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Čerenkov radiation in vacuum from a superluminal grating
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Nothing can physically travel faster than light in vacuum. There are several ways proposed to bypass the light
barrier and produce Čerenkov radiation (ČR) in vacuum. In this paper, we theoretically predict ČR in vacuum
from a spatiotemporally modulated boundary. We consider the modulation of traveling wave type and apply a
uniform electrostatic field on the boundary to generate electric dipoles. Since the induced dipoles stick to the
interface, they travel at the modulation speed. When the grating travels faster than light, it emits ČR. In order
to quantitatively examine this argument, we need to calculate the field scattered at the boundary. We utilize
a dynamical differential method, which we developed in a previous paper, to quantitatively evaluate the field
distribution in such a situation. We can confirm that all scattered fields are evanescent if the modulation speed is
slower than light while some become propagating if the modulation is faster than light.
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I. INTRODUCTION

Čerenkov radiation (ČR) is radiation from a charged parti-
cle moving faster than light in a medium, which was originally
observed by Čerenkov in 1934 [1] and then theoretically stud-
ied by Frank and Tamm [2]. It has been observed in various
systems, including metamaterials and photonic crystals where
the speed of light is effectively suppressed and hence the
threshold for ČR [3–6]. There is also ČR into surface modes
such as surface plasmon polaritons and Dyankov waves [7–9].

Even uncharged moving particles can emit ČR if electri-
cally or magnetically polarized, which is closely related to
the friction induced by electromagnetic fields [10–12]. Many
attempts to generate ČR in linear optics were focused on
slowing down the speed of light by engineering the medium’s
dispersion relation as in the case of photonic crystals and
metamaterials. On the other hand, it has been reported that
ČR is emitted not only from physically moving dipoles but
also from ones induced, for example, by moving light foci
[13–15] and solitons in nonlinear optical fibers [16–18] or
microresonators [19–21].

ČR is composed of coherent multifrequency components
propagating in the same direction. It is for this property that
ČR has not only attracted scientific interest but also been
applied to other research fields. ČR emitted by cosmic rays has
been captured in large facilities such as super-Kamiokande
and played vital roles in astrophysics and high energy physics
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[22]. As mentioned above, ČR can be generated in nonlinear
media. It is utilized as an optical frequency comb, as a tun-
able and broadband source and is expected to be utilized in
spectroscopy or metrology [19,23,24].

There are many reports of ČR in media as reviewed above;
however, there is a limited number of studies on ČR in vac-
uum. This is because nothing can physically move faster than
light in vacuum. One way to sidestep the light barrier in
vacuum is to employ induced dipoles instead of physically
moving ones. A moving light spot on a surface is one possibil-
ity to induce and mimic superluminal dipoles [14,15]. Another
way is to introduce some background such as external electro-
magnetic or Chern-Simons fields. The background induces an
effective refractive index to lower the ČR threshold in vacuum
below the light barrier [25–28].

On the other hand, recent studies in the optics and pho-
tonics communities have shown that time-varying bulk media
amplify source electromagnetic radiation [29–31] and gen-
erate light from vacuum fluctuation [32,33]. There are other
studies revealing that temporal modulation enhances free-
electron radiation in bulk media [34–36].

In this paper, we propose a mechanism for ČR in vacuum
without introducing any effective index. We consider a sin-
gle interface system composed of vacuum and a dielectric
(Fig. 1). By spatiotemporally modulating its interface, we can
generate an interface profile of a traveling wave type,

ax = A sin(q · x) = A sin

[
g

(
x − �

g
t

)]
, (1)

where we have defined a three-component vector x ≡
{x, y, ict} and a reciprocal vector q ≡ {g, 0, i�/c} for the
sake of convenience, and vph ≡ �/g is the sliding speed of
the profile. Note that � and g are independent modulation
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FIG. 1. Single interface system composed of a dielectric and
vacuum. The interface is under the spatiotemporal modulation of
traveling wave type (1). The orthonormal tangential vectors �t1,2 can
be calculated from the interface profile. The permittivities above
and below the interface are denoted as ε> and ε<, respectively. We
apply a uniform electrostatic field �E in

x,z on the modulated interface
so that there are induced dipoles which travel on the interface due
to its profile of the traveling wave type. The velocity of the grating
vph = �/g can be tuned by two independent parameters so that it can
exceed the speed of light. When the speed is faster than light, the
induced dipoles emit Čerenkov radiation.

parameters (temporal and spatial modulation frequencies),
and thus the sliding speed vph is not limited by the speed of
light. Note also that the surface displacement speed is limited
by the speed of light (A� < c). In other words, the upper
limit of the modulation depth is determined by the temporal
modulation frequency (Asup = c/�). In the following, we are
working on a regime A� � c so that we can safely neglect
relativistic effects.

Since we are focusing on dielectrics, the permeability is
assumed to be unity everywhere (μ = 1). The permittivity is
given by means of the interface profile,

εx,z = α�(ax − z) + ε>, (2)

where we denote the permittivities of the upper and lower
media as ε><, the permittivity difference as α ≡ ε< − ε>, and
the Heaviside unit step function as �(z).

When an electrostatic field �E in = Ein�uy is applied to this
configuration, electric dipoles are induced on the interface.
Following the traveling type profile of the interface, the in-
duced dipoles move virtually along the interface. If the profile
velocity and hence that of the induced dipoles is faster than
light, the induced dipoles may emit ČR.

Our system is periodic in the x direction and in time,
and thus the radiation wave number in the x direction and
the frequency in our system are written kx,m = kx + mg and
ωm = ω + m� in accordance with the Floquet-Bloch the-
ory, where m = 0,±1,±2, . . . is the diffraction order. Note
that here we have multifrequency radiation in contrast with
ordinary diffraction. The propagation direction of the mth or-
der diffraction is θτ

m = cos−1(ckx,m/ωm
√

ετ ) in each medium.
Since we have a uniform electrostatic field (kx = 0, ω =

FIG. 2. Integration paths leading to the boundary conditions at
the modulated interface. The modulation-induced source, �jsou

x , comes
into contribution.

0), all the polychromatic waves in the different diffraction
orders propagate in the same direction in each medium,
θτ

m = cos−1(c/vph
√

ετ ) ≡ θτ
ČR. Note that, in general, permit-

tivities are dependent on the frequency, and the propagation
direction does depend on the diffraction order, i.e., θτ

m =
cos−1[c/vph

√
ετ (m�)]. However, we are focusing on dielec-

tric materials whose permittivities can be assumed to be
constant numbers, and the frequency dependence can be
dropped [ετ (ω) → ετ ].

II. MODULATION-INDUCED SOURCE
AT THE INTERFACE

Here, we briefly review a dynamical differential method,
which we developed in the previous work [37], and calcu-
late the diffraction at the interface subject to modulations in
space and time. Our previous work is based on the coordi-
nate translation method originally proposed by Chandezon
et al. [38,39], where they consider static corrugated inter-
faces and match Maxwell’s boundary conditions directly at
the interfaces with the help of differential geometry. Using
this method, it is straightforward to take the structure of
the interfaces into consideration, and it has been utilized
to calculate structured surfaces of various media, including
anisotropic, plasmonic, and dielectric materials [40–44]. It is
also worth noting that there is a series of studies that confirm
that the method works well for smooth shallow corrugations
and propose possible ways to improve the method so that they
can handle deep corrugation even with sharp edges [45–51].
In these works, local distortion of the coordinate systems is
applied instead of the global translation of the coordinate in
order to improve the convergence. Since we are interested in
the time-dependent corrugation of the traveling wave type, we
assume that the corrugation depth is small and safely work on
the simple global coordinate translation.

In order to calculate diffraction at the structured inter-
face, we need relevant boundary conditions. By integrating
Maxwell-Heaviside equations over two kinds of path, 	1,2,
which enclose the interface as shown in Fig. 2, we can derive
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the boundary conditions,

η�t1 · (
Z0 �Hx,ax+0 − Z0 �Hx,ax−0

) = �t2 · Z0 �jsou
x ,

�t2 · ( �Ex,ax+0 − �Ex,ax−0
) = 0. (3)

Here, we have a modulation-induced source term,

�jsou
x = ȧx

c
α �Ex,ax−0, (4)

which is finite if there is time dependence (i.e., ȧx �= 0). This
source term is responsible for radiation from the interface.
Note that we have introduced the vacuum impedance Z0 ≡√

μ0/ε0. The orthonormal tangential vectors of the interface,
�t1,2, can be given by means of the interface profile,

�t1 = �ux + a′
x�uz√

1 + a′
x

2
, �t2 = �uy, (5)

and the electric and magnetic fields in real space as �Ex,z and
�Hx,z. We have defined the spatial derivative of the surface

profile, a′
x = ∂ax/∂x. Note that we have a factor of η =√

1 + a′
x

2 in front of �t1 in Eq. (3), which corresponds to the
spatial variation (expansion or contraction) of the differential
line element due to the coordinate translation, while we do not
have that factor at �t2 because the translation does not affect the
line element in the direction.

Since our system is periodic in space and time, we
can substitute Floquet-Bloch type solutions in the upper
and lower media, e.g., �Ex,z = ∑

m Ekm,z�t2eikm·x (km = k +
mq, k ≡ {kx, 0, ik0 = iω/c}), to obtain simultaneous equa-
tions in the reciprocal space,(

N+>

k −(N−<

k + Lk )

M+>

k −M−<

k

)(
E−<

k

E+>

k

)
=

(−N−>

k E−>

k

−M−>

k E−>

k

)
, (6)

where we collect the modal amplitude in each diffraction
order to form Eστ

k = (· · · Eστ
k−1

Eστ
k0

Eστ
k+1

· · ·)ᵀ. We
have specified the upper and lower media by τ =≷, and the
propagating direction is labeled by σ = ±. Thus, we can
regard E−>

km
as the incident components from the upper side

while E+>

km
and E−<

km
as the diffracted components in the upper

and lower sides. The effects of the source term and interface
geometry are encoded in the L, M, and N coefficients matrices,
whose elements read

[Lk]lm = α

c

(l − m)�

−K<

km

× sgn(ωm)
kx,m

|kx,m|Jl−m(φ−<

km
), (7)

[
Mστ

k

]
lm = kx,m

|kx,m| sgn(ωm)Jl−m
(
φστ

km

)
, (8)

[
Nστ

k

]
lm =

(
σKτ

km

kx,m
− (l − m)g

σKτ
km

) |kx,m|
|k0,m|Jl−m

(
φστ

km

)
. (9)

Here, Jm is the mth order Bessel function of the first kind,
and we have defined the wave number in the z direction in a
medium labeled by τ ,

Kτ
k ≡ sgn(ω) Re

√
ετ k0

2 − kx
2 + i Im

√
ετ k0

2 − kx
2, (10)

and the corresponding propagating phase φστ
km

≡ σKτ
km

A. By
truncating M, N, and L matrices to finite rank ones with a

truncation index mc (i.e., |l|, |m| � mc), we can numerically
invert the matrix on the left-hand side and evaluate the diffrac-
tion amplitudes.

III. ČERENKOV RADIATION

We can reconstruct the diffracted field distribution in real
space by substituting the diffraction amplitudes, E+>

km
and E−<

km
,

obtained from Eq. (6) into the Floquet-Bloch series,

�Ex,z>ax =
∑

|m|�mc

(E−>

km
e−iK>

km
z + E+>

km
e+iK>

km
z )�t2eikm·x, (11)

�Ex,z<ax =
∑

|m|�mc

E−<

km
e−iK<

km
z �t2eikm·x. (12)

Our interest is to apply a uniform electrostatic field (ω =
0, kx = 0). In this case, we substitute km = mq. In Fig. 3, we
show snapshots of the field distributions for various modula-
tion speeds and the corresponding cross section plots in the
far field region. When the modulation speed is slower than
that of light in the dielectric (subluminal regime), the distri-
bution is uniform in the far field region both on the dielectric
and vacuum sides. This is because, in the subluminal regime
(vph = �/g < c/

√
ε), the wave number in the z direction is

imaginary for each diffraction order,

Kτ
km

= |m|g√ετ

c
i Im

√
vph

2 −
(

c√
ετ

)2

, (13)

and hence all diffracted fields exponentially decay.
On the other hand, once the modulation speed is faster than

light in the dielectric and vacuum (superluminal regime), we
can find the Čerenkov type patterns (i.e., propagating waves)
in each medium. This is because, unlike in the subluminal
regime, the wave number in the z direction is real for each
diffraction order. We can confirm that all diffraction modes in
each medium propagate in the same direction,

tan θτ
m ≡ Kτ

km

kx,m
=

√
ετ

c
Re

√
vph

2 −
(

c√
ετ

)2

. (14)

Note that the far right-hand side does not depend on the
diffraction order m. Therefore, different diffraction orders
with different frequencies ωm = m� are superposed to form
pulses. This feature is more significant in the dielectric side
(see the cross section plots in Fig. 3).

What we have observed here is radiation from the virtually
moving dipoles induced by the electrostatic input on the in-
terface. The evenly spaced, moving dipoles collectively emit
radiation in the far field, and thus the field pattern is a plane
wave. We can also mathematically understand the radiation
as emission from the source term on the right-hand side of
Eq. (3), which is induced by the temporal modulation of the
interface (ȧx �= 0). Since the strength of the source is propor-
tional to the temporal modulation frequency, the emitted field
is stronger as the modulation speed vph increases in Fig. 3.

In experiments, a series of pulses will be observed in
the far field as shown in Fig. 3. Since the pulses travel in
a single direction θČR, one can confirm that the directional
(angular) dependence of the radiation peaks around θ = θČR.
The radiation intensity is of the order of 100 mW cm−2 when
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FIG. 3. Snapshots (middle row) and their cross sections (upper and lower rows) of the field distributions in the subluminal and superluminal
regimes. The intensity of the total electric field | �Ex,z|2 is plotted. (i) Subluminal regime in the dielectric and vacuum sides, vph = �/g =
0.2c < c/

√
ε. (ii) Superluminal in the dielectric side and subluminal in the vacuum side, c/

√
ε < vph = 0.8c < c. (iii) Superluminal regime

in both sides, c < vph = 1.2c. The modulation parameters are given as follows: the spatial frequency g = 2π [μm−1], the modulation depth
2A = 100 [nm]. The input amplitude is Ein = √

Z0 × 100 mW cm−2 ≈ 0.614 [mV μm−1]. The permittivities are ε> = 1 and ε< = ε = 2.25.
The cutoff is mc = 10 so that we take 2mc + 1 = 21 diffracted waves into account. The colorbars for (ii) and (iii) are common and shown on
the right of (iii). Note that the scale of the colorbar of (i) is different from those of (ii) and (iii), and the horizontal axes and the vertical axes of
the color plots are normalized by the spatial period g of the modulation.

the applied voltage is Ein = 0.614 mV μm−1, which is far
below the typical dielectric strengths of polymers and glasses
∼100 V μm−1.

IV. CONCLUSIONS

In this paper, we have proposed a mechanism for the
Čerenkov radiation in a system which consists of a single
interface. The spatiotemporal modulation of its interface re-
alizes the interface profile of a traveling wave. By applying an
electrostatic field, electric dipoles are induced on the interface,
and move virtually on the interface due to the traveling wave
profile. The profile slides at its phase velocity vph = �/g,
where � and g are independent modulation parameters, tem-
poral and spatial modulation frequencies. Thus, the sliding
speed of the profile vph is not limited by the speed of light.
If the profile velocity and hence that of the induced dipoles is
faster than light, they emit ČR.

As for the experimental implementation, the key is the spa-
tiotemporal modulation of the interface between two media.
One can use acoustic techniques to spatiotemporally mod-
ulate the surfaces of materials. According to the studies in
acoustic communities [52,53], surface displacement of the
order of 10 nm and ultrafast modulation up to 1 THz are
achievable through acoustic-optical modulation. Using soft
materials such as liquids is one way to generate large surface
displacement up to micrometer scale [54–56].

Another possibility is electrostatic modulation of per-
mittivities of atomically thin materials placed at interfaces.

Those thin materials can be regarded as infinitely thin sheets
with finite conductivities [57]. Recently, several studies have
revealed that the permittivity profile of graphene can be
electrically modulated [29,30,58]. The modulation can be per-
formed at high frequency in space and time so that graphene
is another candidate to realize our proposed effects although
we should take it into consideration that the optical response
is dominated by two-dimensional Dirac electrons [57].
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APPENDIX A: EXTENSION TO MORE
GENERAL WAVE PROFILES

We can generalize the present analytical calculation for an
arbitrary periodic profile. The key in the calculation is the
expansion of the exponential function eiKax in Eqs. (2)–(6) in
the main text, which we need in order to evaluate the Fourier
transform of the fields at the boundary. Let the periodicity of
ax be determined by a reciprocal vector q. The exponential
function eiKax should also be periodic with the vector q, and
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we can write it in terms of the Fourier series,

eiKax =
∑

m

Am(K )eimq·x,

where Am is the Fourier coefficient and is dependent on K .
In the simple setup ax = A sin q · x studied in the main text,
the Fourier coefficients are nothing but the Bessel functions of
the first kind. Thus, we can just replace the Bessel functions
in the main text with general Fourier coefficients in order to
deal with a more general wave type, i.e., Jm → Am.

APPENDIX B: MODULATION-INDUCED SOURCE

Since the electric flux density is the product of the permit-
tivity and the electric field, �D = εε0 �E , the time variation of the

permittivity produces an additional term (the source current
�j = ε̇ε0 �E) in the Ampere-Maxwell law,

∇ × �H = ∂

∂t
�D = εε0

∂

∂t
�E + �j. (B1)

The time derivative of the permittivity results in the Dirac
delta function,

�j = ε̇ε0 �E = δ(z − a)
ȧ

c
α �E = δ(z − a)�jsou, (B2)

that remains after integrating the Ampere-Maxwell law along
a path 	1 enclosing the modulated surface as in Eq. (4) in the
main text.
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