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A new stiffness‑sensing test 
to measure damage evolution 
in solids
Yichi Song, Doneill J. Magmanlac & Vito L. Tagarielli*

We propose and assess a procedure to measure the damage evolution in solids as a function of the 
applied strain, by conducting stiffness-sensing mechanical tests. These tests consist in superimposing 
to a monotonically increasing applied strain numerous, low-amplitude unloading/reloading cycles, 
and extracting the current stiffness of the specimens from the slope of the stress–strain curve in 
each of the unloading/reloading cycles. The technique is applied to a set of polymeric and metallic 
solids with a wide range of stiffness, including CFRP laminates loaded through the thickness, epoxy 
resins, injection-moulded and 3D printed PLA and sintered Ti powders. The tests reveal that, for all 
the materials tested, damage starts developing at the very early stages of deformation, during what 
is commonly considered an elastic response. We show that the test method is effective and allows 
enriching the data extracted from conventional mechanical tests, for potential use in data-driven 
constitutive models. We also show that the measurements are consistent with the results of acoustic 
and resistive measurements, and that the method can be used to quantify the viscous response of the 
materials tested.

The concept of macroscopic damage variables, introduced in early works by Kachanov1 and Rabotnov2 to describe 
the macroscopic effect of the microscopic loss of cohesion in solids, has become fundamental in continuum 
mechanics to formulate constitutive models of solid materials, thanks to the development of Continuum Dam-
age Mechanics (CDM)3–5. CDM suggests that fracture is the result of the accumulation of micro-cracks or voids 
in the material and introduces the concept of effective stress6.

Measurements of the onset and evolution of damage in a material as a function of the imposed deformation 
would be vital to calibrate CDM constitutive models, but such measurements are very difficult to conduct. Conse-
quently, the current practice involves parametrising the damage evolution law and determining the optimal values 
of the parameters by reverse engineering procedures. This has significant drawbacks, as it involves assuming (i) 
the damage initiation point, (ii) the shape of the damage evolution curve, and (iii) a characteristic length-scale 
to compute the traction–separation law. The procedure is further complicated by the inherent mesh-sensitivity 
encountered when modelling strain-softening of materials.

In the last few years, a growing number of researchers have applied data analytics and machine learning 
techniques to the constitutive response of solids. In these studies, constitutive models for solids are determined 
by analysis of datasets obtained from microstructure analysis and stress–strain histories, extracted from either 
experiments or from detailed micro-scale numerical simulations (e.g.7–9). The extension of these approaches to 
damage models requires information on the evolution of the cohesion of the solid as a function of the applied 
deformation; this paper proposes a technique to measure such information.

The damage in a solid can be quantified by the degradation of its stiffness, as discussed by Lemaitre and 
Dufailly6 and Bonora et al.10, who performed occasional, partial unloading of specimens during uniaxial mechan-
ical testing, measuring the current effective elastic modulus of the specimen E and calculating the damage 
variable D as

where E0 is the initial stiffness. While this type of experiment is now very common, to the best of our knowledge 
no other studies have attempted extending this simple technique to obtain near-continuous measurements of 
the effective stiffness of the sample, which is what we carefully pursue in this study.

(1)D = 1−
E

E0
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Damage can also be obtained through hardness measurement by indentation tests, as proposed in6 and later 
used in11–13; in indentation tests the current stiffness can be obtained from the initial slope of the load–displace-
ment curve upon unloading, as suggested in14. In principle, indentation can be applied to a material being probed 
in different modes, for example in tension; this however requires extensive sample preparation15 and interrupting 
the test being performed in order to conduct the indentation experiments; it also results in very localised damage 
measurements. Oliver and Pharr14 proposed an improved indentation test, referred to as Continuous Stiffness 
Measurement (CSM), which enabled a near-continuous measurement of the contact stiffness during the load-
ing phase of an indentation test. CSM is performed by superimposing an oscillating force to the monotonically 
increasing load applied to the indenter. This technique inspires the method developed in the present study, which 
focuses on tests with uniaxial loading of the specimens.

In their seminal paper Lemaitre and Dufailly6 also discuss other indirect damage measurement methods, 
based on measurements of the speed of sound in the solid (further developed by Boccaccini and Boccaccini16) or 
of the electrical resistance of the specimen13,17. In this paper we will present results from acoustic and electrical 
stiffness-sensing tests, for the purpose of comparing, for a selected material, acoustic and electrical data to the 
mechanical stiffness-sensing tests.

We propose an extension of the CSM method to uniaxial mechanical tests, resulting in a mechanical, near-
continuous stiffness-sensing technique that can be used with conventional test machines; the method is also 
applicable to multiaxial and/or non-monotonic tests. We apply this technique to different classes of solids with 
wide ranges of stiffness, strength and ductility, and discuss the details and the effectiveness of the measurements.

In Section “Materials, specimen preparation and instrumentation” we describe the manufacturing and instru-
mentation of the specimens used, the test technique is presented in Section “Mechanical stiffness-sensing tests”, 
results are presented and discussed in Section “Results and discussion”.

Materials, specimen preparation and instrumentation
The materials to tests were selected based on their ready availability, on the fact that they had been previously 
characterised by conventional mechanical tests and microscopy in other studies, and on their tendency to develop 
considerable damage in uniaxial loading.

CFRP specimens for through‑thickness testing.  Carbon fibre reinforced polymer (CFRP) specimens 
for tensile tests in the through-thickness direction were manufactured from a composite laminate of thickness 
100 mm, comprising multiple layers of unidirectional carbon fibre laminae with fibre volume fraction of 65%. 
The laminae comprised HTS-268-1200 high tensile strength carbon fibres of diameter 7  μm and toughened 
977-2 epoxy. Relevant mechanical properties of the fibre and epoxy resin are listed in Table 1. The laminate had 
layup [0/45/-45]ns (with occasional double layers) and ply thickness of 0.3 mm; the material was the same studied 
in18,19.

Water-jet cutting and grinding were used to manufacture the specimens shown in Fig. 1, with the axis of the 
specimen coinciding with the through-thickness direction of the composite laminate, such to apply interlaminar 
tensile stresses during the tension tests.

For the purpose of mechanical testing, the specimens were instrumented with two resistance strain gauges of 
gauge length 10 mm, applied on opposite sides of the specimen’s gauge portion. This CFRP material was also cho-
sen to perform acoustic and electrical stiffness-sensing tests, to compare the results with those from mechanical 

Table 1.   Properties of the constituents used to manufacture the CFRP specimens.

Elastic modulus (GPa) Transverse elastic modulus (GPa) Tensile strength (MPa) Poisson’s ratio

Fibre (HTS-268-1200) 238 35 4240 0.2

Matrix (Epoxy 977-2) 3.52 – 81 0.39

Figure 1.   Geometry of the CFRP specimens for through-thickness testing.
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stiffness-sensing experiments. In the acoustic/electric tests we simultaneously measure in-situ both the speed of 
sound and the electrical resistance between the specimens ends. The specimens had a different geometry from 
those in Fig. 1, as they were larger and had a more abrupt transition between ends and gauge portion (the gauge 
portion measured 10 × 6 × 4 mm with a shoulder radius of 10 mm); this was due to the requirement of a larger 
cross-sectional area to host the necessary instrumentation, and to limitations of our manufacturing tools. The 
specimens also had small surface defects originating from water-jet cutting along their shoulder portion, which 
resulted in them fracturing very close to their ends.

The specimens carried electrically insulating end-tabs made from a glass fibre composite at the locations in 
contact with the grips of the test machine, and they were instrumented as sketched in Fig. 2. In brief, a copper foil, 
to serve as an electrode, was adhered to the specimen’s ends using aluminium paste, and electrical connections 
were soldered to the copper foil to perform 2-point resistance measurements via a Keysight 34465A digital mul-
timeter, which sampled the specimen’s real part of the electrical impedance at 10 Hz during mechanical loading.

Disc-shaped piezoelectric sensors/actuators (Physik Instrumente PIC255, of diameter 10 mm and thickness 
1 mm) were glued with cyanoacrylate on top of the copper tape, and each disc was connected to two wires using 
pre-manufactured soldering junctions, to provide electrical excitation to one of them (actuator) and read the 
voltage on the opposite one (sensor). The roles of sensor and actuator were swapped between the two piezoelectric 
discs at every acquisition cycle (acquisition cycles had frequency of approximately 0.05 Hz). The conditioning 
was done via a NI PXIe-1073 instrument, housing a NI PXI-451 waveform generator, a Pickering PXI 12 × 8 
coaxial matrix for signal actuation and sensing, and a NI PXI-5105 8-channel digitiser for signal acquisition. 
The excitation was a 5-cycle, 250 kHz sine Hanning window tone burst of amplitude 1 Volt. This procedure, and 
appropriate interpretation of the measured signals, allowed determining the time delay between emission of a 
signal by the actuator and arrival of the same acoustic signal at the sensor.

To calculate the resistance of the gauge portion it was assumed that the specimen could be idealised as two 
resistors in series, one variable, RG , corresponding to the gauge portion of the specimen, where substantial and 
approximately uniform deformation occurs, and one fixed, RE , corresponding to the tapered ends of the speci-
men, where deformation is negligible by design. RE also includes any contact resistance and the resistance of 
the clamped portions of the specimen, the first of which is expected to be negligible in these tests compared to 
the resistance of the material. The initial resistance of the unstrained specimen was used to determine the initial 
conductivity of the material. The change in total resistance observed during the tests was interpreted as a change 
in RG only, and this allowed a trivial calculation of the conductivity of the material at any given strain.

To calculate the speed of sound in the gauge portion of the specimen we observed that the measured time 
delay �t can be split into the sum of the time taken by the acoustic signal to travel along the gauge section, and 
the time used to travel along the rest of the specimen, i.e.

where L, c indicate current lengths and speeds of sound, and subscripts G and E denote gauge portion and 
specimen’s ends, respectively. The initial speed of sound cE was uniform in the specimen and could be calculated 
from the initial time delay prior to straining, �t0 . The stiffness of the specimen ES  could be estimated, in first 
approximation, as

Epoxy tensile specimens.  Dogbone specimens were made from an epoxy resin very similar to that used in 
the manufacturing of the CFRP laminate, for the purpose of mechanical stiffness-sensing tests. Epoxy plates of 
thickness 5 mm were produced by curing the epoxy resin between two glass panels, as described in20. Dogbone 
specimens were machined by milling of the plates to have a gauge section of 10× 5× 5 mm, as shown in Fig. 3. 
The specimen surfaces were polished by hand with sandpaper (down to 2500 grit) to minimise surface defects, 
and two resistance strain gauges of gauge length 5 mm were adhered to opposite sides of the gauge portion.

(2)�t = LG/cG + LE/cE; �t0 = (LG + LE)/cE

(3)
√

ES/[ρ(1− ν12ν23)] = cG .

Figure 2.   CFRP sample instrumentation for measurements of the speed of sound and electrical resistance.
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3D printed and injection‑moulded PLA specimens.  3D printed PLA specimens were produced using 
a FDM 3D printer from a single spool of PLA filament procured from IMAKR (http://​www.​imakr.​com). The 
material was identical to that investigated in21, to which we refer the reader for further details. The 3D printer 
was operated to deposit material in a single direction, resulting in an orthotropic microstructure, with printer 
settings chosen to obtain a porosity of less than 5%. With reference to Fig. 4, we denote as XYZ a global Cartesian 
reference system in which X, Y lie in the plane of each 3D printed layer and Z is the out-of-plane direction. PLA 
blocks (of dimension 70× 12× 20 mm in the X, Y, Z directions, respectively) were 3D printed, as indicated in 
Fig. 4a, with extrusion at 45° with respect to the X direction. Conventional subtractive manufacturing was used 
to machine from these blocks both tensile dogbone specimens (with dimensions identical to those in Fig. 3) and 
cubic compression specimens of side length 7 mm, as shown in Fig. 4b,c. Both uniaxial tension and uniaxial 
compression tests were performed, such as to load the material at an angle of 45° with respect to the extrusion 
direction. The choice of this particular angle (rather than, for example, 0° or 90°) was to maximise the evolution 
of damage, based on the findings in21.

Tension and compression specimens were also manufactured from injection-moulded PLA. The same PLA 
filament used in the 3D printing was injection-moulded using a piston-driven injection moulder (Haake Minijet 
II, ThermoFisher Scientific, Hampshire, UK) into prismatic blocks, which served as the base material for the 
manufacturing of the specimens. The barrel temperature and the mould temperature used were 185 °C and 
68 °C, respectively; all samples were injected with an injection pressure of 300 bar for an injection time of 20 s, 
and a pressure of 100 bar was applied for 10 s following the injection. Dogbone specimens were manufactured, 
with gauge section of dimensions 10× 3× 3 mm , as well as cuboidal compression specimens of dimensions 
4× 3× 3 mm. The porosity of the injection-moulded specimens was less than 3%. The injection-moulded 
specimens were selected for the purpose of comparison to the 3D printed samples, considering that the injection-
moulded samples did not have the filamentous nature of 3D printed specimens.

Sintered Ti powder specimens.  Dogbone specimens were produced by machining powder-sintered 
blocks, consisting of a porous metallic solid of porosity around 10%. This material has been extensively described 
and tested in22–25. Sintered Ti blocks were machined into dogbone specimens with gauge section of dimensions 
20× 2× 2 mm, as shown in Fig. 5, using wire electrical discharge machining (EDM). The surfaces of the gauge 

Figure 3.   Geometry of the tensile specimens made from the neat epoxy resin.

Figure 4.   (a) Illustration of 3D-printing extrusion in the printed blocks. (b) Dimensions of the tensile and 
compressive specimens. (c) 3D-view of the machining scheme.

http://www.imakr.com
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portion of the specimens were then polished with a buffing wheel to obtain a smooth surface, to which we 
adhered strain gauges of gauge length 5 mm prior to testing.

Mechanical stiffness‑sensing tests
Loading histories.  Loading of the specimens in both tension and compression was achieved by operat-
ing the test machines in displacement control. The history of the imposed displacement was chosen to obtain 
numerous unloading/reloading cycles in the stress–strain curves, to allow extraction of the current stiffness of 
the specimens during uniaxial mechanical testing.

Two types of displacement profile were employed, as shown in Fig. 6. The first profile consisted of continu-
ous loading/unloading, comprising a loading displacement ramp of amplitude l  followed by an unloading ramp 
of smaller amplitude u , both conducted at equal displacement rate ḋ . This resulted in an effective (average) 
displacement rate ḋ′ given by

as illustrated in Fig. 6a. Preliminary sets of tests were conducted to guide the choice of the test parameters. 
This choice was made to ensure a strain amplitude of each unloading cycle of at least 50 με, in consideration of 
the resolution of the strain acquisition system employed, of approximately 5 με The number of cycles and the 
test time duration were both dictated by the difference in loading and unloading amplitude, and such difference 
was chosen to ensure a reasonably short test time, to minimise stress relaxation, and to obtain a sufficiently high 
number of cycles.

The displacement history in Fig. 6a was found adequate for all materials tested, with the exception of the sin-
tered Ti powder. For this material the specimens were found to be affected by cyclic loading creep. Understand-
ing the reasons for this behaviour (whether it was driven by dislocation plasticity, by internal frictional contact 
between powder particles or by other mechanisms) are beyond the scope of the present study; this response 
resulted in a delay between the unloading imposed by the test machine and the change in sign of the strain rate. 
This, in turn, distorted the unloading/reloading cycles and made determination of the current stiffness difficult. 
A modified loading profile was therefore employed for the Ti specimens, as shown in Fig. 6b. This consisted of 
a loading ramp of amplitude l  with rate ḋs , followed by much faster unloading/reloading ramps of amplitude u 
and rate 

∣

∣ḋu

∣

∣ in both unloading and reloading. This different cycle resulted in a smaller number of unloading/
reloading cycles, however the stress–strain histories recorded in these cycles were much less affected by cyclic 
loading creep and allowed to easily deduce the current specimen stiffness.

(4)ḋ
′ = ḋ

(l − u)

(l + u)

Figure 5.   Geometry of the tensile specimens made from sintered Titanium powder.

Figure 6.   Displacement profiles for elastic modulus measurement. (a) First type; (b) second type.
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We note that in both types of tests the strain rate during the unloading and reloading phase were equal, in 
consideration of the relatively small change in stiffness of the specimen, which will be shown below. In tests of the 
first type, the magnitude of the strain rate was the same in all phases of the tests, which is particularly important 
when testing polymeric materials. An example of the displacement and strain histories recorded during a test 
on an Epoxy resin are provided in the Appendix (Supplementary Material).

Instrumentation and loading devices.  All tests were conducted on an Instron universal tensometer 
(model 5969) equipped with a 50 kN resistive load cell. Flat V-shaped clamps were used to grip the ends of the 
dogbone specimens, while compression specimens were loaded by polished, parallel steel platens, lubricated by 
PTFE spray. The required displacement histories were achieved by custom loading profiles coded in the BlueHill 
control software of the Instron machine.

Accurate measurements of the small surface strains during the unloading/reloading cycles were made by 
resistance strain gauges (Tokyo Sokki Kenkyujo Co. Ltd.) as detailed in Table 2, which also reports the applied dis-
placement amplitude and rates, which were chosen to obtain average strain rates between 10−4 s−1 and 10−2 s−1 , 
as recommended in ASTM standards for metals and plastics (ASTM E8/E8M-16a and ASTM D638-14, respec-
tively). The strain reading system comprised an integrated Fylde Wheatstone bridge and amplifier, operated in 
quarter-bridge mode, with an excitation voltage of 1 V, a gain of 500× and full bandwidth. All electrical junctions 
were soldered, which improved notably the strain measurement resolution. A laser extensometer of resolution 
1 μm was also used to measure the elongation of the gauge portion and confirm the average strain in the gauge 
section.

Data processing.  Unloading/reloading cycles showed in most cases the features sketched in Fig. 7a. Points 
1, 2, 3 in Fig. 7a were identified for each cycle, splitting the stress versus strain data into an unloading and a 
reloading branch; a number of datapoints equal to 15% of the total was discarded at the beginning and the end 
of each branch; the remaining 70% of the datapoints was used to perform a least-square fit of the data to a linear 
function, providing an unloading and a reloading modulus. The number of datapoints used to perform such 
data-fittings was recorded at every cycle. In all experiments the unloading modulus was found to be higher than 
the loading modulus, as expected.

An uncertainty in the measurements of such unloading and reloading moduli was calculated based on the 
uncertainties associated to the force and strain measurements, which were taken as the average noise in the data 
and were of ± 0.2 N and ± 2.0 × 10–6 for the force and strain, respectively. Figure 7b shows schematically how the 
uncertainty in the moduli was calculated. This was based on identifying the extreme points of each unloading 
and reloading branches of the cycle included in the data-fitting, and performing the geometric construction in 

Table 2.   Strain gauges and test parameters used for different materials.

Material Strain gauge
Loading amplitude 
l  (mm)

Unloading 
amplitude, u (mm)

Unloading rate, ḋ 
(mm/s)

Loading rate, ḋ′ 
(mm/s)

Average strain rate 
(/s)

Unloading/ 
reloading strain 
rate (/s)

CFRP FLKB-10-23 6.0 × 10–3 5.5 × 10–3 1.0 × 10–3 4.3 × 10–5 4.1 × 10–6 ± 2.2 × 10–4

Epoxy FLA-5-23 6.0 × 10–3 5.5 × 10–3 1.0 × 10–3 4.3 × 10–5 4.5 × 10–6 ± 2.2 × 10–4

PLA (Tension) FLA-5-50 6.0 × 10–3 5.5 × 10–3 1.0 × 10–3 4.3 × 10–5 8.2 × 10–6 ± 2.7 × 10–4

PLA (Compression) FLK-1-23 4.3 × 10–3 3.8 × 10–3 7.0 × 10–4 3.5 × 10–5 2.0 × 10–5 ± 7.3 × 10–4

Sintered Ti powder FLA-5-23 3.0 × 10–2 2.0 × 10–2 ∣

∣ḋu

∣

∣ = 1.0× 10−2 ḋs = 1.0× 10−3 3.1 × 10–5 ± 3.2 × 10–4

Figure 7.   Schematics of (a) the data processing method and (b) the calculation of the uncertainty in stiffness 
measurements.
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Fig. 7b to estimate the maximum and minimum possible modulus (note that the boxes shown in Fig. 7b represent 
schematically uncertainty in true stress and true strain measurements).

In most cases, the unloading and reloading branches of the stress strain curves in each cycle formed loops, 
as sketched in Fig. 7a. The area enclosed in each loop, as well as the area under the reloading portion of each 
loop were also recorded, and their ratio was used to quantify the viscous response of the solid. We describe this 
procedure in more detail and show preliminary results in Appendix A.

Results and discussion
In the following we present and discuss the results from selected experiments conducted on each material. For 
each test we show the measured true stress versus strain curve as well as the corresponding evolution of unloading 
and reloading moduli as a function of the applied strain. Details of the unloading/reloading cycles are provided 
at different stages of the measured response, to illustrate the quality of the data used to measure the stiffness 
evolution. For some experiments the measured stress–strain curves in stiffness-sensing tests are compared to 
curves measured in simple monotonic tests, conducted at the same average strain rate to rule-out any bias caused 
by strain rate sensitivity of the materials tested.

CFRP and neat epoxy.  The stress–strain curves presented in Fig. 8 for the CFRP specimens and the neat 
epoxy are in line with the monotonic measurements published in18–20, indicating that the unloading/reload-
ing cycles imposed in this study do not notably alter the measured stress–strain response of the materials. As 
expected, the CFRP is stiffer but slightly weaker than the neat epoxy, due to the presence of the carbon fibres (we 
recall that the matrix used in the manufacturing of the CFRP is very similar to the neat resin tested in this study). 
The details of the unloading/reloading cycles shown in Fig. 8 show a low degree of hysteresis at the early stages 
of macroscopic deformation, increasing for the case of the epoxy at large strains, in line with the increase in the 
difference between the measured unloading and reloading moduli with increased strain.

The stiffness measurements show, for both materials, a steady degradation of the elastic properties with 
increased strain. Such degradation is more pronounced for the CFRP (~ 5% decrease in modulus at a strain 

Figure 8.   True stress versus strain and stiffness (true elastic modulus) versus strain curves measured for the 
CFRP and the neat epoxy specimens.
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of 0.5%) than for the epoxy (~ 3% decrease at the same strain). This is plausible, in consideration of the strain 
concentrations induced by the carbon fibres.

It is particularly noteworthy that we do not observe a pronounced reduction of the stiffness of the specimens 
prior to their final fracture. This indicates that this method is unable to capture the final localisation of damage 
in the tension tests. Both materials exhibited brittle fracture, consistent with the notion that at the final stages of 
the tests damage localised in a relatively small volume of the specimen, such that the corresponding local reduc-
tion in stiffness was too small to affect the global specimen stiffness considerably (we recall that the strain gauges 
covered the entire length of the specimen’s gauge portion in both cases, and that this choice was intentional, to 
obtain average measurements over the gauge length). This suggests that the measured stiffness degradation must 
indicate an approximately uniform growth of damage in the solid, prior to localisation.

Such uniform damage growth begins at the very early stages of the deformation for the CFRP. This has 
considerable implications in the modelling choices for these types of solids. Researchers currently confidently 
assume that the response of a CFRP is linear elastic up to stresses of the same order of the measured failure stress; 
our more detailed measurements show that this is not the case: the response of the material is not linear, while 
it may look linear after a superficial analysis; damage increases uniformly since very small values of the applied 
macroscopic strain and the stiffness-sensing technique offers a quantitative insight into such damage evolution. 
Similar considerations hold for the epoxy resin: typical approaches to constitutive modelling of this material 
would assume, based on the shape of the curve, a damage initiation strain well above the so-called macroscopic 
yield strain of the material. Our measurements show that damage initiates much earlier than this; for example, 
at a strain of 0.5% the measured stiffness has already reduced significantly, while the specimen dimensions have 
not, and the material is still experiencing what would currently be considered a macroscopically viscoelastic 
response. This suggests that a new class of constitutive models needs to be developed for ductile solids, allowing 
for the possible early occurrence of local damage prior to bulk plasticity.

To reinforce the notion that the measured degradation in specimen stiffness is the consequence of a physical 
phenomenon, rather than an artifact from the measurements and data processing, additional stiffness-sensing 
tests were conducted on the CFRP samples, instrumented as described above. In these additional tests the 
loading was monotonic, but they included simultaneous measurements of the speed of sound along the axis of 
the specimen as well as the conductivity of the gauge portion of the specimen. Figure 9 presents the calculated 
specimen’s stiffness based on measurements of the speed of sound in the material, and these are compared to 
the results of the mechanical stiffness-sensing tests presented in Fig. 8. The two sets are in broad agreement: they 
start at the same initial modulus for the unstrained material and both show a monotonic decrease in modulus 
with applied strain. The tests on the larger specimens show a more pronounced decrease of the modulus with 
strain, possibly due to the different volume of the specimens, possibly to the manufacturing defects in the larger 
specimens. In any case, the acoustic measurements confirm that the speed of sound is decreasing in the mate-
rial; in consideration of the fact that the density does not change substantially in these tests, this must indicate 
a decrease in stiffness.

Figure 9 also shows the evolution of the material’s conductivity as a function of strain, showing a monotonic 
decrease with strain, consistent with the notion that damage and loss of cohesion is developing in the material. 
These are clear indications that the decrease in stiffness with strain measured in the mechanical stiffness-sensing 
tests quantifies the physical response of the system and is unlikely to be an artifact of our data-processing.

We note here that the reduction in specimen’s stiffness recorded with the proposed method is much higher 
than what can be ascribed to geometric effects. This is discussed further in the Supplementary material (Appen-
dix A.2).

Figure 9.   True strain versus mechanical and acoustic modulus, and relative conductivity for CFRP specimens.
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Injection‑moulded and 3D printed PLA.  Figures 10 and 11 present data for the injection-moulded and 
3D-printed PLA, respectively. The stiffness-sensing protocol used in the current study did not affect consider-
ably the measured stress–strain responses of the material in tension and compression, compared to the measure-
ments reported in21. A direct comparison between monotonic and stiffness-sensing tests (at the same average 
strain rate) is presented in Fig. 10 for the injection-moulded material; note that the discrepancy in the measured 
stiffness and strength, particularly noticeable in compression, is comparable to the level of scatter in material 
properties reported in21.

We note that for both materials the specimens failed in tension by brittle fracture, while the compressive 
response was ductile and tests were interrupted at a strain of approximately 4%. The dataset for the tension test 
on the 3D-printed material in Fig. 11 is incomplete, due to premature failure of the strain gauges at approximately 
3% strain (the portion of stress–strain curve at strains exceeding 3% was completed using data from the laser 
extensometer). For both materials the compressive stiffness versus strain data at strains below 0.5% is not pre-
sented, for the sake of clarity. This is due to the fact that the data showed high noise and an apparent pronounced 
stiffening with increasing strains, likely due to bedding-in effects (we recall that small cuboidal specimens were 
used in compression).

We recall that both materials have some degree of porosity. While in tension the measured stiffness decreases 
with increasing strain, in compression the opposite is observed. This is in line with the notion that pores are 
being closed in compression, while they tend to expand in tension; similar conclusions were shown for a different 
material in25, supported by microscopy observations. We showed in21 that the microstructures of the two materi-
als were very different: while the injection-moulded specimens were homogeneous, and had porosity of order 
3%, the 3D-printed material had a filamentous microstructure and higher porosity (5%). This resulted in very 
different failure mechanisms for the two materials, despite their mechanical properties and stress versus strain 
curves were comparable. In this study indeed we measure similar stress–strain curves for the two materials, but 
substantially different modulus versus strain curves, indicating that the proposed stiffness-sensing technique 
can enrich the measurements performed in mechanical tests. Specifically, in tension the injection-moulded PLA 
shows a less rapid stiffness degradation than the 3D printed PLA, indicating a higher damage for the 3D printed 

Figure 10.   True stress versus strain and stiffness (true elastic modulus) versus strain curves measured for the 
injection-moulded PLA in both tension and compression.
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material than for the injection-moulded one (at the same strain). In compression, the stiffness increases with 
strain less rapidly for the injection-moulded specimens than for the 3D printed material, consistent with the fact 
that the former has less porosity than the latter.

We note that for the 3D printed material in Fig. 11, at sufficiently large strains and in both tension and com-
pression, the unloading and reloading moduli start to diverge. This is a consequence of the fact that the stress 
versus strain histories during unloading/reloading cycles change shape, as shown in the insets of Fig. 11; in 
particular, loops are no longer formed, or if they form, they are small compared to the extent of the unloading/
reloading cycles. Our confidence in the physical significance of our measurements in this regime is low, however 
the data is still presented in Fig. 11 to illustrate this possible limitation of the technique. This problem could 
possibly be avoided by limiting the analysis of stiffness to only the loops in the stress–strain curve, or using a 
different loading profile, however this is not pursued here and left as a topic for future investigations.

We also note that the comparison between tensile and compressive responses is unfair, as different specimen 
geometry and different length of strain gauge grids were used in the two types of tests, and the evolution of the 
macroscopic stiffness is expected to be specimen-dependent. Tests conducted on cuboidal specimens may also 
have been affected by a non-uniform distribution of stresses and strains, which might alter the accuracy of the 
stiffness measurements. In compressive the tests on PLA shown in Figs. 10 and 11, we measured an increase in 
stiffness of order 15–20%, in the portion of the data showing similar measures of the unloading and reloading 
modulus. This is too high to depend exclusively on the reduction of porosity, which was of order 5% (a Voigt 
upper bound would suggest the material’s stiffness should increase by up to 5% when all pores are closed). This 
inconsistency cannot be attributed to geometric effects, which are negligible at the strains considered (up to 1% 
and 2% for injection-moulded and 3D-printed PLA, respectively), as shown in Appendix A.2. This could be 
partly due to an intrinsic increase in stiffness of the polymeric material, by a strain-induced re-alignment of the 
polymeric chains; it might be also due to the presence of a higher porosity than what we measured using optical 
methods, however we do not possess sufficient evidence to support these claims. Measurements in compression 
should be repeated with identical specimen geometry and instrumentation as in the tensile tests to enable a 
more meaningful comparison of the measurements in tension and compression.

Figure 11.   True stress versus strain and stiffness (true elastic modulus) versus strain curves measured for the 
3D printed PLA (loaded at 45◦ with respect to the extrusion direction) in both tension and compression.
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Sintered Ti powder.  Representative results for the sintered Ti specimen are presented in Fig. 12. The stress–
strain curve measured in a stiffness-sensing test is compared to that measured in a monotonic experiment on 
an identical specimen, and the two are found in broad agreement, with a difference comparable to the scatter 
displayed in the response of this material in our previous studies. We note that due to the high stiffness of the 
material, the stress amplitude of the unloading/reloading cycles is higher for this solid than for the other materi-
als tested in this paper (while the strain amplitudes are comparable for all tests).

This porous solid was tested using a displacement profile of the second type (as described in Section “Load-
ing histories”); it consequently displays a smaller number of unloading/reloading cycles compared to the other 
materials tested. Despite the less ‘continuous’ and more noisy measurements of the stiffness, even in this case 
the data supports the notion of a decrease in stiffness beginning at the early stages of deformation. Note that in 
this test the specimen failed just outside the strain gauge grid, which in this case did not cover the entire gauge 
portion. The unloading modulus was found to be larger than the reloading modulus, suggesting some degree 
of energy dissipation during the unloading/reloading cycles. Microscopic observations conducted in25 before 
and after testing of this material showed evidence of pore cavitation induced by the uniaxial tension, and the 
effects of this are captured by the mechanical stiffness-sensing proposed here. Again, the results suggest that a 
constitutive model allowing the simultaneous development of damage and local plastic strain at small strains 
should be employed to model effectively the material response.

Limitations of the technique and possible improvements and applications.  The design of the 
experiments shown in this study involves a careful balance of unloading/reloading strain amplitudes and rates, 
number of unloading/reloading loading cycles, and resolution of the strain reading. Ideally the amplitudes of 
unloading/reloading cycles should be minimised while their rates and the number of cycles should be maxim-
ised, to ensure near-continuous measurement of the stiffness, obtain a less invasive test technique and minimis-
ing any measurement artefacts related to time-dependent response of the materials. Table 3 lists, for each of the 
tests presented here, information on the number of datapoints used to determine the unloading and reloading 
modulus, as well as estimates of the uncertainty on the measured unloading and reloading stiffness. The number 
of points used to determine the stiffness is adequate, but an increase in such number would be beneficial and 

Figure 12.   True stress versus strain and stiffness versus strain curves measured for the sintered Ti powders.
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would lead to smoother stiffness measurements. The uncertainty in stiffness is considerably less than the meas-
ured variations with strain.

The experiments in this study were conducted in a screw-driven tensometer, which was limited in the preci-
sion of the achievable cross-head displacement and in the rate of such displacement. Hydraulic or electro-pulse 
test machines are expected to be less limited in displacement rate but are inherently operated in load control, 
which combined with the inertia of their parts might result in problematic and less precise displacement histories. 
A possible solution to these problems could consist of connecting a dedicated stiffness-sensing actuator in series 
with the specimen, to apply unloading/reloading displacements to superimpose to the monotonic displacement 
of the machine’s cross-head. As the unloading/reloading amplitudes are to be kept small (recall Table 1), piezo-
electric actuators would be ideal candidates for this task, due to their inherent displacement control, strength, 
speed and ease of actuation.

The strains associated with the unloading/reloading cycles necessary for this technique are small, and their 
accurate measurement is very important to obtain adequate stiffness-sensing. This makes the application of DIC 
techniques hard, in consideration of the fact that the entire gauge portion of the specimen needs to be monitored, 
and that in the case of DIC microscopy, the specimen can come in and out of focus periodically. Resistance strain 
gauges were used in this study to limit the cost of the tests. 2-point laser interferometry would allow resolving 
displacements of order of nm, however it would complicate the tests and increase the cost considerably. Mechani-
cal clip gauges might possess sufficient resolution; an additional potentially viable option could be the use of 
semiconductor wire gauges.

Employing better loading devices (e.g. piezoelectric actuators) and strain diagnostics (e.g. semiconductor 
gauges) would allow smaller, faster unloading/reloading cycles. The data processing could be further enhanced 
by driving the actuator at specific frequencies and using Fourier analysis to filter the strain measurement data, 
as done successfully for indentation tests in Oliver and Pharr14. Extension of the technique to biaxial, triaxial 
and non-monotonic tests would be relatively straightforward. The development of acoustic and resistive meas-
urements such as those shown for the CFRP specimens should also be pursued, as it could provide benchmark 
data for the mechanical stiffness-sensing tests or replace the mechanical technique, considering the fact that 
such acoustic and resistive techniques are less invasive for the material, have relatively simple instrumentation 
and do not limit the test strain rate, and therefore could be applied also in the case of dynamic measurements 
of the response of solids.

The data obtained from the tests presented here are representative, for a well-designed test specimen, of the 
effective stiffness of the gauge portion of the samples tested. The evolution of damage in solids however varies in 
space, and therefore the stiffness-sensing data should be interpreted within a stochastic modelling framework, 
to be useful in numerical simulations.

In our future studies we shall explore possible improvements to the experimental technique and the cor-
responding new modelling strategies that such technique enables and requires.

Conclusions
We have shown the feasibility of a mechanical, near-continuous stiffness-sensing test protocol and applied it 
to a set of selected materials with wide ranges of mechanical properties. The technique was implemented using 
standard test machines and strain diagnostics, but suggestions for its improvement were made.

We showed that the proposed stiffness-sensing technique considerably enriches the datasets produced in 
quasi-static mechanical tests and that the additional data produced are representative of the physical response 
of the solids tested. In particular the test technique is able to make measurements of the initiation and evolution 
of damage in solids, providing information that can be used to calibrate constitutive models and that lends itself 
to be used in the formulation of new data-driven constitutive models.

The measurements presented showed that, for the relatively brittle solids tested in this study, damage initiates 
at the very early stages of the material response, at very low strains; this is in contrast to what is typically assumed 
in current numerical damage modelling approaches. This suggests that the development of stiffness-sensing 
test techniques may have considerable impact in the mechanics of solids and in the formulation of constitutive 
models for the fracture response of engineering materials.

Table 3.   Number of datapoints used to determine the unloading and reloading modulus for all materials 
tested. Uncertainty on the unloading and reloading stiffness.

Material

N. of datapoints 
used (min–max)

Average 
uncertainty in 
stiffness (%)

Unload Reload Unload Reload

CFRP 10–11 10–11 4.45 4.09

Epoxy 10–12 9–11 6.52 5.28

PLA inj. moulded (tens.) 15–20 14–20 5.36 4.87

PLA inj. moulded (comp.) 14–18 15–18 1.28 1.16

PLA 3D (tens.) 13–15 12–15 5.28 4.36

PLA 3D (comp.) 8–10 9–10 1.99 1.49

Sintered Ti powder 37–62 40–66 2.23 1.98
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