Association between TNF receptors and KIM-1 with kidney outcomes in early stage CKD

Short running title: TNFR1/2 is associated with kidney outcomes in early CKD

Simke W. Waijer, MSc,1,* Taha Sen, MSc,1,* Clare Arnott, MD,2,3 Bruce Neal PhD,2 Jos G.W. Kosterink, PhD,1,4 Kenneth W. Mahaffey, MD,5 Chirag R. Parikh, PhD,6 Dick de Zeeuw PhD,1 Vlado Perkovic, MBBS, PhD,2 Brendon L. Neuen, MBBS MSc2 Steven G. Coca, DO,7 Michael K. Hansen MD,8 Ron T. Gansevoort, MD,9 Hiddo J.L. Heerspink, PhD1,2

*Contributed equally

1Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, The Netherlands.
2The George Institute for Global Health, UNSW Sydney, Sydney, Australia
3Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
4PharmacoTherapy,-Epidemiology,-Economy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
5Stanford Center for Clinical Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
6Department of Internal Medicine Johns Hopkins School of Medicine, Baltimore, MD, USA.
7Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
8Janssen Research & Development, LLC, Spring House, PA, USA
9Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, The Netherlands
Corresponding author
Hiddo J.L. Heerspink; Department Clinical Pharmacy and Pharmacology; University Medical Center Groningen; Hanzeplein 1; PO Box 30 000; 9700 AD Groningen, The Netherlands; Tel: +31 50 361 7859
Email: h.j.lambers.heerspink@umcg.nl

Clinical trial registration
ClinicalTrials.gov (NCT01032629)

Key words: TNFR-1, TNFR-2, KIM-1, biomarkers, clinical trial design, risk prediction, normoalbuminuria, kidney outcomes, Prognosis, Hepatitis A Virus Cellular Receptor 1.

Word count: 3401
Abstract word count: 300
Tables: 3
Figures: 1
Supplement: 5 supplemental tables, 4 supplemental figures
Abstract

Background and objectives: Clinical trials in nephrology are enriched for patients with micro- or macroalbuminuria to enroll patients at risk of kidney failure. However, patients with normoalbuminuria can also progress to kidney failure. Tumor Necrosis Factor Receptor (TNFR)-1, TNFR-2 and Kidney Injury Marker (KIM)-1 are known to be associated with kidney disease progression in patients with micro- or macroalbuminuria. We assessed the value of TNFR-1, TNFR-2 and KIM-1 as prognostic biomarkers for CKD progression in patients with type 2 diabetes and normoalbuminuria.

Design, setting, participants and measurements: TNFR-1, TNFR-2, and KIM-1 were measured using immunoassays in plasma samples from patients with type 2 diabetes at high cardiovascular risk participating in the CANVAS trial. We used multivariable adjusted Cox proportional hazards analyses to estimate hazard ratios per doubling of each biomarker for the kidney outcome and stratified the population by the 4th quartile of each biomarker distribution and assessed the number of events and event rates.

Results: In patients with normoalbuminuria (N=2,553), 51 kidney outcomes were recorded during a median follow-up of 6.1 years (event rate 3.5 [95%CI 2.6–4.6] per 1,000-patient-years). Each doubling of baseline TNFR-1 (HR 4.16; 95%CI 1.80–9.61) and TNFR-2 (HR 2.35; 95%CI 1.51–3.63) was associated with a higher risk for the kidney outcome. Baseline KIM-1, UACR and eGFR were not associated with kidney outcomes. The event rates in the highest quartile of the TNFR-1 (≥2,992 ng/ml) or TNFR-2 (≥11,394 ng/ml) were 5.6 and 7.0 events per 1000-patient-years compared to 2.4 and 2.8 in the lower three quartiles.

Conclusion: TNFR-1 and TNFR-2 are associated with kidney outcomes in patients with type 2 diabetes and normoalbuminuria.
Introduction

Traditional clinical endpoints in clinical trials in patients with chronic kidney disease (CKD) are kidney failure and doubling of serum creatinine. However, these endpoints are late events in the progression of CKD and take a long time to manifest. To ensure sufficient endpoints occur within the duration of a clinical trial, patients at advanced stages of CKD, those with high albuminuria and low estimated glomerular filtration rate (eGFR), are enrolled. Patients at early-stages of CKD are usually excluded from CKD clinical trials because of low event rates. However, although event rates are lower, some patients without traditional risk markers still progress and experience clinical kidney outcomes. Moreover, since the prevalence of early-stage CKD is much higher than later stages of CKD, the total number of kidney outcomes was similar when comparing patients at early and advanced stages of CKD in past cardiovascular outcome trials (1,2). For example, in the DECLARE-TIMI-58 trial, 69.1% of patients had normoalbuminuria and 6.9% had macroalbuminuria, the number of kidney outcomes in both subgroups was 145 versus 106, respectively (1). Identifying patient characteristics or biomarkers that associate with kidney disease progression in early-stages of CKD will enable better tailoring of treatment to those at risk of progressive kidney function loss and may facilitate clinical trial design and conduct.

Biomarkers, including tumor necrosis factor receptor-1 (TNFR)-1, TNFR-2, and kidney injury molecule-1 (KIM-1) are associated with kidney disease progression (3). TNFR-1 and TNFR-2 are circulating receptors of the pro-inflammatory cytokine Tumor Necrosis Factor (TNF)-α. Studies in patients with established CKD demonstrated that higher concentrations of TNFR-1 and TNFR-2 are associated with a higher risk of progressive kidney function loss and kidney failure (4–6). KIM-1 is also associated with the progression of kidney disease. Elevated plasma and urine levels of KIM-1 are associated with progression to kidney failure (5,7–9). However, the association of these biomarkers with kidney disease progression in early-stages
of CKD and their utility to enrich clinical trials for kidney outcomes in patients with normoalbuminuria is unknown.

We performed a post hoc analysis of the CANagliflozin cardioVascular Assessment Study (CANVAS) randomized controlled trial that assessed the efficacy and safety of canagliflozin in patients with type 2 diabetes and higher cardiovascular risk. We assessed the performance of TNFR-1, TNFR-2, and KIM-1 as prognostic biomarkers to identify patients with normoalbuminuria at risk of CKD progression.

Materials and Methods

Patients and study design
The CANVAS program was a double-blind, randomized, placebo-controlled trial that assessed the cardiovascular efficacy and safety of the sodium glucose co-transporter 2 (SGLT2) inhibitor canagliflozin in patients with type 2 diabetes at higher cardiovascular risk. The CANVAS program consists of two trials, the CANVAS trial and the CANVAS-Renal (CANVAS-R) trial. Baseline blood samples of the CANVAS trial only were stored for exploratory biomarker analyses. No blood samples from the CANVAS-R trial were stored for biomarker analyses. For our analysis we included all patients with available blood samples for measurement at baseline.

The design and primary results of the CANVAS trial have been published previously (10,11). The CANVAS trial included 4330 patients with type 2 diabetes, who were 30 years or older, had an eGFR >30 ml/min/1.73m², and were at higher cardiovascular risk. Patients needed to have a glycated hemoglobin (HbA1c) level of ≥53 mmol/mol (7.0%) and ≤91 mmol/mol (10.5%). Higher cardiovascular risk was defined as a history of symptomatic atherosclerotic vascular disease or an age of ≥50 years with two or more cardiovascular risk factors, including a diabetes duration of ≥10 years, systolic blood pressure (BP) >140 mmHg while using ≥1 antihypertensive agent, current smoking, micro- or macroalbuminuria or an HDL cholesterol
level of <1 mmol/L. Eligible patients were randomly assigned to 100 mg/day canagliflozin, 300 mg/day canagliflozin or placebo in a 1:1:1 ratio.

The trial protocol was approved by a local or central ethics committee at all trial sites, and each participant provided written informed consent before entering the study. The trial was conducted according to the Declaration of Helsinki. The CANVAS trial is registered on ClinicalTrials.gov (NCT01032629).

Biomarker measurements
Plasma TNFR-1, TNFR-2, and KIM-1 were measured from baseline blood samples using high-performance electrochemiluminescence immunoassays (Mesoscale Quickplex SQ 120 platform [MSD], performed by RenalytixAI, New York, NY, USA). All immunoassays were measured between August 2019 and December 2019. A random sample of 469 blood samples were measured in duplicate, with the following mean (minimum, maximum) coefficient of variation: TNFR-1: 2% (0%, 10%); TNFR-2: 2% (0%, 12%); and KIM-1: 3% (0%, 18%). First morning void urine was collected to determine urinary albumin:creatinine ratio (UACR).

Outcomes
The kidney outcome for this post hoc analysis was defined as a composite of 40% reduction in eGFR sustained for at least two consecutive measurements, kidney failure defined as a sustained eGFR <15 ml/min/1.73m², the need for kidney-replacement therapy and kidney transplantation, or kidney death. The cardiovascular outcome for the current study was defined as hospitalization for heart failure. These endpoints were pre-specified in the study protocol and endpoints were adjudicated by a blinded adjudication committee (10).

Statistical analysis
Baseline characteristics are presented as means and standard deviation. For variables with skewed distribution the median and the interquartile range (IQR) are reported. UACR, TNFR-
1, TNFR-2 and KIM-1 were log-transformed in all analyses to account for their skewed distributions. Categorical variables are presented as percentage of observations. Baseline characteristics are presented for patients with normoalbuminuria (UACR < 30 mg/g) and compared with patients with microalbuminuria (UACR ≥30 and <300 mg/g) and macroalbuminuria (UACR ≥300 mg/g). BMI was missing in 4 patients, LDL cholesterol was missing in 3 patients and creatinine was missing in 2 patients. We imputed the mean values for these patients. Differences in baseline characteristics across these UACR subgroups were tested with one-way analysis of variance (ANOVA) or chi-squared test where appropriate. eGFR was calculated from the serum creatinine measurements using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation (12).

We used Cox proportional hazard regression analyses to estimate the hazard ratios (HRs) for each outcome associated with each doubling in baseline TNFR-1, TNFR-2 or KIM-1. We also assessed the association between each doubling in baseline UACR and eGFR with the kidney outcome to compare the performance of the novel biomarkers with established risk markers of CKD progression. Models were adjusted for covariates that were added in a stepwise manner in three consecutive models. In the first model we adjusted for treatment allocation (canagliflozin or placebo). In the second model we additionally adjusted for age, sex, race, BMI, history of cardiovascular disease (yes or no), systolic and diastolic blood pressure, LDL-cholesterol, and HbA1c. The third model was additionally adjusted for UACR and eGFR. Estimations of the association of doubling in UACR and eGFR with the kidney outcome were performed in the final model without adjustments for UACR and eGFR, respectively. In addition, we divided the population into quartiles by TNFR-1 and TNFR-2 level and determined the HR for each quartile using the first quartile as a common reference.

To assess if the biomarkers of interest can be used as risk selection markers in patients with normoalbuminuria, we divided the population above or below the 4th quartile of baseline TNFR-
1 and TNFR-2, respectively. We assessed in both subgroups the number of events and Poisson event rates, calculated as the number of events per 1,000 patient years.

The effect of using the biomarkers for prognostic enrichment on sample size, total number of screenings and costs of a future clinical trial was evaluated using the Biomarker Prognostic Enrichment Tool (BioPET, http://prognosticenrichment.com/orig/) (13). As inputs we used the event rate of the placebo group and the performance of the association of TNFR-1, TNFR-2 and UACR with the kidney outcomes among patients with normoalbuminuria. We assumed a 90% power to detect a relative risk reduction for the kidney outcome of 40%, consistent with the observed effect of canagliflozin in the CANVAS program, and a type 1 error rate of 0.05. To estimate the implications of prognostic enrichment on trial costs, we set the screening costs per patient at $1,000 and the costs per patient during the trial at $50,000.

We performed Cox proportional hazard regression analysis to assess if the treatment effect of canagliflozin relative to placebo in patients with normoalbuminuria and TNF receptors above or below the 4th quartile were consistent with the main CANVAS trial findings. Heterogeneity of treatment effects across TNF receptor subgroups was tested by adding an interaction term between the TNF receptor subgroup and treatment assignment to the model.

All statistical analyses were performed in Stata 14.2 SE (StataCorp. 2015. Stata Statistical Software: Release 14. College Station, TX: StataCorp LP).

Results

Of the 4,330 participants of the CANVAS trial, 3,532 (82%) had available blood samples for measurements at baseline. Of these, 2,553 (72%) had normoalbuminuria, 778 (22%) had microalbuminuria and 201 (6%) had macroalbuminuria. Median follow-up time was 6.1 (IQR 5.8 to 6.4) years. Baseline characteristics stratified by baseline albuminuria are shown in Table 1. Patients with macroalbuminuria had a higher blood pressure, higher HbA1c and lower eGFR.
compared to patients with micro- or normoalbuminuria. TNFR-1, TNFR-2, and KIM-1 levels were also higher in those with macroalbuminuria (Table 1).

The number of kidney outcomes was similar across albuminuria subgroups: 51, 45, and 41 outcomes were recorded in patients with normo-, micro-, and macroalbuminuria, respectively (Table 1). The event rate was however markedly lower in the normo- compared to micro- or macroalbuminuria subgroups with corresponding rates of 3.5 (95% CI 2.6 to 4.6), 10.5 (7.8 to 14.1), and 43.1 (31.7 to 58.5) per 1,000 patient years, respectively.

Association of biomarkers with the kidney outcomes in patients with normoalbuminuria

We observed a wide variation in TNFR-1, TNFR-2, and KIM-1 levels in patients with normoalbuminuria; the mean and 2.5th to 97.5th percentile for each biomarker was 2600 [1,439 to 4,500], 9,922 [5,101 to 17,729], and 121 [31 to 360] pg/ml (Supplemental Figure S1). In unadjusted analyses TNFR-1, TNFR-2 and KIM-1 were statistically significantly associated with the kidney outcome (Table 2). When models were adjusted for baseline characteristics and cardiovascular and kidney risk markers, each doubling of TNFR-1 and TNFR-2 was significantly associated with a higher risk of kidney outcomes, with corresponding HRs of 4.2 (95%CI 1.8 to 9.6; P=0.001) and 2.3 (95%CI 1.5 to 3.6; p<0.001), respectively. In the fully adjusted model, we did not observe a statistically significant association between doubling of baseline KIM-1 and the kidney outcome (HR 1.4; 95%CI 1.0 to 1.9; P=0.066). Baseline eGFR and UACR were also not associated with the kidney outcome in the fully adjusted model (Table 2).

Since KIM-1 was not significantly associated with the kidney outcome after multivariable adjustment, we restricted further analyses to TNFR-1 and TNFR-2. Analyses of quartiles of baseline TNFR-1 and TNFR-2 showed that in the upper quartile of the TNFR-1 and TNFR-2 distribution the largest number of events occurred. Accordingly, the HR was larger at higher quartiles of TNFR-1 and TNFR-2, with a HR of 5.2 (95%CI 1.7 to 15.5) for TNFR-1 and 3.6
(95% CI 1.5 to 8.8) for TNFR-2 in the highest compared to the first quartile in the fully adjusted model (Supplemental Figure S2).

Performance of TNFR-1 and TNFR-2 as risk selection markers for future clinical trials

To identify patients with normoalbuminuria at highest risk for kidney outcomes for a future clinical trial and assess the performance of the TNF receptors to enrich clinical trial populations with participants likely to experience events, we selected patients with a TNFR-1 or TNFR-2 level in the highest (4th) quartile (Supplemental Figure S3). Because of the strong correlation between TNFR-1 and TNFR-2, the combination of these biomarkers was not tested (Pearson correlation 0.7, Supplemental Figure S4).

Patients with normoalbuminuria and TNFR-1 or TNFR-2 in the 4th quartile had a median TNFR-1 level of 3448 (IQR 3,181 to 3,855) pg/ml and a median TNFR-2 of 13,144 (IQR 12,080 to 14,923) pg/ml. The kidney endpoint occurred in 20 out of 638 patients (3%) in the 4th quartile of TNFR-1, corresponding to an event rate of 5.6 (95% CI 3.6 to 8.6) per 1,000 patient-years. In the 4th quartile of TNFR-2, 25 of 638 patients (4%) experienced the kidney outcome, the corresponding event rate was 7.0 (95% CI 4.7 to 10.3) per 1,000 patient-years. In comparison, in the lower three quartiles of TNFR-1 and TNFR-2 the event rates were 2.8 (95% CI 2.0 to 4.0) and 2.3 (95% CI 1.6 to 3.4), respectively (Table 3).

We evaluated the impact of using TNF receptor concentrations as prognostic enrichment marker on sample size requirements and costs for a hypothetical future clinical trial. Enrichment with TNFR-1 or TNFR-2 resulted in a higher event rate, and a decrease in clinical trial sample size. Although enrichment with either TNF receptor resulted in a larger number of patients required to be screened, the overall clinical trial costs decreased (Figure 1). Specifically, using a threshold to include patients with the 25% highest TNFR-2 concentrations (i.e., 4th quartile) would reduce the sample size of the hypothetical trial from 3692 to 2046 (45% reduction), increase the number of patients needed to screen for the trial from 3,692 to 8,183, but reduce
costs by 40% (Supplemental Table S1). Similar results are observed when using TNFR-1 for prognostic enrichment (Figure 1, Supplemental Table S1). Prognostic enrichment with KIM-1 did not lead to a reduction in sample size or a reduction in costs in comparison with UACR (Supplemental Figure S5).

Subgroup analyses by the baseline biomarker levels were performed to ascertain that the benefit of canagliflozin in reducing the risk of clinical outcomes was preserved in patients in the 4th quartile of baseline TNFR-1 and TNFR-2. We observed that the treatment effect of canagliflozin on the kidney outcome and hospitalization for heart failure is consistent in patients with a baseline TNFR-1 or TNFR-2 level above or below the 4th quartile as well as in patients with micro- or macroalbuminuria (both p for interaction > 0.391, Supplemental Table S2).

Discussion

In this post hoc analysis of the CANVAS trial, we demonstrated that baseline TNFR-1 and TNFR-2 levels can be used to identify patients with normoalbuminuria at elevated risk of CKD progression. In these individuals, there was a strong association between TNFR-1 and TNFR-2 with the kidney outcome. The association between KIM-1 and the kidney outcome did not reach significance after multivariable adjustment. These data highlight the potential use of TNFR-1 or TNFR-2 as biomarkers to identify individuals with normoalbuminuria at risk of CKD progression.

TNFR-1 and TNFR-2 are receptors of the pro-inflammatory cytokine TNFα, and have been shown to be associated with kidney outcomes in patients with and without diabetes at various stages of CKD (4–6,14–16). Here we confirm and extend these findings in a large, heterogeneous population with type 2 diabetes, normoalbuminuria and high cardiovascular risk, treated according to contemporary treatment guidelines. In our study, participants in the highest quartile of TNFR-1 and TNFR-2 had a 5-fold higher risk compared to the lowest quartile to develop the kidney outcome. This finding is in accordance with an earlier study demonstrating
that the vast majority of kidney events occurred in the highest quartile of the TNFR-1 distribution (4). Taken together, TNF receptors are associated with kidney disease progression across a range of patients and in patients without obvious signs of kidney damage, such as those with normal eGFR and normoalbuminuria.

Prior studies have also evaluated the applicability of TNFR-1 to improve clinical trial design (17). A study by Yamanouchi et al. evaluated the use of TNFR-1 to enrich the clinical trial cohort for patients with diabetes and CKD stage 3 or 4 more likely to reach kidney failure. This study showed that TNFR-1 levels >4,300 pg/ml or between 2,900-4,300 pg/ml in combination with a UACR >1,900 mg/g are the optimal thresholds for high risk selection (17). Here we extend these criteria and show that in people with type 2 diabetes and normoalbuminuria, TNFR-1 (≥2,992 pg/ml) and TNFR-2 (≥11,394 pg/ml) could be used for enrichment in a clinical trial. In addition, because the prevalence of early-stage CKD is much higher than later stages of CKD, the use of biomarkers, such as TNFR-1 and TNFR-2, would significantly increase the number of potential eligible clinical trial participants at risk of kidney function decline beyond the commonly used selection criteria such as the presence of macroalbuminuria.

KIM-1 is a marker for damage to the proximal tubule and has been proposed as a risk marker for progression of kidney disease (5,7–9). In our study, we did not observe a clear association between plasma KIM-1 and kidney outcomes in patients with normoalbuminuria. Previous studies in patients with type 1 and type 2 diabetes showed strong associations between plasma KIM-1 levels and kidney outcomes, including eGFR decline and progression of CKD (5,8,9). A recent trial confirmed this association in a general population cohort with preserved kidney function. Compared to our findings, in this study baseline plasma KIM-1 was associated with kidney outcomes, whereas we found no significant association (18). These differences may be explained by differences in design and analytical methods of the studies. Specifically, the longer follow-up and difference in outcome definition (incident CKD defined as eGFR<60
mL/min/1.73m²) in the study by Schulz et al. may have increased statistical power to detect a significant association in their study. More importantly perhaps, no data on albuminuria was collected in the study by Schulz et al and therefore, associations were not adjusted for albuminuria (18).

Albuminuria is a well-known risk marker for kidney failure. Multiple studies in varying patient populations have shown a strong and continuous association between higher degrees of albuminuria and risk for kidney outcomes without a threshold below which this association disappears (19,20). This indicates that even subtle increases in albuminuria, even within the currently considered normoalbuminuric range, are already associated with a higher risk of CKD progression and clinical events. In the current study we did not observe a statistically significant association between albuminuria and the kidney outcome in subjects with normoalbuminuria. The relatively low number of kidney outcomes may have resulted in insufficient statistical power to detect and confirm this association. An increase in albuminuria usually precedes the development of severe kidney damage (19,20). However, recent studies show that the prevalence of non-albuminuric CKD is increasing (21–23). Patients with high GFR and low albuminuria have been excluded from nearly all recent clinical trials because of concerns of low event rates and large sample size requirements. TNFR-1 and TNFR-2 could be considered as risk markers for these patients for whom evidence-based treatments are available (24).

Canagliflozin reduces the relative risks of kidney failure and heart failure hospitalization in patients with type 2 diabetes at high cardiovascular risk and with established kidney disease (11,25). In this study we demonstrated that canagliflozin reduced the kidney outcome and hospitalization for heart failure consistently across patients with normoalbuminuria irrespective of baseline TNFR-1 or TNFR-2 levels. Thus, no effect modification occurred when selecting patients on the basis of TNFR-1 or TNFR-2 levels supporting the utility of these markers for future trials. Using TNFR-1 or TNFR-2 as biomarkers for prognostic enrichment for a clinical
trial decreases the sample size and costs leading to an increase in feasibility of a clinical trial. However, the disadvantage of using enrichment criteria is that it reduces generalizability.

The strength of this study includes that CANVAS is a large trial with a heterogeneous population of patients with type 2 diabetes at higher cardiovascular risk with a long follow-up. Also, the CANVAS trial had clear, pre-specified endpoints that were assessed by a blinded endpoint adjudication committee. This study also has some limitations. First, it is a post hoc analysis prone to chance findings. Second, there is only a small number of events in the normoalbuminuria group limiting the statistical power. However, the coherence with prior data suggests that our findings are unlikely the result of chance. Because of day-to-day variability in albuminuria, guidelines recommend assessment of albuminuria in three consecutively collected first morning void urine samples. In the CANVAS trial urinary albumin and creatinine were measured in single first morning void urine samples, which may have led to misclassification of the albuminuria status. Finally, the CANVAS trial enrolled patients with type 2 diabetes with established cardiovascular disease or high cardiovascular risk. The results cannot be generalized to patients without type 2 diabetes.

In conclusion, higher plasma concentrations of TNFR-1 and TNFR-2 are associated with a higher risk of kidney disease progression in patients with type 2 diabetes and normoalbuminuria.
Disclosures

S.W. Waijer, and J.G.W. Kosterink have no conflicts of interest to disclose.

T. Sen is supported by the BEAt-DKD project. The BEAt-DKD project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 115974. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA.

C. Arnott is an employee of the George Institute for global health and is supported by a NSW Health Early and Mid-Career Researchers (EMCR) Grant and an Medical Research Future Fund (MRFF) Investigator Grant.

B. Neal is an employee of the George Institute for global health and is supported by an National Health and Medical Research Council (NHMRC) Investigator Grant. His institution has received fees for his roles in advisory boards, steering committees, or scientific presentations from AstraZeneca, Janssen, Merck, and Mundipharma and has received grant support for CANVAS and CREDENCE from Janssen.

K.W. Mahaffey has received research support from Afferent, Amgen, Apple, Inc, AstraZeneca, Cardiva Medical, Inc, Daiichi, Ferring, Google (Verily), Johnson & Johnson, Luitpold, Medtronic, Merck, National Institutes of Health (NIH), Novartis, Sanofi, St. Jude, and Tenax; and has served as a consultant (speaker fees for continuing medical education events only) for Abbott, Ablynx, AstraZeneca, Baim Institute, Boehringer Ingelheim, Bristol-Myers Squibb, Elsevier, GlaxoSmithKline, Johnson & Johnson, MedErgy, Medscape, Mitsubishi Tanabe, Myokardia, NIH, Novartis, Novo Nordisk, Portola, Radiometer, Regeneron, Springer Publishing, and University of California, San Francisco.
C.R. Parikh is a member of the advisory board of and owns equity in RenalytixAI. He also serves as a consultant for Genfit and Novartis. Dr. Parikh is supported by NIH grants R01HL085757, UH3DK114866, U01DK106962 and R01DK093770.

D. de Zeeuw is an advisor and/or a speaker for Bayer, Boehringer Ingelheim, Fresenius, Mitsubishi-Tanabe, TraveRe Pharmaceuticals. Dr. de Zeeuw is a part of the Steering Committees and/or is a speaker for AbbVie and Janssen. He is a part of the Data Safety and Monitoring Committees for Bayer and he has received honoraria paid to Institution and consultant/speaker.

V. Perkovic has received fees for advisory boards, steering committee roles, or scientific presentations from AbbVie, Astellas, AstraZeneca, Bayer, Baxter, Bristol-Myers Squibb, Boehringer Ingelheim, Dimerix, Durect, Eli Lilly, Gilead, GlaxoSmithKline, Janssen, Merck, Mitsubishi Tanabe, Mundipharma, Novartis, Novo Nordisk, Pfizer, PharmaLink, Relypsa, Retrophin, Sanofi, Servier, Vifor, and Tricida.

B.L. Neuen is supported by an Australian NHMRC Postgraduate Scholarship and a University Postgraduate Award from the University of New South Wales. He has received travel support from Janssen and consultancy fees from Bayer with all honoraria paid to his institution.

S.G. Coca has received fees for advisory boards or steering committee roles for RenalytixAI, CHF Solutions, Bayer, Boehringer-Ingelheim, Takeda, Relypsa (Vifor), Quark, ProKidney, and Akebia; owns equity in RenalytixAI; receives research support from RenalytixAI, ProKidney, XORTX Pharma, and the Renal Research Institute; and receives salary support and research funds from the following grants from the NIH: U01DK106962, R01DK115562, R01DK112258, R01DK126477, R01DK118222-03S1, R01DK093770 09S1, UH3DK114920.

M.K. Hansen is an employee of Janssen Research & Development, LLC.
R.T. Gansevoort has received fees for acting on advisory boards or as consultant, and received grants from Abbvie, Astra-Zeneca, Baxter, Bayer, Mundipharma and Sanofi-Genzyme. All money is paid to his employing institution.

H.J.L. Heerspink is supported by a VIDI (917.15.306) grant from the Netherlands Organisation for Scientific Research and has served as a consultant for AbbVie, Astellas, AstraZeneca, Bayer, Boehringer Ingelheim, Chinook, CSL Pharma, Fresenius, Gilead, Janssen, Merck, Mundipharma, Mitsubishi Tanabe, and Retrophin; and has received grant support from AbbVie, AstraZeneca, Boehringer Ingelheim, and Janssen.

Funding

Biomarker measurements were funded by Janssen Research & Development. The funder was involved in the study design, data collection, data analysis, data interpretation and writing of the report.

Acknowledgments

The authors thank all CANVAS participants and investigators for their support in the trial. The CANVAS trial was conducted in collaboration with the sponsor, an academic steering committee, and an academic research organization, George Clinical, and was sponsored by Janssen Research & Development.

Author Contributions

Conceptualization: H.J.L.H

Data curation: S.W.W. and H.J.L.H.

Formal analysis: S.W.W. and H.J.L.H.

Investigation: T.S., B.L.N, V.P., and K.W.M

Writing – original draft: S.W.W. and H.J.L.H
Writing – review & editing: All authors

Data sharing

Data Sharing: Data from the CANVAS Program are available in the public domain via the Yale University Open Data Access Project (YODA; http://yoda.yale.edu/).

Supplemental Materials Table of Contents

Sites and investigators in the CANVAS trial .. 3
Supplemental Table S1: ... 6
Supplemental Table S2: ... 7
Supplemental Figure S1: ... 8
Supplemental Figure S2: ... 9
Supplemental Figure S3: ... 10
Supplemental Figure S4: ... 11
Supplemental Figure S5: ... 12

References

Table 1: Baseline characteristics stratified by baseline UACR. *

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Normoalbuminuria (n=2,553)</th>
<th>Microalbuminuria (n=778)</th>
<th>Macroalbuminuria (n=201)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney outcome</td>
<td>51</td>
<td>45</td>
<td>41</td>
</tr>
<tr>
<td>Baseline Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>63 (8)</td>
<td>63 (8)</td>
<td>63 (7)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1660 (65%)</td>
<td>564 (72%)</td>
<td>143 (71%)</td>
</tr>
<tr>
<td>Female</td>
<td>893 (35%)</td>
<td>214 (28%)</td>
<td>58 (29%)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>243 (10%)</td>
<td>92 (12%)</td>
<td>18 (9%)</td>
</tr>
<tr>
<td>Black</td>
<td>54 (2%)</td>
<td>18 (2%)</td>
<td>9 (4%)</td>
</tr>
<tr>
<td>White</td>
<td>2085 (82%)</td>
<td>624 (80%)</td>
<td>163 (81%)</td>
</tr>
<tr>
<td>Other</td>
<td>171 (7%)</td>
<td>44 (6%)</td>
<td>11 (5%)</td>
</tr>
<tr>
<td>BMI (kg/m²)†</td>
<td>32.6 (6.2)</td>
<td>32.9 (6.1)</td>
<td>32.4 (5.8)</td>
</tr>
<tr>
<td>Cardiovascular disease history</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>135 (15)</td>
<td>139 (16)</td>
<td>146 (18)</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>77 (10)</td>
<td>78 (10)</td>
<td>80 (10)</td>
</tr>
<tr>
<td>LDL cholesterol (mg/dl)†</td>
<td>2.3 (0.9)</td>
<td>2.2 (0.9)</td>
<td>2.5 (1.0)</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>8.1 (0.9)</td>
<td>8.3 (0.9)</td>
<td>8.4 (0.9)</td>
</tr>
<tr>
<td>eGFR (ml/min/1.73m²)†</td>
<td>80 (17)</td>
<td>78 (18)</td>
<td>70 (21)</td>
</tr>
<tr>
<td>UACR (mg/g)</td>
<td>8.2 (5.5 to 13.2)</td>
<td>66.8 (43.6 to 121.4)</td>
<td>675.4 (436.8 to 1167.1)</td>
</tr>
<tr>
<td>TNFR-1 (pg/ml)</td>
<td>2,477 (2,068 to 2,990)</td>
<td>2,781.5 (2,290 to 3,484)</td>
<td>3,495 (2,792 to 4,414)</td>
</tr>
<tr>
<td>TNFR-2 (pg/ml)</td>
<td>9,323 (7,642 to 11,392)</td>
<td>10,475 (8,403 to 13,185)</td>
<td>12,834 (10,338 to 17,459)</td>
</tr>
<tr>
<td>KIM-1 (pg/ml)</td>
<td>97 (64 to 145)</td>
<td>143.5 (98 to 225)</td>
<td>281 (186 to 474)</td>
</tr>
<tr>
<td>Treatment allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>847 (33%)</td>
<td>257 (33%)</td>
<td>81 (40%)</td>
</tr>
<tr>
<td>Canagliflozin</td>
<td>1,706 (67%)</td>
<td>521 (67%)</td>
<td>120 (60%)</td>
</tr>
</tbody>
</table>

*Data are n (%), mean (SD), or median [25th to 75th Percentile].
Mean BMI (4 patients), LDL cholesterol (3 patients) and creatinine (2 patients) values were imputed for patients with missing baseline values.
eGFR, estimated glomerular filtration rate; UACR, urinary albumin:creatinine ratio; TNFR-1, tumor necrosis factor receptor-1; TNFR-2, tumor necrosis factor receptor-2; KIM-1, kidney injury molecule-1.
Table 2: Associations of doubling in baseline TNFR-1, TNFR-2, KIM-1, UACR and eGFR with the kidney outcome in patients with normoalbuminuria.

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hazard ratio (95% CI)</td>
<td>Hazard ratio (95% CI)</td>
<td>Hazard ratio (95% CI)</td>
</tr>
<tr>
<td>TNFR-1</td>
<td>2.89 (1.52 to 5.50)</td>
<td>2.07 (1.04 to 4.15)</td>
<td>4.18 (1.81 to 9.64)</td>
</tr>
<tr>
<td>TNFR-2</td>
<td>2.05 (1.40 to 3.01)</td>
<td>1.92 (1.13 to 3.26)</td>
<td>2.35 (1.51 to 3.65)</td>
</tr>
<tr>
<td>KIM-1</td>
<td>1.42 (1.06 to 1.91)</td>
<td>1.32 (0.96 to 1.81)</td>
<td>1.36 (0.98 to 1.88)</td>
</tr>
<tr>
<td>UACR</td>
<td>1.39 (1.01 to 1.91)</td>
<td>1.26 (0.90 to 1.75)</td>
<td>1.25 (0.89 to 1.74)</td>
</tr>
<tr>
<td>eGFR</td>
<td>0.93 (0.40 to 2.17)</td>
<td>2.39 (0.84 to 6.78)</td>
<td>2.33 (0.82 to 6.59)</td>
</tr>
</tbody>
</table>

Models are adjusted for the following covariates.
Model 1: treatment allocation.
Model 2: covariates model 1 and age, sex, race, BMI, history of cardiovascular disease systolic blood pressure, diastolic blood pressure, LDL cholesterol, and HbA1c.
Model 3: covariates model 2 and UACR and eGFR. When analyzing the association of UACR or eGFR with the outcome model 3 is not adjusted for UACR and eGFR respectively. TNFR-1, TNFR-2, KIM-1 and UACR are log transformed for the analysis.
eGFR, estimated glomerular filtration rate; UACR, urinary albumin:creatinine ratio; TNFR-1, tumor necrosis factor receptor-1; TNFR-2, tumor necrosis factor receptor-2; KIM-1, kidney injury molecule-1.
Table 3: Number of patients, events, and event rate for the kidney outcome in patients with normoalbuminuria stratified by the 4th quartile of TNFR-1 or TNFR-2 and in patients with normoalbuminuria, microalbuminuria and macroalbuminuria.

<table>
<thead>
<tr>
<th>Cut-off value</th>
<th>Number of patients</th>
<th>Number of events</th>
<th>Event rate (per 1,000 patient-years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNFR-1 < 4th quartile + normoalbuminuria</td>
<td>< 2992 pg/ml</td>
<td>1915</td>
<td>31</td>
</tr>
<tr>
<td>TNFR-1 ≥ 4th quartile + normoalbuminuria</td>
<td>≥ 2992 pg/ml</td>
<td>638</td>
<td>20</td>
</tr>
<tr>
<td>TNFR-2 < 4th quartile + normoalbuminuria</td>
<td>< 11394 pg/ml</td>
<td>1915</td>
<td>26</td>
</tr>
<tr>
<td>TNFR-2 ≥ 4th quartile + normoalbuminuria</td>
<td>≥ 11394 pg/ml</td>
<td>638</td>
<td>25</td>
</tr>
<tr>
<td>Normoalbuminuria*</td>
<td>< 30 mg/g</td>
<td>2553</td>
<td>51</td>
</tr>
<tr>
<td>Microalbuminuria</td>
<td>< 300 mg/g</td>
<td>778</td>
<td>45</td>
</tr>
<tr>
<td>Macroalbuminuria</td>
<td>≥ 300 mg/g</td>
<td>201</td>
<td>41</td>
</tr>
</tbody>
</table>

*Event rate was 5.44 (95%CI 3.70 to 7.99) per 1,000 patient years in the placebo group and 2.53 (95%CI 1.71 to 3.75) per 1,000 patient years in the canagliflozin group.

TNFR-1, tumor necrosis factor receptor-1; TNFR-2, tumor necrosis factor receptor-2.
Figure Legends

Figure 1: Effect of prognostic enrichment with TNFR-1 or TNFR-2 on sample size, number of screenings, and costs for a future trial in the normoalbuminuria population.

UACR, urinary albumin:creatinine ratio; TNFR-1, tumor necrosis factor receptor-1; TNFR-2, tumor necrosis factor receptor-2.
Figure 1: Effect of prognostic enrichment with TNFR-1 or TNFR-2 on sample size, number of screenings, and costs for a future trial in the normoalbuminuria population.

UACR, urinary albumin:creatinine ratio; TNFR-1, tumor necrosis factor receptor-1; TNFR-2, tumor necrosis factor receptor-2.
Supplemental Materials

Table of Contents

Sites and investigators in the CANVAS trial ... 3
Supplemental Table S1: .. 6
Supplemental Table S2: .. 7
Supplemental Figure S1: ... 8
Supplemental Figure S2: ... 9
Supplemental Figure S3: ... 10
Supplemental Figure S4: ... 11
Supplemental Figure S5: ... 12
Sites and investigators in the CANVAS trial

Supplemental Table S1: Effect of prognostic enrichment with TNFR-1 or TNFR-2 on sample size, number of screenings and costs for a future trial in the normoalbuminuria population.

<table>
<thead>
<tr>
<th>Percent of Patients Screened from Trial</th>
<th>Event Rate Among Biomarker-Positive Patients</th>
<th>Sample Size</th>
<th>NNS</th>
<th>Total Screened</th>
<th>Total Costs for Screening and Patients in Trial (million dollars)</th>
<th>Percent Reduction in Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNFR-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td>0.05</td>
<td>3,692</td>
<td>1</td>
<td>3,692</td>
<td>184.6</td>
<td>0%</td>
</tr>
<tr>
<td>25%</td>
<td>0.06</td>
<td>3,200</td>
<td>1.3</td>
<td>4,267</td>
<td>164.3</td>
<td>11%</td>
</tr>
<tr>
<td>50%</td>
<td>0.07</td>
<td>2,769</td>
<td>2</td>
<td>5,538</td>
<td>144.0</td>
<td>22%</td>
</tr>
<tr>
<td>75%</td>
<td>0.09</td>
<td>2,280</td>
<td>4</td>
<td>9,121</td>
<td>123.1</td>
<td>33.30%</td>
</tr>
<tr>
<td>95%</td>
<td>0.12</td>
<td>1,618</td>
<td>20</td>
<td>32,367</td>
<td>113.3</td>
<td>38.60%</td>
</tr>
<tr>
<td>TNFR-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td>0.05</td>
<td>3,692</td>
<td>1</td>
<td>3,692</td>
<td>184.6</td>
<td>0%</td>
</tr>
<tr>
<td>25%</td>
<td>0.06</td>
<td>3,286</td>
<td>1.3</td>
<td>4,381</td>
<td>168.7</td>
<td>8.60%</td>
</tr>
<tr>
<td>50%</td>
<td>0.07</td>
<td>2,758</td>
<td>2</td>
<td>5,516</td>
<td>143.4</td>
<td>22.30%</td>
</tr>
<tr>
<td>75%</td>
<td>0.09</td>
<td>2,046</td>
<td>4</td>
<td>8,183</td>
<td>110.5</td>
<td>40.20%</td>
</tr>
<tr>
<td>95%</td>
<td>0.18</td>
<td>1,020</td>
<td>20</td>
<td>20,402</td>
<td>71.4</td>
<td>61.30%</td>
</tr>
</tbody>
</table>

TNFR-1, tumor necrosis factor receptor-1; TNFR-2, tumor necrosis factor receptor-2; NNS, number needed to screen.
Supplemental Table S2: Treatment effect of canagliflozin in patients with normoalbuminuria and TNFR-1 or TNFR-2 biomarker level above or below the 4th quartile compared to micro- or macroalbuminuria. P for interaction was calculated across the three subgroups: micro- or macroalbuminuria, TNFR-1/2 <4th quartile and normoalbuminuria and TNFR-1/2 ≥4th quartile and normoalbuminuria.

<table>
<thead>
<tr>
<th>40% decrease in eGFR, kidney failure, or kidney death</th>
<th>Number of patients</th>
<th>Number of events</th>
<th>Hazard ratio (95% CI)</th>
<th>P value</th>
<th>P for interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro- or macroalbuminuria</td>
<td>979</td>
<td>86</td>
<td>0.64 (0.42 to 0.98)</td>
<td>0.040</td>
<td></td>
</tr>
<tr>
<td>TNFR-1 < 4th quartile and normoalbuminuria</td>
<td>1,915</td>
<td>31</td>
<td>0.41 (0.20 to 0.82)</td>
<td>0.012</td>
<td>0.546</td>
</tr>
<tr>
<td>TNFR-1 ≥ 4th quartile and normoalbuminuria</td>
<td>638</td>
<td>20</td>
<td>0.52 (0.22 to 1.27)</td>
<td>0.152</td>
<td></td>
</tr>
<tr>
<td>TNFR-2 < 4th quartile and normoalbuminuria</td>
<td>1,915</td>
<td>26</td>
<td>0.35 (0.16 to 0.76)</td>
<td>0.008</td>
<td>0.391</td>
</tr>
<tr>
<td>TNFR-2 ≥ 4th quartile and normoalbuminuria</td>
<td>638</td>
<td>25</td>
<td>0.61 (0.28 to 1.35)</td>
<td>0.222</td>
<td></td>
</tr>
</tbody>
</table>

Hospitalization for heart failure

<table>
<thead>
<tr>
<th>Micro- or macroalbuminuria</th>
<th>979</th>
<th>61</th>
<th>0.95 (0.56 to 1.62)</th>
<th>0.858</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TNFR-1 < 4th quartile and normoalbuminuria</td>
<td>1,915</td>
<td>49</td>
<td>0.72 (0.41 to 1.27)</td>
<td>0.259</td>
<td>0.764</td>
</tr>
<tr>
<td>TNFR-1 ≥ 4th quartile and normoalbuminuria</td>
<td>638</td>
<td>19</td>
<td>0.75 (0.29 to 1.90)</td>
<td>0.541</td>
<td></td>
</tr>
<tr>
<td>TNFR-2 < 4th quartile and normoalbuminuria</td>
<td>1,915</td>
<td>42</td>
<td>0.70 (0.38 to 1.30)</td>
<td>0.259</td>
<td>0.758</td>
</tr>
<tr>
<td>TNFR-2 ≥ 4th quartile and normoalbuminuria</td>
<td>638</td>
<td>26</td>
<td>0.79 (0.36 to 1.75)</td>
<td>0.563</td>
<td></td>
</tr>
</tbody>
</table>

eGFR, estimated glomerular filtration rate; TNFR-1, tumor necrosis factor receptor-1; TNFR-2: tumor necrosis factor receptor-2.
Supplemental Figure S1: Histograms of TNFR-1, TNFR-2, KIM-1, UACR and eGFR in patients with normoalbuminuria. TNFR-1, UACR and eGFR are not truncated, TNFR-2 is truncated at 30,000 pg/ml and KIM-1 is truncated at 800 pg/ml.

eGFR, estimated glomerular filtration rate; UACR, urinary albumin:creatinine ratio; TNFR-1, tumor necrosis factor receptor-1; TNFR-2, tumor necrosis factor receptor-2; KIM-1, kidney injury molecule-1.
Supplemental Figure S2: Hazard ratios per quartile of TNFR-1 (panel a) and TNFR-2 (panel b) for the kidney outcome in patients with normoalbuminuria. The number above each circle represents the number of outcomes and the number of patients in each quartile. On the x-axis is the median biomarker value of each quartile.

Models are adjusted for treatment allocation, age, sex, race, BMI, history of cardiovascular disease, systolic blood pressure, diastolic blood pressure, LDL cholesterol, HbA1c, UACR, and eGFR.

eGFR, estimated glomerular filtration rate; UACR, urinary albumin:creatinine ratio; TNFR-1, tumor necrosis factor receptor-1; TNFR-2, tumor necrosis factor receptor-2; UACR urinary albumin:creatinine ratio
Supplemental Figure S3: Kaplan-Meier curve for the kidney outcome in patients with normoalbuminuria below or above the 4th quartile for TNFR-1 and TNFR-2.

TNFR-1, tumor necrosis factor receptor-1; TNFR-2, tumor necrosis factor receptor-2.
Supplemental Figure S4: Associations between TNFR-1 and TNFR-2 in patients with normoalbuminuria. TNFR-1 is not truncated and TNFR-2 is truncated at 30.000

TNFR-1, tumor necrosis factor receptor-1; TNFR-2, tumor necrosis factor receptor-2.
Supplemental Figure S5: Effect of prognostic enrichment with UACR or KIM-1 on sample size, number of screenings, and costs for a future trial in the normoalbuminuria population.

UACR, urinary albumin: creatinine ratio; KIM-1, kidney injury molecule-1.