/project/modis/mod17.php; MOD-C6 GPP:
https://lpdaac.usgs.gov/products/mod17a2hv006/; FluxCom GPP: http://www.
fluxcom.org/CF-Products/; Pmodel-s0: https://zenodo.org/record/1423484#.
YgMTS_XMIow; VPM GPP: https://figshare.com/articles/dataset/Monthly_GPP_
at_0_5_degree/5048011. All other study data are referenced in the article.
Codes are included in the supporting information.
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