The relationship between road traffic collision dynamics and traumatic brain injury pathology
Short Running Title: Brain Trauma Biomechanics on the Roads
Claire E. Baker1,2,3, Phil Martin3, Mark H. Wilson4, Mazdak Ghajari2, David J. Sharp5
1 Centre for Neurotechnology, Imperial College London, South Kensington Campus, SW7 2AZ, UK
2 Dyson School of Design Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, UK
3 Transport Research Laboratory Ltd., Crowthorne House, Nine Mile Ride, Wokingham, Berkshire, RG40 3GA, UK 
4  Imperial College London Saint Mary Campus, St Mary’s Hospital, Praed Street, London W2 1NY, UK
5 Division of Brain Sciences, Imperial College London, W12 0NN, UK
Correspondence to: Claire E. Baker
Address: Dyson School of Design Engineering, Imperial College London, SW7 2AZ, UK
E-mail: c.baker17@imperial.ac.uk



Abstract
[bookmark: _Hlk89334351][bookmark: _Hlk89334426]Road traffic collisions are a major cause of traumatic brain injury. However, the relationship between road traffic collision dynamics and traumatic brain injury risk for different road users is unknown. We investigated 2,065 collisions from Great Britain’s Road Accident In-depth Studies collision database involving 5,374 subjects (2013-20). 595 subjects sustained a traumatic brain injury (20.2% of 2,940 casualties), including 315 moderate-severe and 133 mild-probable. Key pathologies included skull fracture (179, 31.9%), subarachnoid haemorrhage (171, 30.5%), focal brain injury (168, 29.9%) and subdural haematoma (96, 17.1%). These results were extended nationally using  >1,000,000 police-reported collision casualties. Extrapolating  from  the in-depth data we estimate that there are ~20,000 traumatic brain injury casualties (~5,000  moderate-severe) annually on Great Britain’s roads, accounting for severity differences. Detailed  collision  investigation allows vehicle collision dynamics to be understood and the change-in-velocity (known as delta-V) to be estimated for a subset of in-depth collision data. Higher delta-V increased the risk of moderate-severe brain injury for  all road users. The four key pathologies were not observed below 8km/h delta-V for pedestrians/cyclists and 19km/h delta-V for car occupants (higher delta-V threshold for focal injury in both groups). Traumatic brain injury risk depended on road user type, delta-V and impact direction. Accounting for delta-V, pedestrians/cyclists had a 6-times higher likelihood of moderate-severe brain injury than car occupants. Wearing a cycle helmet was protective against overall and mild-to-moderate-severe brain injury, particularly skull fracture and subdural haematoma. Cycle helmet protection was not due to travel or impact speed differences between helmeted and non-helmeted cyclist groups. We additionally examined the influence of delta-V direction. Car occupants exposed to a higher lateral delta-V component had a greater prevalence of moderate-severe brain injury, particularly subarachnoid haemorrhage. Multivariate logistic regression models created using total delta-V value and whether lateral delta-V was dominant had the best prediction capabilities (area under the receiver operator curve as high as 0.95). Collision  notification  systems are routinely fitted in new cars. These record delta-V and automatically alert emergency services to a collision in real-time. These risk relationships could therefore inform how routinely fitted automatic collision notification systems alert the emergency services to collisions with a high brain injury risk. Early notification of high-risk scenarios would enable quicker activation of the highest level of emergency service response. Identifying those that require neurosurgical care and ensuring they are transported directly to a centre with neuro-specialist provisions could improve patient outcomes.
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Abbreviations: RTC=Road Traffic Collision; TBI=Traumatic Brain Injury, VRU=Vulnerable Road User, SAH=Subarachnoid Haemorrhage, SDH=Subdural Haematoma, AIS=Abbreviated Injury Score, RR=Relative Risk, MW=Mann-Whitney, TRL=Transport Research Laboratory, RAIDS=Road Accident In-Depth Studies, CI=Confidence Interval, ACN= Automatic Collision Notification, Diffuse Axonal Injury=DAI, Receiver Operator Characteristic (ROC), Area Under Curve (AUC)


Introduction	
Each year 1.35 million people are killed in road traffic collisions (RTCs) globally, with at least 50 million people surviving after sustaining injuries1. Traumatic brain injury is a leading cause of death and disability following RTCs, with an estimated 34 million people sustaining TBI in RTCs globally each year2. Almost 70% of all RTC fatalities involve head injury, with 32% due to isolated head injuries3. In Europe, RTCs are the commonest cause of severe TBI4-6. The majority of those injured are ‘active adults’ aged 16-55. This produces major long-term socioeconomic impacts, with TBI estimated to cost the global economy approximately $US400 billion annually7. 
[bookmark: _Hlk89335231][bookmark: _Hlk89335351]Road traffic collisions commonly lead to a range of TBI pathologies. The type of injury relates to the road traffic collision dynamics8, 9. However, despite the global impact of TBI, there is limited understanding of this relationship. This is a key knowledge gap because reducing the risks associated with RTCs depends on an understanding of how forces produced during a collision cause TBI. A large in-depth database has been developed in Great Britain (GB) in recent years that provides detailed information about dynamics from real-world collisions as well as information about any TBI sustained. The Road Accident In-Depth Studies (RAIDS) database is collected on behalf of the UK Government’s Department for Transport with the aim of reducing serious injuries and fatalities on British roads10. It contains information about both the collision scenario (including vehicle dynamics) and clinical information from hospital records and post-mortem reports. The availability of this data allows a detailed investigation of the risk of TBI associated with specific types of collision in different types of road user, including those more vulnerable to injury such as cyclists and pedestrians. 
[bookmark: _Hlk89339834]Road traffic collision reconstruction enables the vehicle dynamics and biomechanics of VRUs involved in a collision to be estimated from evidence collected after the event, such as scene photographs, CCTV or dashcam footage and vehicle damage profiles11. This information provides the opportunity to investigate the causation of TBI. The total change in velocity during the impact phase of each vehicle involved in a collision (delta-V) is a key measure. This can be calculated retrospectively and is known to predict overall injury severity12, 13. Delta-V provides an indication of the change in kinetic energy a vehicle is exposed to during a collision, some of which is transferred to the occupants causing injury. Total delta-V takes into account both lateral (side-to-side) and longitudinal (front-to-back) delta-V, with this directionality influencing injury risk14.
Severe TBI is more common in car occupants involved in side impact collisions, which are dominated by lateral delta-V14. Previous work has often used compound measures of injury severity such as the abbreviated injury scale (AIS)15-17. This approach limits the ability to investigate the causation of different TBI pathologies as it can be difficult to accurately obtain information about the underlying TBI pathology from the AIS region severity score recorded in databases and some types of TBI can be omitted from the individual AIS injury codes18-20. A small amount of work has focused on the relationship between specific TBI pathologies and road traffic collision dynamics. Two studies showed that collision dynamics (including delta-V) correlate with the volume of subdural and intraventricular haemorrhage21, 22. RAIDS allows us to extend this work by providing detailed information about the nature of TBI pathology both from clinical records and post-mortem reports of more than 5,000 subjects involved in over 2,000 collisions. This allows the specific investigation into the relationship between road traffic collision dynamics and TBI pathologies including subdural haematoma, subarachnoid haemorrhage, extradural haematoma, focal brain injuries and diffuse axonal injury.
The effects of collisions are different for different types of road users. Vulnerable road users constitute significant numbers of the overall casualties, with motorcyclists making up 24% of all casualties in one study, and pedestrians and cyclists 17% each23. There is a higher risk of TBI in vulnerable road users (VRUs) which includes pedestrians, cyclists and motorcyclists. For example, one European study showed increased odds ratios for severe TBI compared to restrained car occupants of 18.1 for non-helmeted motorcyclists, 9.2 for pedestrians, 3.9 for unrestrained car occupants and 2.8 for helmeted motorcyclists24. One study showed a relationship between TBI and vehicle impact speed in pedestrians and cyclists25. Another showed that cyclists most commonly sustained serious TBI with loss of consciousness and base of skull fractures26. However, there has been little systematic work relating vehicle dynamics and impact biomechanics to TBI in different types of road users, despite the obvious differences in exposures between restrained vehicle occupants and VRUs.
[bookmark: _Hlk89866210][bookmark: _Hlk89865898][bookmark: _Hlk39132504]Here we use the RAIDS database to study 5,374 subjects involved in GB injury-causing RTCs between 1st April 2013 and 31st March 2020.  Our work provides the first description of TBI prevalence from RAIDS data. We scale to the national (GB) level using data of >1,000,000 police-recorded RTC casualties to provide the first GB-wide estimates of TBI pathology prevalence and risk for different road users due to RTCs derived from collision data. The change in velocity (delta-V) calculated for the vehicles involved in each RAIDS collision is then related to the risk of sustaining different types of TBI. A free-text search algorithm we developed enabled us to extract information directly from the detailed injury descriptions, ambulance notes, clinical reports and post-mortem information that would have been inaccessible using AIS injury codes alone, enabling a more complete analysis of the data. For >5,000 casualties involved in collisions, we: 1) estimated TBI severity (using the Mayo classification system) and identified TBI pathologies; 2) calculated the prevalence of TBI severity and pathologies in RAIDS and scaled these results to the GB population; 3) investigated vehicle dynamics and biomechanical descriptions of the collisions for different road users and 4) investigated the relationship between delta-V and TBI, producing injury risk curves for car occupants and a combined pedestrian-cyclist road user group.


Methods
In-depth collision data collection
RAIDS data collection is a collaborative effort between the police, hospitals and dedicated on-site investigation units from Loughborough University and the Transport Research Laboratory (TRL). All cases have >3,000 fields detailing the casualty’s injuries, vehicle information, collision causation and environmental factors. Injury information comes from clinical records (including ambulance notes, hospital records and any radiology and post-mortem text available). There are two types of RAIDS collision investigations: on-scene and retrospective investigations. All investigations use collision reports and photos are received from dedicated police Collision Investigation Units. On-scene investigations are additionally attended by TRL’s dedicated collision investigation team. Further information can be found in Supplementary Table 1.
[bookmark: _Hlk90391826][bookmark: _Hlk89359203]Study in-depth data characteristics and inclusion criteria 
We selected data from a seven-year period from 1st April 2013 to 31st March 2020. This includes collection Phases 1, 2 and 2 (Extension) (see Supplementary Table 1 for details). Our sample included 5,374 subjects involved in 2,065 collisions and 2,940 casualties. Of  the 5,112 subjects with known gender information, 37% were female. Of the 4,807 with known ages, 79% were 16-64 years, 13% were >64 years and 8% were children <16 years old. The casualty group included 252 fatalities, of which 227 (90%) had post-mortem information available. Clinical information sources included ambulance notes, hospital notes, patient questionnaires and radiology reports. 388 less seriously injured subjects additionally returned self-report questionnaires. Where relevant to the collision event, pre-existing medical conditions were also known. The primary purpose of the RAIDS database is to determine how and why serious injuries and fatalities are occurring on the roads, in order to mitigate against them. It is important to note that the collisions included in the database tend to be more serious. A full breakdown of the inclusion criteria are shown in Supplementary Table 1. 
Traumatic brain injury classification
RAIDS uniquely captures detailed clinical and collision information, making our analysis of how road traffic collision dynamics relate to TBI severity and pathology possible. However, as RAIDS is not primarily intended for TBI research, certain data elements that are commonplace in large studies designed specifically for TBI research are not available. Therefore we extracted information using the free-text search algorithm was used to estimate the TBI severity using the Mayo Clinic Classification 27 (Fig. 1). The Mayo system combines several TBI indicators including the Glasgow coma scale (GCS), loss of consciousness (LOC), post-traumatic amnesia and the presence of specific pathology including brain haemorrhages, contusions and skull fracture for classification. The Mayo system incorporates clinical and neuroimaging information with GCS and LOC, allowing for the most comprehensive classification with the data we had available to us. GCS was known for 1725 subjects (62.4% of those injured), LOC on arrival was known for 1,783 subjects (62.4% of those injured) and neuroimaging information was available for at least 398 RAIDS subjects. 
Free-text search algorithm
We developed a free-text search algorithm in Python that extracted TBI information using regular expression search patterns. The search terms related to TBI pathology, symptoms and treatments selected by the authors and reviewed by an expert histopathologist and TBI clinician and can be found in Supplementary Table 2. The search terms were refined using RAIDS Phase 1 and Phase 2 data (2013-2019) and validated manually for 507 subjects involved in 200 collisions from Phase 2 Extension data (2019-2020) obtaining ≥99.4% agreement. Our method also captured all AIS injury-coded pathologies it was possible to directly compare (subdural haematoma, subarachnoid haemorrhage and skull fracture). We accounted for misspelling and acronyms and extracted the sentence the term appeared in to enable false positives to be removed (e.g. where ‘no’ preceded a search term) before classifying each subject by overall Mayo severity. 
[bookmark: _Hlk65398234]Figure 1: Free-text Search Algorithm Visual Summary
[image: ]
Figure 1. Classification of TBI from the RAIDS dataset. (A) RAIDS data is collected and compiled; (B) Free-text search algorithm is used to identify relevant information from all text recorded in RAIDS; (C) TBI severity and pathology present for each subject is found by recording terms found in the database and extracting the relevant sentence for context; (D) The extracted sentences are used to identify and remove false positives; (E) Each casualty is given a final maximum TBI severity label from their injuries.
[bookmark: _Hlk89359147]Scaling TBI severity and pathology in RAIDS to the police-reported GB collisions
The RAIDS database contains subjects who are generally more severely injured and is therefore not a representative subset of all GB collisions. The most comprehensive GB RTC database, STATS19, does not contain specific injury information28. Therefore, to estimate TBI prevalence in police-reported collisions nationally (2013-2019), we use both RAIDS and STATS19 scale our findings from RAIDS using 1,102,567 police-reported RTC casualties (12,881 fatalities, 152,788 serious injuries and 951,923 slight injuries). We use seven fields present in both RAIDS and STATS19 (road user type, casualty age, lighting level, speed limit, road class and vehicle age and overall injury severity) to calculate the scaling weights. We use chi-squared testing to confirm that each variable distribution differs significantly between datasets. The ‘rpart’ recursive partitioning R package decision trees were used to select which one or two fields which best predict overall injury severity29. Cases in each dataset are clustered by subcategories (e.g. an age group and road user type) and the cluster proportion of the dataset as a whole is calculated. A mapping is created between the corresponding cluster proportions. Our methodology is similar to other scaling methods between in-depth and national sources, refined by TRL statisticians to fit the nuances of GB data30. A full description of the scaling method is given in the supplementary material along with calculated weights used for the scaling (Supplementary Tables 3-6).
Retrospective delta-V calculation
The detailed collision information recorded in RAIDS specifically enables metrics describing vehicle dynamics and VRU biomechanics to be calculated even when these are not recorded by the vehicle during the collision. Collisions are split into 3 main phases: pre-crash, impact and post-crash (Fig. 2Ai). Delta-V is calculated during the impact phase i.e. from moment of impact to moment of separation, providing a measure of the change in velocity of a vehicle or VRU during the impact phase (Fig. 2Aii and 2Bii). Delta-V relates to overall injury severity14, 31, 32. Delta-V in this study is of the vehicle or VRU overall, not the delta-V local body region (e.g. head), which can vary based on the specific kinematics of the collision. Broad collision dynamics are different for vehicles and VRUs, so delta-V was calculated differently. Vehicle delta-V is determined by RAIDS investigators from crush profile measurements and (where available) initial trajectories (Fig. 2A). The AiDamage program is used to reconstruct the collision from this information, applying the CRASH algorithm to determine energy-related parameters including delta-V33, 34. Longitudinal (front-to-back), lateral (side-to-side) and total delta-V are calculated for each vehicle (Fig. 2Aii). Delta-V calculated using CRASH3 accurately reflects in-vehicle sensor measurements, particularly for car-to-car impacts (to within 2km/h), which make up the majority of cases35. Small differences (mean absolute error -4km/h) have been shown to exist between CRASH3 and EDR delta-V in European vehicles. We chose not to apply a correction to account for this small discrepancy because the precise relationship to the fleet represented in our dataset is unknown.
Occupants in all cars with valid delta-V estimates from single impact phases were included. Where multiple impacts were present, delta-V was included only if one of the impact phases was clearly injury-causing. Pedestrian delta-V is approximated as the impact speed of the vehicle because most pedestrians move slowly and were injured while crossing (no velocity component parallel to vehicle velocity). Cyclists travel at higher speeds, sharing the carriageway with vehicles. Therefore, their initial speed and direction is influential and taken into account (Fig. 2B). The parallel component of cyclist velocity is combined with the vehicle impact speed (). This method assumes the VRU is accelerated to the speed of the impacting vehicle, so VRUs directly runover (e.g. those already lying in the road prior to impact) were excluded as this assumption was not upheld. Further details on delta-V calculation can be found in the supplementary material.
Figure 2: Calculating Delta-V for Different Road Users
[image: ]
Figure 2. RAIDS collisions (n=2,065) include: (A) vehicle-to-vehicle and (B) vehicle-to-vulnerable road user (VRU i.e. cyclists and pedestrians) collisions. Delta-V calculation differs for A and B due to the differences in collision dynamics. A(i) shows the three main phases of vehicle-to-vehicle collisions. A(ii) shows example vehicle velocities for two vehicles (V1 and V2) during a collision. The distinct delta-V for each vehicle (ΔVV1 and ΔVV2) correspond to the change in velocity during the impact phase. A(iii) shows how delta-V is calculated retrospectively from crush measurements and vehicle trajectories using the AiDamage programme and CRASH algorithm. B(i) illustrates the VRU delta-V corresponding to the impact phase as the VRU is accelerated up to the speed of the other vehicle involved in the collision. B(ii) shows how the other vehicle’s velocity is used in conjunction with VRU velocity to calculate the relative delta-V between the VRU and vehicle involved.
[bookmark: _Hlk89334154]TBI prevalence and relative risk calculation for different road users
Relative risk (RR) was used to estimate the risk of TBI pathologies and severities for different road user groups in police-reported GB RTCs. RR was calculated by dividing the rate in the exposed group  by the rate in the unexposed (or less exposed) group , 

[bookmark: _Hlk93125648]where  and  are number who sustained a given pathology or severity in the exposed and unexposed groups respectively, and  and  are the total number in the exposed and unexposed groups respectively36. A 95% Confidence Interval (CI) on the RR was calculated using

where the standard error of log RR is given by: 

Chi-squared tests were used to determine statistically significant differences between pathology for different road users37.
Analysis of delta-V severity and pathology using normalised cumulative distributions
Normalised cumulative frequency distributions were calculated and plotted in Python using Bokeh with 10,000 iterations used to produce bootstrapped 95% confidence intervals38. The relationship between delta-V distributions and TBI were analysed in groups with different TBI severities pathology compared to an injured group without TBI and an uninjured group. We determined 95% confidence intervals using 10,000 bootstrap resamples and calculated 95% confidence intervals from the 2.5th and 97.5th percentiles of the 10,000 ranked values at each point39, 40. Shapiro-Wilk (SW) normality testing showed that data in the majority of the pathology groups and TBI severity groups were not normally distributed. Bootstrapping does not rely on parametric statistics and is therefore well-suited to calculating confidence intervals for our dataset.  For cross-group analysis of the TBI pathology, we applied one-sided Mann-Whitney (MW) U test to determine whether delta-V distribution showed differences across groups41. 
Determining how dominant vehicle delta-V component direction affects TBI prevalence 
We next examined the relationship between lateral and longitudinal delta-V and TBI. We first considered the groups exposed to delta-V dominated by the one component and then the groups of car occupants exposed to only lateral and only longitudinal delta-V components using chi-squared and relative risk analysis. For non-normally distributed data, Kruskal-Wallis one-way analysis of variance tests were used to compare delta-V distributions for different TBI groups. There is a potential confounding factor where higher TBI prevalence in one group could be caused by higher delta-V distribution in the delta-V component which dominates it. Hence, we applied one-sided Mann-Whitney (MW) U-test to determine whether the lateral delta-V distribution is higher than the corresponding longitudinal delta-V distribution41.
Logistic regression for the calculation of injury risk
[bookmark: _Hlk70412759]We used binary logistic regression to produce injury risk curves for different road users and TBI pathologies using total delta-V42-44. To further understand how road traffic collision dynamics influence TBI in car occupants, we additionally constructed a multivariate logistic regression model using a binary flag for dominant lateral delta-V and total delta-V. We additionally used multivariate logistic regression with road user group and total delta-V as predictors to determine the odds ratio between road user groups. We ensured our sample sizes were large enough using the guideline  ( No. covariate independent variables,  smallest proportion of negative/positive cases in the population)45. The Python scikit-learn package was used to create the logistic regression model with Limited-memory Broyden-Fletcher-Goldfarb-Shanno optimisation and no regularisation46. Stratified k-fold cross-validation was used to create separate testing and training datasets, avoid overfitting to the training dataset and account for unbalanced groups. Average performance was calculated across the k folds. k=5 was chosen to ensure representative testing and training datasets. k-fold cross-validation was repeated 200 times with prespecified data seeds used to ensure repeatability when randomly shuffling the data prior to partitioning at the start of each iteration. The average risk and 95% confidence intervals were determined from 1,000 iterations using the 50th, 2.5th and 97.5th percentile ranked risk values at each point. To determine the predictive capability of our injury risk curves, we use the receiver operator characteristic (ROC) and associated area under curve (AUC) averaged over all 1,000 iterations. We provide further details on this method in the supplementary material including the resulting precision and recall values (Supplementary Table 7).
[bookmark: _Hlk89178848]Statistical analysis
Application of key statistical techniques are summarised in this section. Statistical analyses applied within this manuscript are outlined in full in the previous method subsections, giving their context to the different sub-analyses. One-sided Mann-Whitney (MW) U-tests were used for determining whether there were statistically significant differences between delta-V distributions (both between different distributions in the same group and between the same distribution for different groups). Chi-squared tests were used to determine statistically significant differences between groups (e.g. pathology rates for different road users) and to test independence in the scaling methodology. We use the area under the receiver operator characteristic curve to compare logistic regression models. We calculate the standard error associated with the relative risk. 95% confidence intervals, test statistics and p-values are reported whenever possible.
Ethical Approval Summary
RAIDS collection and use requires very stringent ethical approvals and data security processes. These include approved applications for both a Confidentiality Advisory Group (CAG) and for the Research Ethics Committee (REC) and required the completion of a Data Security Protection (DSP) Toolkit for ethical approval. In order to collect anonymised injury data, RAIDS has an agreement under Section 251. Section 251 of the NHS Act 2006 and the Regulations enable the common law of duty of confidentiality to be temporarily lifted so that confidential patient information can be transferred to an applicant without the discloser being in breach of the common law duty of confidentiality. Therefore, RAIDS does not seek permission from those who are injured. If a person would like their information removed, they are able to request this in writing. Approval to use the database for specific projects is granted by the Department for Transport. The AutoTRIAGE project approval includes all tasks that have been conducted for this publication. Additionally, all outputs, including this submitted manuscript, are checked thoroughly for anonymity and to ensure all protocols have been correctly followed prior to dissemination.
Data Availability
The data required for this study has restricted access and can be obtained with permission from the Department for Transport (contact: RAIDS@dft.gsi.gov.uk). The corresponding author is happy to be contacted and direct other researchers in the data used once this access is obtained. Derived data supporting the findings of this study are available from the corresponding author on reasonable request.


Results 
[bookmark: _Ref38351987]TBI prevalence in the RAIDS database (Figure 3)
[bookmark: _Hlk90397030][bookmark: _Hlk57481183]1,409 (49.9% of 2,940) casualties sustained an injury to the head and neck (AIS2005 region). 595 RAIDS subjects sustained TBI of any severity (20.2% of 2,940 casualties, 11.1% of 5,374 subjects). Of those with TBI, 315 (52.9%) were moderate-severe, 133 (22.4%) were mild-probable and 145 (24.4%) were symptomatic-possible. Distinct groups of road users sustained different rates of TBI [χ2(6)=334.9, p<0.001]. The pedestrian, cyclist and motorcyclist vulnerable road user group had a higher prevalence of TBI compared to vehicle occupants [χ2(1)=279.1, p<0.001]. They also had a higher prevalence of moderate-severe TBI [χ2(1)=398.1, p<0.001]. 52 pedestrians (36.1% of 144 RAIDS pedestrians), 29 cyclists (25.9% of 112 RAIDS cyclists) and 46 motorcyclists (17.2% of 267 RAIDS motorcyclists) sustained moderate-severe TBI. In contrast, 166 car occupants (4.2% of 3,992 RAIDS car occupants), 15 van occupants (4.1% of 369 RAIDS van occupants), 7 heavy goods vehicle occupants (2.7% of 262 RAIDS heavy goods vehicle occupants) sustained moderate-severe TBI. 
[bookmark: _Hlk89336897]The 595 RAIDS TBI casualties presented with a range of pathologies (Fig. 3). 171 (3.2% of 5,374 subjects) sustained a subarachnoid haemorrhage (SAH). The prevalence of SAH differed across groups [χ2(6)=293.0, p<0.001] and was most prevalent in the cyclist group. 23.2% of 112 RAIDS cyclists sustained an SAH followed by 17.4% of 144 RAIDS pedestrians and 10.1% of 267 RAIDS motorcyclists, compared to 2.3% of 3,992 RAIDS car occupants. 168 (3.1% of 5,374 subjects) sustained a focal brain injury. The prevalence of focal injury also differed across groups [χ2(6)=250.6, p<0.001] and was more prevalent in pedestrians, cyclists and motorcyclists than in vehicle occupants [χ2(1)=194.5, p<0.001]. 22.2% of 144 RAIDS pedestrians sustained a focal brain injury followed by 11.6% of 112 RAIDS cyclists and 9.4% of 267 RAIDS motorcyclists, compared to 2.0% of 3,992 RAIDS car occupants. Focal injury was significantly higher for pedestrians than for two-wheel road users (cyclists and motorcyclists) [χ2(1)=11.6, p<0.001]. 179 (3.3% of 5,374 subjects) sustained a skull fracture, which was most prevalent in the pedestrian group (23.6% of 144 RAIDS pedestrians). Skull fracture prevalence was higher for the pedestrian, cyclist and motorcyclist VRU group than vehicle occupants [χ2(1)=195.8, p<0.001], and higher for pedestrians than two-wheel road users (cyclists and motorcyclists) [χ2(1)=13.3, p<0.001]. 96 (1.8% of 5,374 subjects) sustained a subdural haematoma (SDH), which was most prevalent in the pedestrian group (11.9% of 144 RAIDS pedestrians). Subdural haematoma prevalence was higher for the pedestrian, cyclist and motorcyclist VRU group than vehicle occupants [χ2(1)=77.8, p<0.001], and higher for pedestrians than two-wheel road users (cyclists and motorcyclists) [χ2(1)=77.6, p<0.001]. Other less frequent pathologies included diffuse axonal injury (DAI) (26, 0.5% of 5,374 subjects) and extradural haemorrhage (16, 0.3% of 5,374 subjects). 
Figure 3: Traumatic Brain Injury Prevalence in RAIDS
[image: ]
[bookmark: _Ref38305978]Figure 3. A summary of the TBI population in the RAIDS database. Numbers across all road user groups for a range of TBI severities and four most prevalent distinct pathologies are given with the corresponding percentage of all study subjects. In this figure, the percentages show the proportion of subjects in the column’s road user group that sustained the pathology in question. For example, there were 34/144 pedestrians who sustained a skull fracture, giving 23.6%. 32 subjects of uncommon vehicle types are not given separate columns in this table but are included in the total count. Distinct groups of road users sustained different rates of TBI [χ2(6)=334.9, p<0.001]. The pedestrian, cyclist and motorcyclist vulnerable road user group had a higher prevalence of TBI compared to vehicle occupants [χ2(1)=279.1, p<0.001].
The protective effect of helmets in cyclists
[bookmark: _Hlk89430838]The vast majority of motorcyclists in our cohort wore helmets, in line with legal requirements. We therefore examined the cyclist population, which included a significant portion of non-helmeted cyclists. We considered the subset of 94 (84% of 112) cyclists with known helmet status. There was an almost exactly even split between those who wore a helmet (46, 49% of 94 cyclists) and those who did not (48, 51% of 94 cyclists). The prevalence of TBI of any severity was higher in the non-helmeted group [χ2(1)=6.84, p=0.009]. The prevalence of mild-to-moderate-severe TBI was also higher in the non-helmeted group [χ2(1)=5.15, p=0.023], as well as the prevalence of skull fracture [Fisher exact p=0.008] and SDH [Fisher exact p=0.006]. Two helmeted cyclists and 12 non-helmeted cyclists sustained a skull fracture. No helmeted cyclists sustained an SDH, compared to 8 non-helmeted cyclists who did. 
We investigated whether a difference in the impact and travel speeds between the helmeted and non-helmeted groups was contributing to the protective effect of helmets (e.g. non-helmeted cyclists being impacted by vehicles travelling at higher speeds or because they were cycling faster). Of the 94 cyclists with known helmet status, we therefore examined two additional subsets with known speed information. Among the 68 cyclists where both helmet status and the speed of the impacting vehicle was known, 37 non-helmeted (54% of 68) cyclists still showed a significantly higher prevalence of overall TBI, mild-to-moderate-severe TBI, skull fracture and SDH. Similarly, there was a higher prevalence of TBI among the 32 non-helmeted (55% of 58) cyclists with known travel speed prior to the collision. In both subsets, there were no significant differences in the speed distributions between the helmeted and non-helmeted cyclist populations [cyclist travel speed: UMW=425.5, p=0.443; vehicle impact speed: UMW=487.0, p=0.859].
TBI prevalence on Great Britain’s roads 
From 1st April 2013 to 31st December 2019, STATS19 recorded 1,190,717 police-reported casualties and 12,881 fatalities on Great Britain’s roads (~176,000 casualties annually). Excluding 6 months where no RAIDS data was collected, the remaining 75-month period included 1,102,567 STATS19 casualties. Extrapolating from our RAIDS findings we estimate that ~20,000 (11% of ~176,000 casualties) sustain a TBI each year: 4,900 (24.6% of TBI casualties) moderate-severe, 5,074 (25.4% of TBI casualties) mild-probable and 10,000 (50.0% of TBI casualties) symptomatic-possible (Fig. 4). Of the estimated 10,000 who sustain a mild-probable or moderate-severe TBI annually, we estimate 2,800 (28.0%) sustain a skull fracture,  2,700 (27.3%) sustain a focal brain injury, 2,000 (20.5%) sustain an SAH and 1,200 (12.1%) sustain a subdural haematoma.  
Figure 4: Summary of RAIDS-STATS19 Scaling Results
[image: ]
[bookmark: _Ref44412891]Figure 4 shows the number of casualties sustaining TBI, split by severity and pathology, in RAIDS from 1st April 2013 – 31st December 2019 (excluding the 6 month period after the end of Phase 1 but before start of Phase 2 collection in the first two quarters of 2016 when RAIDS data was collected). The GB average estimated annual numbers during this period.
Relative Risk of TBI for different road users in Great Britain (scaled from RAIDS)
All VRUs had an increased risk of moderate-severe TBI compared to car occupants. Pedestrians, motorcyclists and cyclists (known to be underrepresented in STATS19) were 3.6, 2.7 and 1.3 times more likely to sustain a moderate-severe TBI than car occupants [RRPED(CI95%):3.65 (3.54–3.77); RRMC(CI95%):2.67 (2.58–2.77); RRCYC(CI95%):1.27 (1.21–1.33)]. Pedestrians were 5 times more likely to have focal brain injury [RRFOCAL(CI95%):5.35 (5.13–5.57)] and 3 times more likely to sustain a skull fracture and subarachnoid haemorrhage [RRSF(CI95%):3.11 (2.99–3.24); RRSAH(CI95%):2.83 (2.70–2.97). Motorcyclists have a higher relative risk of focal brain injury and SAH than car occupants [RRFOCAL(CI95%):3.25 (3.08–3.41); RRSAH(CI95%):2.59 (2.45–2.73)].
The relationship between total delta-V and moderate-severe TBI
[bookmark: _Hlk44430323][bookmark: _Hlk62041872]We next examined the relationship between total delta-V and TBI severity for car occupants (n=738) and a combined pedestrian-cyclist VRU group (n=142) (Fig. 5). Car occupants who sustain moderate-severe TBI (n=39) had higher total delta-V distributions than uninjured (n=182) [UMW=527.5, p<0.001] and no TBI (n=472) groups [UMW=4135.5, p<0.001]. No car occupants sustained moderate-severe TBI below 20km/h total delta-V threshold. In contrast, 42% uninjured car occupants were exposed to total delta-V below 20km/h (Fig. 5B). The combined pedestrian-cyclist VRU moderate-severe TBI group (n=42) also had higher total delta-V distributions than the no TBI (n=79) group [UMW=778.0, p<0.001]. There were further differences in the thresholds above which specific TBI pathologies occur for car occupants (Fig. 5A-F) and the combined pedestrian-cyclist VRU group (Fig. 5G-L). Key pathologies examined were not observed below 19km/h for car occupants (Fig. 5C-F) and below 8km/h for VRUs (Fig. 5I-K). Focal brain injury had the higher threshold delta-V compared to the other pathologies for both car occupants (28km/h, Fig. 5F) and VRUs (16km/h, Fig. 5L). The four cyclists who sustained focal injury experienced total delta-V >40km/h. We did not have sufficient numbers within our sample to produce cumulative delta-V distributions for motorcyclists or for vans and heavy goods vehicles.
Figure 5: Brain Injury Pathology Normalised Cumulative Frequency Distributions
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Figure 5. Normalised cumulative frequency distributions of total delta-V (km/h) are shown for TBI severity and a range of pathologies. The further to the right a curve is shifted, the higher the overall total delta-V distribution is. In plots A and G, the curve corresponding to mild TBI is shown in orange. In the remaining figures the red curve shows moderate-severe TBI or key pathologies (labelled on the left-hand side of the figure). All uninjured car occupants (green curve, A-F) experienced delta-V ≤ 55 km/h and car occupant casualties without TBI (blue curve, A-F) experienced delta-V ≤ 75 km/h. In the pedestrian-cyclist group, there were insufficient numbers of uninjured subjects, so only casualties without TBI are shown (blue curve). The y-axis shows the proportion of the group which sustained their injury at or below the threshold on the x-axis. For example, 50% of car occupants with moderate-severe TBI were exposed to 45km/h total delta-V or less.  Corresponding shaded regions show 95% confidence intervals. Of 738 car occupants with known delta-V, 182 were uninjured, 472 were injured without TBI and 84 sustained TBI (24 symptomatic-possible, 21 mild-probable and 39 moderate-severe). Car occupants with known delta-V included 14 with skull fracture, 14 with SDH, 24 with SAH and 19 with focal injury. Of 142 vulnerable road users with known kinematics, 3 were uninjured, 79 were injured without TBI and 60 sustained TBI (6 symptomatic-possible, 12 mild-probable and 42 moderate-severe). VRUs with known delta-V included 25 with skull fracture, 9 with SDH, 19 with SAH and 21 with focal injury.
Lateral delta-V exposure increases car occupant TBI risk
We next examined the effect of impact direction on TBI risk. Lateral and longitudinal delta-V was estimated for car occupants, where sufficient information was available (n=738). Cumulative frequency curves for groups with moderate-severe TBI, injured subjects who did not sustain TBI and uninjured subjects were then calculated for lateral and longitudinal delta-V components (Fig. 6). Ten car occupants with equal lateral and longitudinal delta-V components were excluded. Car occupants involved in collisions with a higher lateral delta-V (n=116) showed a higher prevalence of moderate-severe TBI than those with higher longitudinal delta-V (n=614) [χ2(1)=5.36, p=0.021] and 2.19 relative risk ratio, (CI95%:1.12-4.30).  This difference was not driven by a higher delta-V distribution as the lateral-dominant group had lower total delta-V [UMW=28,815.5, p<0.001] and lower dominant component distributions [UMW=2315.0, p<0.001] compared to the longitudinal-dominant group (Fig. 6A).
A proportion of the collisions (37%, n=270) involved both lateral and longitudinal delta-V components, so we performed a sub-analysis comparing collisions where car occupants were exposed only to lateral or longitudinal delta-V. Car occupants exposed only to lateral delta-V only (n=61) had a higher risk of moderate-severe TBI than those exposed only to longitudinal delta-V groups (n=407) [χ2(1)=7.99, p=0.005; RR(CI95%):3.34 (1.40-7.93)]. SAH was also more prevalent for car occupants only exposed to lateral delta-V [χ2(1)=5.41, p=0.020] and had a 3.81 relative risk ratio (CI95%:1.15-12.64). The lateral delta-V distributions were lower than the corresponding longitudinal delta-V distributions (Fig. 6B) [moderate-severe: UMW=10.0, p=0.002; no TBI: UMW=3,464.5, p=0.001, overall: UMW=9,811.0, p=0.004].


[bookmark: _Ref38287378]Figure 6: Comparison of the lateral only and longitudinal only delta-V distributions
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Figure 6. Exploration of how the delta-V component direction affects TBI severity. (A) shows the dominant delta-V component distributions for car occupants who experienced lateral-dominant delta-V and longitudinal-dominant delta-V. For moderate-severe TBI, the lateral-dominant delta-V distribution is significantly lower than the longitudinal-dominant delta-V distribution [UMW=87.5, p=0.025], showing that the delta-V distribution is not a confounding factor. (B) shows the total delta-V distribution for car occupants who experienced only lateral and only longitudinal delta-V, split by TBI severity group. For moderate-severe TBI and casualties without TBI, the only lateral delta-V distribution is significantly lower than the only longitudinal delta-V distribution [no TBI:UMW=3,464.5, p=0.001; moderate-severe: UMW=10.0, p=0.002], showing that the delta-V distribution is not a confounding factor.


TBI risk increases with increasing total delta-V and road user vulnerability
Binary logistic regression was used to generate injury risk curves with delta-V as the predictor and TBI severity and pathologies as the outcome (Fig. 7 and Fig. 8). The risk of sustaining a moderate-severe TBI was significantly higher for the combined pedestrian-cyclist VRU group than car occupants at all delta-Vs (Fig. 7A) [UMW=8894.0, p<0.001]. Delta-V was also a significant predictor of outcome for all four most prevalent moderate-severe TBI pathologies (Fig. 7B-C) with the p-values associated with the Z-test for each pathology and road user group shown in Supp. Figure 1A-H. 
Within the same road user group, there is significant overlap between the different TBI pathology risk curves which is unsurprising as numerous subjects sustained multiple TBI pathologies. For car occupants, SDH, SAH and focal injury are within 95% confidence intervals of one another, with a lower risk of skull fracture at a given delta-V (Fig. 7B). Contrastingly, skull fracture risk is greatest for VRUs, followed by SAH and focal injury which have similar risks (Fig. 7C). The odds ratios calculated from the coefficients of multivariate logistic regression with total delta-V and road user group as predictors [Z-test, p≤0.002 in all instances] differed by TBI pathology when accounting for delta-V [Z-test, p≤0.002 in all instances]. For VRUs compared to car occupants, the odds ratio is higher for moderate-severe TBI [OR(CI95%): 6.84 (4.03-11.63)]. The difference was greatest for skull fracture [OR(CI95%): 12.32 (5.87-25.87)] (green lines on Fig. 7b-c), followed by focal injury [OR(CI95%): 8.34 (4.02-17.29)], SAH [OR(CI95%): 6.55 (3.22-13.30)] and subdural haematoma [OR(CI95%): 4.56 (1.72-12.12)]. Further pathology comparisons for different road users can be found in the supplementary material (Supplementary Fig. 1 and 2).


[bookmark: _Hlk65398952]Figure 7: Comparing Vulnerable Road User and Car Occupant Brain Injury Risk
[bookmark: _Hlk57013246][image: ]Figure 7. A comparison of TBI risk for car occupants and the pedestrian-cyclist combined vulnerable road user group. The risk of all moderate-severe TBI at a particular delta-V value is higher for VRUs than for car occupants [UMW=8894.0, p<0.001]. (A). The risk of different TBI pathologies for car occupants (B) and VRUs (C) is shown for total delta-V values 20km/h, 30km/h, 40km/h, 50km/h, 60km/h and 70km/h. For both VRUs and car occupants, risk of subdural haematoma was lower than the other pathologies. For car occupants, subarachnoid haemorrhage was the highest risk pathology. For VRUs, focal injury, subarachnoid haemorrhage and skull fracture had similar risks. Individual comparisons between different road users for each of the four pathologies key can be found in the supplementary material (Supplementary Fig. 2).
Predicting moderate-severe TBI risk with delta-V 
Our injury risk curves can be used to predict moderate-severe TBI risk for someone involved in a collision with a known delta-V value. Three distinct models to predict moderate TBI are shown with their corresponding ROCAUC curves to evaluate performance (Fig. 8). For the combined pedestrian-cyclist group, moderate-severe TBI was differentiated from all other severities (Fig. 8A) and is a fair predictor of TBI severity [ROCAUC(CI95%): 0.73 (0.55-0.89)] (Fig. 8D). The predictive capability for the model car occupant group to differentiate moderate-severe TBI from all other severities (Fig. 8B) is good [ROCAUC(CI95%): 0.81 (0.68-0.93)] (Fig. 8C). When additionally including a flag for higher lateral delta-V component, this increases marginally [ROCAUC(CI95%): 0.84 (0.75-0.91)] (Supplementary Fig. 3A). We finally compare a model which differentiates extremely well between car occupants with moderate-severe TBI and uninjured car occupants (Fig. 8C). It had a high TBI detection capability [ROCAUC(CI95%): 0.93 (0.84-1.00)] (Fig. 8F) demonstrating excellent classification capability of uninjured and moderate-severe TBI groups in particular. This again increases further when considering the dominant delta-V component [ROCAUC(CI95%): 0.95 (0.89-1.00)] (Supplementary Fig. 3B). Further information about the two moderate-severe TBI risk models with a baseline of all other severities (Fig. 8A-B) including precision and recall corresponding to different risk cut-off thresholds (5-50%) can be found in Supplementary Table 7. 
[bookmark: _Hlk65399064]Figure 8: Moderate-Severe Brain Injury Risk for Different Road Users
[image: ]
Figure 8. Moderate-severe TBI risk curves for the combined pedestrian-cyclist VRU group [ROCAUC(CI95%): 0.73 (0.55-0.89)] (A) and car occupants [ROCAUC(CI95%): 0.81 (0.68-0.93)] (B) compared to all other subjects and (C) uninjured car occupants [ROCAUC(CI95%): 0.93 (0.84-1.00)]. Corresponding ROC curves are also shown (D-F). Total delta-V (km/h) is the predictor used. Full logistic regression TBI pathology risk curves with delta-V as the predictor are shown for car occupants and VRUs in Supplementary Fig. 1.
[bookmark: _Hlk34151776][bookmark: _Hlk56784833]
Discussion
There is a poor understanding of the relationship between collision dynamics and TBI pathology despite an estimated 34 million people sustaining TBI in road traffic collisions (RTCs) each year2. This limits the ability to reduce the risk of significant TBI occurring. We investigated the interaction between collision dynamics, TBI pathology and vulnerability (type of road user) using data from the Road Accident In-Depth Studies (RAIDS) database collected on behalf of the UK Government’s Department for Transport. Detailed collision and clinical data were analysed from more than 5,000 subjects involved in RTCs. We described the prevalence of different types of TBI pathology and model the relationship of injuries to collision dynamics, characterised by estimated change in velocity of the vehicle or vulnerable road user during the impact phase of the collision (delta-V). We show that in cyclists, wearing a helmet is protective against TBI of all severities and moderate-severe TBI, particularly skull fracture and subdural haematoma and that this is not due to non-helmeted cyclists travelling faster or being impacted by vehicles travelling at higher speeds. Moderate-severe TBI risk increased with delta-V and was significantly higher in vulnerable road users for a given delta-V. The data allowed us to estimate thresholds of delta-V for different types of TBI and highlighted the importance lateral delta-V has on increasing TBI risk in car occupants. The results have the potential to influence trauma care directly by informing the development of advanced automated collision notifications systems that are increasingly being fitted in new vehicles. 
[bookmark: _Hlk89073054][bookmark: _Hlk89338776][bookmark: _Hlk89865789]Clinical records and post-mortem reports provided information about the nature of TBI pathology of 5,374 subjects involved in 2,065 collisions. 595 sustained a TBI (20.2% of 2,940 casualties) of which the majority were moderate-severe (52.9% of 595 TBI subjects). Subarachnoid haemorrhage, focal brain injury, skull fracture and subdural haematoma were all common pathologies. As expected, the risk of moderate-severe TBI was significantly (6 times) higher for vulnerable road users than for car occupants for a given delta-V. Pedestrians were most at risk, supporting previous findings4. In general, as the protection level provided by personal protective equipment such as helmets or the vehicle structure itself is increased, the overall rate and severity of TBI decreased illustrating the importance of head protection for VRUs47. Our results are similar to other in-depth European databases. For example, a high prevalence of focal brain injury and skull fractures in pedestrians has previously been shown in German and Dutch RTCs48, 49. 
Our analysis of cyclist collision dynamics and helmet usage provided novel insights into the protection provided by helmets.  Previous work has shown that helmets protect from TBI of all severities in RTCs and are particularly protective of moderate-severe TBI including skull fracture and SDH50. Our results provide further evidence that this is the case and additionally show that this protective effect was not simply due to differences in the speed of the cyclist, e.g. non-helmeted cyclists travelling faster or differences in the speed of the vehicle impacting the helmeted and non-helmeted cyclists. We show that non-helmeted cyclists are at greater risk of skull fracture, which can be explained by higher linear acceleration and contact forces, both of which are reduced by helmets51. We also showed an increased risk of  SDH in non-helmeted cyclists. which may be related to rotational rather than linear acceleration, with relative skull-brain motion thought to be the key mechanism of injury52-56. The observations in this study from real-world collision data highlights that existing helmets are effective at mitigating a significant portion of TBI sustained in RTCs. Emerging helmet technologies have been developed based on increased understanding specific TBI pathology injury mechanism (e.g. intracranial bleeding) 47, 56. These new technologies have been shown to be even more effective in mitigating rotational effects57. Continued development could further improve the protection provided by helmets for a range of road users including cyclists, motorcyclists and micro-mobility users. 
We address a key knowledge gap in the understanding of how collision dynamics relate to specific types of TBI pathology in varying types of road user. The information we provide is important because the risk of TBI pathologies such as subdural haematoma or focal brain injury are related to collision dynamics and interact with the extent of an individual’s protection from injury i.e. their vulnerability as a road user. A surprisingly small amount of work has addressed this problem previously. Two small studies (<60 subjects) have shown relationships between collision dynamics (including delta-V) and subdural and intraventricular haemorrhage21, 22. Our results significantly increase understanding in this area by providing a detailed characterisation of injury risk for specific TBI pathologies in terms of collision dynamics and road user vulnerability. 
[bookmark: _Hlk89869286][bookmark: _Hlk89868094][bookmark: _Hlk89869215][bookmark: _Hlk89339391]Detailed reconstructions for the collisions in RAIDS provided estimation of collision dynamics including delta-V. This quantifies the change in total impact velocity for the vehicles or pedestrians involved in collisions. We observed no moderate-severe TBI below a delta-V of 20km/h for car occupants and 8km/h for VRUs. Delta-V for VRUs is heavily dependent on the speed of the impacting vehicle. In order to consider a typical example collision between a pedestrian and a car, common characteristics of pedestrian collisions must first be explored. Pedestrians and cyclists are commonly injured in urban areas, which in the UK tend to have a 20mph or 30mph speed limit58. Additionally, STATS19 GB data during the period of our study showed that the majority (70%) of pedestrians involved in collisions were crossing a road at the time. We therefore consider a typical example collision between a pedestrian crossing a road and a car travelling at 32km/h (20mph) at the point of impact. In this case the pedestrian’s movement is perpendicular to the direction of travel of the impacting car and the pedestrian is accelerated to the speed of the car, the VRU delta-V may be considered to be equivalent to the car impact speed (32km/h). In this scenario the risk of moderate-severe TBI is 26% (CI95%: 24.7-27.7%). Alternatively, for the same collision configuration with the car instead travelling at 48km/h (30mph) at the point of impact, the VRU delta-V is 48km/h. In this higher delta-V scenario, the risk of moderate-severe TBI increased to 39% (CI95%: 36.5-43.5%). The risk of TBI pathologies approximately doubled from a 32km/h to 48km/h delta-V (skull fracture 18.3% vs 37.0%, subarachnoid 17.9% vs 30.2% and focal 18.2% vs 31.6%) with subdural haematoma risk remaining lower (9.2% vs 14.7%) at both delta-V points.  These results cannot be directly extrapolated to the speed limits on roads because cars travel at a range of speeds and brake variably prior to and during impact. Further research could usefully explore the risks of TBI in specific speed zones.
We demonstrate for the first time that increasing delta-V had a distinct effect on the risk of different TBI pathologies for car occupants and vulnerable road users. In VRUs we showed that skull fracture risk increased particularly rapidly with increasing delta-V when compared to car occupants. For example, the risk of skull fracture for VRUs increased dramatically from 18% at 32km/h delta-V to 37% at 48km/h delta-V to 60% at 64km/h delta-V. For car occupants, skull fracture risk was 2% at 32km/h, 4% at 48km/h and 9% at 64km/h. Skull fractures have previously been shown to increase with increasing vehicle impact speed for pedestrians59. High linear accelerations and direct head impacts are known to cause skull fractures60, 61. Hence, the difference in skull fracture risk is most likely to be because pedestrians and cyclists are at greater risk of direct head impacts that often result in skull fractures. In contrast, vehicle occupants are relatively protected from direct head impacts by the routine use of restraint systems within a vehicle. 
We were also able to directly compare the TBI prevalence and risk associated with lateral and longitudinal delta-V for car occupants. Side impacts and rollover collisions tend to have high lateral delta-V components and have previously been linked to serious head injury14, 62. Our investigation of a large number of collisions allowed us to study collisions with only lateral or longitudinal delta-V, allowing the contribution of different delta-V directions to be studied more precisely. Lateral delta-V increased the risk of TBI and subarachnoid haemorrhage compared to longitudinal delta-V, even when total delta-V was lower. The results suggest that future vehicle safety modifications designed to reduce car occupant TBI risk should focus on protecting from the effects of lateral vehicle delta-V. Potentially modifiable mechanisms include head contact with the internal side structures of the vehicle and high angular or rotational accelerations of the head, which can cause subarachnoid haemorrhage63. Overall risk prediction capability was also improved when including dominant lateral delta-V as a binary flag.
[bookmark: _Hlk89862743]We selected logistic regression as an established and most widely used tool for constructing injury risk relationships particularly in road traffic collisions42-44. Despite being a powerful tool capable of discerning the importance of parameters contributing to risk, some limitations arise. For example, the lack of representability within the RAIDS sample must be considered before assuming wider applicability of the risk functions derived for the RAIDS data. Due to RAIDS being a serious subset of GB collisions, uninjured subjects and slightly injured casualties are underrepresented within the data relative to true national incidence rates. Under-sampling relative to the true incidence rate has been shown to overestimate the injury risk for a given exposure level64. We expect this effect to be particularly pronounced in the risk functions for the pedestrian/cyclist group as they are most significantly underrepresented (as shown in Fig. 3), contributing to the non-zero risk observed at zero delta-V (Fig. 8). A similar risk overestimation effect is likely present to a lesser degree in car occupants. Previous work has explored the effect of specific modelling choices on underreporting in specific RTC datasets65. A range of alternate parametric modelling approaches to address different nuances of RTC data are discussed in detail by Savolainen et al. (2011)43. Without applying more complex modelling choices, there are alternate parametric models available which would tie the non-zero risk observed at zero delta-V in the RAIDS pedestrian/cyclist group to zero. For example, although not typical for larger datasets, applying a Weibull regression model could necessitate the expected zero risk at zero delta-V relationship, as demonstrated in this single dependent variable example in a related field66. Future work could usefully investigate the effect of different parametric modelling choices on risk functions derived from RAIDS data. 
We reported the estimated prevalence of different types of TBI. Our estimate of moderate-severe TBI prevalence (53% of RAIDS TBI) was higher than the proportion of severe TBI previously observed in Trauma Audit Research Network data in England and Wales during our study period (46% of RTC TBI)67. RAIDS was designed to capture serious RTCs and is likely to underestimate the prevalence of mild TBI produced by less serious RTCs. We partially accounted for this by scaling the RAIDS estimates using information from the STATS19 database. This GB database includes all police-reported casualties and is the most comprehensive GB data available. However, police data also reports only a subset of all road casualties and up to 45% of RTC hospital admissions are omitted from STATS19. Collisions involving motorcyclists and particularly cyclists, as well as more minor injuries, are known to be underreported68, 69. Therefore, we expect the relative risk estimates we report for the cyclist and motorcyclist groups to underestimate the true relative risk. Nevertheless, our estimated rate of mild-probable and moderate-severe TBI in national police-reported collisions of 6% is similar to a previous study French study that estimated a rate of 6.7% for TBI following RTCs70. 
[bookmark: _Hlk89350596]Diffuse axonal injury is an important TBI pathology commonly caused by road traffic collisions71. High shear forces produced at the time of RTCs cause damage to white matter tracts in the brain leading to diffuse axonal injury9, 72. Catastrophic outcomes after TBI such as persistent vegetative state are often caused by the presences of extensive diffuse axonal injury. Previous reports RTC databases have estimated relatively low rates of diffuse axonal injury, between 0.1 and 6.3%17, 24, 73. We find a similarly low rate in the RAIDS data (4.4% of all TBI). However, it is likely that these rates are significantly underestimated which is a limitation in this study. The classifications of TBI pathology from clinical data in RAIDS and other databases of this type are based mainly on CT imaging, which often misses significant diffuse axonal injury74. Advanced magnetic resonance imaging provides a more sensitive way of diagnosing diffuse axonal injury75. Diffusion tensor imaging allows diffuse axonal injury to be identified in individuals and suggests around 50% of moderate-severe TBI have some degree of diffuse axonal injury76. Radiology reports from magnetic resonance and diffusion tensor imaging within RAIDS are far less common that CT imaging or post-mortem reports, which limits our ability to fully diagnose DAI, particularly in surviving patients. In keeping with its adverse clinical effects, two thirds of the patients with evidence of diffuse axonal injury in RAIDS died. This emphasises the importance of considering the collision dynamics which might lead to diffuse axonal injury, as strategies to reduce the incidence of poor clinical outcomes after RTCs should focus on reducing the prevalence of diffuse axonal injury.
Our detailed investigation of the relationship between road traffic collision dynamics and TBI is particularly timely because of the development of smart sensor technologies that are increasingly deployed in vehicles. These provide the information for automated collision notification (ACN) systems that detect collision events using event data recorders and can automatically notify emergency services of the exact collision location. The European ACN system, known as eCall, is now compulsory for all new cars, and has been shown to potentially reduce fatality rates by 5-10%77. In US RTC data, if at least one vehicle involved has an ACN system, emergency service notification time is reduced (from median 4, IQR 2-9 minutes to median 2, IQR 1-5 minutes) and patients arrive at medical facilities faster, with particular benefits seen in less urban areas (median 36 vs 45 minutes)78. Advanced ACN systems can also provide emergency services with an automated information about injury risk, which can enhance trauma care response further79-81. In Europe in 2024, all new cars sold must record collision events in increased detail, including delta-V (lateral and longitudinal components)82. 
Trauma care is now generally concentrated within major trauma centres. Patients with serious TBI should be taken directly to a centre with neurosurgical capability. However, this does not always happen. Advanced ACN would be enhanced by the ability to predict the likelihood of life threatening TBI. One British report found >50% trauma patients requiring neurosurgical intervention were taken to hospitals without neurosurgical provisions and only 14% of TBI patients requiring hospital transfer were operated on within 4 hours of injury83. This is very problematic as delays in neurosurgery of this degree significantly impact on clinical outcomes84, 85. In patients with severe TBI, mortality was reduced from 36% to 19% when transferring directly to a trauma centre with neurosurgical provision86. Hence, improved clinical outcomes after RTC could be delivered by the automated identification of collisions with a high risk of producing serious TBI, as this alert could be used to divert patients directly to an appropriate major trauma centre. Our results (based on delta-V) could inform future TBI-specific advanced ACN systems. 
[bookmark: _Hlk65223354]The exceptionally detailed clinical and collision data enabled us to investigate the interaction between injury pattern (pathology), vulnerability (type of road user) and road traffic collision dynamics (using delta-V) for the first time. The risk with increasing delta-V of sustaining moderate-severe TBI pathologies is higher for VRUs than car occupants, likely due to their decreased protection levels. Skull fracture risk in particular increases substantially with increasing delta-V for VRUs, which aligns with the known injury mechanism of high linear acceleration and contact force relating to speed. For car occupants, there is a higher risk of moderate-severe TBI in lateral delta-V only collisions than equivalent longitudinal delta-V collisions, particularly SAH. By basing our TBI risk analysis on delta-V, our work has the potential to impactfully inform real-world ACN systems that guide post-accident response providing that they can detect delta-V reliably.
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Supplementary Material
Supplementary Table 1: Collection criteria for RAIDS on-scene and retrospective data
	Criteria
	RAIDS Phase 1 (April 2013 – December 2015) – heavy vehicle
	RAIDS Phase 1 (April 2013 – December 2015) - car
	RAIDS Phase 2 (April 2016 – April 2020) - car

	Cases by injury severity
	No injury target
	No injury target
	60% KSI in sample vehicles

	Sample area
	All of Thames Valley and Hampshire (excluding Isle of Wight)
	All of Thames Valley
	All of Thames Valley and Hampshire (excluding Isle of Wight)

	Collisions must include
	At least one vehicle involved was a:
· heavy goods vehicle (HGV, GVW >3,500kg)
· light goods vehicle (LGV, GVW <3,500kg), including small vans and pick-ups that don’t have passenger car equivalents
· large passenger vehicle (buses >16 passenger seats)
· minibus (8-16 passenger seats)
· Other motor vehicle (recovery vehicle, refuse collection vehicle etc.)
	M1 vehicle that was seven years old or less at the time of the collision had at least one occupant who was injured (according to the initial police injury severity assessment)
	M1 vehicle that was five years old or less at the time of the collision, and had at least one occupant who was injured (according to the initial police injury severity assessment) and required hospital treatment

	Vehicles for inspection
	The sample vehicle is available for subsequent inspection
	Sample vehicle was towed and available for inspection
	Sample vehicle was towed and available for inspection.
All towed vehicles must be examined

	Injury criteria for collision
	There is at least one injured road user in either the large vehicle or involved in the collision with the large vehicle
	
	




Supplementary Table 2: Mayo TBI Classification System Search Terms
The terms shown in Supplementary Table 2 were used in the free-text search algorithm to extract TBI information from the RAIDS database. The terms were selected and categorised by Mayo TBI severity by the authors before being reviewed by an independent histopathologist and TBI clinician. The terms were refined using RAIDS Phase 1 and 2 data and validated manually for 507 subjects involved in 200 collisions from Phase 2 Extension data (2019-2020) obtaining ≥99.4% agreement. Our method also captured all AIS injury-coded pathologies it was possible to directly compare (subdural haematoma, subarachnoid haemorrhage and skull fracture). Sentences containing the terms were extracted for further analysis. Where terms related to false positives were found, for example ‘no’ preceding a TBI search term, these were flagged for manual review. Note that skull fracture-related search terms were put in the mild category, but the sentences they appeared in were assessed for severity. The vast majority of skull fractures which were classified as moderate-severe also presented with other moderate-severe TBI terms. Following false positive assessment, we reclassified our casualties to ensure that the maximum TBI severity was correct.
	Mayo Severity
	Search Terms

	Moderate-Severe (n=329)
	pupils restrict, pupil restrict, brain bleed, bruising to brain, intra cranial pressure, no pupillary reaction, contrecoup, contre-coup, contre coup, contra-coup , contracoup, contra coup, coup injury, coup brain injury, tonsillar herniation, downward cerebellar herniation, coning, bolt, anneurism, aneurism, anneurysm, aneurysm, pupils unreactive, pupil unreactive, unreactive pupil, non-reactive pupil, pupils non-reactive, pupil non-reactive, pupils not react, pupil not react, pupils fixed, fixed pupil, pupil fixed, pupil dilated, pupils dilated, dilated pupil,  coma , neurorehab, neuro rehab, neuro-rehab, EVD , extra ventricular drain, external ventricular drain, ICP monitoring, cranial pressure, ICP, cranioplasty, bone flap, burr hole, cerebral sinus, venous sinus, callosal, craniotomy, craniectomy, brain stem, brainstem, brain-stem, cerebellum, cerebrospinal fluid, cerebral-spinal fluid, CSF,  CTE, chronic traumatic encephalopathy, neurological, neurosurg, brain contusion, the dura , meninges, dural, arachnoid, CSF fistula, diffuse axonal injur,  DAI , \(DAI\), epidural hematoma, epidural haemorrhage, epidural hemorrhage, epidural bleed, frontal lobe, intracerebral, intracranial hematoma, intracranial bleed, intracranial haemorrhage, intracranial hemorrhage, intracranial haematoma, intercranial hematoma, intercranial haematoma, intracerebral hematoma, intercranial bleed, intercranial haemorrhage, intercranial hemorrhage, sub dural, sub-dural, intra-cranial, sub-arachnoid, intra cranial, sub arachnoid, subdural hematoma, subdural haematoma, subdural bleed, subdural haemorrhage, subdural hemorrhage, subarachnoid hematoma, subarachnoid haematoma, subarachnoid bleed, subarachnoid haemorrhage, subarachnoid hemorrhage, occipital lobe, parietal lobe, penetrating brain injury, arachnoid membrane, temporal lobe, traumatic brain injury, grey matter, white matter, grey-white matter, white-grey matter, brain tissue, decompressive craniectomy, cerebral, extra axial hematoma, extra-axial hematoma, extra axial haematoma, extra-axial haematoma, extra axial bleed, extra-axial bleed, extra-axial haemorrhage, extra axial haemorrhage, extra-axial hemorrhage, extra axial hemorrhage, corpus callosum, microhaemorrage, microhaemorrhage, microhemorrage, microhemorrhage, posterior fossa, dura mater, pia mater, cortical contusion, cerebral cortex, midline shift, sub-frontal contusion, occipital contusion, occipital haematoma, occipital hematoma, occipital haemorrhage, occipital hemorrhage, cortical infarction, Cerebral infarction, cerebral laceration, intraparenchymal haemorrhage, intraparenchymal hemorrhage, intraparenchymal haematoma, intraparenchymal hematoma, interparenchymal haemorrhage, interparenchymal hemorrhage, interparenchymal haematoma, interparenchymal hematoma, midbrain, mid-brain, gyrus, gyri, sulcus, sulci, third ventricle, 3rd ventricle, fourth ventricle, 4th ventricle, cerebral aqueduct, hippocampus, lateral ventricle, thalamus, cerebral hemisphere, amygdala, limbic system, pituitary fossa, sella turcica, cranial nerve, Wernicke, Broca, bihemispheric, bi-hemispheric,  TBI, \(TBI\), brain substance, brain laceration, brain showed contusion, cerebral hemisphere, intraventricular haemorrhage, intraventricular hemorrhage, intraventricular haematoma, intraventricular hematoma, intraventricular bleed, interventricular haemorrhage, interventricular hemorrhage, interventricular haematoma, interventricular hematoma, interventricular bleed, exposing the brain, exposed the brain, brain was exposed, fragmentation of the brain, thalamic parenchymal haematoma, evulsion of the brain, temporal pole contusion, pole contusion, bilateral brain, brain parenchyma, brain parnchyma, parenchymal contusion, parnchymal contusions, parenchymal contusions of the brain, parnchymal contusions of the brain, parenchymal brain contusions, parnchymal brain contusions, head injury - post traumatic punctate h, head injury - post-traumatic punctate h, temporal horn, quadrigeminal plate, brain bruis, bruises to the brain, bruise to the brain, bruising to the brain, bruises of the brain, bruise of the brain, bruising of the brain, Brain had been effectively eviscerated, Brain: small severely torn fragments, contusion to the inferior aspect of the brain, Haemosiderin deposition in the brain, pneumocephalus, brain was oedematous, displaced skull fracture, brain is swollen, brain was swollen, brain is diffusely swollen, brain was diffusely swollen, swollen brain, brain swelling, brain oedema, Oedema on the right side of brain, Oedema on the left side of brain, Oedema on the right side of the brain, Oedema on the left side of the brain, occipital condyle fracture, hemorrhagic contusion, haemorrhagic contusion, basilar skull fracture, intracranial abnormalit, intercranial, abnormal head CT, hydrocephaly, GCS3, GCS 3, GCS of 3, Glasgow Coma Score 3, GCS4, GCS 4, GCS of 4, Glasgow Coma Score 4, GCS5, GCS 5, GCS of 5, Glasgow Coma Score 5, GCS6, GCS 6, GCS of 6, Glasgow Coma Score 6, GCS7, GCS 7, GCs of 7, Glasgow Coma Score 7, GCS8, GCS 8, GCS of 8, Glasgow Coma Score 8, GCS9, GCS 9, GCS of 9, Glasgow Coma Score 9, GCS10, GCS 10, GCS of 10, Glasgow Coma Score 10, GCS11, GCS 11, GCS of 11, Glasgow Coma Score 11, GCS12, GCS 12, GCS of 12, Glasgow Coma Score 12, GCS: 3, Glasgow Coma Score: 3, GCS: 4, Glasgow Coma Score: 4, GCS: 5, Glasgow Coma Score: 5, GCS: 6, Glasgow Coma Score: 6, GCS: 7, Glasgow Coma Score: 7, GCS: 8, Glasgow Coma Score: 8, GCS: 9, Glasgow Coma Score: 9, GCS: 10, Glasgow Coma Score: 10, GCS: 11, Glasgow Coma Score: 11, GCS: 12, Glasgow Coma Score: 12, extra dural hem, extra-dural hem, extradural hem, extra dural haem, extra-dural haem, extradural haem, extra dural bleed, extra-dural bleed, extradural bleed, extra dural blood, extra-dural blood, extradural blood, extra dural, extra-dural, extradural, axonal , axonal inj 

	Mild-Probable (n=148)
	GCS13, GCS 13, GCS of 13, Glasgow Coma Score 13, GCS14, GCS 14, GCS of 14, Glasgow Coma Score 14, GCS: 13, Glasgow Coma Score: 13, GCS: 14, Glasgow Coma Score: 14, concussive, basilar fracture, skull fracture, fracture of the skull, fractured skull, occipital fracture, occipital bone fracture, fracture of occipital bone, fracture the occipital bone, temporal fracture, temporal bone fracture, fracture of temporal bone, fracture the temporal bone, parietal fracture, parietal bone fracture, fracture of parietal bone, fracture the parietal bone, frontal fracture, frontal bone fracture, fracture of frontal bone, fracture the frontal bone, head fracture, maxilla fracture, maxilla bone fracture, fracture of maxilla, fracture the maxilla, depressed skull fracture, linear skull fracture, mandibula fracture, mandibula bone fracture, posterior fossa, ring fracture of the skull, forament magnum, foramen magnum, compressed skull fracture, skull showed a fracture, skull showed a complex fracture, skull base showed fracture, skull showed fracture, skull was fractured, base of skull fracture, post-traumatic amnesia, post-traumatic anterograde amnesia, post-traumatic retrograde amnesia,  PTA, subgaleal haematoma, subgaleal hematoma, subgaleal haemorrhage, subgaleal hemorrhage, amnesia, post-traumatic amnesia, post-concussion syndrome, concussion, loss of consciousness, ko'd, K/O, ko'ed, k/o'd, knocked out, Unconscious, not conscious, unresponsive, fracturing of the sphenoid, fractures to the skull vault, parietal bone, sphenoid bone, fractures to the skull base, skull showed fracture, fracture to the left occipital, fracturing of the ethmoid, fracture to the occipital, roof of the left orbit, sphenoid fracture, fracturing of the frontal plates, fractures of vault, ethmoid, frontal bone, fractures of the vault, skull showed extensive fractures, cranial fossa, fracture of the right temporal bone, fracture of occipital condyle, temporal bone, fractures of the base of skull, occipital condyle fracture, temporal bone was fractured, basiocciput, fracture of right occipital condyle, skull bones showed multiple complicated fractures, skull showed extensive comminuted, ethmoid bone, fracture of the temporal bone, skull base extension, fractures of the anterior fossa, petromastoid fracture, skull base showed multiple comminuted fractures, sphenoid, skull bones, roof of the right orbit, base skull with a fracture, fractures of skull vault, superomedial orbit, skull bones show multiple, occipital bone, undisplaced occiput fracture, skull base missing, occiput fracture, base of skull fracture, comminuted fracture of the vault, frontal fracture, fracture base of skull, skull showed extensive fracture, fracture through the left orbit,  severe injury of the head mainly on left side with comminuted fracture of bone, fracture of left occipital condyle, fractures of skull base, fractures to the vault, fracture at the base of skull, skull - basilar fracture, skull - vault fracture, fractures of the skull, fractured base of skull, skull base fracture, skull vault fracture, fracture - vault of skull, fracture - base of skull, fracture of the left temporal bone, skull shows fractures, fracture to the right occipital, skull fracture, fracture of the frontal bone, fracture of skull, fracture of base of skull, temporal fracture, skull showed extensive, fractures of the skull vault

	Symptomatic-Possible (n=27)
	blurred vision, blurry vision, blurred sight, blurry sight, double vision, confusion, confused, daze, dazed, dizziness, dizzy, focal neurologic symptoms, focal neuro, headache, head ache, nausea, nauseous, vomit, vomiting, seizure, head pain, agitated, agitation, queezy, feel sick, felt sick, feeling sick

	Negative (Exclusion) (n=24)
	past history, past medical history, medical history, pre existing condition, existing condition, pre-existing, pre existing, preexisting, image quality , artefact,  GP , general practitioner, underlying medical conditions, intact, not, no, within normal limits,  normal , no evidence of , hypoxic brain injury, lung*, overlaying **, over the **

* relating to focal contusion
** skull fracture terms
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Detailed Description of Method for Scaling Findings to GB Level
The national level STATS19 data is collated by the police. STATS19 includes information about the type of road user involved in the collision, their overall injury severity, details about the road a collision occurs on, environmental factors such as lighting and collision causation. Collisions must be attended by the police or be reported to the police within 30 days. Not all collisions are reported to the police, with those causing minor injuries more likely to be missed. STATS19 data does not report injury pathology. Collisions involving cyclists are particularly known to be underrepresented (47). RAIDS is a subset of STATS19 that focusses on severe injuries and fatalities, whereas STATS19 covers injuries of all severities. A mapping is therefore required to scale RAIDS results to STATS19. We use fields available both in RAIDS and STATS19 to create a mapping, following similar methodology to other in-depth database scaling, refined by TRL statisticians to best encompass the GB scenario30.
Seven collision characteristics present in both datasets were considered for relating the RAIDS and STATS19 populations. The shortlisted collision variables were road user type, casualty age, lighting level, speed limit, road class and vehicle age and overall injury severity (as an output). These were chosen because they are the most important to the GB scenario and relate to the selection criteria for RAIDS cases. For each group in RAIDS and STATS19, we counted the number of casualties who met a given combination of the six input collision characteristics. The counts for a given combination of collision characteristics were compared in corresponding RAIDS and STATS19 populations. We applied chi-squared tests to ensure the casualty counts for our chosen scaling variables in RAIDS and STATS19 were significantly different. We used R to fit decision tree models with injury severity as the outcome variable to determine which input variables were most important in classifying RAIDS by injury severity. This analysis was performed with a minimum cluster size of 49 and a maximum depth of 2 variables. We applied chi-squared tests to ensure the casualty counts for our chosen scaling variables differed significantly in RAIDS and STATS19.
As the collection criteria for RAIDS was slightly different in each phase, we first split the data into a Phase 1 group and a Phase 2 subset. Each phase of RAIDS data is then further split into two subsets depending on whether investigators attended the scene. As each of these subsets have different selection criteria, we applied the same selection criteria to split the STATS19 data into four subsets: Phase 1 On-Scene, Phase 1 Retrospective, Phase 2 On-Scene and Phase 2 Retrospective. For each of these four subsets, a decision tree analysis was performed to select the scaling variables. A weighting is then calculated for casualties who are grouped by the chosen combination of collision factors. Overall injury severity and road user type were selected to determine the weighting for casualties involved in all on-scene cases. In addition to road user type and overall injury severity, vehicle age was also included to calculate weightings for casualties involved in Phase 1 Retrospective cases. Overall injury severity, road class and vehicle age were used to calculate weightings for casualties involved in Phase 2 Retrospective cases. The weighting value, , is calculated from the normalised ratio of S19 casualties divided by the normalised ratio of RAIDS casualties  where the normalised ratio for each group is given by the casualty numbers of a given factor combination divided by all casualties in the subset where . These weights are then applied in subsequent analysis to calculate casualty numbers at GB level when the information of interest, such as TBI severity, is only available at RAIDS level.
Weights for RAIDS Phase 1 and Phase 2 casualties are shown below. Generally, slightly injured casualties have higher weights (>1) as they are underrepresented in RAIDS, while seriously or fatally injured casualties have lower weights (<1) as they are overrepresented. 
Supplementary Table 3: Phase 1 On-Scene Investigation Weights
	Overall Injury Severity
	Road User Type
	Weight

	Slight
	Pedestrian
	7.355830

	Slight
	Cyclist
	6.824997

	Slight
	Motorcyclist
	3.652496

	Slight
	Bus occupant
	2.816873

	Slight
	Light goods vehicle occupant
	2.643330

	Slight
	Car occupant
	2.572593

	Serious
	Cyclist
	2.178748

	Slight
	Minibus occupant
	1.823748

	Serious
	Other
	1.771199

	Slight
	Heavy goods vehicle occupant
	1.566671

	Serious
	Motorcyclist
	1.103831

	Serious
	Pedestrian
	1.018075

	Serious
	Car occupant
	0.872733

	Serious
	Heavy goods vehicle occupant
	0.687769

	Fatal
	Pedestrian
	0.601219

	Serious
	Light goods vehicle occupant
	0.446884

	Fatal
	Motorcyclist
	0.372477

	Fatal
	Car occupant
	0.370760

	Serious
	Minibus occupant
	0.318383

	Fatal
	Cyclist
	0.302928


Supplementary Table 4: Phase 1 Retrospective Investigation Weights
	Overall Severity
	Road User Type
	Casualty Age
	Weight

	Slight
	Bus occupant
	65+ years
	18.01404

	Slight
	Car occupant
	0-15 years
	4.269710

	Slight
	Bus occupant
	45-64 years
	4.210342

	Slight
	Motorcyclist
	16-24 years
	4.101608

	Slight
	Car occupant
	45-64 years
	3.207763

	Serious
	Motorcyclist
	16-24 years
	3.061066

	Slight
	Car occupant
	16-24 years
	3.009888

	Slight
	Car occupant
	25-44 years
	3.000169

	Serious
	Pedestrian
	45-64 years
	2.422426

	Slight
	Minibus occupant
	25-44 years
	2.273777

	Slight
	Light goods vehicle occupant
	65+ years
	2.147150

	Slight
	Car occupant
	65+ years
	1.970218

	Serious
	Motorcyclist
	25-44 years
	1.882886

	Slight
	Car occupant
	Unknown
	1.562954

	Slight
	Other
	25-44 years
	1.480983

	Slight
	Other
	45-64 years
	1.343345

	Slight
	Bus occupant
	25-44 years
	1.313816

	Serious
	Pedestrian
	65+ years
	1.244246

	Slight
	Bus occupant
	16-24 years
	1.214516

	Serious
	Motorcyclist
	45-64 years
	0.946948

	Serious
	Pedestrian
	25-44 years
	0.945113

	Serious
	Cyclist
	25-44 years
	0.921256

	Slight
	Light goods vehicle occupant
	Unknown
	0.886388

	Slight
	Light goods vehicle occupant
	25-44 years
	0.846545

	Slight
	Light goods vehicle occupant
	45-64 years
	0.793014

	Fatal
	Pedestrian
	65+ years
	0.754255

	Serious
	Car occupant
	Unknown
	0.704706

	Slight
	Light goods vehicle occupant
	16-24 years
	0.694088

	Serious
	Bus occupant
	25-44 years
	0.644145

	Slight
	Heavy goods vehicle occupant
	25-44 years
	0.591384

	Fatal
	Motorcyclist
	45-64 years
	0.545046

	Slight
	Other
	16-24 years
	0.545046

	Fatal
	Pedestrian
	45-64 years
	0.523024

	Slight
	Heavy goods vehicle occupant
	45-64 years
	0.485518

	Serious
	Cyclist
	16-24 years
	0.478980

	Serious
	Car occupant
	0-15 years
	0.348071

	Serious
	Car occupant
	25-44 years
	0.320467

	Serious
	Cyclist
	65+ years
	0.319320

	Serious
	Car occupant
	16-24 years
	0.304027

	Slight
	Light goods vehicle occupant
	0-15 years
	0.290416

	Serious
	Car occupant
	65+ years
	0.274889

	Serious
	Car occupant
	45-64 years
	0.267746

	Slight
	Heavy goods vehicle occupant
	65+ years
	0.258759

	Serious
	Other
	45-64 years
	0.236737

	Fatal
	Car occupant
	16-24 years
	0.228086

	Serious
	Light goods vehicle occupant
	45-64 years
	0.222973

	Serious
	Light goods vehicle occupant
	16-24 years
	0.206457

	Serious
	Light goods vehicle occupant
	25-44 years
	0.192269

	Serious
	Other
	25-44 years
	0.187187

	Serious
	Heavy goods vehicle occupant
	25-44 years
	0.171772

	Fatal
	Cyclist
	25-44 years
	0.154154

	Fatal
	Light goods vehicle occupant
	45-64 years
	0.143143

	Serious
	Heavy goods vehicle occupant
	65+ years
	0.143143

	Serious
	Bus occupant
	16-24 years
	0.137638

	Serious
	Heavy goods vehicle occupant
	45-64 years
	0.127728

	Fatal
	Motorcyclist
	16-24 years
	0.108275

	Fatal
	Car occupant
	45-64 years
	0.103504

	Fatal
	Car occupant
	25-44 years
	0.095043

	Fatal
	Car occupant
	65+ years
	0.087139

	Fatal
	Car occupant
	0-15 years
	0.085335

	Serious
	Minibus occupant
	16-24 years
	0.071572

	Fatal
	Heavy goods vehicle occupant
	45-64 years
	0.064231

	Serious
	Light goods vehicle occupant
	65+ years
	0.062763

	Fatal
	Cyclist
	45-64 years
	0.060561

	Fatal
	Heavy goods vehicle occupant
	25-44 years
	0.057808

	Fatal
	Light goods vehicle occupant
	25-44 years
	0.057808

	Fatal
	Light goods vehicle occupant
	65+ years
	0.055055

	Fatal
	Cyclist
	16-24 years
	0.030280

	Fatal
	Heavy goods vehicle occupant
	65+ years
	0.016517

	Serious
	Heavy goods vehicle occupant
	Unknown
	0.016517

	Fatal
	Light goods vehicle occupant
	0-15 years
	0.005506


Supplementary Table 5: Phase 2 On-Scene Investigation Weights
	Overall Severity
	Road User Type
	Weight

	Slight
	Cyclist
	8.841718

	Slight
	Pedestrian
	8.534807

	Slight
	Other
	3.706753

	Serious
	Light goods vehicle occupant
	3.530349

	Slight
	Bus occupant
	3.191199

	Slight
	Motorcyclist
	3.161002

	Slight
	Car occupant
	2.515547

	Slight
	Heavy goods vehicle occupant
	1.555197

	Serious
	Pedestrian
	1.355262

	Serious
	Bus occupant
	1.220030

	Slight
	Light goods vehicle occupant
	1.103440

	Serious
	Car occupant
	1.087589

	Serious
	Cyclist
	0.970018

	Serious
	Motorcyclist
	0.555668

	Fatal
	Pedestrian
	0.421598

	Serious
	Heavy goods vehicle occupant
	0.419575

	Fatal
	Car occupant
	0.229978

	Fatal
	Light goods vehicle occupant
	0.172989

	Fatal
	Heavy goods vehicle occupant
	0.150228

	Fatal
	Motorcyclist
	0.100396

	Fatal
	Cyclist
	0.091553


Supplementary Table 6: Phase 2 Retrospective Investigation Weights
	Overall Severity
	Road User Type
	Casualty Age
	Weight

	Slight
	Car occupant
	25-44 years
	2.806751

	Slight
	Car occupant
	45-64 years
	2.754580

	Slight
	Light goods vehicle occupant
	45-64 years
	2.643788

	Slight
	Car occupant
	0-15 years
	2.359920

	Slight
	Car occupant
	16-24 years
	2.042819

	Slight
	Light goods vehicle occupant
	25-44 years
	1.905829

	Slight
	Car occupant
	65+ years
	1.883100

	Slight
	Car occupant
	Unknown
	1.536850

	Slight
	Heavy goods vehicle occupant
	25-44 years
	0.565317

	Slight
	Other
	25-44 years
	0.460378

	Serious
	Motorcyclist
	16-24 years
	0.423141

	Serious
	Car occupant
	65+ years
	0.411858

	Serious
	Car occupant
	25-44 years
	0.388660

	Serious
	Car occupant
	16-24 years
	0.343209

	Serious
	Car occupant
	0-15 years
	0.317235

	Serious
	Light goods vehicle occupant
	45-64 years
	0.314817

	Serious
	Car occupant
	45-64 years
	0.280049

	Serious
	Car occupant
	Unknown
	0.262348

	Slight
	Light goods vehicle occupant
	65+ years
	0.243729

	Fatal
	Car occupant
	45-64 years
	0.209878

	Slight
	Heavy goods vehicle occupant
	45-64 years
	0.201980

	Serious
	Light goods vehicle occupant
	25-44 years
	0.189567

	Fatal
	Car occupant
	65+ years
	0.181951

	Slight
	Minibus occupant
	45-64 years
	0.152331

	Fatal
	Car occupant
	25-44 years
	0.129481

	Fatal
	Car occupant
	16-24 years
	0.086321

	Slight
	Light goods vehicle occupant
	Unknown
	0.077858

	Serious
	Light goods vehicle occupant
	65+ years
	0.054162

	Slight
	Minibus occupant
	65+ years
	0.037236

	Slight
	Minibus occupant
	0-15 years
	0.012694

	Slight
	Car occupant
	25-44 years
	2.806751

	Slight
	Car occupant
	45-64 years
	2.754580

	Slight
	Light goods vehicle occupant
	45-64 years
	2.643788

	Slight
	Car occupant
	0-15 years
	2.359920

	Slight
	Car occupant
	16-24 years
	2.042819

	Slight
	Light goods vehicle occupant
	25-44 years
	1.905829

	Slight
	Car occupant
	65+ years
	1.883100

	Slight
	Car occupant
	Unknown
	1.536850

	Slight
	Heavy goods vehicle occupant
	25-44 years
	0.565317

	Slight
	Other
	25-44 years
	0.460378

	Serious
	Motorcyclist
	16-24 years
	0.423141

	Serious
	Car occupant
	65+ years
	0.411858

	Serious
	Car occupant
	25-44 years
	0.388660



Supplementary material is continued on the next page.

Detailed Description of Delta-V Calculation
Vehicle delta-V is determined from crush profiles and initial trajectories where these are available (Fig. 2A). Vehicle crush measures are taken at the scene by expert collision investigators for all vehicles. Vehicle trajectories are estimated from physical evidence (e.g. skid marks or CCTV footage).  The AiDamage program is used to reconstruct the collision from this information34. The CRASH3 algorithm is used to determine energy-related parameters including delta-V33. Longitudinal (front-to-back), lateral (side-to-side) and total delta-V are calculated for each vehicle. Vehicles generally have different delta-V value ( and   in Fig. 2Aii). Total delta-V comprises the Pythagorean sum of the longitudinal and lateral components, , capturing the directional transfer of force during the collision. If two vehicles are involved, crush measurements were required from both vehicles to calculate valid delta-V values. All car occupants with valid delta-V estimates from single impact phases were included. Where multiple impacts were present, delta-V was included only if one of the impact phases was clearly the injury-causing phase. 
For VRUs, a hybrid approach is adopted. Pedestrian delta-V is approximated as the impact speed of the vehicle because most pedestrians in RAIDS had no velocity component in the direction the impacting vehicle was travelling as they are most commonly injured while crossing. Cyclists travel at higher speeds, sharing the carriageway with vehicles. Therefore, their initial speed can be influential on the delta-V and must be taken into account by combining the velocity of the cyclist with the impact speed of the vehicle involved in the collision (Fig. 2B). Vehicle impact speed at the start of the impact is determined using a combination of physical evidence such as CCTV or dashcam footage and physical evidence such as skid marks. In each collision configuration, the relative velocity is taken to account for the pre-crash directions of the VRU relative to the vehicle. For head-on collisions, the initial VRU speed is added to the impact speed of the other vehicle involved. In collisions where both the VRU and other vehicle involved have the same direction of travel, VRU speed was subtracted from the other vehicle’s speed. Only the velocity component parallel to the direction of travel of the vehicle was considered (). VRUs who were runover without being accelerated to the speed of the vehicle, for example those already lying in the road prior to impact, as the assumption that the VRU is accelerated to the speed of the impacting vehicle is not upheld and therefore cannot be used to calculate delta-V. 
It is important to note that the delta-V we define refer to the change in velocity of the overall vehicle or VRU system during the injury causing impact phase and does not capture the specific delta-V of individual local regions. For car occupants, even while belted, the occupant’s head is not perfectly coupled to the vehicle. The delta-V of local body regions may vary based on the kinematics of the VRU impact (i.e. the head may be accelerated towards the windscreen in certain collisions scenarios). 

Supplementary material is continued on the next page.


Supplementary Figure 1: Logistic regression curves for distinct TBI pathologies
	
	p<0.001*** ROCAUC:0.83 [0.34-1.00]
Supp. Fig. 1C
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Focal Injury
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Subdural Haematoma
p<0.001*** ROCAUC:0.85 [0.34-1.00]
p<0.001*** ROCAUC:0.86 [0.34-1.00]
p=0.016* ROCAUC:0.69 
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Skull Fracture
p=0.004** ROCAUC:0.78 [0.34-1.00]
Supp. Fig. 1G

Subarachnoid Haemorrhage
p<0.001*** ROCAUC:0.83
p=0.039* ROCAUC:0.75 [0.34-1.00]
p=0.319 ROCAUC:0.71 [0.34-1.00]



Supplementary Figure 1. Logistic regression models predicting the risk of sustaining TBI pathology from total delta-V (km/h). There are 651 car occupants without TBI in the baseline group (a-d), compared to 14 with skull fracture (A), 14 with subdural haematoma (B), 24 with subarachnoid haemorrhage (C) and 19 casualties with focal injury. For VRUs, there were 82 baseline casualties without TBI compared to 25 with skull fracture (E), 9 with subdural haematoma (F), 19 with subarachnoid haemorrhage (G) and 21 with focal injury (H). p-values indicate that delta-V is a significant predictive parameter for all instances except subdural haematoma in the pedestrian-cyclist group (possibly due to small sample size).
[bookmark: _Hlk84420822]Supplementary Figure 2: Comparison of TBI pathology risk for different road users[image: ]D
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B

Supplementary Figure 2. Injury risk for different pathologies and road users. For 60km/h and below, the risks are significantly different for the car occupant and the VRU group
Supplementary Figure 3: Multivariate logistic regression for car occupant TBI risk
[image: ]
Supplementary Figure 3. ROC curves for car occupant risk of moderate severe TBI with baselines of (A) all other outcomes and (B) the uninjured cohort, constructed using multivariate logistic regression. Including the additional flag of dominant lateral delta-V increased the prediction capability of the models fitted in all instances (including pathologies).

[bookmark: _Hlk83030627]Statistical Summary for Logistic Key Regression Models
To create the logistic regression models, the data was randomly split into k approximately equal-sized subsets. Stratification was used to ensure that in each subset the proportion of baseline and injury groups were representative of the overall dataset. Binary logistic regression models were trained on all data except kth subset, which was withheld for testing. k-fold cross-validation was repeated 200 times with prespecified data seeds used to ensure repeatability when randomly shuffling the data prior to partitioning at the start of each iteration. Results from all 1000 iterations were recorded. The average injury risk curve was given by the 50th percentile of the ranked risk value at each point. 95% confidence intervals are again determined by taking the 2.5th and 97.5th ranked values at each point. To determine the predictive capability of our injury risk curves, we use the Receiver Operator Characteristic (ROC) curve and associated Area Under Curve (AUC) averaged over all 1000 iterations. We provide the precision (the number of correctly labelled positives divided by all labelled positives) and recall (the number of labelled positives divided by actual positives, also known as sensitivity) in the table below as these may be of particular interest for the application of these results to an Advanced ACN-type algorithm. Further work is required to ensure these results are generalisable and implementable to advanced ACN algorithms. For example, small differences (mean absolute error -4km/h) exist between CRASH3 and EDR delta-V in European vehicles (Lenard, et al., 2000), further research could usefully determine the current difference. Similarly, additional analysis and consideration of cut-off thresholds to ensure appropriate under- and over-triage rates are necessary prior to any real-world application. 
Supplementary Table 7: Moderate-severe TBI logistic regression risk curve parameters
	Road User Group
	Severity Groups
	LR Coeff. [CI95%]
	ROCAUC [CI95%]
	Cutoff Threshold
	Accuracy
	Precision
	Sensitivity / Recall (TPR) 

	Car Occupants
	Moderate Severe vs baseline All Other
	0.078 [0.053 - 0.103]
	0.81
[0.68-0.93]
	5%
	0.745
	0.125
	0.641

	
	
	
	
	10%
	0.875
	0.209
	0.480

	
	
	
	
	20%
	0.937
	0.397
	0.300

	
	
	
	
	30%
	0.945
	0.484
	0.243

	
	
	
	
	40%
	0.948
	0.548
	0.163

	
	
	
	
	50%
	0.949
	0.638
	0.127

	Combined VRUs (Pedestrian and Cyclists)
	Moderate Severe vs baseline All Other
	0.0344 [0.013 -0.056]
	0.73
[0.55-0.89]
	5%
	0.296
	-
	-

	
	
	
	
	10%
	0.305
	0.308
	0.964

	
	
	
	
	20%
	0.545
	0.380
	0.831

	
	
	
	
	30%
	0.690
	0.489
	0.712

	
	
	
	
	40%
	0.712
	0.563
	0.375

	
	
	
	
	50%
	0.703
	0.518
	0.173
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