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The paper reports on the development of a direct flutter-onset prediction framework, based
on CFD frequency-domain techniques, for a robust and efficient search of the flutter boundary
across the flight envelope. The implementation was carried out in the open-source SU2 solver.
The complete methodology is examined in this contribution. The existing harmonic balance
formulation was extended to treat arbitrarily deforming surfaces. A dedicated native solver
was developed to integrate the linear structural equations of motion. Reduced order structural
equations are built based on input modal shapes from external FE solvers. To this end, suitable
interpolation schemes have been included to transfer data across the fluid-structure interface.
This paper provides numerical results from the application of the developed approach to well-
established 2D and 3D test cases operating in the transonic regime. The accuracy of the chosen
strategy is shown, and the robustness and computational efficiency of the implementation are
discussed.

I. Introduction

Flutter is a dynamic aeroelastic instability that causes self-sustained oscillatory vibrations. It is an undesirable
phenomenon for aircraft as it is detrimental to the aerodynamic performance and it can lead to comfort degradation

of the ride, structural failure, or loss of control. Beyond the flutter point, nonlinearities in the structure (e.g., large
deflections, follower loading) or in the aerodynamics (e.g., shock waves, flow separation) can cause finite-amplitude
Limit Cycle Oscillations (LCOs). In order to, (0) assure the robustness of the aircraft manufacturing, and (1) shorten
the development stage, it is important for the designers to have detailed and accurate information on the flutter sensitivity
of the model and the aircraft behavior beyond the flutter point. Nowadays, this necessity is even more imperative since
the industry increasingly searches for higher aspect-ratio solutions [1], and flexible aerodynamic surfaces to be used into
morphing configurations [2].

The current standard for flutter prediction in the industry are techniques based on potential flow aerodynamics
and CFD-based system identification methods. Linear potential-flow aerodynamic models, while very effective at
subsonic flow conditions, are unable to predict the occurrence of shock waves, rendering inaccurate the prediction
in transonic flow conditions. On the other hand, system identification sweeps over the design space and the flutter
point is determined from the computed eigenvalues of the aeroelastic system. This approach can introduce transonic
aerodynamics for each eigen-analysis through linear CFD-based Generalized Aerodynamic Forces (GAFs) computed in
the frequency-domain. This, however, can be costly and non-robust due to system noise in the identification of the
GAFs. Finally, high-fidelity CFD modeling and time-accurate coupled CFD-CSD calculations for large aircraft models
are still prohibitively expensive to be used in a design framework.

Fortunately, in problems such as flutter where the periodic steady-state is of primary interest, frequency-based
(or time-periodic) methods can be used to accelerate the solution process. Frequency-domain simulations present
many advantages as they only seek the periodic solution directly, and bypass the initial transients in the unsteady
problem. The basic idea of frequency-based methods is to represent all the state variables of the system with a Fourier
series, and transform the time-dependent problem into a series of coupled steady state problems. In this way, the cost
remains comparable to the steady problem solution. These highly efficient methods are applicable to systems of high
complexity and can be used to track flutter instabilities across the flight envelope, and introduce naturally high-fidelity
CFD simulations in the flutter prediction.

Frequency-domain flutter prediction is typically based on the harmonic balance (HB) method [3]. Variations of the
classical balancing method include the nonlinear frequency domain (NLFD) form [4] and the time spectral (TS) form
[5]. All methods assume that a periodic solution of the aeroelastic system exists for a given flight condition. Since flutter
onset, however, is a self-excited vibration phenomenon, the corresponding frequency, and often the reduced velocity, are
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not known a priori. Therefore, specific strategies have been developed in order to search for the flutter velocity and
response frequency simultaneously across the flight envelope.

Thomas et al. [6] first proposed a technique to determine the flutter and LCO response, based on unsteady transonic
aerodynamics provided by the HB/CFD model. In their work, the HB method was used in conjunction with an inviscid
CFD solver to determine the nonlinear aerodynamic force variation for the unsteady motions of a two-degree-of-freedom
linear aeroelastic model. The flutter and LCO conditions were determined by prescribing finite values of pitching
amplitude to the solver and performing Newton–Raphson iterations. Later, the same authors presented a modification to
the so-called HB/LCO solver [7] that allowed for the aeroelastic governing equations to be solved simultaneously with
the aerodynamic solver. In [7], the Newton-Raphson method was used every few iterations of the HB flow solver to
determine all the aeroelastic variables, based on the aerodynamic loading at the current flow iteration. The authors
demonstrated that the computational cost of the solution was independent of the number of structural degrees of freedom,
and a well over an order of magnitude computational speed-up, compared to their original technique.

In a similar manner, He et al. [8] applied the TS method to create a high-fidelity flutter onset prediction
methodology that could be used to capture the subcritical/supercritical LCO response (see Fig.1). The authors proposed
a preconditioned, Jacobian-free, coupled Newton–Krylov solution strategy for the TS flutter equations, which resolved
both the CSD and CFD equations in a robust and efficient manner. In their work, they assembled the dependent flow
and structure variables into one global unknown vector which was then solved using a Newton–Krylov method. The
use of Krylov iterative methods enforced fast solution for each linear equation encountered in Newton iterations. The
Jacobian-free nature of the method further reduced the computational and memory cost of the method by eliminating the
need to evaluate and store the full Jacobian of the aeroelastic system. The authors compared the proposed method against
results acquired by time-marching (TM) simulations to demonstrate the accuracy and the efficiency of the approach.

Based also on the HB approach, Ekici et al. [9] developed an efficient “one-shot” method for determining self-excited
LCOs in turbomachinery, and extended the method in [10] to predict LCOs for 2-DOF airfoils, in inviscid and viscous
transonic flow regimes. In their work, the authors treated the LCO frequency as an unknown. The fluid and the structure
fields were calculated by integrating the respective governing equations in pseudo-time, driving the residual of both
fields to convergence simultaneously, while an optimization search was solving for the frequency, all in “one shot”.
Later, the authors modified this “one-shot” method [11] to capture the unstable LCO branch below the linear flutter
point, and employed their approach to predict the onset of flutter [12]. In this improved approach, the amplitude of the
deformation was prescribed as an input and the reduced velocity was treated, along with the response frequency, as
unknown. The authors demonstrated that the proposed method was highly accurate in the problems treated, and showed
that their approach offered significant computational savings compared to other prediction techniques.

The present paper examines the development of a direct flutter-onset prediction framework, based on the strategies that
were covered in the introduction. The complete methodology will be examined in this contribution. The implementation
of the developed framework was carried out in the open-source SU2 solver, in order to exploit the capabilities of
a state-of-the-art CFD analysis package. SU2 is an open-source high-fidelity computational design tool [13] that
contains a native fully coupled fluid-structure interaction solver and an HB implementation [14]. In this work, this HB
implementation was further extended to treat arbitrarily deforming surfaces. The reduced order structural equations of
motion are built based on input modal description of the configuration. This paper reports numerical results from the
application of the developed approach to well-established 2D and 3D test cases operating in the transonic regime. The
accuracy of the chosen strategy will be shown, and the robustness and computational efficiency of the implementation
will be discussed. The work presented here has been funded by the COMAC-Imperial Research Centre for Wing
Technology of Commercial Aircraft.

II. Methodology

A. Fluid governing equation
The Arbitrary Lagrangian-Eulerian (ALE) formulation of the Navier-Stokes equation, with grid displacement

imposed at the structural boundary, is employed for the aeroelastic investigation. For time-dependent problems, the
governing equation for compressible flow is given by:

mw
mC

= −R(w) (1)
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with:
R(w) = ∇ · (F8=E�!� − FE8B) (2)

where w = {d, du, d4}) are the conservative variables, and F8=E
�!�

, FE8B are the inviscid and viscous fluxes respectively,
given by:

F8=E�!� =


d(u − ¤z)

du ⊗ (u − ¤z) + ¯̄� ?
d4(u − ¤z) + ?u

 , FE8B =


0
¯̄g

¯̄gu + `�%∇)

 (3)

The Euler equations can be derived by setting the viscous fluxes to zero. The pressure is given by the ideal gas law. The
components of the viscous stress tensor ¯̄g are given by:

g8 9 = `

(
mD8

mG 9
+
mD 9

mG8
− 2

3
mD:

mG:
X8 9

)
(4)

The flow velocity vector u is written in the Cartesian system of reference, while ¤z is the local inertial velocity due to the
mesh deformation. The mesh deformation is calculated from the boundary displacement of the structure by solving a
pseudo-linear elastic problem defined as:

 �z − f� = 0 (5)

where  � is the fictitious stiffness matrix of the grid and f� is the vector of fictitious forces to enforce matching
boundary displacements. This procedure satisfies the continuity of grid velocity across the interface.

B. Harmonic Balancing
Assuming that the flow is periodic and the structural vibrations are undamped, the dependent aeroelastic variables

can be approximated as a truncated Fourier series for a prescribed number of harmonics #� . A vector of conservative
variables can be written for a specific fundamental frequency l as:

w(x, C) = ŵ0 +
#�∑
==1

[
ŵ�,= (x) cos(l=C) + ŵ�,= (x) sin(l=C)

]
(6)

where ŵ0, ŵ�,= and ŵ�,= are the spatial Fourrier coefficients of the variables. Eq. (6) can be rewritten in a discrete
vector-matrix form as:

w∗ = �−1ŵ (7)

where ŵ = {ŵ0, ŵ�,1, ŵ�,1, . . . , ŵ�,#� , ŵ�,#� }) , and w∗ = {w(C0),w(C1), . . . ,w(C#) −1)}) with #) = 2#� + 1
and C= = 2=c/l#) . Conversely, if the solution is known in discrete time-instances, the Fourier coefficients can be
determined from:

ŵ = �w∗ (8)

The vector of conservative variables and the unsteady residual in Eq. (1) can be approximated with a truncated Fourier
series. Equating the sinus and cosinus parts (balancing) gives:

l�ŵ = −R̂ (9)

where:

� = Diag(0, �1, . . . , �#� ), with �= = =
[

0 1
−1 0

]
(10)

Using Eq. (8), Eq. (9) can be cast back to the time domain:

l��w∗ = −�R∗

l�̄w∗ = −R∗ (11)

where �̄ = �−1�� . It can be seen that theHB approach results in #) steady systems, coupled through the pseudo-spectral
operator l�̄. Typically, to improve convergence, Eq. (11) is augmented with a pseudo time-marching term:

Xw∗

Xg�
+ l�̄w∗ = −R∗ (12)
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The HB implementation in SU2 treats the l�̄w∗ part of the equation as a source term [14] and solves Eq. (12) iteratively.
In this work, the existing SU2 implementation was modified in order to treat arbitrarily deforming surfaces in 3D
problems. To this end, the volume variation in each time-instance should be taken into account, and Eq. (12) has to be
augmented by the corresponding source terms:

X(Vw∗)
Xg�

= −R̃∗, with R̃∗ = R∗ + lV∗ (�̄w∗) + lw∗ (�̄V∗) (13)

whereV∗ = {+ (C0), + (C1), . . . , + (C#) −1)}) is the vector containing the volume at each time-instance. The linear mesh
solver is employed to compute the mesh deformation with respect to the original undeformed grid at each time-instance.
Then, the grid velocity invoked in the ALE formulation, is approximated from the grid nodal coordinates at each instance
as:

¤z∗ ≈ l�̄x∗ (14)

where ¤z∗ = {¤z(C0), ¤z(C1), . . . , ¤z(C#) −1)}) , and x∗ = {x(C0), x(C1), . . . , x(C#) −1)}) .

C. Structural equation of motion
The linear dynamic governing equations of motion under loading read:

" ¥( + � ¤( +  ( = f (15)

where " is the mass matrix, � is the damping matrix,  is the stiffness matrix, ( is the displacement vector, and f the
external loading derived from the aerodynamic forces. For flutter analysis, the first few structural modes are sufficient in
providing an accurate prediction of the displacement. Typically, the number of retained mode shapes is much smaller
than the structural degrees of freedom, reducing significantly the computational cost for large 3D structures. If the
modal description of the structure is available (e.g., from a FE solver), it is possible to write Eq. (15) as:

Φ)"Φ¥q +Φ)�Φ ¤q +Φ)  Φq = Φ) f

"q ¥q + �q ¤q +  qq = f q

"q ¥q + "q)qΩ ¤q + "qΩ
2q = f q (16)

where Φ = [51, 52, . . . , 5A ] are the first A modal shapes, q = Φ−1( are the generalized displacements, and f q are
the generalized forces. The matrix "q = Diag(<1, <2, . . . , <A ) contains the modal masses, while )q contains the
modal damping factors, and can be assumed )q = Diag(2b1, 2b2, . . . , 2bA ) if certain conditions apply for �. Finally,
Ω = Diag(l1, l2, . . . , lA ) is the matrix containing the natural frequencies for the first A natural modes retained. Similar
to the fluid equations, the pseudo-spectral operator l�̄ can be employed in order to acquire the HB set of equations:

l2"q �̄
2q∗ + l"q)qΩ�̄q∗ + "qΩ

2q∗ = f ∗q

l2�̄2q∗ + l)qΩ�̄q∗ +Ω2q∗ = "−1
q f ∗q (17)

where q∗ and f ∗q contain the generalized displacements and loads, respectively, at discrete time-instances. The
nondimensional form of Eq. (17) can be derived by normalizing the aerodynamic forces with the freestream dynamic
pressure @∞ = d∞*2

∞/2, and introducing a reference mass <0 for the wing:

f̃
∗
=
<0"

−1
q

f ∗q

@∞(
(18)

where ( is a reference surface. A reference length 1 and a natural frequency (e.g., the first mode l1) can be also
introduced. Then, the dimensionless form of Eq. (17) reads:(

l

l1

)2
�̄2 q

∗

1
+ l

l1
)q

Ω

l1
�̄
q∗

1
+ Ω

2

l2
1

q∗

1
=
d∞*2

∞(

2<0l
2
11

f̃
∗
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l̃2�̄2 q̃∗ + l̃)qΩ̃�̄ q̃∗ + Ω̃2 q̃∗ =
*2
∞(

2V`l2
11

f̃
∗ (19)

where l̃ is the nondimensional frequency, ` = <0/(d∞V) is the mass ratio, and V is the volume of the wing. By
substituting the flutter index speed +̃� = *∞/(

√
`1l1), Eq. (19) can be written:

l̃2�̄2 q̃∗ + l̃)qΩ̃�̄ q̃∗ + Ω̃2 q̃∗ = +̃2
�

(1

2V f̃ (20)

which constitute the nondimensional HB governing equations of generalized motion under aerodynamic loading. For
this work, a native HB solver for the solution of Eq. (20) has been developed within the SU2 solver. In order to improve
convergence, Eq. (20) can also be augmented with a pseudo time-marching term:

Xq̃

Xg(
+ l̃2�̄2 q̃∗ + l̃)qΩ̃�̄ q̃∗ + Ω̃2 q̃∗ − +̃2

�

(1

2V f̃ = 0 (21)

In general, the fluid Xg� and structural Xg( pseudo time-steps do not have to coincide. To simplify the notation, the .̃
will be dropped from here on.

D. Grid interpolation method
The modal description of the structure is expected to be given on an arbitrary structural mesh from an external FE

solver. In the general case, the discrete interface between the fluid and the structural domain may be non-conforming,
and the exchange of data becomes non-trivial [15]. To this end, an interpolation scheme is employed in order to transfer
both displacements and loads across the fluid-structure interface. The coupling scheme must satisfy the conservation
of energy across the interface [16, 17] which can be ensured by the equivalence of virtual work performed by the
aerodynamic loads (X, 5 ) and the structural forces (X,B):

X,B = Xu)B fB = Xu)5 f 5 = X, 5 (22)

where Xu∗ is the virtual displacement, and f∗ is the force vector. The deformation of the aerodynamic mesh can be
expressed as a linear approximation of the structural deformation by introducing the coupling matrix �̄:

u 5 = �̄uB (23)

From the conservation of energy, i.e. Eq. (22), it can then be deduced:

fB = �̄) f 5 (24)

In this work, a multivariate interpolation technique based on Radial Basis Functions (RBF) is implemented in the
developed flutter prediction framework. The displacement vector ®DB (®GB=) = ®DB,= = [ΔGB=,ΔHB=,ΔIB=]) for each structural
grid node ®GB= = [GB=, HB=, IB=]) can be expressed [18] as:

®DB,= =
#B∑
8=1
®U8k( | |®G= − ®G8 | |) + p(®G=), with ®U8 = [U1

8 , U
2
8 , U

3
8 ]) (25)

where #B is the number of structural grid nodes, k are basis functions of the Euclidean distance, and ?(®G=) is a
polynomial. If basis functions are chosen to be conditionally positive definite functions of order < ≤ 2, a linear
polynomial ? can be used:

p(®G=) =


?1 (®G=)
?2 (®G=)
?3 (®G=)

 = �̄
[

1
®G=

]
, where �̄ =

[
#1, #2, #3

])
=


V1,0 V1,1 V1,2 V1,3

V2,0 V2,1 V2,2 V2,3

V3,0 V3,1 V3,2 V3,3

 (26)

An additional requirement can be set for each dimension 9 = 1, 2, 3:

#B∑
8=1

U
9

8
@ 9 (®G8) = 0 (27)

5



where @ is any polynomial with a degree less than or equal to that of ?. Without loss of generality one can set
@(®G=) = 1 + G= + H= + I= in every dimension. Eqs. (25) and (27) can be written together in a discrete vector-matrix form
for each dimension (here x-dimension): [

ΔxB

0

]
=

[
�̄BB &̄B

&̄)B 0̄

] [
"1

#1

]
(28)

where �̄BB
=8
= k( | |®GB= − ®GB8 | |), with =, 8 = 1, . . . , #B , and &̄B = [1, xB , yB , zB]#(×4. Similar expressions can be deduced in

the other dimensions. Eq. (28) can be used to calculate the " and # coefficients from the structural displacement. Then,
the displacements for the # 5 points of the fluid surface can be deduced from:

Δx 5 =
[
�̄ 5 B &̄ 5

] [
"1

#1

]
=

[
�̄ 5 B &̄ 5

] [
�̄BB &̄B

&̄)B 0̄

]−1 [
ΔxB

0

]
= �̄

[
ΔxB

0

]
(29)

where �̄ 5 B

<8
= k( | |®G 5< − ®GB8 | |), with < = 1, . . . , # 5 , and < = 1, . . . , #B, and &̄ 5 = [1, x 5 , y 5 , z 5 ]# 5 ×4. Various basis

functions have been evaluated for fluid-structure interaction computations [15, 17]. In this work, two commonly used
functions have been implemented and evaluated: (8) the Thin Plate Spline (TPS) with global support,

k( | |.| |) = | |.| |2 log( | |.| |) (30)

and (88) the Euclid’s Hat (EH) with radial compact support of size 3,

k( | |.| |) = c
(
| |.| |3
12
− 32 | |.| | + 433

3

)
(31)

Both approaches were successfully validated, and the EH was found to provide the best results for 3D configurations.

E. HB/Flutter prediction
The flutter prediction framework developed in SU2 is based on the work of Li & Ekici [11, 12]. The coupled set

of Eqs. (12) and (21) constitute the aeroelastic system in HB form. When searching for a flutter condition, both the
frequency l and the flutter velocity +� are unknown a priori. Thus, additional constraints should be added to the
aeroelastic solution process in order to treat l and +� as independent variables of the problem. One of the structural
degrees of freedom (e.g., mode @1 here) can be chosen arbitrarily to be constrained. Both the amplitude and the phase of
the chosen mode must be fixed: (0) the phase will provide an initial time reference for the periodic aeroelastic solution,
and (1) the chosen amplitude will uniquely fix the solution along the bifurcation diagram of the system (see Fig.1). To
drive the system towards the flutter boundary, it is sufficient to constrain the vibration amplitude to a small value �>.

Fig. 1 Supercritical (i.e., above flutter point) and subcritical (i.e., below flutter point) bifurcation diagrams.

Since flutter is a linear instability, only one harmonic is sufficient when expanding each structural degree of freedom:

@1 (C) = @̂1,0 + @̂1,�1 cos(lC) + @̂1,�1 sin(lC) (32)
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where @̂1,0 corresponds to the mean value of the mode, while the modal amplitude �1 is defined as:

�1 =
√
@̂2

1,�1 + @̂
2
1,�1 (33)

The predicted phase of the mode is given from:

\1 = arctan 2(@̂1,�1/@̂1,�1) − c/2 (34)

Without loss of generality, the phase of the mode can be fixed by setting @̂1,�1 = 0, while the amplitude is constrained
by setting @̂1,�1 = �>. Then,

q1 = [@1 (C0), @1 (C1), @1 (C2)]) = �−1 [@̂1,0, @̂1,�1, @̂1,�1]) (35)

where C8 = 2c8/3l for one harmonic. The rest of the structural modes should be shifted in accordance to retain the
relative phase difference:

@= (C) = @̂=,0 + @̂=,�1 cos(lC + \?) + @̂=,�1 sin(lC + \?), for every = > 1 (36)

To relax the procedure, one could instead scale the modal amplitude with @̂=4F1,�1 = 2@̂
>;3
1,�1 and @̂

=4F
1,�1 = 2@̂

>;3
1,�1, where

2 = �1/�>. In this case, the chosen mode @1 should then be shifted along with the rest of the modes using Eq.(36).

Algorithm 1 HB/Flutter prediction algorithm
1: procedure Search for l, +�
2: Initialize l, +� and q∗0
3: for 9 ≤ #��� do
4: Iterate HB/CFD (Eq. 12) ⊲ Initialize HB flow fields
5: end for
6: for 8 ≤ #��'$ do
7: March forward HB/CSD (Eq. 21) ⊲ Perform one pseudo time-step
8: Impose amplitude/phase constraints
9: Update +� (Eq. 40)
10: Deform HB/CFD grids ⊲ Compute grid velocities
11: Update inlet BC
12: for 9 ≤ #��� do
13: Iterate HB/CFD (Eq. 12) ⊲ Update aerodynamic forces
14: end for
15: Update l (Eq. 39)
16: if convergence then Break
17: end for
18: end procedure

The above constraints allow for the flutter velocity and the frequency to be treated as independent variables. Their
values should be updated at every aeroleastic iteration for the complete system to converge to a unique solution. This
can be achieved by minimizing a figure of merit [19], based here on the structural residual [11]:

L(l,+� ) =
1
2
X)B XB (37)

with:
XB = l

2�̄2q∗ + l)qΩ�̄q∗ +Ω2q∗ −+2
�

(1

2V f (38)

The flutter frequency can be updated from:

mL
ml

=

(
mXB
ml

))
XB ≈ (q∗)) (2l�̄2 + )qΩ�̄)) XB = 0 (39)
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where the flutter velocity is fixed at its previous value. Then, if the frequency is fixed, the flutter velocity can be updated
in the same manner:

mL
m+�

=

(
mXB
m+�

))
XB ≈ 2+�

(1

2V f) XB = 0 (40)

In both Eq. (39) and Eq. (40), the derivatives of the aerodynamic forces with respect to l and +� respectively, are
neglected. This approximation has been shown to not affect the prediction of the flutter solution [10], while it accelerates
the solution process since the sensitivity of the forces significantly increases the computational cost.

Based on the previous discussion, a flutter/LCO prediction strategy has been developed and implemented in SU2.
The procedure is shown in Algorithm 1. The solution is initialized and the aeroelastic system of HB equations is solved
iteratively. At every aeroelastic iteration #��'$, l and +� are updated in a decoupled manner, which enhanced the
robustness of the searching strategy. The decoupling also allowed for fewer inner #��� iterations to be used, thus,
decreasing the computational cost. In this implementation, the velocity update is carried out after the CSD problem
is solved and the amplitude/phase constraints are imposed. Based on the updated flutter velocity, the inlet boundary
conditions (BC) for the flow are updated. Then, the CFD grids are computed for each time-instance with respect to the
initial undeformed geometry. After the update of the aerodynamic forces, the new frequency is calculated. Finally, the
updated aerodynamic forces and the new frequency are used to march forward the CSD problem in the next aeroelastic
iteration. The whole procedure is repeated until l and +� converge, and both the structural and the fluid residuals
sufficiently decrease.

III. Results
In this part of the paper, the developed flutter prediction strategy is evaluated through numerical examples. First,

the HB implementation in SU2 is validated for a 2D airfoil configuration and imposed kinematics. The accuracy
of the unsteady force prediction is evaluated. Then, the HB/Flutter algorithm is used for the same configuration to
construct its bifurcation diagram. The results are examined against the available data in the literature. Finally, a typical
3D configuration is examined for variable Mach number in order to highlight the accuracy and the robustness of the
implementation in predicting the flutter boundary of wings.

A. Imposed deformation
As previously mentioned, the existing HB formulation in SU2 has been extended here in order to accommodate

arbitrarily deforming surfaces. This allows to consider non-uniform surface displacements, as in the case of 3D
deforming structures. The implementation has been tested for the imposed sinusoidal pitching motion of the NACA
64A010 airfoil, around a zero mean angle of attack, U0 = 0 (346). The specifications of this test case can be found in
Table 1.

Table 1 Specifications for the imposed pitch test case.

Pitching Amplitude Mach Number Reduced Frequency Pitching axis
Ū = 1.02 (346) " = 0.769 l̃ = 0.202 4 = 0.2482

The simulation has been carried out with the Euler solver of SU2 for #� = 2 harmonics, i.e., #) = 5 time-
instances. The Jameson-Schmidt-Turkel (JST) central scheme with scalar dissipation (second and fourth order dissipation
coefficients) was employed for this study. The 2D computational O-type grid includes approximately 17000 triangular
volume elements, with 200 volume elements placed around the boundary of the airfoil. The resolution of the mesh
is satisfactory for inviscid computations. Freestream boundary conditions were set at the edge of the computational
domain, and Euler (slip) walls on the aerodynamic surface.

The results are shown in Fig. 2 where the lift and the moment coefficient are plotted against the variation of the
pitch angle. The reference point for the moment calculation is set at 0.252, where 2 is the aerodynamic chord of the
airfoil. It can be seen that the SU2 results compare well with [10] even with only two harmonics, since the amplitude is
kept at moderate levels. Both the amplitude and the relative phase difference between the two modes of vibration is
accurately captured. The elliptical shape of the force variation highlights the aerodynamic effects of hysteresis that are
also accurately captured. Finally, the HB results are also in agreement with time-accurate simulations that have been
carried out with SU2, and not shown here in the sake of brevity.
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(a) (b)

Fig. 2 Variation of (a) the lift, and (b) the moment coefficient during the pitching motion, plotted against the
results found in Ref. [10]

B. Flutter/LCO for plunge/pitch airfoil
The flutter/LCO prediction strategy described in Section II.E is demonstrated here for a two-degrees-of-freedom

aerolastic model. The governing aeroelastic equations, without damping, for an airfoil with plunge and pitch
degrees-of-freedom, in nondimensional form [6], is:

" ¥q +  q =
+2
�

c
f (41)

with:

q =

{
ℎ
1

U

}
, " =

[
1 GU

GU A2
U

]
, " =

[
lℎ
lU

0
0 A2

U

]
, f =

{
−2;
22<

}
(42)

where ℎ, U are the plunge and pitch displacements respectively, GU is the dimensionless static unbalance, AU is the
dimensionless section moment of inertia, lℎ and lU are the uncoupled natural frequencies in plunge and pitch
respectively, and 2; , 2< are the lift and moment coefficients at the elastic center. The elastic axis is placed at 4 = 0.22.
The velocity index+� is given here from+� = *∞/(lU1

√
`), where 1 = 2/2 is the semi-chord length, ` = </(cd∞12)

is the mass ratio and*∞ the freestream velocity.
Once again, the NACA 64A010 airfoil will be examined for a constant Mach number " = 0.8 and a mean angle of

attack U" = 0 (346). The airfoil structural parameters for this test case are shown in Table 2. The computational grid
discussed in the previous test case has been employed also here. The flow calculations were carried out again with the
Euler solver of SU2 and the same numerical parameters.

Table 2 Specifications for the Flutter/LCO prediction.

Static Unbalance Radius of gyration Frequency ratio Mass ratio
GU = 0.25 A2

U = 0.75 lℎ/lU = 0.5 ` = 75

Multiple calculations were carried out in order to create the bifurcation diagram for the airfoil and predict the flutter
onset. The pitch mode was chosen to be constrained in the search of the flutter frequency l and reduced velocity
+̃ = *∞/lU2. Decreasing values of imposed pitch UC0A64C were given as an input to the solver for the calculations.
For each aeroelastic simulation, the displacement vector was initialized with the imposed pitch UC0A64C , and an initial
plunge displacement ℎ0/1 = UC0A64C/n , where n < 1. The initial phase difference between the two motions was set at
Δ\ = 5 (346) for all the calculations, with the pitch mode always fixed at a zero phase. The initial frequency was chosen
at l0/lU = 0.7, in between the natural frequencies of the system. The initial reduced velocity was set at +̃0 = 3.05. The
sensitivity of the prediction on the values +̃0 and l0 was evaluated and the procedure was found to be robust with respect
to the initial conditions. At every aeroelastic computation, the inlet pressure is updated based on the +̃ prediction, for a
fixed " , ` and d∞.
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Only one harmonic has been used for the solution of both the fluid and the structural problem. This is justified only
close to the flutter onset where the displacement is small and the aerodynamics close to a linear state. Further away, the
displacements become increasingly larger and more harmonics should be added. In the present study, however, the main
focus was the prediction of the flutter onset. The use of only one harmonic significantly accelerated the procedure, and
it was kept, thus, for all the calculations. It will be shown, however, that the accuracy of the computations was always
satisfactory even when moving away from the flutter boundary. About #��� = 100 − 200 iterations were carried
out with the fluid solver in every aeroelastic iteration, while ten times more #��� iterations were carried out for the
initialization of the HB flow fields. The convergence of the complete procedure was achieved at about #��'$ = 400
aeroelastic iterations.

(a) (b)

(c) (d)

Fig. 3 Bifurcation diagram produced with SU2 compared with Refs. [10, 20], pitch (top) and plunge (bottom)
amplitude against frequency (left), and reduced velocity (right).

The results from the flutter/LCO prediction with SU2 are presented in Fig.3, against available data in [10, 20]. Zhang
et al. in [20] performed TM simulations, while Li & Ekici [10] used their “one-shot” approach with one harmonic. The
imposed pitching amplitude is shown in Fig.3a against the predicted frequency of the oscillation, while Fig.3b shows the
corresponding values of the reduced velocity. The calculated plunging amplitude is shown in Figs.3c and 3b against the
frequency and the reduced velocity, respectively. The typical parabolic shape of the bifurcation shape that was expected
is well captured by the method. As the amplitude and the reduced velocity decrease, the system approaches the flutter
boundary. Close to the flutter onset, the variation of the amplitude presents a linear response with respect to the reduced
velocity, which is in agreement with the theory. Beyond the flutter point, and as the amplitude increases, the nonlinear
LCO behavior appears. Both the frequency and the reduced velocity keep increasing with a decelerated rate. The results
compare well with the references and clearly demonstrate the robustness and the accuracy of the solution procedure.
The frequency seems to be underpredicted everywhere, with the difference, however, remaining below 1%.

It was seen from this study that the solution procedure was quite sensitive to variations in the flow and the
aerodynamic force prediction. Due to the apparition of shock waves over the airfoil in this transonic range, the flow
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convergence becomes slow. This affects significantly the convergence of the reduced velocity, and of the displacement
amplitude, as the rate of the convergence follows exactly the reduction of flow residuals. In addition, the procedure
was found to be numerically unstable when the flow residuals were not decreased enough at every aeroelastic iteration,
relative to the previous one. As a result, the choice of numerical schemes should be done carefully considering the flow
characteristics. Finally, this discussion shows that if better suited CFD grids were to be used (e.g., adapted to shocks), it
could be possible to decrease the #��� iterations even further and accelerate the +̃ and l convergence.

C. Flutter boundary of the AGARD 445.6 wing
In this section, the weakened AGARD 445.6 model 3 [21] is considered. The wing uses the symmetric NACA

64A004 profile, with a maximum thickness of 4%, and has a sweep angle of 45 (346) at the quarter chord line. The
span of the wing is B = 0.726< with a taper ratio )' = 0.66, where the root chord is 2A = 21A = 0.5588. A rectangular
unstructured computational grid is build around the wing geometry which is clamped on one of the GI sides of the
domain. The dimensions of the computational domain are �G × �H × �I = 142A × 62A × 122A , where G is positive in
the stream-wise direction, and the H-wise direction is placed along the span of the wing. The aerodynamic surface mesh
of the model consists of 65000 boundary elements and is shown in Fig.4a. The total grid size was about 320000 volume
elements.

(a) (b)

Fig. 4 AGARD 445.6 wing, (a) the aerodynamic surface mesh, and (b) the pressure distribution on the surface
of the wing for M = 0.96 at a0 = 0.

(a) (b) (c)

Fig. 5 Pressure coefficient cp at three span-wise stages: (a) y/s = 0, (b) y/s = 0.25, and (c) y/s = 0.9, steady-state
results compared with Ref. [22].

The aerodynamic model is first evaluated at " = 0.96, d∞ = 0.063:6/<3 and at a zero angle of attack. Steady Euler
calculations are carried out with freestream boundary conditions at the sides of the domain, and slip wall conditions on
the wing. The JST central scheme with second and fourth order dissipation coefficients was employed for this study as
well. The simulation converges fast and the lift coefficient is driven to the expected zero value after only ≈ 150 iterations.
The computed pressure distribution is shown on the surface of the wing in Fig. 4b. The shock front along the span is
highlighted by the pressure jumps on the surface of the wing. The surface pressure coefficient 2? is plotted for three
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different positions along the span, and is shown in Fig. 5. The results are compared with the ones found in [22]. It can
be seen that for stages close to the root of the wing, SU2 predicts stronger and sharper shocks compared to Ref. [22].
This is probably due to the fine surface mesh used in the current study, resulting in low levels of numerical dissipation.
In later span-wise stages were the shock is smeared, the prediction is in great agreement with the literature. Finally, two
even finer meshes have been created and investigated, providing equivalent results.

The modal description of the structural model is taken from [23]. The modal shapes are given on a 11 × 11 plane
grid, and were normalised to a unit modal mass in lbf-in-s2, or 175.13:6. The first four normal modes are used in
this study. The respective natural frequencies are f = [ 51, 52, 53, 54] = [9.6, 38.17, 48.35, 91.54]�I. Using the RBF
implementation, described in Section II.D, with the Euclid’s hat basis function, the modal shapes are interpolated onto
the aerodynamic surface mesh of the wing. The first two modes on the aerodynamic surface are shown in Fig. 6, with
respect to the undeformed mean surface. The interpolated displacement follows the imposed structural deformation
with remarkable accuracy.

(a) (b)

Fig. 6 The first (a) bending, and (b) torsion mode shapes interpolated onto the aerodynamic surface mesh.

Next, the native implementation of the reduced order structural solver in SU2 is validated. The static aeroelastic
equilibrium is searched for " = 0.8, d∞ = 0.0941:6/<3 and an 01 = 1 (346) angle of attack. A second-order dual
time-stepping is performed for the convergence to the steady-state problem. A relatively large time-step ΔC = 0.1B
is used since the problem is expected to converge to a static equilibrium. At every time step, 50 inner iterations are
performed for the flow equations. At the end of every outer time-step, the dynamic aeroelastic equations are solved.
The rest of the numerical parameters are as described before. The problem converges to the static equilibrium at about
20 − 30 time-steps. The wing-tip displacement is shown in Fig. 7, against the results found in [24]. The agreement with
the literature is quite satisfactory. Only small differences appear and could be attributed to the interpolation technique
and/or the CFD mesh.

Fig. 7 Wing-tip displacement at the static equilibrium for M = 0.8 and a1 = 1 (deg), results compared with
Ref. [24].

Finally, the flutter boundary of the wing is predicted here. Six different Mach numbers are investigated and are
shown in Table 3. For each case, the freestream density d∞ is fixed and the mass ratio ` is calculated accordingly in
order to keep the mass of the wing panel constant. The freestream pressure at the flutter onset is searched for through
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the updates of the flutter velocity. The first bending mode @1 was chosen to be constrained here. A sufficiently small
value | |@1 | |C0A64C = 0.001 was given as an input to the solver for all the calculations. The phase of @1 was always fixed
at a zero phase. For each aeroelastic simulation, the displacement vector was initialized with the imposed | |@1 | |C0A64C ,
and zero generalized displacements for the rest of the modes. For all the calculations, the initial frequency was chosen at
l0/l2 = 0.34, were l2 is the natural frequency of the second mode, i.e. the first torsion mode. The initial reduced
velocity was set at (+� )0 = 0.5. The sensitivity of the prediction on the values +� and l was evaluated. It was found
that the procedure remained quite insensitive to changes of the initial +� , but was unstable when l0 ≤ l1, and also
when l0 values approached l2.

Table 3 Specifications for the Flutter/LCO prediction.

1 2 3 4 5 6
" 0.499 0.678 0.799 0.901 0.960 1.072
d∞ 0.4267 0.2077 0.1535 0.0992 0.0633 0.055
` 33.456 68.753 93.024 143.92 225.82 259.59

(a) (b)

Fig. 8 Flutter boundary of the AGARD 445.6 model 3, prediction of the (a) flutter velocity index, and (b) the
nondimensional frequency, comparison with Refs. [23, 25, 26]

Only one harmonic has been used for both the fluid and the structural problem, which is justified close to the flutter
onset where the displacement is small. About #��� = 100 iterations were carried out with the fluid solver in every
aeroelastic iteration. Four times more iterations were carried out for the initialization of the HB flow fields. The
convergence of the complete procedure was achieved at about #��'$ = 800 aeroelastic iterations for 0.8 < " < 1.0.
Outside this range, either shocks do not form, or they form at the aft part of the wing profile sections. This significantly
accelerates the convergence of the flow solution and, thus, the whole flutter prediction converges at about 100 aeroelastic
iterations. As mentioned in the previous section, the convergence of +� and l prediction strongly relates to the decrease
of flow residuals.

The prediction of the flutter boundary is shown in Fig. 8. For variable Mach values, the flutter velocity index +� is
shown in Fig. 8a, while the nondimensional frequency l/l2 is shown in Fig. 8b. The results are plotted against Euler
computations from [25], the “one-shot” approach of [26], and the experimental data found in [23]. The transonic deep
at " = 0.96 is well captured with the SU2 implementation. Overall, the agreement with the literature is satisfactory.
The flutter velocity index follows exactly the prediction in [25] until the transonic deep. A slight underestimation of the
index is seen at " = 0.96. The method slightly underpredicts the frequency compared to both [25] and [26] for every
" < 1, but not compared to the experimental results found in [23]. Finally, all the numerical cases reduce in accuracy
compared to the experimental results for " > 1. This should be attributed to the complex nonlinear aerodynamics
arising from the shock-wave boundary layer interactions, and the shortcomings of the specific CFD modelling.
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IV. Conclusions
The state-of-the-art on frequency-domain techniques for CFD-based flutter prediction has been briefly discussed in

this paper. The motivation behind the development of such techniques comes from the robustness and the efficiency that
they offer when searching directly for the flutter boundary across the flight envelope. Based on the literature review, a
flutter prediction framework has been developed in the open-source SU2 suite and demonstrated here for standardized
2D and 3D geometries.

The complete framework employs dedicated interpolation schemes to transfer data across the fluid-structure interface.
The implementation includes a native reduced order structural solver that has been validated against the existing literature.
In addition, the existing HB formulation in SU2 has been successfully extended to treat arbitrarily deforming surfaces
and volume meshes. For both the 2D and 3D cases investigated in this work, the flutter prediction strategy was found to
be accurate and relatively insensitive to the change of initial conditions.

The robustness of the current implementation permits the modification of the current approach in order to account
for structural nonlinearities. These may appear at flight conditions where the mean displacement becomes important,
altering the modal shapes of the wing. Future research will examine ways to include the current implementation within
an optimization framework, where the flutter sensitivity of the configuration poses additional constraints onto the design
process. To this end, the SU2 suite, which is an efficient multi-physical design tool, offers an ideal environment.
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