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Context and Significance

Researchers at Imperial College

London measured the small

molecules in serum samples from

a cohort of adult patients

admitted to hospital with different

types of infection, including

COVID-19, other viruses, and

bacteria. They found that the

molecule ‘‘ddhC’’ was more

abundant in patients with viral

infections than in those without.

This result was replicated in a

separate validation patient

cohort. ddhC was previously

shown to have antiviral properties

in laboratory cells but has not to

date been detected in living

humans. Using ddhC to rapidly

diagnose viral infections could

prove beneficial in early

recognition and containment of

future pandemics and help to

reduce unnecessary antibiotic

use.
SUMMARY

Background: There is a critical need for rapid viral infection diagnostics
to enable prompt case identification in pandemic settings and support
targeted antimicrobial prescribing.
Methods: Using untargeted high-resolution liquid chromatography
coupled with mass spectrometry, we compared the admission serum
metabolome of emergency department patients with viral infections
(including COVID-19), bacterial infections, inflammatory conditions,
and healthy controls. Sera from an independent cohort of emergency
department patients admitted with viral or bacterial infections under-
went profiling to validate findings. Associations between whole-blood
gene expression and the identified metabolite of interest were exam-
ined.
Findings: 30-Deoxy-30,40-didehydro-cytidine (ddhC), a free base of the
only known human antiviral small molecule ddhC-triphosphate
(ddhCTP), was detected for the first time in serum. When comparing
60 viral with 101 non-viral cases in the discovery cohort, ddhC was the
most significantly differentially abundant metabolite, generating an
area under the receiver operating characteristic curve (AUC) of 0.954
(95% CI: 0.923–0.986). In the validation cohort, ddhC was again the
most significantly differentially abundant metabolite when comparing
40 viral with 40 bacterial cases, generating an AUC of 0.81 (95% CI
0.708–0.915). Transcripts of viperin and CMPK2, enzymes responsible
for ddhCTP synthesis, were among the five genes most highly corre-
lated with ddhC abundance.
Conclusions: The antiviral precursor molecule ddhC is detectable in
serum and an accurate marker for acute viral infection. Interferon-induc-
ible genes viperin and CMPK2 are implicated in ddhC production
in vivo. These findings highlight a future diagnostic role for ddhC in viral
diagnosis, pandemic preparedness, and acute infection management.
Funding: NIHR Imperial BRC; UKRI.
INTRODUCTION

Early differentiation of acute infectious etiologies is now a priority in diagnostic inno-

vation. Conventional methods relying on pathogen identification through culture,

PCR, or antigen detection are time-consuming and/or insensitive, leading to diag-

nostic delays that result in inappropriate antimicrobial prescription and infection
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transmission.1–3 There is therefore renewed interest in novel biomarkers of infection

classes that can better guide therapeutic and infection control decisions in real time.

Technologies for large-scale characterization of low-molecular-weight metabolites

have the potential to aid discovery of novel biomarkers of infectious diseases.

Liquid chromatography coupled with mass spectrometry (LC-MS) and nuclear

magnetic resonance spectroscopy stand out among the most commonly

employed techniques in the field. The use of MS has already revolutionized

modern microbiology by enabling rapid detection of bacterial species from

cultured colonies.4

Despite its growing impact on biomedical research, metabolic profiling of biofluids

has produced candidate biomarkers in only a small number of infectious states. One

study identified a two-metabolite serum signature differentiating infected from non-

infected patients within a systemic inflammatory response syndrome cohort.5 Me-

tabolomic interrogation of cerebrospinal fluid from patients with meningitis was

able to differentiate between Mycobacterium tuberculosis and other infectious

causes.6 Wang et al. examined the lipidome of 40 patients in a pediatric cohort prior

to the COVID-19 pandemic and identified a 3-lipid signature that discriminated bac-

terial from viral infection, although wider metabolomic changes were not reported.7

A number of more recent studies report metabolic differences between patients with

and without SARS-CoV-2 infection,8–10 but comparator groups did not include bac-

terial infections.

We investigated the serum metabolome of adult patients presenting to two UK

emergency departments with a range of suspected infection syndromes, including

COVID-19, to derive and cross-validate novel biomarkers for viral and bacterial in-

fections. We used point-of-admission samples to replicate the time point where a

discovered biomarker would be used clinically. To ensure diagnostic certainty, we

adopted a case-control approach with laboratory-proven infections. Our sampling

included unwell, non-infected cases to ensure that any biomarkers identified ac-

counted for cases of inflammatory conditions unrelated to infection.11
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RESULTS

Samples used for discovery and validation cohorts

In the discovery cohort, serum from 232 patients and 13 healthy controls underwent

LC-MS-basedmetabolic profiling (Figure 1), for the measurement of small molecules

and lipids using hydrophilic interaction liquid chromatography (HILIC) and reversed-

phase chromatography (RPC), respectively. All discovery cohort patients were

admitted via one of two emergency departments at Imperial College Healthcare

NHS Trust with a suspected acute infection syndrome. A total of 173 patients

were from the Imperial arm of the Bioresource for Adult Infectious Diseases (BioAID)

study (30 Gram-positive bacteremia, 30 Gram-negative bacteremia, 30 pre-COVID-

19 viral, 53 COVID-19, 30 non-infected unwell controls), and 59 patients were from

the Imperial Microbial Products in Infection study (all COVID-19). Owing to insuffi-

cient sample volume or data quality, four samples were excluded from the discovery

primary analysis in both lipid profiling assays, and five from the small molecule

profiling assay. Eighty of the 112 COVID-19 samples were not transferred to a

�80 �C freezer within 5 days of collection and so this sub-group was also excluded

from the discovery primary analysis. In all assays, principal component analysis (PCA)

did not show clustering of samples by age or sex and eigencor plots did not show

correlation above 0.4 (Figures S1A and S1B). The final number of samples included
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Figure 1. Study flowchart

Flowchart of sample selection and exclusion for the discovery primary analysis and validation cohorts; data shown for the small molecule profiling

(HILIC+) assay. Eighty discovery COVID-19 samples were excluded as they were transferred to a �80 �C freezer >5 days after collection (*two samples

excluded within this group also had insufficient volume/data quality).
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in the discovery primary analysis ranged from 161 to 163, depending on the assay. In

a separate validation cohort, 80 patients were selected from the University College

London Hospital (UCLH) arm of the BioAID study (40 viral, 40 bacteremia); no sam-

ples were excluded. Patient demographic data and confirmed infection pathogens

for the discovery and validation cohorts are shown in Tables S1 and S2, respectively.

Metabolic profiling of discovery cohort identifies ddhC as best-performing

discriminator for viral infections

Analysis of the discovery cohort small molecule profiling dataset identified several

significantly differentially abundant (SDA) features with a median absolute log2

fold-change of >4 and p value <0.01 when comparing viral cases (pre-COVID-19

viral and COVID-19) versus all other groups, and viral versus bacterial cases

(Gram-positive and Gram-negative bacteremia) (Figures 2A and 2B). The top SDA

discriminator was the feature 248.0647 m/z at 1.96 min, which showed a 36-fold

change in the median intensity in viral cases compared with all other groups

(adjusted p value <13 10�18). This metabolite was identified as 30-deoxy-30,40-dide-
hydro-cytidine (ddhC), a free base of the ribonucleotide ddhC-triphosphate

(ddhCTP) recently reported to have antiviral properties in vitro.12 Its identity was

confirmed by comparison to a chemical reference standard using LC with tandem

MS (LC-MS/MS; Methods Figures S1 and S2). Using the same empirical thresholds,

no SDA features were identified in bacterial cases versus all other groups in the small
206 Med 3, 204–215, March 11, 2022



Figure 2. ddhC as the best-performing discriminator for viral infections in the discovery cohort

(A and B) Volcano plots showing median log2 fold change in intensity of each feature versus -log10 p value in the discovery primary analysis cohort small

molecule profiling dataset (n = 161) when comparing (A) viral cases (pre-COVID-19 viral and COVID-19) versus all other groups, and (B) viral versus

bacterial (Gram-positive and Gram-negative bacteremia) cases, with controls omitted. Empirical threshold lines in red represent a fold-change of 16

(log2[fold-change] of 4) and p value of 0.01 (�log10[p value] of 2). Candidate biomarkers are shown in blue by mass:charge ratio/retention time, with

248.06/1.96 (ddhC) performing best. p-values generated using the two-sided Wilcoxon test and adjusted using the Benjamini-Hochberg procedure.

(C) AUCs for ddhC distinguishing viral versus all other and viral versus bacterial groups in the discovery primary analysis cohort. Blue. AUC of 0.954 (95%

CI 0.923-0.986) for ddhC differentiating viral infections from all other groups (n = 161). Red. AUC of 0.944 (95% CI 0.905-0.983) for ddhC differentiating

viral from bacterial infections, with controls omitted (n = 119).

(D and E) Relative ddhC intensity data in different patient groups in the discovery primary analysis cohort (n = 161). Points represent individual patients.

Boxes represent IQRs with medians. (D) Viral versus all other groups. (E) Individual comparator groups. *2 samples in the COVID-19 group had a relative

intensity of >700,000, not shown.

(F) Comparison of AUCs between ddhC, white cell count (WCC), lymphocyte count, and CRP as biomarkers to distinguish viral infections from all other

groups in the discovery primary analysis cohort. Black - ddhC (AUC = 0.949 [95% CI 0.914-0.983], n = 148); green - WCC (AUC = 0.688 [95% CI 0.603-

0.774], n = 148); red - lymphocyte count (AUC = 0.545 [95% CI 0.452-0.637], n = 148); blue - CRP (AUC = 0.585 [95 CI 0.483-0.687], n = 122). Healthy

controls not included, as WCC, lymphocyte count, and CRP not available.
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molecule profiling dataset, nor were any identified in either of the lipid profiling da-

tasets (Figure S1C).

Using all samples from the discovery primary analysis cohort, ddhC returned an area

under the receiver operating characteristic curve (AUC) of 0.954 (95% CI 0.923-

0.986; sensitivity 88.1%, specificity 91.7%) in discriminating viral infections from all

other groups, and 0.944 (95% CI 0.905-0.983; sensitivity 89.8%, specificity 86.7%)

in discriminating viral from bacterial infections (Figure 2C). When we included the

sub-group of samples that spent more than 5 days outside a �80 �C freezer, similar

results were achieved with AUCs of 0.966 and 0.959, respectively (Figure S2A).

In the discovery primary analysis cohort, ddhC demonstrated a higher relative

median intensity among patients with viral infections compared with other groups

(Figures 2D and 2E). Similar results were achieved when including samples that spent

more than 5 days outside a �80 �C freezer (Figures S2B and S2C). There was no cor-

relation between ddhC and age, and no significant difference in the median ddhC

intensity between sex and ethnicity subgroups (Figures S2D, S2E, and S2F). There
Med 3, 204–215, March 11, 2022 207
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was a low correlation between admission serum creatinine and ddhC (correlation co-

efficient 0.555, p value <13 10�12), but there was no significant difference in theme-

dian serum creatinine between viral and non-viral groups (Figures S2G and S2H).

ddhC intensities associated with specific pathogens are presented in Figure S2I.

Cross-validation using single-feature forward selection-partial least squares

To assess and cross-validate the discriminatory performance of singlemarkers distin-

guishing infection groups in the data, we used the forward selection-partial least

squares (FS-PLS) method. For each comparison (viral versus other, viral versus bac-

terial, bacterial versus other) we present the discriminating feature that was selected

most frequently out of 100 different training:test FS-PLS runs and the median and in-

terquartile range (IQR) of the test AUCs generated (Table S3). When comparing viral

versus all other groups, ddhC (small molecule feature 248.06/1.96) was selected in

all 100 FS-PLS runs, and generated a median (IQR) test AUC of 0.957 (0.943-

0.970). When comparing viral versus bacterial groups, ddhC (small molecule feature

248.06/1.96) was selected in 99 of 100 FS-PLS runs, generating a median (IQR) test

AUC of 0.951 (0.926-0.971).

ddhC performs better than white cell count, lymphocyte count, and C-reactive

protein as a biomarker for viral infections

We compared the ability of ddhC to differentiate viral infection from other groups to

alternative biomarkers, such as white cell count, lymphocyte count, and C-reactive

protein (CRP), which were taken as part of routine admission clinical laboratory tests.

We used the small molecule profiling data from the discovery primary analysis cohort

(n = 161) and excluded healthy controls (n = 13), for whom there were no routine lab-

oratory test data (n = 148 in total). All patients had a white cell count and lymphocyte

count recorded, and 122 of 148 patients had a CRP. Routine admission clinical lab-

oratory tests performed poorly compared with ddhC (Figure 2F).

ddhC differentiates viral versus bacterial infections in an independent

validation cohort

Sera from a separate cohort of 80 patients from the UCLH arm of the BioAID study

with confirmed viral (n = 40) and bacterial infections (n = 40) underwent untargeted

small molecule profiling. PCA did not show clustering of samples by age or sex and

the corresponding eigencor plots did not show correlation above 0.3 (Figures S3A,

S3B and S3C). Using the same empirical thresholds as the discovery analysis, no

SDA discriminators were found. Adjusting the median absolute log2 fold-change

threshold to 2, the top SDA discriminator was the feature 248.0648 m/z at

1.93 min, which is the same ion [M + Na]+ of ddhC identified in the discovery cohort

and showed a 6.7-fold change in themedian intensity in the viral compared with bac-

terial group (Figure 3A, adjusted p value <13 10�3). ddhC returned an AUC of 0.811

(95% CI 0.708-0.915, sensitivity 72.5%, specificity 92.5%) in discriminating viral from

bacterial infections (Figure 3B) and demonstrated a higher relative intensity among

patients with viral compared with bacterial infections (Figure 3C). ddhC intensities

associated with specific pathogens are presented in Figure S3D.

ddhC intensity associates with outcome severity in viral infections in the

discovery but not validation cohort

To assess the role of ddhC as a prognostic indicator, we performed a post hoc

exploratory analysis of the ddhC response in all viral infections (pre-COVID-19 viral

and COVID-19) categorized by outcome severity. We used the total discovery pa-

tient cohort (including samples that were transferred to �80 �C storage after

5 days, n = 138) to maximize power to differentiate between categories. The median
208 Med 3, 204–215, March 11, 2022



Figure 3. ddhC differentiates viral versus bacterial infections in an independent validation cohort

Data from the validation cohort of sera from 40 viral and 40 bacterial infection patients undergoing

the small molecule profiling assay. (A) volcano plot showing median log2 fold change in intensity of

each feature versus -log10 p value when comparing viral versus bacterial patients. Empirical

threshold lines in red represent a fold-change of 4 [log2(fold-change) of 2] and p value of 0.01

[-log10(p value) of 2]. Features exceeding the threshold are shown in blue by mass:charge ratio/

retention time, with 248.06/1.92 (ddhC) performing best. The next best performing feature 264.04/

1.93 also corresponds to ddhC ([M+K]+ adduct). p-values generated using the two-sided Wilcoxon

test and adjusted using the Benjamini-Hochberg procedure.

(B) Area under the receiver operating characteristic curve of 0.811 (95% CI 0.708-0.915) for ddhC

discriminating between viral and bacterial infections.

(C) Relative ddhC intensity data in viral versus bacterial groups. Points represent individual

patients. Boxes represent interquartile ranges with medians
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relative ddhC intensity was 35,525 in mild disease (admission duration 0–2 days),

increasing to 71,569 in moderate (admission duration 3–8 days) and 103,995 in se-

vere disease (admission duration >8 days, intensive care unit [ICU] admission or

death); p value <1 3 10�5 (Figure S3E). A similar trend was seen in COVID-19 pa-

tients alone (Figure S3F). This association was, however, not replicated in the valida-

tion cohort, where no significant difference was found between severity groups in 40

patients with viral infection (Figure S3G).

ddhC intensity is associated with gene expression of viperin and CMPK2 in

whole blood

RNA-sequencing (RNA-seq) data were available from 122 patients in the discovery

small molecule profiling primary analysis cohort (29 Gram-positive bacteremia, 30

Gram-negative bacteremia, 29 pre-COVID-19-viral, five COVID-19, 19 non-infected

unwell controls, 10 healthy controls). The correlation between log2-transformed

ddhC intensity and counts for 18,248 genes was evaluated. The five gene transcripts

with the greatest correlation to ddhC intensity are listed in Table S4. Two of the five

genes are directly implicated in ddhCTP metabolism–RSAD2 (viperin), aided by

CMPK2, mediates ddhCTP production during viral infection.12 The correlation coef-

ficient for viperin expression and ddhC intensity was 0.748 (p value <1 3 10�22);
Med 3, 204–215, March 11, 2022 209



Figure 4. ddhC intensity is associated with gene expression of viperin in whole blood

(A) Correlation between ddhC intensity and viperin (RSAD2) gene expression in 122 patients in the discovery cohort. Non-viral group (red points)

includes bacteremic patients, non-infected unwell controls, and healthy controls; viral group (blue points) includes COVID-19 and pre-COVID-19 viral

infection patients. Pearson correlation coefficient = 0.748, p value <1 3 10�22.

(B) Normalized viperin gene counts for 122 patients in different infection groups. Points represent individual patients. Boxes represent IQRs with

medians.
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viperin was more highly expressed in patients with viral infections (Figure 4). Data for

CMPK2 showed the same trends (Figure S4).

DISCUSSION

The ability to rapidly differentiate infection syndromes is an urgent requirement,

underlined by the ongoing COVID-19 pandemic and the growing threat of antimicro-

bial resistance. We capitalized on the sensitivity of high-resolution LC coupled with MS

to discover that ddhC, a free base of the antiviral molecule ddhCTP, was detectable in

patient serum. In a discovery cohort, ddhC was found to have a 36-fold higher median

intensity in patients with viral infections, including COVID-19, compared with those

with bacterial infections, non-infected inflammatory states, and healthy controls, corre-

sponding to an AUC of 0.954, sensitivity of 88.1% and specificity of 91.7%. It outper-

formed white cell count, lymphocyte count, and CRP as a viral biomarker (AUCs of

0.688, 0.545, and 0.585, respectively). In an independent validation cohort, ddhC

was again the most significantly differentially abundant metabolite when comparing

patients with viral versus bacterial infections, generating an AUC of 0.811.

ddhCTP has recently been shown to be the first and, to the best of our knowledge,

only small molecule produced by humans that is capable of directly inhibiting viral

replication machinery.12 Gizzi et al. showed that the enzyme viperin (virus inhibitory

protein, endoplasmic reticulum-associated, interferon-inducible), aided by the ge-

nomically adjacent enzyme cytidylate monophosphate kinase 2 (CMPK2), catalyzes

the conversion of CTP to ddhCTP, which acts as a chain terminator for multiple viral

RNA-dependent RNA polymerases (RdRPs).12 Synthetic ddhC traversed the plasma

membrane of Vero and HEK293T cells, suggesting amechanism for how ddhCmight

eventually reach the serum in detectable quantity. ddhC has also been detected in

prokaryotic cells; Escherichia coli production of ddhCTP after viperin homolog

expression was associated with T7 phage RdRP suppression, suggesting a role for

ddhCTP in bacterial immunity to viruses.13 To our knowledge, ddhC has hitherto

not been identified in human or other mammalian serum, nor associated with

COVID-19. We showed that this antiviral molecule was a sensitive and specific serum

biomarker for a range of viral infections, including COVID-19, in clinical samples of
210 Med 3, 204–215, March 11, 2022



ll
OPEN ACCESSClinical and Translational Report
patients presenting to hospital. In a subset of patients for whom RNA-seq data were

available, we showed that viperin and CMPK2 expression was also increased in pa-

tients with viral infections. Furthermore, of more than 18,000 genes, their expression

was among the top five most highly correlated with ddhC intensity (correlation co-

efficients 0.75 and 0.76, respectively), providing a plausible mechanism by which

ddhC may be produced during viral infection.

A robust serum biomarker of viral infection would provide real-time determination of

infectious etiology, aiding patient triage and decision-making regarding antimicro-

bial prescription. It could prove vital in infection prevention and control measures,

especially in the context of a viral pandemic, where rapid detection of an acute viral

illness, not dependent on nucleotide amplification via PCR, would enable prompt

patient isolation while awaiting definitive pathogen identification. In our study, we

excluded patients who had definite co-infection, i.e. pathogens detected in more

than one infection category. However, it is possible that some patients were not

tested and thus had undetected viral and bacterial co-infections, which may explain

why a small proportion of our patients with bacterial infections demonstrated amod-

erate ddhC response. Using ddhC in conjunction with a serum bacterial biomarker,

such as procalcitonin, may be a powerful strategy to help rapidly detect a co-infec-

tion and mitigate the risk of not treating a bacterial infection.

ddhC was again the most significantly differentially abundant small metabolite when

comparing viral and bacterial cases in the validation cohort, although did not

perform as well as in the discovery cohort, demonstrating a lower sensitivity for viral

infections. The reasons underlying this difference are unclear. It is possible that

certain viruses may not evoke or may actively limit the ddhC response. For example,

all four cases of HSV infection showed a low ddhC intensity: three were in the valida-

tion and one in the discovery cohort, which may have contributed to the observed

difference in AUCs. Second, if as expected, the concentration of ddhC rises and falls

like other acute phase reactants, differences in the timing of sample collection post

symptom onset may also have affected its accuracy. Future work comparing larger

cohorts of patients with specific viral infections, with sampling at different time

points post infection onset, will help investigate these hypotheses. Our unadjusted,

exploratory analysis of severity in the discovery cohort showed that the level of ddhC

at the point of hospital admission was associated with increased length of stay,

requirement for ICU support, and death, suggesting a potential prognostic role

for ddhC. This result was not replicated in the validation cohort. Whether a prog-

nostic role for ddhC is reserved for certain viral infections such as COVID-19, which

was over-represented in the discovery compared with the validation cohort, awaits

further investigation.

The antiviral properties of ddhCTP rely on inhibition of viral RdRPs and are demon-

strable in vitro, raising the possibility that it may have therapeutic action. RdRPs are

an enticing target for novel antivirals and are an active focus of ongoing antiviral

therapeutics research,14 as there are no functional homologs in uninfected human

cells, thus off-target drug effects are less likely. Wood et al. demonstrated that

ddhCTP can be robustly synthesized on a gram scale, facilitating further investiga-

tion of its use.15 Seifert et al. showed that exogenous ddhCTP can inhibit SARS-

CoV-2 polymerase activity in Huh7-hACE2 cells, although it did not decrease

SARS-CoV-2 N-protein immunofluorescence.16 Future work will ascertain whether

exogenous and/or endogenous ddhCTP can inhibit SARS-CoV-2 viral replication

in other cell lines, and its effect on other viruses. Here we show that ddhC is pro-

duced naturally in vivo in response to viral infections, at levels that are detectable
Med 3, 204–215, March 11, 2022 211
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in the circulation, increasing the likelihood of an acceptable safety profile of ddhCTP

as a therapeutic.

Our study demonstrates a number of strengths. We deliberately included

both healthy and unhealthy non-infected controls, reducing the likelihood of se-

lecting biomarkers confounded by inflammation unrelated to infection. We used

stringent inclusion criteria for infected patients, excluding those in whom the

timing of clinical presentation or PCR/culture result might have affected infection

status at the point of sample acquisition. We used admission-day samples taken

prior to any intervention, the time point where a diagnostic test would be most

useful.

In conclusion, using high-fidelity metabolic profiling of serum from patients

attending hospital, we found that the antiviral molecule ddhC is present in human

serum during viral infection and represents an accurate biomarker for a wide range

of viral infections, including COVID-19. These findings pave the way for a universal

blood test to rapidly identify acute viral infections, which could play a key role in both

pandemic preparedness and routine acute infection management.
Limitations of study

Our study should be viewed in the context of its limitations. First, to ensure diag-

nostic certainty, we only included bacterial infections associated with bacteremia,

and did not include fungal and protozoal infections. We plan to assess the perfor-

mance of ddhC in new patient cohorts that include a wider range of infection syn-

dromes. Second, we allowed a period of up to 5 days from serum sample acquisition

to �80 �C storage for the discovery cohort, which may have introduced variability in

potential metabolite degradation at 4 �C during the 0- to 5-day period. However,

ddhC performed similarly in COVID-19 samples that had not been frozen within

5 days, which suggests it is likely to be a robust marker that is not highly susceptible

to temperature-associated degradation and suitable for ‘‘real-life’’ biochemical an-

alytics, where samples may require time to reach laboratories prior to testing. The

serum samples for both arms of the discovery cohort were collected in the same

way from the clinical diagnostic laboratory, albeit that patients were prospectively

recruited to BioAID, while retrospectively recruited to Microbial Products in Infec-

tion. Third, our severity analysis was exploratory without consideration of potential

confounders and incorporated hospitalization duration, which can be affected by

factors other than severity. Fourth, we did not have access to the patients’ pre-

admission medication history, which could potentially affect the serum metabolic

profile, but we do not suspect this would significantly differ between viral and

non-viral groups. Fifth, our cohort represents patients unwell enough to seek hospi-

tal attention, further work will be required to assess the role of ddhC in less unwell

patients presenting to primary care and determine whether it is detectable in mini-

mally invasive samples such as urine or saliva.
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Biological samples

Patient sera Bioresource for Adult Infectious Diseases
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N/A

Chemicals, peptides, and recombinant proteins

30-Deoxy-30,40-didehydro-cytidine (ddhC)
chemical standard

Berry & Associates PY7790
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Metabolomic data MetaboLights [MetaboLights]:[MTBLS718]

RNASeq data used for correlation MetaboLights [MetaboLights]:[MTBLS718]

Software and algorithms

Forward selection-partial least squares analysis Coin17 Zenodo Lachlancoin/fspls: Minimal TB Biomarkers
(Version 0.5.1)

PCATools Blighe and Lun18 https://github.com/kevinblighe/PCAtools

pROC Robin et al.19 https://www.ncbi.nlm.nih.gov/pubmed/21414208
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to

and will be fulfilled by the lead contact, Professor Shiranee Sriskandan (s.

sriskandan@imperial.ac.uk).

Materials availability

This study did not generate new unique reagents.

Data code and availability

� Metabolomic and transcriptomic data have been deposited at the European

Bioinformatics Institute (EMBL-EBI) MetaboLights repository and are publicly

available as of the date of publication. Accession numbers are listed in the

key resources table.

� This paper does not report original code.

� Any additional information required to reanalyse the data reported in this pa-

per is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study design and population

Adult patients presenting to the emergency department were recruited into two

separate cohorts: the discovery cohort and a post-hoc external validation cohort.

In the discovery cohort, patient serum samples were obtained from two parallel

studies at Imperial College Healthcare NHS Trust (ICHNT), the Imperial arm of the

cross-site Bioresource for Adult Infectious Diseases (BioAID),24 from 15th September

2014 – 4th December 2020 and the Imperial Microbial Products in Infection study,

from 18th March 2020 – 4th December 2020. ICHNT patients were admitted via

one of two different emergency departments. In the validation cohort, patient serum
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samples were obtained from the University College London Hospital (UCLH) Trust

arm of BioAID from 30th April 2014 – 20th July 2021.

In both discovery and validation cohorts, patients were recruited to BioAID if they had a

suspected clinical infection syndrome of sufficient severity, as assessed by a clinician,

to warrant blood culture testing. Blood samples were obtained at the point of admis-

sion, alongside microbial isolates identified during the inpatient stay, in conjunction

with demographic and clinical data. Ethical approval was obtained to take deferred

consent from patients (or next of kin/nominated consultee) to retain blood samples,

including serum and RNA specimens, as well as clinical data (South Central – Oxford

C Research Ethics Committee [REC] references 14/SC/0008 and 19/SC/0116).24

In the discovery cohort, patients were retrospectively identified as part of the Micro-

bial Products in Infection protocol where a pathogen of interest – in this study, SARS-

CoV-2 – was identified to the research team by the routine diagnostic laboratory.

Serum samples obtained at the point of admission were linked to anonymised pa-

tient data provided by an NHS clinician including age, sex, timing of sample in rela-

tion to illness onset, survival/death, ICU admission, duration of stay, and blood test

results. (West London REC reference 06/Q0406/20). Demographics for all patients

are reported in Table S1.

In both BioAID and Microbial Products in Infection, all serum samples were taken in

the same manner at the point of patient admission to hospital, prior to any interven-

tion, as part of usual clinical care. Following routine diagnostic testing, surplus vol-

umes were retrieved from the diagnostic laboratory where they had been stored at 4
�C, and transferred to a�80 �C freezer within five days of sample acquisition. During

the peaks of the UK COVID-19 pandemic, owing to unprecedented pressures placed

on laboratory staffing, transfer to �80 �C of serum samples from n = 80 COVID-19

patients was delayed to between six and 30 days from sample acquisition. These

samples were classified into a separate sub-group and were not used in the discov-

ery primary analysis to avoid confounding bias. Control serum samples from con-

senting healthy donors were from an approved subcollection (MED_SS_12_023) of

the Imperial College Healthcare NHS Trust Biomedical Research Council (ICHT

BRC) Tissue Bank (Wales REC3 17/WA/0161).

Discovery cohort patient selection

Serum samples from patients in one of the following six categories were used in the

discovery cohort: culture-confirmed Gram-positive bacteraemia, culture-confirmed

Gram-negative bacteraemia, PCR-confirmed viral infection prior to detection of

SARS-CoV-2 in the UK (January 2020), PCR-confirmed COVID-19, non-infected pa-

tients, and healthy controls.

N = 24 samples in each of two comparator groups were required to achieve a power

of >90% to identify an AUC of at least 0.8, at a significance level of 0.01. Thus to

enable all comparisons, accounting for potential sample exclusion (e.g. assay failure,

poor data quality), we used n = 30 samples in each clinical group apart from COVID-

19, where we included all available samples (n = 112) to facilitate exploration of

severity differences in this cohort. Infection categories were assigned using elec-

tronic diagnostic pathology data pertaining to admission only and confirmed by a

clinician. Non-infected patients were identified from the database where there

was no positive microbial diagnostic test and no infection-related ICD-10 diagnostic

code from BioAID admission. Sera from n = 13 healthy controls were available from a

subcollection of the ICHT BRC Tissue Bank.
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To facilitate multi-omic comparison, serum samples from BioAID patients were pri-

oritised if whole blood RNA-Sequencing (RNA-Seq) had already been undertaken as

part of an earlier study, where samples had been selected from the BioAID database

using a random number generator.25 Sera from additional BioAID patients were

selected randomly from within individual infection groups using a random number

generator in Excel.

Bacteraemic patients were excluded if the isolated bacterium was deemed a

contaminant, or if the blood culture was taken >24 hours prior to/post the admission

serum sample. COVID-19 patients were excluded if their positive PCR test was taken

>10 days prior to admission, or >2 days post admission, to avoid non-COVID-19

related admissions and hospital-acquired COVID-19, respectively. Microbiologi-

cally confirmed co-infections across different infection classes were excluded.

Validation cohort patient selection

In the validation cohort, we compared two patient groups: bacteraemic and viral.

Based on discovery data, to achieve a power of >90% to identify an AUC of 0.75,

at a significance level of 0.01, we required 36 patients in each group. Accounting

for potential sample exclusion, we used n = 40 samples in each group, selected

from the UCLH BioAID database using a random number generator in Excel. For

all patients, the same inclusion and exclusion criteria were applied as in the discovery

cohort.

METHOD DETAILS

Metabolic profiling assays

Serum samples from 245 patients in the discovery cohort and 80 patients in the vali-

dation cohort were analysed using ultra-performance LC-MS following previously

described analytical and quality control (QC) procedures.26 A suite of chromato-

graphic separations was used in the discovery cohort, each coupled with high reso-

lution time of flight mass spectrometry, to maximise coverage of a broad range of

metabolite and lipid classes. Small molecule profiling was performed using hydro-

philic interaction liquid chromatography (HILIC), while lipid profiling was performed

using reversed-phase chromatography (RPC).27 Each RPC LC-MS assay was conduct-

ed in both negative and positive ionisation modes, producing lipid RPC- and lipid

RPC + datasets. The HILIC LC-MS assay was conducted in the positive ionisation

mode only, producing the HILIC + dataset. In the validation cohort, only the HILIC +

assay was undertaken. The final datasets contained the following number of vari-

ables; lipid RPC-: 521; lipid RPC+: 2257; HILIC+: 1572 (discovery), 1194 (validation).

Sample preparation and data pre-processing for metabolic profiling

Serum samples were prepared as previously described.27 Briefly, for each assay,

samples were analysed in a randomised order demonstrating no correlation with

study design variables, precluding any confounding effect of analysis order. To facil-

itate quality assessment and pre-processing, a pooled QC sample was prepared by

combining equal parts of each study sample and analysed periodically among study

sample analyses. In addition, for assessment of analyte response,28 a series of QC

sample dilutions was created (10 3 100%, 5 3 80%, 3 3 60%, 3 3 40%, 5 3 20%,

103 10%, 103 1%) and analysed at the start and end of each set of sample analyses.

Aliquots (50 mL) were taken from each sample and the pooled QC and diluted 1:1 v/v

with ultrapure water. Protein was removed by addition of organic solvent (diluted

sample/isopropanol in 1:4 v/v ratio for lipid RPC profiling and diluted sample/aceto-

nitrile in 1:3 v/v ratio for HILIC profiling). Mixtures of method-specific authentic
e3 Med 3, 204–215.e1–e6, March 11, 2022



ll
OPEN ACCESSClinical and Translational Report
chemical standards were added at the dilution step (for the HILIC assay) or the pro-

tein precipitation step (for the lipid RPC assays) in order to monitor data quality dur-

ing acquisition. Sample analyses were performed on ACQUITY UPLC instruments

(Waters Corp., Milford, MA, USA) coupled to Xevo G2-S Q-TOF mass spectrometers

(Waters Corp., Manchester, UK) via a Z-spray electrospray ionisation (ESI) source

operating in either positive or negative ion mode.

Raw data were converted to the mzML open-source format and signals below an ab-

solute intensity threshold of 100 counts were removed using the MSConvert tool in

ProteoWizard20 before data extraction using XCMS,21 outputting a matrix of mea-

surements (peak integrals) organised row-wise into samples and column-wise into

LC-MS ‘‘features’’, each of which is described by its mass:charge (m/z) value and

chromatographic retention time. All datasets were further processed using the

nPYc-Toolbox22 for elimination of potential run-order effects and filtering of features

not meeting previously established QC criteria. Only features measured with high

analytical quality (RSD in pooled QC<30%, pooled QC dilution series Pearson cor-

relation to dilution factor>0.7, RSD in study samples>1.1* RSD in pooled QC)

were retained and put forward for further statistical analysis.

Metabolite identification

An in-house R-script was used to collate all LC-MS features in the discovery cohort

with peak elution profiles (extracted ion chromatograms) highly correlated to that

of the feature identified as a discriminator for viral infections (m/z of 248.0647 and

retention time of 1.96 mins), revealing the putative mass spectrum of the metabolite

biomarker comprising five features. The original featurem/z 248.0647 was assigned

as the [M+Na]+ ion species, and the four associated features were assigned as the

first isotope of [M+Na]+ ion at m/z 249.0676, [M+H]+ at m/z 226.0827, [M+K]+ at

m/z 264.0383, and an in-source fragment at m/z 112.0517. Targeted extraction of

the four associated features, each absent from the XCMS profiling dataset owing

to non-detection, was performed using peakPantheR software and pre-processed

as described above for the XCMS profiling dataset.23 Each associated feature

gave comparable individual AUC to the [M+Na]+ ion species identified from analysis

of the profiling data (AUC 0.954) when comparing viral versus all other groups

(Methods Table S1).

The molecular formula of the metabolite of interest was determined to be

C9H11N3O4 by elemental composition of the [M+H]+ ion species utilising accurate

mass and observed isotope distribution. Tandem mass spectrometry (MS/MS) utilis-

ing collision induced dissociation (CID) was performed on both the [M+H]+ and

[M+Na]+ ion species, revealing the fragmentation patterns illustrated in Methods

Figure S1.

The experimental MS/MS spectrum for the [M+H]+ ion species (m/z 226.0827) re-

vealed the loss of one and two water moieties (m/z 208.072 and m/z 190.062,

respectively) and the fragment with m/z 112.05 consistent with cytosine ([M+H]+).

The experimental MS/MS spectrum for the [M+Na]+ ion species (m/z 248.0647) re-

vealed analogous species.

No matches were found for these spectra in databases (Human Metabolome Data-

base,29 METLIN,30 NIST17,31 Mass Bank of North America [http://massbank.us/]).

However, the apparent presence of a cytosine fragment led to the hypothesis

that the metabolite of interest was a nucleoside previously reported in the litera-

ture – 30-Deoxy-30,40-didehydro-cytidine (ddhC), a free base of the antiviral
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ribonucleotide 30-Deoxy-30,40-didehydro-cytidine triphosphate.12 The experimental

MS/MS spectrum of [M+H]+ obtained in our study samples matched the previously

published fragmentation pattern of natural ddhC detected in cell lysates of E. coli

and authentic chemical standard of ddhC.13 The HILIC method used for MS/MS

analysis was the same as that used in the profiling method with the same MS source

conditions.26 MS/MS target selection was performed using unit mass selection via

quadrupole with a collision energy voltage ramp of 10-45V.

Finally, the structure of metabolite was definitively identified by analysing a chemical

reference standard of ddhC (acquired from Berry & Associates) in parallel with the

study samples, using the HILIC profiling method and MS/MS to match chromato-

graphic retention time and fragmentation spectrum, respectively (Methods Fig-

ure S2). For the former, a spike-in technique was used, where the pooled serum sam-

ple was mixed with different concentrations of the ddhC chemical standard (2.5, 5

and 10 ng/mL).

For the validation cohort, the identification of ddhC was based on the samem/z and

similar retention time to that observed in the discovery data.
Multi-omic comparison

We examined the interaction between whole blood gene expression and the

feature of interest identified in the discovery cohort. Gene expression data were

obtained from RNA-Seq of Imperial BioAID patient RNA samples, performed prior

to this study in two cohorts. Full details for the first patient cohort (recruited pre-

COVID-19 pandemic) have been described previously.25 For the second patient

cohort (recruited during the COVID-19 pandemic), whole blood was collected in

the same way as the first cohort.25 Material was quantified using RiboGreen (Invi-

trogen) on the FLUOstar OPTIMA plate reader (BMG Labtech) and the size profile

and integrity analysed on the 2200 TapeStation (Agilent, RNA ScreenTape). Input

material was normalised and strand specific library preparation was completed us-

ing NEBNext Ultra II mRNA kit (NEB) and NEB rRNA/globin depletion probes

following manufacturer’s instructions. Libraries were on a Tetrad (Bio-Rad) using

in-house unique dual indexing primers (based on Lamble et al.).32 Individual li-

braries were normalised using Qubit and pooled together. The pooled library

was diluted to �10 nM for storage and denatured and further diluted prior to

loading on the sequencer. Paired end sequencing was performed The Wellcome

Centre for Human Genetics in Oxford UK using a Novaseq6000 platform at 150

paired end configuration, generating a raw read count of 30 million reads per sam-

ple. The RNA-Seq analysis pipeline consisted of quality control using FastQC,33

MultiQC34 and annotations modified with BEDTools,35 alignment and read count-

ing using STAR,36 SAMtools,37 FeatureCounts38 and version 89 ensembl GCh38

genome and annotation.39

Genes completely missing in either of the RNA-Seq cohorts were removed, in addi-

tion to ribosomal genes. The two RNA-Seq cohorts were merged and the batch ef-

fects between the two cohorts, in addition to the plate effects within the first cohort,

were removed by combat_seq.40 The raw counts were normalised using DESeq2.41

In patients for whom both metabolic and transcriptomic data were available, we as-

sessed the correlation between log2-transformed feature intensities of a metabolite

of interest and log2-transformed expression of associated genes using Pearson cor-

relation coefficients. We restricted further analysis to the five genes most highly

correlated to the metabolite of interest.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis was performed using R.42 Power calculations were performed using

the pROC package.19 Unit-variance scaled principal component analysis (PCA) and

eigencor plots were performed to identify the major sources of variation in the da-

tasets, using the PCAtools package.18 For PCA, features where >98.5% of samples

returned an intensity of zero were excluded (n = 3/1572 in discovery HILIC + data-

set, nil in both discovery lipidomics datasets, n = 1/1194 in validation HILIC +

dataset).

In the discovery cohort, we compared all viral cases (COVID-19 and pre-COVID-19)

versus others, all bacterial cases (Gram-positive and Gram-negative bacteraemia)

versus others, and all viral versus all bacterial cases. In the validation cohort, we

compared all viral cases versus all bacterial cases. In each comparison, we assessed

the fold-change between the infection groups’ median intensities for each feature.

P-values were generated using the two-sidedWilcoxon test and were adjusted using

the Benjamini-Hochberg procedure.43 Volcano plots were generated comparing

median log2fold-change and -log10 p-values.

In order to cross-validate findings in the discovery cohort, we used the variable se-

lection method, forward selection-partial least squares (FS-PLS).17 FS-PLS has

been described in detail elsewhere.7,44 Briefly, it is a forward-selection method

that selects variables most strongly associated with the groups of interest. It can

be used to select a multi-feature signature composed of non-correlated variables,

but in this study the ‘max’ parameter was set to one to evaluate the performance

with only one feature. Feature intensities were log2 transformed. A p-value threshold

of 0.01 was used, which determined the selection of a variable or termination. 100

runs of FS-PLS were applied to the dataset for every comparison, each time with a

different training:test split at a ratio of 70:30. In each FS-PLS run, the feature identi-

fied on the training set was tested on the test set, and its performance was assessed

using the AUC generated. For the feature that was selected in the most FS-PLS runs

out of 100, themedian and interquartile range (IQR) of the respective test AUCs were

generated.

To assess the diagnostic utility of a feature of interest in the discovery cohort and

compare it to the traditional biomarkers C-reactive protein (CRP), white cell count,

and lymphocyte count (procalcitonin levels were not routinely available), as well as

examine its use in the validation cohort, AUCs were generated using the pROCpack-

age.19 The Youden’s J statistic was used to determine thresholds for sensitivity and

specificity.45

In an exploratory post-hoc analysis, to investigate the relationship between the in-

tensity of a feature of interest and illness severity in viral infections in the discovery

cohort, we developed a three-point severity scale that differentiated between mild,

moderate and severe illness in both COVID-19 and other viral illnesses. We incorpo-

rated duration of hospital admission, re-admission to hospital, admission to the

intensive care unit (ICU) and death in this scale. Severity group 1 (mild) included pa-

tients admitted to hospital for 0–2 days, group 2 (moderate) included patients

admitted for 3–8 days, and group 3 (severe) included patients admitted for

>8 days and those who were admitted to ICU or died at any point during admission.

Re-admission to hospital within 5 days of discharge was counted as the same admis-

sion. P-values were generated using the Kruskal-Wallis test.
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