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SLOW-FAST SYSTEMS WITH FRACTIONAL ENVIRONMENT AND
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We prove a fractional averaging principle for interacting slow-fast sys-
tems. The mode of convergence is in Hölder norm in probability. The main
technical result is a quenched ergodic theorem on the conditioned fractional
dynamics. We also establish geometric ergodicity for a class of fractional-
driven stochastic differential equations, improving a recent result of Panloup
and Richard.

1. Introduction and main results. We study slow-fast systems driven by fractional
Brownian motions (fBm):

dXε
t = f

(
Xε

t , Y
ε
t

)
dt + g

(
Xε

t , Y
ε
t

)
dBt , Xε

0 = X0,(1.1)

dY ε
t = 1

ε
b
(
Xε

t , Y
ε
t

)
dt + 1

εĤ
σ dB̂t , Y ε

0 = Y0,(1.2)

where B and B̂ are independent fBms on an underlying complete probability space (�,F,P)

with Hurst parameters H ∈ (1
2 ,1) and Ĥ ∈ (1 − H,1), respectively. Here, g : Rd × R

n →
L(Rm,Rd) and σ ∈ L(Rn,Rn) is nondegenerate. As the scale parameter ε > 0 is taken to
0, one hopes that the slow motion Xε is well approximated by an effective dynamics X̄. For
H = Ĥ = 1

2 , this convergence has been studied by myriad authors since the seminal works
of Bogolyubov–Mitropol’skiı̆ [7] and Hasminskii [26]; see for example, the monographs and
survey articles [5, 18, 32, 33, 40, 48] and references therein for a comprehensive overview. It
is still a very active research area [34, 45, 46].

For H,Ĥ �= 1
2 , the SDEs (1.1)–(1.2) provide a suitable model for economic, medical,

and climate phenomena exhibiting a genuinely non-Markovian behavior in both the system
and its environment. It is for example, very well known that neglecting temporal memory
effects in climate modeling by resorting to a diffusion model results in prediction notoriously
mismatching observational data [2, 4, 13, 28]. It thus became widely popular to use fBm in
climate modeling [16, 49, 51].

While slow-fast systems with fractional noise have seen a tremendous spike of interest in
the last two years [8, 9, 23, 25, 41, 42], all of these works resort to Markovian, strongly mixing
fast processes by choosing Ĥ = 1

2 in (1.2). The main contribution of this article is to establish

the convergence Xε → X̄ even for a non-Markovian fast dynamics by allowing Ĥ �= 1
2 . It

hardly comes as a surprise that this renders the analysis much more delicate and it is not
clear at all if an averaging principle can even hold for a fractional, nonmixing environment.
In fact, the usual assumption in the aforementioned works on Markovian averaging principles
is a strong mixing condition with an algebraic rate [1, 27]. This condition is essentially never
satisfied for a fractional dynamics [3].
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Recent work of Hairer and the first author of this article suggests the following ansatz for
the effective dynamics:

(1.3) dX̄t = f̄ (X̄t ) dt + ḡ(X̄t ) dBt , X̄0 = X0,

where f̄ (x) �
∫

f (x, y)πx(dy) and similar for ḡ [23]. For Ĥ = 1
2 , this work showed that the

average is taken with respect to the unique invariant πx of the fast dynamics with frozen slow
input

(1.4) dY x
t = b

(
x,Y x

t

)
dt + σ dB̂t .

For Ĥ �= 1
2 , it is a priori not clear what πx should be. We show that it is the one-time marginal

of the unique stationary path space law Pπx ∈ P(C(R+,Rn)); see Section 2.1 for details.
[Here and in the sequel, P(X ) denotes the set of Borel probability measures on a Polish
space X .]

In addition to standard regularity requirements ensuring well-posedness of the slow-fast
system (see Condition 3.1 below), we shall impose a contractivity condition on the drift in
(1.2).

DEFINITION 1.1. Let λ,R ≥ 0 and κ > 0. We write S(κ,R,λ) for the set of Lipschitz
continuous functions b :Rn →R

n satisfying

(1.5)
〈
b(x) − b(y), x − y

〉≤
{−κ|x − y|2 |x|, |y| ≥ R,

λ|x − y|2 otherwise.

Note that λ may be smaller than |b|Lip, whence its prescription is not necessarily redun-
dant. If b = −∇V is a gradient vector field with potential V , then (1.5) is equivalent to V

being at most λ-concave on |x| < R and κ-convex on |x| ≥ R. If V ∈ C2(Rn), these require-
ments are in turn equivalent to ∇2V ≥ −λ and ∇2V ≥ κ on the respective sets.

THEOREM 1.2 (Fractional averaging principle). Consider the slow-fast system (1.1)–
(1.2). Suppose that f,g ∈ C2

b and b satisfies Condition 3.1. Let α < H and κ,R > 0. Then
there is a number λ0 > 0 such that, if b(x, ·) ∈ S(κ,R,λ0) for every x ∈R

d , all of the follow-
ing hold:

• For every x ∈R
d , there exists a unique stationary path space law Pπx ∈ P(C(R+,Rn)) for

the frozen fast dynamics (1.4).
• Let πx ∈ P(Rn) be the one-time marginal of Pπx . If

x �→ ḡ(x) �
∫
Rn

g(x, y)πx(dy) ∈ C2
b

(
R

d,L
(
R

m,Rd)),
then there is a unique pathwise solution to (1.3) and Xε → X̄ as ε → 0 in Cα([0, T ],Rd)

in probability for any T > 0.

The regularity of ḡ not only hinges on the regularity of g but also on the fast dynamics.
First we note that the requirement on ḡ clearly holds for a diffusion coefficient depending
only on the slow motion Xε:

dXε
t = f

(
Xε

t , Y
ε
t

)
dt + g

(
Xε

t

)
dBt .

Another class of examples is provided by Corollary 4.25 below.
The technical core of the proof of Theorem 1.2 is a quantitative quenched ergodic theo-

rem on the conditional evolution of the process (1.4). We prove this by means of a control
argument, which is of independent interest. In fact, it allows us to improve recent work of
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Panloup and Richard [39] by establishing geometric ergodicity for a class of SDEs driven
by additive fractional noise. To our best knowledge, this is the first result achieving an ex-
ponential convergence rate for a fractional dynamics (excluding the trivial instance of an
everywhere contractive drift).

Let ‖μ‖TV � supA |μ(A)| denote the total variation norm of μ, Wp the p-Wasserstein
distance, and W

p the Wasserstein-like metric for generalized initial conditions introduced in
Definition 2.5.

THEOREM 1.3 (Geometric ergodic theorem). Let (Yt )t≥0 be the solution to the SDE

(1.6) dYt = b(Yt ) dt + σ dBt

started in the generalized initial condition μ, where σ ∈ L(Rn,Rn) is nondegenerate and
B is an fBm with Hurst parameter H ∈ (0,1). Then, for any p ≥ 1 and any κ,R > 0, there
exists a 	 = 	(κ,R,p) > 0 such that, whenever b ∈ S(κ,R,	), there is a unique invariant
measure Iπ for (1.6) in the sense of Definition 2.1. Moreover,

(1.7) Wp(L(Yt ),π
)≤ Ce−ct

W
p(μ,Iπ) ∀t ≥ 0

and

(1.8)
∥∥L(Y·+t ) − Pπ

∥∥
TV ≤ Ce−ct

W
1(μ,Iπ) ∀t ≥ 0,

where c,C > 0 are numerical constants independent of t ≥ 0 and μ.

The work [21] already contains a result on the rate of convergence. There, the author
assumed an off-diagonal contraction condition (see Condition 2.6 below) and obtained an
algebraic rate in (1.8). Very recently Panloup and Richard [39] studied b ∈ S(κ,R,0) for
which they found a rate of order e−Dtγ for some γ < 2

3 in both (1.7) and (1.8). Albeit these
works did not require a global Lipschitz condition on the drift for Hurst parameters H < 1

2 ,
we emphasize that they do impose this assumption for H > 1

2 to obtain (1.8). This is due
to the lack of regularity of a certain fractional integral operator. Theorem 1.3 thus provides a
genuine ramification of the results of [39] in the latter case. We note that similarly to the work
of Panloup and Richard, the Wasserstein decay (1.7) also holds for more general Gaussian
driving noises with stationary increments. We shall briefly comment on this in Section 3.5.

With the spiking interest in numerical methods based on the generalized Langevin equa-
tion with memory kernel [10, 30], Theorem 1.3 and the quenched quantitative ergodic the-
orem underpinning it can give a better theoretical understanding. A first step would be to
derive quantitative estimates on the constants c, C, and 	; a possible pathway is outlined
in Remark 3.25 below. It is an interesting open question if there is indeed a finite threshold
value of 	 beyond which the exponential rates (1.7)–(1.8) no longer hold. As established by
Eberle, such a transition from exponential to subexponential rates does not happen in case
H = 1

2 [15].

EXAMPLE 1.4. Let us give an example of a drift not covered by the subexponential
convergence theorems of [39]. Consider the double-well potential

V (x) = α|x|4 − β|x|2

for α,β > 0. We modify V outside of a compact such that its Hessian is bounded. Set b =
−∇V . It is clear that b /∈ ⋃

κ,R>0 S(κ,R,0) as soon as β > 0. However, for β
α

sufficiently
small, Theorem 1.3 furnishes an exponential rate of convergence.
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Outline of the article. The next section features a brief overview of preliminary material.
In Section 3, we prove the quantitative quenched ergodic theorem and deduce Theorem 1.3.
The proof of Theorem 1.2 is concluded in Section 4.

2. Preliminaries. Recall that one-dimensional fractional Brownian motion with Hurst
parameter H ∈ (0,1) is the centered Gaussian process (Bt )t≥0 with

E
[
(Bt − Bs)

2]= |t − s|2H , s, t ≥ 0.

To construct d-dimensional fBm one lets the coordinates evolve as independent one-
dimensional fBms with the same Hurst parameter. We will make frequent use of the following
classical representation of one-dimensional fBm as a fractional integral of a two-sided Wiener
process (Wt)t∈R, which is due to Mandelbrot and van Ness [37]:

(2.1) Bt = αH

∫ 0

−∞
(t − u)H− 1

2 − (−u)H− 1
2 dWu + αH

∫ t

0
(t − u)H− 1

2 dWu, t ≥ 0.

Here, αH > 0 is some explicitly known normalization constant and we also declare
Bt = B̄t + B̃t .

2.1. Invariant measures of fractional SDEs. Albeit being non-Markovian on its own, the
solution to (1.6) can actually be cast as the marginal of an infinite-dimensional Feller process
Zt � (Yt , (Ws)s≤t ) with values in R

n ×HH . Here, W is the two-sided Wiener process driving
the equation through (2.1) and HH is a Hölder-type space of paths R− → R

n supporting the
Wiener measure W. More concretely, HH is the closure of the space {f ∈ C∞

c (R−,Rn) :
f (0) = 0} in the norm

‖f ‖HH
� sup

s,t≤0

|f (t) − f (s)|
|t − s| 1−H

2
√

1 + |t | + |s|
.

To ensure that this construction actually furnishes a solution to (1.6), we of course have to
assume that the law of the second marginal of Z coincides with W for each time t ≥ 0. This
motivates the following definition.

DEFINITION 2.1 ([21]). A measure μ ∈ P(Rn ×HH ) with �∗
HH

μ = W is called a gen-
eralized initial condition. A generalized initial condition Iπ , which is invariant for the Feller
process Z is called an invariant measure for the SDE (1.6). We write π � �∗

RnIπ for the first
marginal and Pπ ∈ P(C(R+,Rn)) for the law of the first coordinate of Z when started in Iπ .

By only adding the past of the driving noise to the auxiliary process Z, Hairer’s framework
rules out the existence of “unphysical” invariant measures, which frequently occur in the
theory of random dynamical systems; see [22] for details.

There are only a few examples for which the invariant measure can be written down ex-
plicitly.

EXAMPLE 2.2. Let Y be the fractional Ornstein–Uhlenbeck process [11], that is,

dYt = −Yt dt + dBt .

Then it is well known that its invariant measure is given by

Iπ(dy, dw) = δF(w)(dy)W(dw), F (w) � −
∫ 0

−∞
esDH w(s) ds,
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where DH : HH → H1−H is a continuous linear operator switching between Wiener and
fBm paths’ see [21], equation (3.6), for the precise definition. The first marginal of Iπ and
the stationary path space law are given by

π = L
(∫ 0

−∞
es dBs

)
and Pπ = L

(∫ t

−∞
es dBs

)
t≥0

.

REMARK 2.3. The invariant measure of (1.6) is in general not of product form.

Since σ ∈ L(Rn,Rn) is nondegenerate, one can show that there is an isomorphism between
the strictly stationary solutions to (1.6) and the set of invariant measures (provided one quo-
tients the latter by the equivalence relation identifying generalized initial conditions which
generate the same evolution in the first marginal). It is also not hard to prove the following.

PROPOSITION 2.4 ([21]). If σ ∈ L(Rn,Rn) and b ∈ S(κ,R,λ) for some κ > 0, R,λ ≥ 0,
then there exists an invariant measure for (1.6) in the sense of Definition 2.1. Moreover, Iπ

has moments of all orders.

The conclusion of Proposition 2.4 actually holds for a merely locally Lipschitz off-
diagonal large scale contractive drift (see Condition 2.6 below). See also [14, 24] for versions
for multiplicative noise. Finally, we introduce a Wasserstein-type distance for generalized
initial conditions:

DEFINITION 2.5. Let μ and ν be generalized initial conditions. Let C�(μ, ν) denote the
set of couplings of μ and ν concentrated on the diagonal �HH

� {(w,w′) ∈ H2
H : w = w′}.

For p ≥ 1, we set

W
p(μ, ν) � inf

ρ∈C�(μ,ν)

(∫
(Rn×HH )2

|x − y|p ρ
(
dx, dw,dy, dw′)) 1

p

.

Note that clearly Wp(�∗
Rnμ,�∗

Rnν) ≤W
p(μ, ν) and the inequality is strict in general.

2.2. Large scale contractions. Known ergodic theorems on (1.6) require either a
Lyapunov-type stability or a large scale contractivity condition on the drift b. The former
indicates that once far out, the solutions have the tendency to come back to a neighborhood
of the origin. Under this condition, it is conceivable that two distinct solutions can come back
from diverging routes, thus allowing to couple them. The Lyapunov stability condition was
used in [14, 17] for multiplicative noise.

A large scale contraction on the other hand will force two solutions to come closer once
they have left a ball BR of sufficiently large radius R > 0. The following two conditions
appeared in previous works.

CONDITION 2.6 (Off-diagonal large scale contraction, [21]). There exist numbers κ̃ > 0
and D,λ ≥ 0 such that

(2.2)
〈
b(x) − b(y), x − y

〉≤ (
D − κ̃|x − y|2)∧ (

λ|x − y|2) ∀x, y ∈ R
n.

CONDITION 2.7 (Large scale contraction, [39]). There exist numbers R ≥ 0 and κ > 0
such that

(2.3)
〈
b(x) − b(y), x − y

〉≤ −κ|x − y|2 ∀x, y ∈R
n \ BR.
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EXAMPLE 2.8. The function b(x) = x − x3 is a large scale contraction.

We will later use the following standard result, a slightly weaker version of which was
proven in [39], Lemma 5.1.

LEMMA 2.9. If b is locally Lipschitz continuous and satisfies the large scale contraction
condition (2.3), then for any κ̄ ∈ (0, κ), there is an R̄ > 0 such that〈

b(x) − b(y), x − y
〉≤ −κ̄|x − y|2 ∀y ∈ R

n, |x| > R̄.

PROOF. Since 〈b(x) − b(y), x − y〉 ≤ −κ|x − y|2 for x and y outside of the ball BR , we
only need to show that the required contraction holds for any |y| ≤ R and |x| > R̄. Fix such
x and y.

Without loss of generality, we may also assume that R̄ ≥ R + 1. Then there is a β ∈ (0,1)

such that zβ � (1 − β)x + βy has norm |zβ | = R + 1. Since x − y = 1
β
(x − zβ) and, since x,

zβ are outside of BR ,

〈
b(x) − b(zβ), x − y

〉≤ − 1

β
κ|x − zβ |2 = −κβ|x − y|2.

Let K � |b|Lip;BR+1 denote the Lipschitz constant of b on BR+1. Since |zβ −y| = (1−β)|x −
y|, it holds that〈

b(x) − b(y), x − y
〉= 〈

b(x) − b(zβ), x − y
〉+ 〈

b(zβ) − b(y), x − y
〉

≤ −κβ|x − y|2 + K(1 − β)|x − y|2.
Since β is the length of the proportion of the line segment outside of BR+1, we can choose
it as close to 1 as we like by choosing R̄ sufficiently large (β = |x−zβ |

|x−y| ≥ |x|−R−1
|x|+R

≥ R̄−R−1
R̄+R

).
�

REMARK 2.10. We make the following observations.

(i) Let b : Rn → R
n be a globally Lipschitz continuous function. Then the large scale

contraction condition (2.3) is equivalent to b ∈⋃
λ>0 S(κ,R,λ). In view of Lemma 2.9, con-

dition (1.5) also holds for a merely locally Lipschitz continuous b at the cost of a smaller
contractive rate and a bigger contractive range. In fact, choose κ̄ ∈ (0, κ) and let R̄ > R be
the corresponding radius furnished by Lemma 2.9. This gives (1.5) with κ � κ̄ , R � R̄, and
λ � |b|Lip;BR̄

.
(ii) The off-diagonal large scale contraction condition is weaker than the large scale con-

traction condition. With the former, there may be no κ > 0 such that (2.3) holds in the region
{|x − y| ≤ D

2κ̃
} ∩ {|x| ≥ R, |y| ≥ R}. On the other hand, if (2.3) holds and b is locally Lip-

schitz continuous, we can choose any κ̃ < κ . In fact, denoting the radius from Lemma 2.9
by R̄ > 0, one only needs to show (2.2) when both x and y are in BR̄ . To this end, we pick
λ = |b|Lip;BR̄

and D ≥ supx,y∈BR̄
(κ̃ + λ)|x − y|2.

3. The conditional evolution of fractional dynamics. To derive strong Lp-bounds on
the Hölder norm of the slow motion in Section 4 below, we need to study the conditional
distribution of the evolution (1.4). Unlike the Markovian case, the conditioning changes the
dynamics and the resulting evolution may no longer solve the original equation. We will show
that, in the limit t → ∞, the law of the conditioned dynamics still converges to πx , the first
marginal of the invariant measure for the fast dynamics with frozen slow input (1.4). The rate
of convergence is however slower (only algebraic rather than exponential).
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Let us first state the regularity assumption imposed in Theorem 1.2. For this we introduce
a convenient notation, which we shall frequently use in the sequel. We write a � b if there is
a constant C > 0 such that a ≤ Cb. The constant C is independent of any ambient parameters
on which a and b may depend.

CONDITION 3.1. The drift b :Rd ×R
n →R

n satisfies the following conditions:

• Linear growth: ∣∣b(x, y)
∣∣� 1 + |x| + |y|, ∀x ∈ R

d, y ∈ R
n.

• Uniformly locally Lipschitz in the first argument: For each R > 0, there is an LR > 0 such
that

sup
y∈Rn

∣∣b(x1, y) − b(x2, y)
∣∣≤ LR|x1 − x2|, ∀|x1|, |x2| ≤ R.

• Uniformly Lipschitz in the second argument: There is an L > 0 such that

sup
x∈Rd

∣∣b(x, y1) − b(x, y2)
∣∣≤ L|y1 − y2|, ∀y1, y2 ∈R

n.

Let (Ft )t≥0 be a complete filtration to which B̂ is adapted. For any continuous, (Ft )t≥0-
adapted, Rd -valued process X with continuous sample paths, and any ε > 0, the equation

(3.1) d�X
t = 1

ε
b
(
Xt,�

X
t

)
dt + 1

εĤ
σ dB̂t , �X

t = y,

has a unique global pathwise solution under Condition 3.1; see Lemma 4.2 below. The flow
�X

s,t (y) associated with (3.1) is therefore well defined. An important special case of (3.1) is
when the extrinsic process is given by a fixed point x ∈ R

d . For this we reserve the notation
�̄x :

(3.2) d�̄x
t = 1

ε
b
(
x, �̄x

t

)
dt + 1

εĤ
σ dB̂t , �̄x

0 = y.

We would like the reader to observe that the dependency of flows on the scale parameter
ε > 0 is suppressed in our notation. Note that, by self-similarity, sending ε → 0 in (3.2) is
equivalent to keeping ε = 1 fixed and taking t → ∞. As the ε-dependence of the flows (3.1)–
(3.2) will play a key role in Section 4, we choose to introduce a new notation in case ε = 1,
which is used throughout the rest of this section.

DEFINITION 3.2. Let h ∈ C0(R+,Rn) � {f ∈ C(R+,Rn) : f (0) = 0} and x ∈ R
d . We

denote the flow of the ordinary differential equation

(3.3) dyt = b(x, yt ) dt + dht

by �x
s,t (y,h), where y ∈ R

n and 0 ≤ s ≤ t . It is given by the solution to the integral equation

�x
s,t (y,h) = y +

∫ t

s
b
(
x,�x

s,r (y,h)
)
dr + ht − hs .

We also use the abbreviation �x
t � �x

0,t .

Under Condition 3.1, (3.3) is well-posed and it follows that �x
s,t (y,h) = �x

t−s(y, θsh) for
each 0 ≤ s ≤ t and y ∈ R

n, where θsf = f (· + s) − f (·) is the Wiener shift operator on the
path space. If x ∈ R

d , y ∈ R
n, or h ∈ C0(R+,Rn) are random, we understand Definition 3.2

pathwise for each fixed sample ω ∈ �. The solutions to (3.1) and (3.2) are also understood in
this sense.
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3.1. Processes with a locally independent increment decomposition. The derivation of
the conditioned evolution relies on the following simple fact: For t, h ≥ 0, we have

(3.4) (θt B̂)h = B̂t+h − B̂t = ¯̂
Bt

h + ˜̂
Bt

h,

where, in a slight abuse of notation (the integrand has to be multiplied by the identity matrix),

¯̂
Bt

h � α
Ĥ

∫ t

−∞
(
(t + h − u)Ĥ− 1

2 − (t − u)Ĥ− 1
2
)
dŴu,

˜̂
Bt

h � α
Ĥ

∫ t+h

t
(t + h − u)Ĥ− 1

2 dŴu.

This decomposition is easily obtained by rearranging (2.1). For any t ≥ 0, the two compo-

nents ¯̂
Bt and ˜̂

Bt are independent. We call ¯̂
Bt the smooth part of the increment, whereas ˜̂

Bt is
referred to as the rough part. This terminology is based on the fact that, away from the origin,

the process ¯̂
Bt has continuously differentiable sample paths and therefore the “roughness” of

B̂ essentially comes from ˜̂
Bt . Indeed, it is not hard to check that ˜̂

Bt is of precisely the same

Hölder regularity as B̂ . We also observe that ˜̂
Bt d= ˜̂

B0 � ˜̂
B for all t > 0.

The process ˜̂
B is—up to a prefactor—known as Riemann–Liouville process (or type-II

fractional Brownian motion) and was initially studied by Lévy [31]. Its use in modelling was
famously discouraged in [37] due to its overemphasis of the origin and the “regularized”
process (2.1) was proposed instead. In fact as we shall see below, the lack of stationarity of

the increments of ˜̂
B complicates the analysis of the conditioned evolution.

DEFINITION 3.3. Let (Ft )t≥0 be a complete filtration. An (Ft )t≥0-adapted stochastic
process Z is said to have a locally independent decomposition of its increments with respect
to (Ft )t≥0 if for any t ≥ 0, there exists an increment decomposition of the form

(θtZ)h = Z̃t
h + Z̄t

h, h ≥ 0,

where Z̄t ∈ Ft and Z̃t is independent of Ft .

As seen in (3.4), an fBm B̂ has a locally independent decomposition of its increments with
respect to any filtration (Ft )t≥0 compatible with B̂ . By this we mean that (Ŵs)s≤t ∈ Ft and
(θt Ŵs)s≥t is independent of Ft for any t ≥ 0.

EXAMPLE 3.4. Let us give some further examples, which will become important later
on:

(i) Let (Ŵt )t≥0 be a Wiener process and ˜̂
Bt � α

Ĥ

∫ t
0 (t − u)H− 1

2 dŴu be the Riemann–
Liouville process. Then, for any t ≥ 0 and h ≥ 0,

(θt
˜̂
B)h = α

Ĥ

∫ t

0

(
(t + h − u)Ĥ− 1

2 − (t − u)Ĥ− 1
2
)
dŴu

+ α
Ĥ

∫ t+h

t
(t + h − u)Ĥ− 1

2 dŴu(3.5)

� Qt
h + ˜̂

Bt
h.

Thus, ˜̂
B admits a locally independent decomposition of its increments with respect to any

filtration compatible with B̂ .
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(ii) Another example, given in [19, 20], is the stationary fractional Ornstein–Uhlenbeck
process Zt = ∫ t

−∞ e−(t−s) dB̂s . More generally, it is clear that Zt = ∫ t
−∞G(s, t) dB̂s with a

suitable kernel G also has this property.
(iii) Albeit not being a direct instance of Definition 3.3, it is also interesting to observe a

fractal property of B̂: The smooth part of the increment has an independent decomposition

as ¯̂
Bt

h = P t
h + Qt

h, where Qt was defined in (3.5) and

P t
h � α

Ĥ

∫ 0

−∞
(
(t + h − u)Ĥ− 1

2 − (t − u)Ĥ− 1
2
)
dŴu.

Our argument for the quenched ergodic theorem will be based on a two step conditioning
procedure making use of an explicit representation of the conditioned process. We state it for
a general noise with locally independent increments.

LEMMA 3.5. Let 0 ≤ s ≤ t < t + h and (Zt )t≥0 be a continuous stochastic process ad-
mitting a locally independent decomposition (θtZ)h = Z̃t

h+Z̄t
h with respect to (Ft )t≥0. Let X

and Y be Ft -measurable random variables. Then, for any F :Rn →R bounded measurable,

E
[
F
(
�X

s,t+h(Y,Z)
) |Ft

]= E
[
F
(
�x

h

(
y,ς + Z̃t ))]|x=X,ς=Z̄t ,

y=�X
s,t (Y,Z)

,

where � is defined in Definition 3.2.

PROOF. This in an immediate consequence of the flow property of the equation (3.3) and
standard properties of conditional expectations. �

Coming back to the flow of the fast motion with frozen slow input (3.2), the following
result is an easy consequence of Lemma 3.5.

LEMMA 3.6. Let (Ft )t≥0 be a filtration which is compatible with B̂ . Fix 0 ≤ s ≤ t <

t + h and let X, Y be Ft -measurable random variables. Then, for any F : Rn → R bounded
measurable,

E
[
F
(
�̄X

s,t+h(Y )
) |Ft

]= E
[
F
(
�x

h
ε

(y, ς + σ
˜̂
B)

)]|
x=X,ς=ε−Ĥ σ

¯̂
Bt

ε·,
y=�̄X

s,t (Y )

,

where ¯̂
Bt

ε· � (
¯̂
Bt

εh)h≥0.

We now turn to the fine properties of the smooth part of the increment. For α > 0 we define
the set

(3.6) �α �
{
f ∈ C0

(
R+,Rn)∩ C2((0,∞),Rn) : lim sup

t→∞
(
tα
∣∣ḟ (t)

∣∣+ t1+α
∣∣f̈ (t)

∣∣)< ∞
}
.

This space is equipped with the seminorm

‖f ‖�α � sup
t≥1

tα
∣∣ḟ (t)

∣∣+ sup
t≥1

t1+α
∣∣f̈ (t)

∣∣.
We also set �α− � ⋂

β<α �β . The motivation for this definition stems from the following
lemma.

LEMMA 3.7. Let ε > 0 and t ≥ 0. Then ε−Ĥ ¯̂
Bt

ε·
d= ¯̂

Bt d= ¯̂
B ∈ �

(1−Ĥ )− a.s. and ‖ ¯̂
B‖�α ∈⋂

p≥1 Lp for any α < 1 − Ĥ .
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PROOF. Let δ ∈ (0,1 − Ĥ ). It is enough to prove that there is a random variable C > 0
with moments of all orders such that

(3.7) | ˙̂̄
Bt | ≤ C

t1−Ĥ−δ
, | ¨̂̄

Bt | ≤ C

t2−Ĥ−δ

for all t ≥ 1 on a set of probability one. This in turn easily follows from sample path properties
of the standard Wiener process. First, we have that

˙̂̄
Bt = α

Ĥ

(
Ĥ − 1

2

)∫ 0

−∞
(t − u)Ĥ− 3

2 dWu = −α
Ĥ

(
Ĥ − 1

2

)(
Ĥ − 3

2

)∫ 0

−∞
(t − u)Ĥ− 5

2 Wu du

since limu→−∞(t − u)Ĥ− 3
2 Wu = 0. Therefore,

| ˙̂̄
Bt | �

(
sup

−1≤s≤0
|Ws |

∫ 0

−1
(t − u)Ĥ− 5

2 du + sup
s≤−1

|Ws |
(t − s)

1
2 +δ

∫ −1

−∞
(t − u)Ĥ−2+δ du

)

≤ C
(
t Ĥ− 5

2 + (t + 1)Ĥ−1+δ).
The fact that C has moments of all order is an easy consequence of Fernique’s theorem. In
fact, the Wiener process defines a Gaussian measure on the separable Banach space

M 1
2 +δ �

{
f ∈ C0

(
R+,Rn) : ‖f ‖

M
1
2 +δ

� sup
u≥0

|f (u)|
(1 + u)

1
2 +δ

< ∞
}
.

By Fernique’s theorem, the random variable ‖W‖
M

1
2 +δ

has therefore Gaussian tails. The first

estimate in (3.7) follows. The bound on | ¨̂̄
Bt | is similar. �

3.2. A universal control. Let b ∈ S(κ,R,λ), ς ∈ C0([0,1],Rn), and u ∈ L∞([0,1],Rn).
Let us consider the following controlled ordinary differential equation:

(3.8) xς,u(t) = x0 +
∫ t

0
b
(
xς,u(s)

)
ds + ς(t) +

∫ t

0
u(s) ds, t ∈ [0,1].

We think of ς as an external “adversary” and of u as a control. Since b is Lipschitz con-
tinuous, it is standard that there is a unique global solution to (3.8). If u ≡ 0, we adopt the
shorthand xς � xς,0.

The aim of this section is to exhibit an η ∈ (0,1) as large as possible so that the following
holds: Given R̄ > 0, there is an M > 0 such that, for any adversary ς ∈ C0([0,1],Rn) and any
initial condition x0 ∈ R

n, we can find a control u ∈ L∞([0,1],Rn) with |u|∞ ≤ M ensuring
that the occupation time of xς,u of the set Rn \ BR̄ is at least η. It is important to emphasize
that the sup-norm of the control |u|∞ may neither depend on the adversary ς nor on the initial
condition x0 (otherwise the construction of u essentially becomes trivial). We shall actually
choose u as concatenation of the zero function and a universal control û ∈ L∞([0,N−1],Rn)

for a sufficiently large, but universal, N ∈ N.
We begin with a lemma:

LEMMA 3.8. There is a constant C > 0 independent of ς and u such that, for the solution
of (3.8), ∣∣xς,u(t) − xς(t)

∣∣2 ≤ C
(
1 + |u|2∞

)
t

for all t ∈ [0,1].
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PROOF. Since b is contractive on the large scale, there are constants D, κ̃ > 0 such that〈
b(x) − b(y), x − y

〉≤ D − κ̃|x − y|2
for all x, y ∈ R

n; see Remark 2.10(ii). Define now f (t) � eκ̃t |xς,u(t) − xς(t)|2, then

f ′(t) = κ̃f (t) + 2eκ̃t 〈b(xς,u(t)
)− b

(
xς(t)

)+ u(t), xς,u(t) − xς(t)
〉≤ 2Deκ̃ + |u(t)|2

κ̃

for all t ∈ [0,1]. Consequently, setting C � max(2D, κ̃−1), we have

∣∣xς,u(t) − xς(t)
∣∣2 ≤ C

∫ t

0
e−κ̃(t−s)(1 + ∣∣u(s)

∣∣2)ds

and the lemma follows at once. �

For a piecewise constant function u : [0,1] → R
n, let Du ⊂ [0,1] denote the finite set of

discontinuities. We then have the following control result.

PROPOSITION 3.9. Let η < 1
2 and R̄ > 0. Then there is a value M > 0 such that the

following holds true: For each ς ∈ C0([0,1],Rn) and each x0 ∈ R
n, we can find a piecewise

constant control u ∈ L∞([0,1],Rn) with |u|∞ + |Du| ≤ M such that the occupation time of
xς,u of the set Rn \ BR̄ is greater than or equal to η.

PROOF. We prove that there exist an integer N and a control û ∈ L∞([0,N−1]) with at
most two constant pieces independent of both the initial condition x0 and the adversary ς

such that either

Leb
({

t ∈ [
0,N−1] : ∣∣xς(t)

∣∣> R̄
})≥ η

N
or Leb

({
t ∈ [

0,N−1] : ∣∣xς,û(t)
∣∣> R̄

})≥ η

N
.

In the former case, we of course choose u ≡ 0, otherwise we let u = û. By the flow prop-
erty of well-posed ordinary differential equations, the solution to (3.8) restarted at time N−1

solves a similar equation (with new adversary ς̃ (·) = θN−1ς ∈ C0([0,1 − N−1],Rn) and ini-
tial condition xς,u(N−1)). Upon constructing û, we can thus easily deduce the proposition
by iterating this construction.

Suppose that the time spent by uncontrolled solution (x
ς
t )t∈[0,N−1] in R

n \ BR̄ is strictly
less than η

N
. We let Ax0,ς be the set of times t ∈ [0,N−1] at which |xς(t)| ≤ R̄. Note that

Ax0,ς is the union of a countable number of closed, disjoint intervals. By assumption, we
have Leb(Ax0,ς ) > (1 − η)N−1.

For δ � (2N)−1 and e any fixed unit vector, we define û to be the piecewise constant
function

û(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2R̄ + 1

(1 − 2η)δ
e t ∈ [0, δ],

− 2R̄ + 1

(1 − 2η)δ
e t ∈ (δ,2δ],

so that

∫ t

0
û(s) ds =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2R̄ + 1

(1 − 2η)δ
te t ∈ [0, δ],

2R̄ + 1

(1 − 2η)δ
(2δ − t)e t ∈ (δ,2δ].

We observe that

(3.9)
∣∣xς,û(t)

∣∣≥ ∣∣∣∣
∫ t

0
û(s) ds

∣∣∣∣− ∣∣xς(t)
∣∣− |b|Lip

∫ t

0

∣∣xς,û(s) − xς(s)
∣∣ds.
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Moreover, owing to Lemma 3.8, we can bound∫ t

0

∣∣xς,û(s) − xς(s)
∣∣ds ≤ √

C
(
1 + |û|∞) ∫ 2δ

0

√
s ds

(3.10)

= 2
√

C

3N
3
2

(
1 + 2(2R̄ + 1)N

1 − 2η

)
< |b|−1

Lip,

provided we choose the integer N = N(C, R̄, η, |b|Lip) large enough. Define the set Bx0,ς �
Ax0,ς ∩ [(1 − 2η)δ, (1 + 2η)δ]. Combining (3.9) and (3.10), we then certainly have that
|xς,û(t)| > R̄ for all t ∈ Bx0,ς . Since

Leb(Bx0,ς ) ≥ (1 − η)

N
− 2(1 − 2η)δ = η

N

and |û|∞ as well as |Dû| only depend on N and R̄, this finishes the proof. �

We conclude our study of the deterministic controlled ODE (3.8) with the following sta-
bility result which is proven by a standard Grönwall argument.

LEMMA 3.10. Let xς,u denote the solution to the controlled differential equation (3.8)
with initial condition x0 ∈ R

n and control u ∈ L∞([0,1],Rn). Then, for any w ∈ C0([0,1],
R

n), we have the bound ∣∣xς,u − x̃
∣∣∞ ≤ e|b|Lip

∣∣∣∣
∫ ·

0
u(s) ds − w

∣∣∣∣∞,

where x̃ is the unique solution to

x̃(t) = x0 +
∫ t

0
b
(
x̃(s)

)
ds + w(t) + ς(t), t ∈ [0,1].

3.3. Exponential stability of the conditional evolution. We now turn to the conditional
evolution of (3.2) derived in Lemma 3.6. For brevity, we drop the hat on the driving fBm
throughout this and the next section. Remember that we have to study SDEs driven by a
Riemann–Liouville process

B̃t � αH

∫ t

0
(t − u)H− 1

2 dWu,

where (Wt)t≥0 is a standard Wiener process. Recall from Definition 3.2 that, for ς ∈
C0(R+,Rn), �s,t (·, ς + σB̃) denotes the solution flow to the equation

(3.11) dXt = b(Xt) dt + dςt + σ dB̃t .

For brevity, let us henceforth set �
ς
s,t (·) � �s,t (·, ς + σB̃).

We first prove that—starting from any two initial points—the laws of the solutions con-
verge to each other with an exponential rate. This however does not yet imply the con-
vergence of L(�

ς
t (x)) to the first marginal of the invariant measure π of the equation

dXt = b(Xt) dt + σ dBt since, even if we choose X0 ∼ π , we have L(�
ς
t (X0)) �= π for

t > 0 in general.
As a preparation, we let (C0([0,1],Rn),HH ,μH ) denote the abstract Wiener space in-

duced by the Gaussian process (B̃t )t∈[0,1]. Recall that the Cameron–Martin space is given by
HH = KH (H 1

0 ), where

KH f (t) �

⎧⎪⎪⎨
⎪⎪⎩

αH

∫ t

0
(t − s)H− 3

2 f (s) ds H >
1

2
,

αH

d

dt

∫ t

0
(t − s)H− 1

2 f (s) ds H <
1

2
,

t ∈ [0,1],
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and

H 1
0 �

{
f =

∫ ·
0

ḟ (s) ds : ḟ ∈ L2([0,1],Rn)}
is the Cameron–Martin space of the standard Wiener process. The inner product on HH is
defined by 〈KH f,KH g〉HH

� 〈ḟ , ġ〉L2 .
We shall make use of the following simple observation.

LEMMA 3.11. Let f : [0,1] → R
n be piecewise linear with f (0) = 0. Then, for each

H ∈ (0,1), f ∈ HH and

(3.12) ‖f ‖HH
� |ḟ |∞(

1 + |Dḟ |).
PROOF. It follows from [43], Theorem 5 (see also [47]) that the inverse of KH exists

on the set of Lipschitz functions and there is a numerical constant �H > 0 such that K−1
H =

�HK1−H . Notice also that we have d
dt
K−1

H f =K−1
H ḟ .

Let us first consider the case H < 1
2 . The bound (3.12) is an immediate consequence of∣∣∣∣ d

dt
K−1

H f (t)

∣∣∣∣≤ �H

∫ t

0
(t − s)−H− 1

2
∣∣ḟ (s)

∣∣ds � |ḟ |∞ ∀t ∈ [0,1].
For H > 1

2 we let τ1, . . . , τk denote the jump points of ḟ in the interval [0, t). Notice that∣∣∣∣ d

dt
K−1

H f (t)

∣∣∣∣≤ �H

∣∣∣∣∣ d

dt

(
k−1∑
i=1

∫ τ1

0
(t − s)

1
2 −H ḟ (s) ds + · · · +

∫ t

τk

(t − s)
1
2 −H ḟ (s) ds

)∣∣∣∣∣
� |ḟ |∞(

1 + |Dḟ |)t 1
2 −H .

Since 1 − 2H > −1, we obtain

‖f ‖HH
=
∥∥∥∥ d

dt
K−1

H f

∥∥∥∥
L2

� |ḟ |∞(
1 + |Dḟ |),

as required. �

The next important lemma lifts the control result of Proposition 3.9 to solutions of SDEs
with additive noise.

LEMMA 3.12. Let b ∈ S(κ,R,λ) and σ ∈ L(Rn,Rn) be invertible. Then, for any R̄ > 0
and any η ∈ (0, 1

2), there is constant aη,R̄ > 0 such that the following holds: For each x ∈R
n

and each ς ∈ C0(R+,Rn), we can find an event Ax,ς with P(Ax,ς ) ≥ aη,R̄ such that∫ 1

0
1{t :|�ς

t (x)(ω)|>R̄}(s) ds > η ∀ω ∈ Ax,ς .

PROOF. Let ux,ς ∈ L∞([0,1],Rn) be the piecewise constant control furnished by Propo-
sition 3.9 such that the occupation time of xς,ux,ς of the set Rn\BR̄+1 is greater than η. We set
Ux,ς �

∫ ·
0 ux,ς (s) ds and note that Ux,ς is piecewise linear. Lemma 3.10 allows us to choose

an ε > 0 (independent of x and ς ) such that, on the event Ax,ς � {|Ux,ς − σB̃|∞ ≤ ε}, the
occupation time of (�

ς
h (x))h∈[0,1] of Rn \ BR̄ exceeds η.

It remains to show that infx,ς P(Ax,ς ) > 0. To this end, we first note that Ux,ς ∈ HH by
Lemma 3.11. By the Cameron–Martin formula (see, e.g., [6]),

P(Ax,ς ) ≥ P
(∣∣σ−1Ux,ς − B̃

∣∣∞ ≤ |σ |−1ε
)

= exp
(
−1

2

∥∥σ−1Ux,ς

∥∥2
HH

)∫
{|x|∞≤|σ |−1ε}

e
〈x,Ux,ς 〉HH μH (dx).
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Consequently, Jensen’s inequality and spherical symmetry give

(3.13) P(Ax,ς ) ≥ exp
(
−1

2

∥∥σ−1Ux,ς

∥∥2
HH

)
P
(|B̃|∞ ≤ |σ |−1ε

)
.

Combining Proposition 3.9 and Lemma 3.11, we obtain that supx,ς ‖Ux,ς‖HH
� M(1 + M).

This concludes the proof. �

PROPOSITION 3.13. Let σ ∈ L(Rn,Rn) be invertible. Then, for any κ,R > 0 and any
p ≥ 1, there exists a number 	 = 	(κ,R,p) ∈ (0, κ) such that the following holds: If b ∈
S(κ,R,	), there are constants c,C > 0 such that, for any ς ∈ C0([0,1],Rn),

Wp(L(�ς
t (Y )

)
,L

(
�

ς
t (Ỹ )

))≤ CWp(L(Y ),L(Ỹ )
)
e−ct

for all t ≥ 0.

PROOF. Write Xt � �
ς
t (Y ) and Zt = �

ς
t (Ỹ ). Let μt � L(Xt) and νt � L(Zt ), thus

(Xt ,Zt) is a synchronous coupling of μt and νt . Our strategy for proving the exponential
convergence of t �→ Wp(μt , νt ) is to show that, for any t > 0, the evolution of (Xs)s∈[t,t+1]
conditional on Ft spends a sufficient amount of time in the contractive region {|x| > R}. As
noted in Example 3.4(i), there is an independent increment decomposition (θt B̃)h = Qt

h +
B̃t

h for the Riemann–Liouville process. Using this and the conditional evolution derived in
Lemma 3.5, we find

E
[|Xt+1 − Zt+1|p]
= E

[
E
[∣∣�ς

t,t+1(Xt) − �
ς
t,t+1(Zt )

∣∣p|Ft

]]
= E

[
E
[∣∣�1(Xt , θtς + σθt B̃) − �1(Zt , θtς + σθt B̃)

∣∣p|Ft

]]
= E

[
E
[∣∣�1

(
Xt, θtς + σQt + σB̃t )− �1

(
Zt, θtς + σQt + σB̃t )∣∣p|Ft

]]
= E

[
E
[∣∣�θtς+�

1 (x) − �
θtς+�
1 (z)

∣∣p]|x=Xt ,z=Zt ,
�=σQt

]
,

(3.14)

where in the last step we also used that (B̃t
h)h≥0

d= (B̃h)h≥0.
By assumption, the drift b does not expand by more than a factor of 	 on all of Rn. We

therefore have the pathwise estimate

(3.15)
∣∣�θtς+�

s,t (x) − �
θtς+�
s,t (z)

∣∣p ≤ ep(t−s)	|x − z|p

for all 0 ≤ s < t ≤ 1. Let η ∈ (0, 1
2) and κ̄ ∈ (0, κ) be such that � � κ̄η−	(1−η) > 0 (recall

that we assume 	 < κ). Let R̄ > R be the corresponding radius furnished by Lemma 2.9. For
any x ∈ R

n and any ς, � ∈ C0(R+,Rn), let Ax,θt ς+� be the event from Lemma 3.12. Recall
that P(Ax,θt ς+�) ≥ aη,R̄ > 0 and

∫ 1

0
1{s:|�θt ς+�

s (x)(ω)|>R̄}(r) dr > η ∀ω ∈Ax,θt ς+�.

Since � > 0, by possibly decreasing 	 we can also ensure that

(3.16) 0 < 	 <
1

p
log

(1 − aη,R̄e−p�

1 − aη,R̄

)
.

Owing to pathwise continuity of h �→ �
θtς+�
h (x), there are random times t1, . . . , t2N(ω) such

that, for all ω ∈ Ax,θt ς+�:
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• 0 ≤ t1(ω) < · · · < t2N(ω)(ω) ≤ 1,

• ∑N(ω)
i=1 (t2i (ω) − t2i−1(ω)) ≥ η, and

• ⋃N(ω)
i=1 (t2i−1(ω), t2i (ω)) ⊂ {h ∈ [0,1] : |�θtς+�

h (x)(ω)| > R̄}.
Together with (3.15) it follows that, on the event Ax,θt ς+�,∣∣�θtς+�

1 (x) − �
θtς+�
1 (z)

∣∣p
= ∣∣�θtς+�

t2N,1

(
�

θtς+�
t2N

(x)
)− �

θtς+�
t2N,1

(
�

θtς+�
t2N

(z)
)∣∣p

≤ ep(1−t2N)	
∣∣�θtς+�

t2N
(x) − �

θtς+�
t2N

(z)
∣∣p

≤ ep(1−t2N)	e−p(t2N−t2N−1)κ̄
∣∣�θtς+�

t2N−1
(x) − �

θtς+�
t2N−1

(z)
∣∣p

≤ · · · ≤ exp

[
p

(
	

N∑
i=0

(t2i+1 − t2i ) − κ̄

N∑
i=0

(t2i − t2i−1)

)]
|x − z|p

≤ e−p�|x − z|p,

where we have set t2N+1 � 1 for convenience. On the complementary event � \Ax,θt ς+�, we
apply the trivial estimate (3.15). Inserting these bounds back into (3.14), we conclude that

E
[|Xt+1 − Zt+1|p]≤ (

(1 − aη,R̄)ep	 + aη,R̄e−p�)
E
[|Xt − Zt |p]� ρE

[|Xt − Zt |p].
Observe that ρ < 1 by (3.16). Finally, a straight-forward induction shows that

(3.17)

Wp(L(�ς
t (Y )

)
,L

(
�

ς
t (Ỹ )

))≤ ‖Xt − Zt‖Lp ≤ e	ρ[t]‖Y − Ỹ‖Lp

≤ e	

ρ
e−| logρ|t‖Y − Ỹ‖Lp,

where [·] denotes the integer part. Minimize over the set of couplings of L(Y ) and L(Ỹ ) to
conclude the proof. �

A more explicit expression for the threshold value 	(κ,R,p) can be derived by the method
outlined in Remark 3.25 below. We abstain from including further details in this work. Let us
however introduce the following notation.

DEFINITION 3.14. Let κ,R > 0 and p ≥ 1. We abbreviate Sp(κ,R) � S(κ,R,	(κ,R,

p)) with the constant from Proposition 3.13.

By Lemma 3.6, the Wasserstein bound of Proposition 3.13 lifts to bounds on the fast
motion with frozen slow input (3.2). We obtain the following Lipschitz dependence of the
flow �̄ on the initial value.

COROLLARY 3.15. Let (Ft )t≥0 be a filtration compatible with the fBm B̂ . Let 0 ≤ s ≤ t

and let X, Y , and Ỹ be Fs -measurable random variables. Suppose that there are κ,R > 0
such that b(x, ·) ∈ S1(κ,R) for every x ∈ R

d . Then there is a constant c > 0 such that, for
any Lipschitz continuous function h :Rd ×R

n →R,∣∣E[h(X,�̄X
s,t (Y )

)− h
(
X,�̄X

s,t (Ỹ )
)|Fs

]∣∣� |h|Lip|Y − Ỹ |e−c
|t−s|

ε .

If, in addition, b(x, ·) ∈ Sp(κ,R) for all x ∈ R
d , then also∥∥�̄X

s,t (Y ) − �̄X
s,t (Ỹ )

∥∥
Lp � ‖Y − Ỹ‖Lpe−c

|t−s|
ε .
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PROOF. The first estimate is an immediate consequence of Lemma 3.6 and Kantorovich–
Rubinstein duality. The second bound follows from the fact that we used a synchronous
coupling in the proof of Proposition 3.13. �

The proof of Proposition 3.13 shows that its conclusion actually holds if B̃ is replaced by
another process Z with similar properties.

REMARK 3.16. Let Z be a process with locally independent increment decomposition
θtZ = Z̄t + Z̃t . Assume that:

(i) the Ft -adapted part Z̄t takes values in C0(R+,Rn) and
(ii) there is a unit vector e ∈ R

n such that, for each t ≥ 0, L((Z̃t
h · e)h∈[0,1]) is supported

on all of C0([0,1]).
Then a statement similar to Proposition 3.13 holds.

EXAMPLE 3.17. Suppose that Z̃t
h = ∫ t+h

t G(t + h − s) dWs for some kernel G : R+ →
L(Rn,Rn) which is square integrable at the origin and continuous on (0,∞). Then the re-
quirement (ii) in Remark 3.16 holds if

∫ t
0 |G(s)|ds > 0 for each t > 0. Indeed, this can be

shown by a clever application of Titmarsh’s convolution theorem as in [12], Lemma 2.1.

The example shows that in particular an fBm of any Hurst parameter H ∈ (0,1) falls in
the regime of Remark 3.16. Hence, we have the following corollary to Proposition 3.13.

COROLLARY 3.18. Let p ≥ 1 and suppose that b ∈ Sp(κ,R) for some κ,R > 0. Let
(Xt)t≥0 be the solution to

(3.18) dXt = b(Xt) dt + σ dBt

started in the generalized initial condition μ, where (Bt )t≥0 is an fBm with Hurst parameter
H ∈ (0,1) and σ ∈ L(Rn,Rn) is invertible. Then there is a unique invariant measure Iπ ∈
P(Rn × HH ) for the equation (3.18) in the sense of Definition 2.1. Moreover, writing π =
�∗

RnIπ for the first marginal, there are constants c,C > 0 such that

(3.19) Wp(L(Xt),π
)≤ CW

p(μ,Iπ)e−ct

for all t ≥ 0.

PROOF. By Proposition 2.4, we know that there is an invariant measure Iπ to (3.18) with
moments of all orders. The Wasserstein estimate (3.19) then follows by the very same argu-
ments as in Proposition 3.13. The only difference is that we now have to specify a generalized
initial condition ν ∈ P((Rn × HH )2) for the coupling (Xt ,Zt ); see Section 2.1. Unlike for
the conditioned dynamics, we have Zt ∼ π if we start Z in the invariant measure Iπ . In or-
der for our previous argument to apply, we need to ensure that the past of the noises in the
synchronous coupling coincide. In (3.17) we can thus only minimize over couplings in the
set {

ρ ∈P
((
R

n ×HH

)2) : ρ
(
R

n ×R
n × �HH

)= 1
}
,

which precisely yields (3.19). �
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3.4. Quenched convergence to the invariant measure. The other distance, which will play
a role in Section 4.2 below, is between L(�

ς
t (Y )) and the stationary law π of the equation

(3.18). We stress that—contrarily to the proof of Corollary 3.18—we cannot simply start the
process in the invariant measure. In fact, the measure π is not stationary for (3.11) since the
increments of B̃ are not stationary. It is therefore necessary to wait for a sufficient decay
of the deterministic “adversary” ς , whence we only find an algebraic rate of convergence.
Before we state the result, let us first illustrate that there is indeed no hope for an exponential
rate.

EXAMPLE 3.19. Let

dXt = −Xt dt + dB̃t , dYt = −Yt dt + dBt .

If we start both X and Y in the generalized initial condition δ0 ⊗ W, then L(Xt) = N(0,�2
t )

and L(Yt ) = N(0, �̄2
t ) where

�2
t = �̄2

t −E

[∣∣∣∣
∫ t

0
e−(t−s) ˙̄Bs ds

∣∣∣∣2
]
.

In particular, W2(L(Xt),L(Yt )) = |�t − �̄t | � t−(1−Ĥ ) uniformly in t ≥ 1. Since it is easy

to see that W2(L(Yt ),π) � e−t , it follows that W2(L(Xt),π) � t−(1−Ĥ ).

PROPOSITION 3.20. Suppose that b ∈ Sp(κ,R) for some κ,R > 0 and σ ∈ L(Rn,Rn) is
invertible. Let p ≥ 1, ς ∈ �α for some α > 0, and Y be an F0-measurable random variable.
Then, for each β < min(α,1 − H), there is a constant C > 0 such that

(3.20) Wp(L(�ς
t (Y )

)
, π

)≤ C
(1 + ‖ς‖�β )(1 +Wp(L(Y ),π))

tβ

for all t > 0.

PROOF. Fix t ≥ 1, abbreviate X � �
ς· (Y ), and let Z be the stationary solution to the

equation (3.18). We assume that X and Z are driven by the same Wiener process. Let us
first consider the case p ≥ 2. Recall the following locally independent decompositions from
Section 3.1:

θtB = B̄t + B̃t , θt B̃ = Qt + B̃t .

Remember also that the “smooth” part of the fBm increment can be further decomposed as
B̄t = P t + Qt ; see Example 3.4(iii). Therefore,

E
[|Xt+1 − Zt+1|p]
= E

[
E
[∣∣�t,t+1(Xt , ς + σB̃) − �t,t+1(Zt , σB)

∣∣p|Ft

]]
= E

[
E
[∣∣�1

(
Xt, θtς + σQt + σB̃t )− �1

(
Zt, σP t + σQt + σB̃t )∣∣p|Ft

]]
= E

[∣∣�θtς+�
1 (x) − ��̄+�

1 (z)
∣∣p| x=Xt ,z=Zt ,

�=σQt ,�̄=σP t

]
.

(3.21)

Write Rh � �
θtς+�
h (x) and Sh � ��̄+�

h (z). Notice that, since ς and �̄ are differentiable,

d

dh
|Rh − Sh|p = p

〈
ς̇t+h − ˙̄�h + b(Rh) − b(Sh),Rh − Sh

〉|Rh − Sh|p−2

≤ p(	 + γ )|Rh − Sh|p +
(

p − 1

γp

)p−1(|ς̇t+h| + | ˙̄�h|)p
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for any γ > 0, where 	 = 	(κ,R,p) is the expansion threshold derived in Proposition 3.13.
It follows that, for any 0 ≤ h1 ≤ h2 ≤ 1,

|Rh2 − Sh2 |p

≤ |Rh1 − Sh1 |pep(	+γ )(h2−h1)

+
(

p − 1

γp

)p−1 ∫ h2

h1

ep(	+γ )(h2−s)(|ς̇t+s | + | ˙̄�s |)p ds

≤ |Rh1 − Sh1 |pep(	+γ )(h2−h1) + Cγ (h2 − h1),

(3.22)

where we abbreviated

Cγ �
(

p − 1

γp

)p−1(‖ς‖�β

tβ
+ | ˙̄�|∞

)p

.

We now argue similar to Proposition 3.13: Pick η ∈ (0, 1
2) and κ̄ ∈ (0, κ) such that � �

ηκ̄ − (1 − η)	 > 0. Let R̄ > 0 be the corresponding constant of Lemma 2.9 and Ax,θt ς+�

be the event furnished by Lemma 3.12. As before, we write t1, . . . , t2N(ω) for the random
times characterizing the excursions of (Rh)h∈[0,1] outside of BR̄ , see Proposition 3.13. By an
argument similar to (3.22),

(3.23) |Rt2i
− St2i

|p ≤ |Rt2i−1 − St2i−1 |pep(γ−κ̄)(t2i−t2i−1) + Cγ (t2i − t2i−1)

for all i = 1, . . . ,N(ω) on the set Ax,θt ς+�. Combining (3.22) and (3.23), we further find on
this set

|R1 − S1|p ≤ ep(	+γ )(1−t2k)|Rt2k
− St2k

|p + Cγ (1 − t2k)

≤ ep(	+γ )(1−t2k)ep(γ−κ̄)(t2k−t2k−1)|Rt2k−1 − St2k−1 |p + Cγ (1 − t2k−1)

≤ · · · ≤ ep(	+γ )(1−η)+p(γ−κ̄)η|x − z|p + Cγ ≤ e−p(�−γ )|x − z|p + Cγ .

Choose γ > 0 sufficiently small such that simultaneously � − γ > 0 and

ρ � (1 − aη,R̄)ep(	+γ ) + aη,R̄e−p(�−γ ) < 1.

This shows that

(3.24) E
[|R1 − S1|p]≤ ρ|x − y|p + Cγ .

It is clear that the estimate (3.24) also holds for p < 2 with the constant

Cγ = 1

(2γ )
p
2

(‖ς‖�β

tβ
+ | ˙̄�|∞

)p

and a slightly increased ρ < 1. Since P t = B̄t+·, Lemma 3.7 and the identity (3.21) show that

E
[|Xt+1 − Yt+1|p]≤ ρE

[|Xt − Yt |p]+ C(1 + ‖ς‖p
�β

)

tpβ

for some numerical constant C > 0 independent of t and ς . Therefore, iterating this bound
we find

(3.25) E
[|Xt − Yt |p]� e−ct

E
[|X0 − Y0|p]+ C

(
1 + ‖ς‖p

�β

) [t]−2∑
i=0

ρi

(t − 1 − i)pβ
.

The last sum is easily seen to be � t−pβ uniformly in t ≥ 2 and the claim follows at once.
�
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By a strategy inspired by [39], Section 7 (see also [21]), we can lift Proposition 3.20 to
a total variation bound. Since the exposition of Panloup and Richard does not immediately
transfer to the problem at hand, we choose to include the necessary details. Consider the
system

(3.26)
dXs = b(Xs) ds + dςs + σdB̃s,

dZs = b(Zs) ds + σ dBs + σϕt (s) ds,

where X0 is an arbitrary initial condition and Z is the stationary solution of the first equation.
Our aim is to exhibit an adapted integrable function ϕt : [0, t + 1] → R

n which vanishes on
[0, t] and ensures that Xt+1 = Zt+1. To this end, we define

(3.27) ϕt (s) �

⎧⎪⎪⎨
⎪⎪⎩
(

2
|Xt − Zt | 1

2

|Xs − Zs | 1
2

+ λ

)
σ−1(Xs − Zs) − ˙̄Bs + σ−1ς̇s s ∈ [t, t + 1],

0 otherwise.

LEMMA 3.21. Let t ≥ 1, ς ∈ �α , b ∈ S(κ,R,λ), and consider the system (3.26) with ϕt

defined in (3.27). Then Xt+1 = Zt+1 and, for any β < α ∧ (1 − H),

(3.28)

∣∣ϕt
∣∣∞ � |Xt − Zt | +

‖ς‖�β + ‖B̄‖�β

tβ
,

∣∣ϕ̇t
∣∣∞ � |Xt − Zt | 1

2 + |Xt − Zt | +
‖ς‖�β + ‖B̄‖�β

t1+β
,

where the derivative of ϕt is understood as right- and left-sided derivative at the boundaries
t and t + 1, respectively.

PROOF. The argument is a minor modification of [21], Lemma 5.8: Abbreviate f (s) �
|Xs − Zs |2, then

f ′(s) = 2
〈
b(Xs) − b(Zs) + ς̇s − σ ˙̄Bs − σϕt (s),Xs − Zs

〉≤ −4|Xt − Zt | 1
2 f (s)

3
4

since b ∈ S(κ,R,λ). It follows that

|Xs − Zs | 1
2 ≤ |Xt − Zt | 1

2 − (s − t)|Xt − Zt | 1
2 ∀s ∈ [t, t + 1],

whence Xt+1 = Zt+1. This also implies∣∣∣∣ d

ds
(Xs − Zs)

∣∣∣∣≤ (|b|Lip + 2 + λ
)|Xt − Zt | 1

2 |Xs − Zs | 1
2

and consequently

∣∣∣∣ d

ds

(
Xs − Zs

|Xs − Zs | 1
2

)∣∣∣∣≤ 3

2

| d
ds

(Xs − Zs)|
|Xs − Zs | 1

2

� |Xt − Zt | 1
2 .

The bounds (3.28) follow at once. �

REMARK 3.22. We stress that the bound on |ϕ̇t |∞ only holds for a Lipschitz continuous
drift b.

It is now easy to prove the following result.
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PROPOSITION 3.23. Assume the conditions of Proposition 3.20 for p = 1. Then, for any
β < α ∧ (1 − H), it holds that∥∥L(�ς

t (Y )
)− π

∥∥
TV � t−

β
3
(
1 + ‖ς‖�β

)(
1 +W1(L(Y ),π

)) ∀t > 0.

PROOF. Let B and B ′ be H -fBms built from underlying two-sided Wiener processes W

and W ′, see (2.1). Recall that B̃ is the Riemann–Liouville process associated with B . Let X

and Z solve

dXs = b(Xs) ds + dςs + σdB̃s,

dZs = b(Zs) ds + σ dB ′
s,

(3.29)

where X0
d= Y and Z is the stationary solution. Fix t > 1. We shall use the bound∥∥L(�ς

t+1(Y )
)− π

∥∥
TV = inf

(B̃,B ′)
P(Xt+1 �= Zt+1) ≤ inf

(W,W ′)
P(Xt+1 �= Zt+1)

≤ inf
(W,W ′)

P
(
Xt+1 �= Zt+1, |Xt − Zt | ≤ δ

)
+ inf

(W,W ′)
P
(|Xt − Zt | > δ

)
.

(3.30)

Taking W and W ′ equal, we are in the setting of Proposition 3.20. The estimate (3.25) thus
shows that, for any δ ∈ (0,1],

inf
(W,W ′)

P
(|Xt − Zt | > δ

)≤ C(1 + ‖ς‖�β )(1 +W1(L(Y ),π))

δtβ
.

To bound the first term in (3.30) we exploit the fact that Xt and Zt are already close so that we
can couple them at time t +1 with a controlled cost. Let ϕt be the function from Lemma 3.21;
in particular ϕt (s) = 0 for s < t . We observe that B ′ = B + ∫ ·

0 ϕt(s) ds on [0, t + 1] if and
only if W ′ = W + ∫ ·

−∞ ψt(s) ds on (−∞, t + 1], where for a suitable constant γH ∈ R,

ψt(s) =
⎧⎨
⎩γH

d

ds

∫ s

t
(s − u)

1
2 −H ϕt(u) du s ∈ [t, t + 1],

0 s ∈ (−∞, t),

see [21], Lemma 4.2, for details. Let T be the linear transformation T (w) = w +∫ ·
−∞ ψt(s) ds, w ∈ C((−∞, t + 1],Rn). We return to the equations (3.29). By the construc-

tion, we have Xt+1 = Zt+1 for those realizations for which W ′ = T (W). In particular,

inf
(W,W ′)

P
(
Xt+1 �= Zt+1, |Xt − Zt | ≤ δ

)≤ inf
(W,W ′)

P
(
W ′ �= T (W), |Xt − Zt | ≤ δ

)
.

Throughout this proof, all stochastic processes are considered only up to time t + 1. Let
P̂(·) = P(·||Xt −Zt | ≤ δ). Let μ and ν denote the laws under P̂ of W and T (W), respectively.
We take an optimal coupling (Ŵ , Ŵ ′) achieving the total variation distance ‖μ− ν‖TV. Then
the Pinsker–Csizsar inequality, a consequence of the Girsanov theorem, shows that

inf
(W,W ′)

P
(
Xt+1 �= Zt+1, |Xt − Zt | ≤ δ

)≤ ‖μ − ν‖TVP
(|Xt − Zt | ≤ δ

)

≤ 1

2
E
P̂

[∫ t+1

t

∣∣ψt(s)
∣∣2 ds

] 1
2
P
(|Xt − Zt | ≤ δ

)
.

On integration by parts we find

∫ t+1

t

∣∣ψt(s)
∣∣2 ds �

⎧⎪⎪⎨
⎪⎪⎩
∣∣ϕt

∣∣2∞ H <
1

2
,

∣∣ϕt
∣∣2∞ + ∣∣ϕ̇t

∣∣2∞ H >
1

2
.
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In either case, (3.28) yields

∫ t+1

t

∣∣ψt(s)
∣∣2 ds � δ +

‖ς‖2
�β

+ ‖B̄‖2
�β

t2β

on the event {|Xt − Zt | ≤ δ} and therefore

inf
(W,W ′)

P
(
Xt+1 �= Zt+1, |Xt − Zt | ≤ δ

)
�

√
δ + ‖ς‖�β + ‖‖B̄‖�β ‖L2

tβ
.

Combining this with (3.30) and Lemma 3.7, we have proven

(3.31)
∥∥L(�ς

t+1(Y )
)− π

∥∥
TV �

(
1 + ‖ς‖�β

)(
1 +W1(L(Y ),π

))(√
δ + 1

δtβ

)
,

which is minimized for δ = t−
2β
3 . �

By duality and Lemma 3.6, we obtain the following ergodic theorem as a corollary to
Propositions 3.20 and 3.23. It provides the fundamental estimates for our proof of the aver-
aging principle for the fractional slow-fast system with feedback dynamics.

COROLLARY 3.24. Let 0 ≤ s ≤ t and let X, Y be Fs-measurable random variables.
Suppose that there are κ,R > 0 such that b(x, ·) ∈ S1(κ,R) for every x ∈ R

d . Then, for any
ζ < 1 − Ĥ and:

(i) any Lipschitz function h :Rd ×R
n →R,

∣∣E[h(X,�̄X
s,t (Y )

)− h̄(X) |Fs

]∣∣� |h|Lip
(
1 + ∥∥ε−Ĥ ¯̂

Bs
ε·
∥∥
�ζ

)(
1 + |Y |)(1 ∧ εζ

|t − s|ζ
)
.

(ii) any bounded measurable function h : Rd ×R
n →R,

∣∣E[h(X,�̄X
s,t (Y )

)− h̄(X) |Fs

]∣∣� |h|∞(
1 + ∥∥ε−Ĥ ¯̂

Bs
ε·
∥∥
�ζ

)(
1 + |Y |)(1 ∧ ε

ζ
3

|t − s| ζ
3

)
.

Here, as usual, h̄(x) = ∫
Rn h(x, y)πx(dy).

3.5. Geometric ergodicity for SDEs driven by fractional Brownian motion. Applying the
arguments of Propositions 3.13 and 3.23 to the equation

(3.32) dYt = b(Yt ) dt + σ dBt ,

we obtain an exponential rate of convergence improving the known results:

PROOF OF THEOREM 1.3. In Corollary 3.18 we have already proven the Wasserstein
decay (1.7):

Wp(L(Yt ),π
)≤ Ce−ct

W
p(μ,π), ∀t ≥ 0.

The total variation rate (1.8) then follows by a similar Girsanov coupling as in the proof of
Proposition 3.23. In fact, we now consider

dXs = b(Xs) ds + σdBs,

dZs = b(Zs) ds + σ dBs + σϕt (s) ds,
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where X is started in the generalized initial condition μ and Z is the stationary solution. Let
us define

ϕt(s) � −
(

4|Xt − Zt | 1
2

|Xs − Zs | 1
2

+ λ

)
σ−1(Xs − Zs)1[t,t+1](s).

It can then be checked similar to Lemma 3.21 that Xt+1 = Yt+1 and∣∣ϕt
∣∣∞ � |Xt − Zt |,

∣∣ϕ̇t
∣∣∞ � |Xt − Zt | 1

2 + |Xt − Zt |.
Consequently, the estimate (3.31) becomes

(3.33)
∥∥L(Yt+1) − π

∥∥
TV �W

1(μ,π)

(√
δ + e−ct

δ

)

and choosing δ = e− ct
2 shows a geometric decay of the total variation distance at a fixed time.

To get asserted decay on the path space (1.8), we observe that, by the very same argument as
in [39], Proposition 7.2(iii), ϕt actually induces a coupling on the path space with a similar
cost. Hence, ‖L(Yt+·) − Pπ‖TV is still bounded by a quantity proportional to the right-hand
side of (3.33) and (1.8) follows at once. �

REMARK 3.25. The admissible repulsivity strength 	(κ,R,p) obtained in the proof of
Theorem 1.3 is certainly not optimal. We therefore abstain from deriving a quantitative upper
bound. Let us however indicate one way to obtain such an estimate: Start from (3.13) in the
proof of Lemma 3.12 and recall a standard result (see, e.g., [44], Theorem D.4) saying that

P
(|B̃|∞ ≤ |σ |−1ε

)≥ 1 − K
(|σ |−1ε

) 1
H e−H(|σ |−1ε)2

for a known numerical constant K > 0. Finally optimize over all constants involved.

Let us finally sketch the main differences for a more general Gaussian driving noise G

in equation (3.32). We assume that G has continuous sample paths and a moving average
representation similar to (2.1) with a kernel G :R → L(Rn,Rn) which vanishes on (−∞,0],
is continuous on (0,∞), and satisfies∫ t

−∞
∣∣G(t − u) −G(−u)

∣∣2 du < ∞
for each t > 0. Then

Gt =
∫ t

−∞
G(t − u) −G(−u)dWu, t ≥ 0,

has the locally independent increment decomposition

(θtG)h =
∫ t

−∞
G(t + h − u) −G(t − u)dWu +

∫ t+h

t
G(t + h − u)dWu � Ḡt

h + G̃t
h

with respect to any compatible filtration. Moreover, we require that∫ δ

0

∣∣G(u)
∣∣du > 0

for each δ > 0. We remark that (up to a time-shift) this is certainly implied by the assump-
tions of Panloup and Richard; see [39], Condition (C2). As we have seen in Example 3.17,
the Cameron–Martin space of (G̃h)h∈[0,1] then densely embeds into C0([0,1],Rn). Thus Re-
mark 3.16 applies and we obtain a geometric rate in Wasserstein distance, provided that there
is a stationary measure for the equation dYt = b(Yt ) dt + σ dGt .
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4. The fractional averaging principle. Let us remind the reader of the setup of Theo-
rem 1.2: We consider the slow-fast system

dXε
t = f

(
Xε

t , Y
ε
t

)
dt + g

(
Xε

t , Y
ε
t

)
dBt , Xε

0 = X0,(4.1)

dY ε
t = 1

ε
b
(
Xε

t , Y
ε
t

)
dt + 1

εĤ
σ dB̂t , Y ε

0 = Y0,(4.2)

driven by independent d-dimensional and n-dimensional fractional Brownian motions B and
B̂ with Hurst parameters H ∈ (1

2 ,1) and Ĥ ∈ (1 − H,1), respectively. We claim that Xε
t

converges to the solution of the naïvely averaged equation (1.3) as ε → 0.
Let us also introduce the following filtrations for later reference:

Gt � σ(Bs, s ≤ t), Ĝt � σ(B̂s, s ≤ t), Ft � Gt ∨ Ĝt .

To be utterly precise, we actually use the right-continuous completion of F in order to ensure
that hitting time of an open sets by a continuous, adapted process is a stopping time. Observe
that F is compatible with the fBm B̂; see Section 3.1.

We shall first convince ourselves that, under the conditions of Theorem 1.2, the pathwise
solution of the slow-fast system (4.1)–(4.2) exists globally. If the drift vector field b : Rd ×
R

n →R
n in (4.2) were globally Lipschitz continuous, this would be an easy consequence of

the standard Young bound [50]:

(4.3)
∣∣∣∣
∫ t

s
fr dhr

∣∣∣∣� |f |Cβ |h|Cα |t − s|α+β + |fs ||h|Cα |t − s|α,

provided that α + β > 1. We shall also prove a bound on the moments of the Hölder norm of
the solution for any fixed scale ε. The main technical estimates in the proof of Theorem 1.2
are delegated to Section 4.2, allowing us to easily conclude the argument in Section 4.3 by
appealing to Lê’s stochastic sewing lemma [29].

4.1. A solution theory for the slow-fast system. We shall begin with a deterministic (path-
wise) existence and uniqueness result. Fix a terminal time T > 0 and let h = (h1,h2) ∈
Cα1([0, T ],Rm) × Cα2([0, T ],Rn), where α1 > 1

2 and α2 > 1 − α1. We consider the Young
differential equation

(4.4) z(t) =
(
z1(t)

z2(t)

)
= z0 +

∫ t

0

(
F1
(
z(s)

)
F2
(
z(s)

)) ds +
∫ t

0
G
(
z(s)

)
dhs .

We impose the following assumptions on the data.

CONDITION 4.1. We shall assume all of the following:

(i) F1 :Rd ×R
n →R

d is bounded and globally Lipschitz continuous.
(ii) F2 : Rd × R

n → R
n is locally Lipschitz continuous and of linear growth, that is,

|F2(z, x)| � 1 + |x| + |z| for all x ∈ R
n and z ∈R

d . Moreover, there are κ,D > 0 such that〈
F2(z, x) − F2(z, y), x − y

〉≤ D − κ|x − y|2 ∀x, y ∈ R
n,∀ z ∈R

d .

(iii) G : Rd × R
n → L(Rm+n,Rd+n) is of the form G =

(
G1 0
0 G2

)
with G1 ∈ C2

b(Rd ×
R

n,L(Rm,Rd)) and G2 ∈ L(Rd,Rd) is constant.

Our proof for the well-posedness of (4.4) and the nonexplosiveness is based on the follow-
ing comparison lemma, versions of which will be of repeated use in the sequel.
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LEMMA 4.2. Let F2 : Rd × R
n → R

n satisfy Condition 4.1(ii) and let ς ∈ C0(R+,Rn),
z ∈ C(R+,Rd).

(i) Then, for any x0 ∈R
n, there are unique global solutions to

x(t) = x0 +
∫ t

0
F2
(
z(s), x(s)

)
ds + ςt , y(t) = x0 −

∫ t

0
y(s) ds + ςt .

Furthermore, on any finite time interval [0, T ], the difference of the solutions satisfies the
bound

(4.5)
∣∣x(t) − y(t)

∣∣2 �
∫ t

0
e−κ(t−s)(1 + ∣∣y(s)

∣∣+ ∣∣z(s)∣∣)2 ds

for all t ∈ [0, T ]. In particular,

(4.6) |x|∞ � 1 + |x0| + |ς |∞ + |z|∞.

(ii) If, in addition, ς ∈ Cα([0, T ],Rn) for some α > 0, then x ∈ Cα([0, T ],Rn) and the
following bound holds:

(4.7) |x|Cα � 1 + |x0| + |z|∞ + |ς |Cα .

PROOF. Since F2 is locally Lipschitz, it is clear that uniqueness holds for the equation
defining x. To see existence, first notice that x̃(t) � x(t) − ςt solves

x̃(t) = x0 +
∫ t

0
F2
(
z(s), x̃(s) + ςs

)
ds.

Set ϒ(s, x) = F2(z(s), x + ςs). This function is jointly continuous in (s, x). Therefore, a
local solution exists by the Carathéodory theorem.

On the other hand, global existence and uniqueness of y is standard. Consequently, the
required nonexplosion statement follows easily upon establishing (4.5). To this end, we first
observe that, for all z ∈ R

d and all x, y ∈ R
n, the off-diagonal large scale contraction property

and the linear growth of F furnish the following bound:〈
F2(z, x) + y, x − y

〉≤ D − κ|x − y|2 + 〈
F2(z, y) + y, x − y

〉
≤ D − κ

2
|x − y|2 + C

κ

(
1 + |z| + |y|)2

for some uniform constant C > 0, where we also used Young’s inequality. Consequently, the
function h(t) � eκt |x(t) − y(t)|2 satisfies

h′(t) � eκt (1 + ∣∣y(t)
∣∣+ ∣∣z(t)∣∣)2

and (4.5) follows at once.
The bound (4.7) is an immediate consequence of (4.5) together with the fact that

|x|Cα �
∣∣F2(z, x)

∣∣∞T 1−α + |ς |Cα �
(
1 + |z|∞ + |x|∞)

T 1−α + |ς |Cα . �

The announced existence and uniqueness result for (4.4) is as follows.

PROPOSITION 4.3. Under Condition 4.1, for any T > 0 and any β < α1 ∧ α2, (4.4) has
a unique global solution in Cβ([0, T ],Rd+n).
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PROOF. Owing to Lemma 4.2, it is enough to derive an a priori bound on |z1|Cα̃ , α̃ ∈
[β,α1), to conclude with a standard Picard argument.

Let δ ∈ (0,1). By the Young bound (4.3), we see that∣∣z1∣∣
Cα̃ � |F1|∞δ1−α̃ + (∣∣G1

(
z1, z2)∣∣

Cα̃∧α2 + |G1|∞)∣∣h1∣∣
Cα̃

�
(
1 + ∣∣z1∣∣

Cα̃ + ∣∣z2∣∣
Cα2

)(
1 + ∣∣h1∣∣

Cα1

)
δα1−α̃,

where the prefactor is proportional to M � |F1|∞ +|G|∞ +|G|Lip. We may apply Lemma 4.2
to z2 to further find∣∣z1∣∣

Cα̃ �
(
1 + ∣∣z1∣∣

Cα̃ + |z0| +
∣∣h2∣∣

Cα2

)(
1 + ∣∣h1∣∣

Cα1

)
δα1−α̃ .

Here, we take the Hölder norms of z1, z2 over the interval [0, δ], whereas we use the full
interval [0, T ] for h1 and h2. For δ > 0 small enough, we therefore get

(4.8)
∣∣z1∣∣

Cα̃([0,δ]) �
(
1 + |z0| +

∣∣h2∣∣
Cα2

)(
1 + ∣∣h1∣∣

Cα1

)
.

Combining this with Lemma 4.2, we can find a constant C > 0 such that∣∣z(δ)∣∣≤ |z0| +
∣∣z1∣∣

Cα̃ ([0,δ]) + ∣∣z2∣∣
Cα2 ([0,δ]) ≤ C

(
1 + |z0| +

∣∣h2∣∣
Cα2

)(
1 + ∣∣h1∣∣

Cα1

)
.

This bound can now be easily iterated and together with (4.8) we see that there is a (increased)
constant C such that∣∣z1∣∣

Cα̃([t,t+δ]) �
(
1 + |zt | +

∣∣h2∣∣
Cα2

)(
1 + ∣∣h1∣∣

Cα1

)
≤ C[ t

δ
]+1(1 + |z0| +

∣∣h2∣∣
Cα2

)(
1 + ∣∣h1∣∣

Cα1

)[ t
δ
]+2

for each t ∈ [0, T − δ]. Since | · |Cα̃([0,T ]) ≤ 2δα̃−1 supt | · |Cα̃([t,t+δ]), we get that

(4.9)
∣∣z1∣∣

Cα̃([0,T ]) ≤ 2C[ t
δ
]+1

δ1−α̃

(
1 + |z0| +

∣∣h2∣∣
Cα2

)(
1 + ∣∣h1∣∣

Cα1

)[ T
δ
]+2

.

Local existence and uniqueness of a solution to (4.4) is a classical consequence of the
Young bound. Indeed, if we define

Aδ �
{
f ∈ Cβ([0, δ],Rd+n) : f (0) = z0 and |f |Cβ ≤ 1

}
,

then, for δ > 0 small enough, the operator Aδ : Aδ → Aδ ,

(Aδz)(t) � z0 +
∫ t

0

(
F1
(
z(s)

)
F2
(
z(s)

)) ds +
∫ t

0
G
(
z(s)

)
dhs,

is contracting on a complete metric space. Abbreviating γ � α1 ∧ α2, this in turn follows
from the well-known bounds∣∣∣∣

∫ ·
0

G
(
z(s)

)
dhs

∣∣∣∣
Cβ

�
(|G|Lip + |G|∞)(|z|Cβ + 1

)|h|Cγ δγ−β,

∣∣∣∣
∫ ·

0
G
(
z(s)

)− G
(
z̄(s)

)
dhs

∣∣∣∣
Cβ

�
(|G|Lip + |DG|Lip

)|h|Cγ δγ−β |z − z̄|Cβ ,

∣∣∣∣
∫ ·

0

(
F1
(
z(s)

)
F2
(
z(s)

)) ds

∣∣∣∣
Cβ

≤ (|F1|∞;B
δβ

(z0) + |F2|∞;B
δβ

(z0)

)
δ1−β,

∣∣∣∣
∫ ·

0

(
F1
(
z(s)

)− F1
(
z̄(s)

)
F2
(
z(s)

)− F2
(
z̄(s)

)) ds

∣∣∣∣
Cβ

≤ (|F1|Lip + |F2|Lip;B
δβ

(z0)

)
δ|z − z̄|Cβ

for all z, z̄ ∈ Aδ , where | · |∞;A and | · |Lip;A denote the respective norms of the function
restricted to the set A. Here, we also used that max(|z−z0|∞, |z̄−z0|∞) ≤ δβ since z, z̄ ∈ Aδ
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by assumption. Consequently, there is a unique solution to (4.4) in Cβ([0, δ],Rd+n). Global
existence and uniqueness follow from the a priori estimates (4.7) and (4.9) by a standard
maximality argument. �

We now bring the randomness back in the picture. To this end, let α > 0, p ≥ 1, and T > 0.
We define the space

Bα,p

([0, T ],Rd)
�
{
X : [0, T ] × � →R

d : X is (Ft )t∈[0,T ]-adapted and ‖X‖Bα,p([0,T ],Rd ) < ∞}
,

where we introduced the seminorm

‖X‖Bα,p([0,T ],Rd ) � sup
s �=t∈[0,T ]

‖Xt − Xs‖Lp

|t − s|α .

If the terminal time T and the dimension d are clear from the context, we shall also write
Bα,p for brevity. By Kolmogorov’s continuity theorem, we have the continuous embeddings

(4.10) Lp(�,Cα+δ([0, T ],Rd)) ↪→ Bα,p

([0, T ],Rd) ↪→ Lp(�,Cα−δ− 1
p
([0, T ],Rd))

for any δ > 0. Finally, let us also introduce the Besov-type space

W
α,∞
0

([0, T ],Rd)�
{
f : [0, T ] → R

d : |f |α,∞ < ∞}
,

|f |α,∞ � sup
t∈[0,T ]

(∣∣f (t)
∣∣+ ∫ t

0

|f (t) − f (s)|
|t − s|α+1 ds

)
.

Nualart and Răsçanu proved the following classical result.

PROPOSITION 4.4 ([38], Theorem 2.1.II). Let f : Rd ×R
n → R

d be bounded Lipschitz
continuous and g : Rd × R

n → L(Rm,Rd) be of class C2
b . Let (Yt )t∈[0,T ] be a stochastic

process with sample paths in Cγ ([0, T ],Rn) for some γ > 1 − H and let B be an fBm with
Hurst parameter H > 1

2 . Then there is a unique global solution to the equation

Xt = X0 +
∫ t

0
f (Xs,Ys) ds +

∫ t

0
g(Xs,Ys) dBs

and, provided that X0 ∈ L∞, we also have that

|X|α,∞ ∈ ⋂
p≥1

Lp

for each α < 1
2 ∧ γ .

COROLLARY 4.5. Fix the scale parameter ε > 0 and a terminal time T > 0. Let α <

H ∧ Ĥ . There is a unique pathwise solution (Xε,Y ε) ∈ Cα([0, T ],Rd+n) to the slow-fast
system (4.1)–(4.2). Moreover, for any p ≥ 1 and any β < 1

2 ∧ Ĥ , we have that

(4.11)
∥∥Xε

∥∥
Bβ,p

< ∞.

PROOF. The first part is an immediate consequence of Proposition 4.3. We stress that the
bound (4.11) does not follow from our a priori estimate (4.9) since, by Fernique’s theorem,

E
[
exp

(
a|B|2Cβ

)]
< ∞
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if and only if a > 0 is sufficiently small. Instead, we employ Proposition 4.4: Since Y ε ∈
CĤ−([0, T ],Rn) by Lemma 4.2, we see that, for each α < 1

2 ∧ Ĥ , |Xε|α,∞ ∈⋂
p≥1 Lp , it is

clear that

W
α,∞
0

([0, T ],Rd) ↪→ Cα−δ([0, T ],Rd)
for any δ > 0. Combine this with the continuous embedding (4.10) to conclude (4.11). �

REMARK 4.6. We finally record that Proposition 4.3 and Corollary 4.5 are the only
places in the proof of Theorem 1.2 which require a linear growth of the drift b, see Condi-
tion 3.1. In fact, the remainder of the argument would still work, mutatis mutandis, under the
weaker assumption of a polynomially growing drift, that is, |b(x, y)| � 1 + |x|N + |y|N for
some N ∈ N. It is however unclear whether the solution to (4.1)–(4.2) exists globally in this
case.

4.2. Uniform bounds on the slow motions. Our strategy in proving Theorem 1.2 is as
follows: The integrals in (4.1) are approximated by suitable Riemann sums, on which we
then aim to establish uniform bounds. These estimates translate into bounds on the integrals
in view of Lê’s stochastic sewing lemma [29].

Fix a terminal time T > 0 and let Sp denote the set of adapted two-parameter processes
on the simplex with finite pth moments; in symbols:

Sp �
{
A : [0, T ]2 × � →R

d : As,t = 0 for s ≥ t and As,t ∈ Lp(�,Ft ,P) for all s, t ≥ 0
}
.

Given η, η̄ > 0, we define the spaces

Hp
η �

{
A ∈ Sp : ‖A‖H

p
η

� sup
0≤s<t≤T

‖Ast‖Lp

|s − t |η < ∞
}
,

H̄
p
η̄ �

{
A ∈ Sp : |||A|||H̄p

η̄
� sup

0≤s<u<t≤T

‖E[δAsut|Fs]‖Lp

|s − t |η̄ < ∞
}
,

where we have set δAs,u,t � As,t − As,u − Au,t . With this notation we have the following
version of the stochastic sewing lemma.

PROPOSITION 4.7 (Stochastic sewing lemma [29], Theorem 2.1 and Propostion 2.7). Let
p ≥ 2, η > 1

2 , and η̄ > 1. Suppose that A ∈ H
p
η ∩ H̄

p
η̄ . Then, for every 0 ≤ s ≤ t ≤ T , the limit

Is,t (A) � lim|P |→0

∑
[u,v]∈P

Au,v

along partitions P of [s, t] with mesh |P | � max[u,v]∈P |v − u| tending to zero exists in Lp .
The limiting process I (A) is additive in the sense that Is,u(A) + Iu,t (A) = Is,t (A) for all
0 ≤ s ≤ u ≤ t ≤ T . Furthermore, there is a constant C = C(p,η, η̄) such that∥∥Is,t (A)

∥∥
Lp ≤ C

(|||A|||H̄p
η̄
|t − s|η̄ + ‖A‖H

p
η
|t − s|η)

for all 0 ≤ s ≤ t ≤ T . Moreover, if ‖E[As,t |Fs]‖Lp � |t − s|η̄, then I (A) ≡ 0.

Recall our notation of the fast motion’s flow from (3.1) and (3.2), respectively. We are
ultimately going to apply Proposition 4.7 with the two-parameter process

(4.12) Aε
s,t �

∫ t

s

(
g
(
Xε

s , �̄
Xε

s
s,r

(
�Xε

0,s(Y0)
))− ḡ

(
Xε

s

))
dBr, 0 ≤ s < t,
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where, thanks to the conditional independence of the integrand and σ(Br − Bs, r ∈ [s, t])
given Fs , the integral is well defined in the (mixed) Wiener–Young sense as detailed in Sec-
tion 4.2.1 below. There we also show that the integral I (Aε) constructed in Proposition 4.7
actually agrees with the Young integral in (4.1). It will be clear that our bounds on Aε also
apply to the Riemann summands for the drift term in (4.1), whence we exclude it from our
considerations for now.

4.2.1. A priori integral estimates. We will use the notion of mixed Wiener–Young inte-
grals: If F : (s, t] → L(Rm,Rd) is a (sufficiently regular) random function independent of
(B̃s

r )r∈[0,t−s], we can make the definition

(4.13)
∫ t

s
Fr dBr �

∫ t

s
Fr

˙̄Bs
r−s dr +

∫ t−s

0
Fr+s dB̃s

r ,

where the integral with respect to B̃s is well defined in the Wiener sense (after all B̃s is a
Gaussian process). The Hölder norm of negative exponent −κ , κ ∈ [0,1], is defined by

|F |−κ � sup
u,v∈(s,t]

1

|v − u|1−κ

∣∣∣∣
∫ v

u
Fr dr

∣∣∣∣.
Note that for κ = 0 we of course recover the usual sup-norm |F |∞.

In terms of this norm, one can then prove the following fundamental estimate on (4.13).

LEMMA 4.8 ([23], Lemma 3.4). Let 2 ≤ p < q . Fix κ ∈ [0,H − 1
2) and 0 ≤ s ≤ t ≤ T .

Suppose that F : (s, t] → L(Rm,Rd) is independent of (B̃s
r )r∈[0,t−s] and |F |−κ ∈ Lq . Then

one has the bound ∥∥∥∥
∫ t

s
Fr dBr

∥∥∥∥
Lp

� ‖|F |−κ‖Lq |t − s|H−κ,

where the prefactor is independent of F and 0 ≤ s ≤ t ≤ T .

We also have the the following estimate, which is a simple consequence of [23], Lemmas
3.10 and 3.12.

LEMMA 4.9. Let p ≥ 2 and α > 1 − H . Let X be an (Ft )t∈[0,T ]-adapted stochastic
process with α-Hölder sample paths. Moreover assume that X ∈ Bα,p . Let f : Rd → R be
a bounded Lipschitz continuous function. Then we have the following bound on the Young
integral: ∥∥∥∥

∫ t

s
f (Xr) dBr

∥∥∥∥
BH,p

�
(|f |∞ + |f |Lip

)(
1 + ‖X‖Bα,p

)
,

uniformly in 0 ≤ s < t ≤ T .

It is of course fundamental for our argument that the “integral” furnished by Proposi-
tion 4.7 indeed coincides with the Young integral. This is ensured by the two lemmas below.

LEMMA 4.10. Let X = (Xt)t∈[0,T ] be a continuous process with values in R
d . Let b :

R
d ×R

n →R
n be of linear growth and satisfy〈
b(z, x) − b(z, y), x − y

〉≤ D − κ|x − y|2 ∀x, y ∈ R
n,∀ z ∈ R

d .

Then, for any p ≥ 2 and any random variable Y ∈ Lp , the following holds:

sup
ε∈(0,1]

sup
0≤s≤t≤T

∥∥�X
s,t (Y )

∥∥
Lp � 1 + ‖Y‖Lp + sup

0≤t≤T

‖Xt‖Lp .



3992 X.-M. LI AND J. SIEBER

PROOF. It is clear that we can assume s = 0 without loss of generality. Let Zε solve

Zε
t = Y − 1

ε

∫ t

0
Zε

s ds + 1

εĤ
σ B̂t .

By (4.5), we have

∣∣�X
0,t (Y ) − Zε

t

∣∣2 �
∫ t

ε

0
e−κ( t

ε
−s)(1 + |Xεs | +

∣∣Zε
εs

∣∣)2 ds

for all t ∈ [0, T ]. Since (Zε
εh)h≥0

d= (Z1
h)h≥0 and supt≥0 ‖Z1

t ‖Lp � 1 + ‖Y‖Lp , the lemma
follows at once. �

LEMMA 4.11. Let H > 1
2 and let h : Rd × R

n → R be a Lipschitz continuous func-
tion. Let p > 2 and α > 1 − H . Let X be an R

d -valued, (Ft )t∈[0,T ]-adapted process with
supt∈[0,T ] ‖Xt‖Lp < ∞ and sample paths in Cα([0, T ],Rd). Let Y0 ∈ Lp . Define

As,t �
∫ t

s
h
(
Xs, �̄

Xs
s,r

(
�X

0,s(Y0)
))

dBr,

where the integration is understood in the mixed Wiener–Young sense, see (4.13). If A ∈
H 2

η ∩ H̄ 2
η̄ for some η > 1

2 and η̄ > 1, then, for any ε > 0 and any 0 ≤ s ≤ t ≤ T ,

lim|P |→0

∑
[u,v]∈P([s,t])

Au,v =
∫ t

s
h
(
Xr,�

X
0,r (Y0)

)
dBr,

where the right-hand side is the Young integral.

PROOF. We first note that, by Lemma 4.2, the process �X
0,·(Y0) takes values in

Cβ([0, T ],Rd) for any β < Ĥ . The pathwise Young integral
∫

h(Xr,�
X
0,r (Y0)) dBr is thus

well defined and is given by the limit of the Riemann sums of

Ãs,t � h
(
Xs,�

X
0,s(Y0)

)
(Bt − Bs)

along any sequence of partitions. By the last part of Proposition 4.7, it now suffices to show
that ‖As,t − Ãs,t‖L2 � |t − s|η̄ for some η̄ > 1.

To see this, we apply Lemma 4.8 with κ = 0 to find that, for each β < Ĥ ,

‖As,t − Ãs,t‖L2 =
∥∥∥∥
∫ t

s

(
h
(
Xs, �̄

Xs
s,r

(
�X

0,s(Y0)
))− h

(
Xs,�

X
0,s(Y0)

))
dBr

∥∥∥∥
L2

≤
∥∥∥ sup
s≤r≤t

∣∣h(Xs, �̄
Xs
s,r

(
�X

0,s(Y0)
))− h

(
Xs,�

X
0,s(Y0)

)∣∣∥∥∥
Lp

|t − s|H

≤ |h|Lip‖|�̄Xs
s,·
(
�X

0,s(Y0)
)|Cβ ‖Lp |t − s|H+β.

Since H + Ĥ > 1, we can conclude with Lemmas 4.2 and 4.10. �

Our interest in Lemma 4.11 is of course in applying it to the slow motion (4.1) and the
Riemann summands Aε

s,t defined in (4.12). We have already seen in Corollary 4.5 that Xε ∈⋂
p≥1 Bα,p for any α < 1

2 ∧ Ĥ . We are therefore left to check that Aε ∈ H
p
η ∩ H̄

p
η̄ for some

η > 1
2 , η̄ > 1, and p ≥ 2. Since these estimates are somewhat technically involved and require

longer computations, we devote a subsection to each of the norms ‖ · ‖H
p
η

and ||| · |||H̄p
η̄

,

respectively.
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4.2.2. Controlling the increment Aε
s,t . Let h : Rd × R

n → R
d . Recall that write h̄(x) =∫

h(x, y)πx(dy) for its average with respect to the first marginal of the invariant measure of
the process �̄x , see (3.2) and Definition 2.1. The following lemma exploits the convergence
rates derived in Section 3. (The reader should observe that without further notice we assume
that the conditions of Theorem 1.2 on the drift b :Rd ×R

n →R
n are in place.)

LEMMA 4.12. Let q > 1. Let h : Rd ×R
n → R be a bounded measurable function and

let X,Y ∈ Lq be Fs-measurable random variables. Then, for any 0 ≤ s ≤ t , any p ≥ 2, and
any ζ < 1 − Ĥ , we have that∥∥∥∥

∫ t

s

(
h
(
X,�̄X

s,r (Y )
)− h̄(X)

)
dr

∥∥∥∥
Lp

� |h|∞(
1 + ‖Y‖

1
p

Lq + ‖X‖
1
p

Lq

)
ε

ζ
3p |t − s|1− ζ

3p .

PROOF. There is no loss of generality in assuming that h̄ ≡ 0. Notice also that the trivial
estimate ‖ ∫ t

s h(X, �̄X
s,r (Y )) dr‖L∞ ≤ |h|∞|t − s|. By interpolation, we can therefore restrict

ourselves to the case p = 2. Clearly,

E

[∣∣∣∣
∫ t

s
h
(
X,�̄X

s,r (Y )
)
dr

∣∣∣∣2
]

= 2
∫ t

s

∫ v

s
E
[
h
(
X,�̄X

s,r (Y )
)
h
(
X,�̄X

s,v(Y )
)]

dr dv.

For r < v we condition the integrand on Fr , and use Corollary 3.24(ii) together with Lem-
mas 3.7 and 4.10 to find∣∣E[h(X,�̄X

s,r (Y )
)
h
(
X,�̄X

s,v(Y )
)]∣∣

≤ |h|∞E
[ ∣∣E[h(X,�̄X

s,v(Y )
)|Fr

]∣∣ ]

� |h|2∞E
[(

1 + ∥∥ε−Ĥ ¯̂
Br

ε·
∥∥
�ζ

)(
1 + ∣∣�̄X

s,r (Y )
∣∣)]( ε

v − r

) ζ
3

� |h|2∞
(
1 + ‖Y‖Lq + ‖X‖Lq

)( ε

v − r

) ζ
3
. �

We can now establish the required estimate on the H
p
η -norm of As,t .

PROPOSITION 4.13. Let h : Rd × R
n → R be bounded measurable and let X be an

(Ft )t∈[0,T ]-adapted, continuous process with supt∈[0,T ] ‖Xt‖Lq < ∞ for some q ≥ 1. Define

As,t �
∫ t

s

[
h
(
Xs, �̄

Xs
s,r

(
�X

0,s(Y0)
))− h̄(Xs)

]
dBr, 0 ≤ s ≤ t ≤ T ,

in the mixed Wiener–Young sense, see (4.13). Let κ ∈ (0,H − 1
2) and set η = H − κ . Then

A ∈ H
p
η for each p ≥ 2, and any ε > 0. Moreover, there is a γ > 0 such that

‖A‖H
p
η

� |h|∞
(
1 + sup

0≤t≤T

‖Xt‖Lq

)
εγ .

PROOF. Again, we may assume that h̄ ≡ 0 without any loss of generality. Since X is
(Ft )t∈[0,T ]-adapted, we can use Lemma 4.8 to obtain that, for q̃ > p and κ ∈ [0,H − 1

2),

‖As,t‖Lp � ‖|h(Xs, �̄
Xs
s,·
(
�X

0,s(Y0)
))|−κ‖Lq̃ |t − s|H−κ .

By Lemmas 4.10 and 4.12, we obtain∥∥∥∥
∫ v

u
h
(
Xs, �̄

Xs
s,r

(
�X

0,s(Y0)
))

dr

∥∥∥∥
Lq̃

� |h|∞
(
1 + ‖Y0‖

1
q̃

Lq + sup
0≤r≤s

‖Xr‖
1
q̃

Lq

)
ε

ζ
3q̃ |v − u|1− ζ

3q̃
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for all u, v ∈ [s, t] and any ζ < 1 − Ĥ . Therefore, Kolmogorov’s continuity theorem shows
that

‖|h(Xs, �̄
Xs
s,·
(
�X

0,s(Y0)
))|−κ‖Lq̃ � |h|∞

(
1 + ‖Y0‖

1
q̃

Lq + sup
0≤t≤T

‖Xt‖
1
q̃

Lq

)
ε

ζ
3q̃ ,

provided that we choose q̃ > κ−1(1 + ζ
3 ), and the final result follows. �

4.2.3. Continuity of the invariant measures. Let ε > 0 and s < t . We write

P
([s, t]; ε

)
�

⎧⎪⎪⎨
⎪⎪⎩

{
s + kε : k = 0, . . . ,

[
t − s

ε

]}
∪ {t} t − s − ε

[
t − s

ε

]
≥ ε

2
,{

s + kε : k = 0, . . . ,

[
t − s

ε

]
− 1

}
∪
{
t − ε

2
, t

}
t − s − ε

[
t − s

ε

]
<

ε

2
.

Notice that the distance between two subsequent points (ti, ti+1) ∈ P([s, t]; ε) satisfies
|ti+1 − ti | ∈ [ ε

2 , ε]. Recall from Condition 3.1 that the drift b is assumed to be locally Lips-
chitz uniformly with respect to the second argument. We write

|b|Lip;K � sup
|x1|,|x2|≤K

y∈Rn

∣∣b(x1, y) − b(x2, y)
∣∣

for K > 0. In order to keep the statements of the next lemmas concise, we shall freely absorb
quantities independent of 0 ≤ s ≤ t and ε ∈ (0,1] into the prefactor hidden beneath �.

LEMMA 4.14. Let p ≥ 1 and suppose that b(x, ·) ∈ Sp(κ,R) for all x ∈R
d . Let X, X̄ ∈

L∞, and Y ∈ Lp be Fs -measurable random variables. Then∥∥�̄X
s,t (Y ) − �̄X̄

s,t (Y )
∥∥
Lp � ‖X − X̄‖Lp .

PROOF. We abbreviate 	 � 	(κ,R,p) and observe that, for any s ≤ u ≤ r ,

d

dr

∣∣�̄X
u,r (Y ) − �̄X̄

u,r (Y )
∣∣2 = 2

ε

〈
b
(
X,�̄X

u,r(Y )
)− b

(
X̄, �̄X̄

u,r (Y )
)
, �̄X

u,r (Y ) − �̄X̄
u,r (Y )

〉

≤ 2(	 + 1)

ε

∣∣�̄X
u,r (Y ) − �̄X̄

u,r (Y )
∣∣2

+
|b|2

Lip;‖X‖L∞∨‖X̄‖L∞
2ε

|X − X̄|2

with probability 1. It follows that

(4.14)
∣∣�̄X

u,r (Y ) − �̄X̄
u,r (Y )

∣∣� |b|Lip;‖X‖L∞∨‖X̄‖L∞ e(	+1)
|r−u|

ε |X − X̄|.
This bound is of course only useful on a time interval with length of order ε. We therefore
expand∥∥�̄X

s,t (Y ) − �̄X̄
s,t (Y )

∥∥
Lp ≤ ∑

(ti ,ti+1)∈P([s,t];ε)

∥∥�̄X̄
ti+1,t

(
�̄X

s,ti+1
(Y )

)− �̄X̄
ti ,t

(
�̄X

s,ti
(Y )

)∥∥
Lp .

Corollary 3.15 shows that

∥∥�̄X̄
ti+1,t

(
�̄X

s,ti+1
(Y )

)− �̄X̄
ti ,t

(
�̄X

s,ti
(Y )

)∥∥
Lp �

∥∥�̄X
s,ti+1

(Y ) − �̄X̄
ti ,ti+1

(
�̄X

s,ti
(Y )

)∥∥
Lpe−c

|t−ti+1|
ε

� ‖X − X̄‖Lpe−c
|t−ti+1|

ε ,
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where the last inequality uses (4.14) together with |ti+1 − ti | � ε. Consequently,

∥∥�̄X
s,t (Y ) − �̄X̄

s,t (Y )
∥∥
Lp � ‖X − X̄‖Lp

∑
(ti ,ti+1)∈P([s,t];ε)

e−c
|t−ti+1|

ε � ‖X − X̄‖Lp

uniformly in 0 ≤ s ≤ t and ε ∈ (0,1]. �

Lemma 4.14 implies the local Lipschitz continuity of the invariant measure πx in the
parameter x ∈R

d :

PROPOSITION 4.15. Let p ≥ 1 and K > 0. Suppose that b(x, ·) ∈ Sp(κ,R) for all x ∈
R

d . Then

Wp(πx1, πx2
)
� |x1 − x2|,

uniformly for |x1|, |x2| ≤ K .

PROOF. Owing to Theorem 1.3, it follows that

Wp(πx1, πx2
)≤ lim sup

ε→0

∥∥�̄x1
0,1(0) − �̄

x2
0,1(0)

∥∥
Lp

and we conclude with Lemma 4.14. �

The simple proof of the following corollary is left to the reader.

COROLLARY 4.16. Let h : Rd ×R
n → R

d be Lipschitz continuous. Then h̄ : Rd → R
d

is locally Lipschitz.

4.2.4. Controlling the second order increment δAε
s,u,t . Uniform bounds on the second

order increments are difficult to obtain even for the Markovian fast dynamic. The first tech-
nical estimate of this subsection is the following.

LEMMA 4.17. Let 1 ≤ p < q and suppose that b(x, ·) ∈ Sp(κ,R) for all x ∈ R
d . Let

h : Rd × R
n → R be a Lipschitz continuous function with h̄ ≡ 0. Suppose that X, X̄ ∈ L∞

and Y ∈ Lq are Fs -measurable random variables. Then, for any ρ ∈ (0,1), there is a γ > 0
such that∥∥E[h(X,�̄X

s,t (Y )
)− h

(
X̄, �̄X̄

s,t (Y )
)|Fs

]∥∥
Lp � |h|Lip

(
1 + ‖Y‖Lq

)‖X − X̄‖ρ
Lp

(
1 ∧ εγ

|t − s|γ
)
.

PROOF. By Corollary 3.24 i and Hölder’s inequality, we certainly have

(4.15)
∥∥E[h(X,�̄X

s,t (Y )
)− h

(
X̄, �̄X̄

s,t (Y )
)|Fs

]∥∥
Lp � |h|Lip

(
1 + ‖Y‖Lq

)(
1 ∧ εζ

|t − s|ζ
)
.

On the other hand, by the continuity lemma (Lemma 4.14),∥∥E[h(X,�̄X
s,t (Y )

)− h
(
X̄, �̄X̄

s,t (Y )
)|Fs

]∥∥
Lp

� |h|Lip
(‖X − X̄‖Lp + ∥∥�̄X

s,t (Y ) − �̄X̄
s,t (Y )

∥∥
Lp

)
� |h|Lip‖X − X̄‖Lp .

Finally, we interpolate this bound with (4.15). �

Our remaining task is to derive an estimate on the distance between �Z
s,t and �̄

Zs
s,t . This is

based on the following version of Lemma 4.14.
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LEMMA 4.18. Let p ≥ 1 and suppose that b(x, ·) ∈ Sp(κ,R) for all x ∈ R
d . Let Y ∈ Lp

be Fs -measurable and Z be a continuous process. Assume that |Z|∞ ∈ L∞. Then∥∥�̄Zs
s,t (Y ) − �Z

s,t (Y )
∥∥
Lp �

∥∥∥ sup
r∈[s,t]

|Zr − Zs |
∥∥∥
Lp

.

PROOF. The reader can easily check that the very same argument we gave at the begin-
ning of the proof of Lemma 4.14 also shows that, for 0 ≤ s ≤ u ≤ r ≤ T ,

∣∣�̄Zs
u,r (Y ) − �Z

u,r(Y )
∣∣� |b|Lip;‖|Z|∞‖L∞

(∫ r
ε

u
ε

e2(	+1)( r
ε
−v)|Zεv − Zs |2 dv

) 1
2

� sup
v∈[u,r]

|Zv − Zs |e(	+1)
|r−u|

ε .

The asserted bound then follows along the same lines as Lemma 4.14. �

The following estimate is now an easy consequence.

LEMMA 4.19. Let p ≥ 1 and suppose that b(x, ·) ∈ Sp(κ,R) for all x ∈ R
d . Let h :

R
d × R

n → R be Lipschitz continuous. Assume furthermore that X and Y are Fu- and Fs-
measurable random variables, respectively. Moreover, let Z ∈ Bα,p([0, T ],Rd) for some α >

0 and assume that |Z|∞ ∈ L∞. Then

(4.16)

∥∥E[h(X,�̄X
u,t

(
�̄Zs

s,u(Y )
))− h

(
X,�̄X

u,t

(
�Z

s,u(Y )
))|Fu

]∥∥
Lp

� |h|Lip‖Z‖Bα,p |u − s|αe−c
|t−u|

ε .

PROOF. By Corollary 3.15, we have that∥∥E[h(X,�̄X
u,t

(
�̄Zs

s,u(Y )
))− h

(
X,�̄X

u,t

(
�Z

s,u(Y )
))|Fu

]∥∥
Lp

� |h|Lip
∥∥�̄Zs

s,u(Y ) − �Z
s,u(Y )

∥∥
Lpe−c

|t−u|
ε .

By Lemma 4.18, ∥∥�̄Zs
s,u(Y ) − �Z

s,u(Y )
∥∥
Lp � ‖Z‖Bα,p |u − s|α. �

Finally, we can establish the second estimate needed for the application of Proposition 4.7.

PROPOSITION 4.20. Let 1 ≤ p < q and suppose that b(x, ·) ∈ Sq(κ,R) for all x ∈ R
d .

Let h : Rd × R
n → R be a Lipschitz continuous function. Assume that X ∈ Bα,p for some

α > 1 − H and |X|∞ ∈ L∞. Define

As,t �
∫ t

s

(
h
(
Xs, �̄

Xs
s,r

(
�X

0,s(Y0)
))− h̄(Xs)

)
dBr,

in the mixed Wiener–Young sense, see (4.13). Then A ∈ H̄
p
η̄ for any η̄ < α +H and any ε > 0.

Moreover, there is a γ > 0 such that

|||A|||H̄p
η̄

� |h|Lip(1 ∨ ‖|X|∞‖L∞)
(
1 ∨ ‖X‖Bα,p

)
εγ .

PROOF. Fix 1 < η̄ < α + H and choose ρ ∈ (0,1) such that η̄ < H + αρ2 and p ≤ ρq .
Since |X|∞ ∈ L∞, owing to Corollary 4.16 we may assume that h̄ ≡ 0 without any loss of
generality. Recall that δAs,u,t = As,t − As,u − Au,t , so

δAs,u,t =
∫ t

u

(
h
(
Xs, �̄

Xs
s,r

(
�X

0,s(Y0)
))− h

(
Xu, �̄Xu

u,r

(
�X

0,u(Y0)
)))

dBr.



SLOW-FAST SYSTEMS WITH FRACTIONAL ENVIRONMENT AND DYNAMICS 3997

We condition on Fu instead of Fs . This gives∥∥E[δAs,u,t |Fs]
∥∥
Lp

≤
∥∥∥∥
∫ t

u
E
[
h
(
Xs, �̄

Xs
s,r

(
�X

0,s(Y0)
))− h

(
Xu, �̄Xu

u,r

(
�X

0,u(Y0)
))|Fu

] ˙̄Bu
r dr

∥∥∥∥
Lp

≤ (I) + (II)

with

(I) �
∥∥∥∥
∫ t

u
E
[
h
(
Xs, �̄

Xs
s,r

(
�X

0,s(Y0)
))− h

(
Xu, �̄Xu

u,r

(
�̄Xs

s,u

(
�X

0,s(Y0)
)))|Fu

] ˙̄Bu
r dr

∥∥∥∥
Lp

,

(II) �
∥∥∥∥
∫ t

u
E
[
h
(
Xu, �̄Xu

u,r

(
�̄Xs

s,u

(
�X

0,s(Y0)
)))− h

(
Xu, �̄Xu

u,r

(
�X

0,u(Y0)
))|Fu

] ˙̄Bu
r dr

∥∥∥∥
Lp

.

These terms are now bounded individually. Let us begin with the bound on (I). Thanks to
Lemma 4.10, this term falls in the regime of Lemma 4.17. By Hölder’s inequality, we there-
fore find

(I) � |h|Lip‖Xs − Xu‖ρ(1−ρ)
L∞ ‖Xs − Xu‖ρ2

Lp

∫ t

u

∥∥ ˙̄Bu
r

∥∥
L

p
1−ρ

(
1 ∧ εγ

|r − u|γ
)

dr

� |h|Lip‖|X|∞‖ρ(1−ρ)
L∞ ‖X‖ρ2

Bα,p
εδ|t − s|η̄

for δ > 0 sufficiently small. Here, the last inequality used that, for any p ≥ 1, ‖ ˙̄Bu
r ‖Lp �

|r − u|H−1 together with the elementary fact∫ t

u

1

|r − u|1−H

(
1 ∧ εγ

|r − u|γ
)

dr � εδ|t − u|H−δ

for any δ ∈ (0, γ ].
The term (II) can be handled similarly in view of Lemma 4.19. �

4.3. Proof of Theorem 1.2. The estimates of the previous two subsection furnish the fol-
lowing fundamental estimates.

PROPOSITION 4.21. Let 2 ≤ p < q and suppose that b(x, ·) ∈ Sq(κ,R) for all x ∈ R
d .

Let h : Rd × R
n → R be a bounded Lipschitz continuous function. Assume that there is an

α > 1−H such that X has α-Hölder sample paths and X ∈ Bα,p . If, in addition, |X|∞ ∈ L∞,
then, for any η < H and any η̄ < α + H , there is a γ > 0 such that

(4.17)

∥∥∥∥
∫ ·

0

(
h
(
Xr,�

X
0,s(Y0)

)− h̄(Xr)
)
dBr

∥∥∥∥
Bη,p

�
(|h|∞ + |h|Lip

)
(1 + ‖|X|∞‖L∞)

(
1 + ‖X‖Bα,p

)
εγ ,

and

(4.18)
∥∥∥∥
∫ ·

0
h
(
Xr,�

X
0,r (Y0)

)
dBr

∥∥∥∥
Bη,p

�
(|h|∞ + |h|Lip

)
(1 + ‖|X|∞‖L∞)

(
1 + ‖X‖Bα,p

)
,

uniformly in 0 ≤ s < t ≤ T and ε ∈ (0,1]. Here, the integrals are both taken in the Young
sense.

PROOF. First note that, by Lemma 4.11, the Young integrals in both (4.17) and (4.18)
coincide with the processes I (Ai) obtained by “sewing” the Riemann summands

A1
s,t �

∫ t

s

(
h
(
Xs, �̄

Xs
s,r

(
�X

0,s(Y0)
))− h̄(Xs)

)
dBr, A2

s,t �
∫ t

s
h
(
Xs, �̄

Xs
s,r

(
�X

0,s(Y0)
))

dBr,
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where integration is now understood in the mixed Wiener–Young sense (see (4.13)), with the
help of Proposition 4.7. Consequently, the estimate (4.17) follows immediately from combin-
ing Propositions 4.13 and 4.20. Owing to Lemma 4.9 and Corollary 4.16, (4.18) is then an
easy consequence of the first bound. �

For ε > 0 and M > 0, let us define the (Ft )t≥0-stopping time τ ε
M � inf{t ≥ 0 : |Xε

t | > M}.
Applying the previous proposition to the slow-fast system (4.1)–(4.2), we can deduce relative
compactness of the stopped slow motion Xε,M � Xε

·∧τ ε
M

.

COROLLARY 4.22. Consider the slow-fast system (4.1)–(4.2) with Condition 3.1 in
place. Let β < 1

2 ∧ Ĥ and p ≥ 2. Suppose that there are κ,R > 0 and q > p such that
b(x, ·) ∈ Sq(κ,R) for each x ∈ R

d . Then, for any M > 0,

sup
ε∈(0,1]

∥∥Xε,M
∥∥
Bβ,p

< ∞.

PROOF. Recall from Corollary 4.5 that, for each ε > 0, there is a unique global solution
Xε to (4.1) with values in Cα([0, T ],Rd) for some α > 1 − H . Moreover, since the Hölder
norm of the stopped solution Xε,M is controlled by the Hölder norm of Xε , the argument of
Corollary 4.5 also shows that ‖Xε,M‖Bβ,p < ∞ for each β < 1

2 ∧ Ĥ and p ≥ 1. Employing
Proposition 4.21, we obtain that, for any γ < H − β and any δ ∈ (0, T ],∥∥Xε,M �[0,δ]

∥∥
Bβ,p

�
(|g|∞ + |g|Lip

)(
1 + ∥∥Xε,M �[0,δ]

∥∥
Bβ,p

)
δγ + |f |∞δ1−β,

uniformly in ε ∈ (0,1]. Hence, choosing δ > 0 sufficiently small, the proof is concluded by a
standard iteration argument. �

Now we can finish the proof of Theorem 1.2 by localizing the argument of Hairer and Li.
To this end, we rely on the following deterministic residue lemma.

LEMMA 4.23 (Residue lemma). Let F : Rd → R
d be Lipschitz continuous, G : Rd →

L(Rm,Rd) be of class C2
b , and h ∈ Cα([0, T ],Rn) for some α > 1

2 . Moreover, let Z, Z̄ ∈
Cα̃([0, T ],Rd) for some α̃ ∈ (1 − α,α] with Z0 = Z̄0. Then there is a constant C depending
only on F , G, and the terminal time T such that

|z − z̄|Cα̃ ≤ C exp
(
C|h|

1
α
Cα + C|Z|

1
α̃

Cα̃ + C|Z̄|
1
α̃

Cα̃

)|Z − Z̄|Cα̃ ,

where z and z̄ are the solutions to the equations

zt = Zt +
∫ t

0
F(zs) ds +

∫ t

0
G(zs) dhs, z̄t = Z̄t +

∫ t

0
F(zs) ds +

∫ t

0
F(z̄s) dhs .

Albeit the statement of Lemma 4.23 is slightly stronger than [23], Lemma 2.2, it is straight-
forward to show that the very same proof still applies. We therefore omit the details and finally
turn to the proof of the main result of this article.

PROOF OF THEOREM 1.2. First observe that, by the assumptions of the theorem and
Corollary 4.16, there exists a unique global solution to the averaged equation (1.3), see [35,
36, 38]. We fix ᾱ ∈ (α,H) with (ᾱ − α)−1 < p. Choose β ∈ (1 − H,Ĥ ∧ 1

2). By Corol-
lary 4.22, supε∈(0,1] ‖Xε,M‖Bβ,p < ∞ for each M > 0. Consequently, by Proposition 4.21,
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we deduce that ∥∥∥∥
∫ ·

0

(
g
(
Xε,M

r ,�Xε,M

0,r (Y0)
)− ḡ

(
Xε,M

r

))
dBr

∥∥∥∥
Bᾱ,p

� εγ ,

∥∥∥∥
∫ ·

0

(
f
(
Xε,M

r ,�Xε,M

0,r (Y0)
)− f̄

(
Xε,M

r

))
dr

∥∥∥∥
Bᾱ,p

� εγ .

Therefore, ‖X̂ε,M − X̄ε,M‖Bᾱ,p
� εγ , where

X̂
ε,M
t � X0 +

∫ t

0
f
(
Xε,M

r ,�Xε,M

0,r (Y0)
)
dr +

∫ t

0
g
(
Xε,M

r ,�Xε,M

0,r (Y0)
)
dBr,

X̄
ε,M
t � X0 +

∫ t

0
f̄
(
Xε,M

r

)
dr +

∫ t

0
ḡ
(
Xε,M

r

)
dBr.

In particular, |X̂ε,M − X̄ε,M |Cα → 0 in probability by the embedding (4.10). Note also the
decomposition

X
ε,M
t = X̂

ε,M
t − X̄

ε,M
t + X0 +

∫ t

0
f̄
(
Xε

r

)
dr +

∫ t

0
ḡ
(
Xε

r

)
dBr, t ∈ [

0, τ ε
M ∧ T

]
,

whence Lemma 4.23 furnishes the bound

(4.19)
∣∣Xε − X̄

∣∣
Cα([0,τ ε

M∧T ]) ≤ C exp
(
C|B|

1
α
Cα + C

∣∣X̂ε,M − X̄ε,M
∣∣ 1

α
Cα

)∣∣X̂ε,M − X̄ε,M
∣∣
Cα .

As we have seen above, for each M > 0, the right-hand side goes to 0 in probability as ε → 0.
Hence, we also have that |Xε − X̄|Cα([0,τ ε

M∧T ]) → 0 in probability.
On the other hand, note that

P
(
τ ε
M < T

)≤ P

(
sup

t∈[0,τ ε
M ]
∣∣Xε

t

∣∣≥ M,τε
M < T

)
≤ P

(∣∣Xε
∣∣
Cγ ([0,τ ε

M∧T ]) ≥ T −γ (M − ‖X0‖L∞
))

≤ P
(∣∣Xε − X̄

∣∣
Cγ ([0,τ ε

M∧T ]) ≥ T −γ (M − ‖X0‖L∞
)− |X̄|Cγ ([0,T ])

)
(4.20)

≤ P
(∣∣Xε − X̄

∣∣
Cγ ([0,τ ε

M∧T ]) ≥ 1
)+ P

(|X̄|Cγ ([0,T ]) > T −γ (M − ‖X0‖L∞
)− 1

)
for each γ > 0. By Proposition 4.4, we know that |X̄|Cγ ([0,T ]) ∈ L1 provided that γ < 1

2 . We
fix such a γ .

It is now easy to finish the proof. Let δ1, δ2 ∈ (0,1) be given. Then we can find a M > 0
such that

P
(|X̄|Cγ ([0,T ]) > T −γ (M − ‖X0‖L∞

)− 1
)≤ δ2

2
.

For this M , we can also find an ε0 > 0 such that

P
(∣∣Xε − X̄

∣∣
Cα([0,τ ε

M∧T ]) > δ1
)≤ δ2

4
∀ε ∈ (0, ε0).

The estimate (4.20) therefore yields that

P
(∣∣Xε − X̄

∣∣
Cα([0,T ]) > δ1

)≤ P
(∣∣Xε − X̄

∣∣
Cα([0,τ ε

M∧T ]) > δ1, τ
ε
M ≥ T

)+ P
(
τ ε
M < T

)
≤ 2P

(∣∣Xε − X̄
∣∣
Cα([0,τ ε

M∧T ]) > δ1
)+ δ2

2
≤ δ2

for all ε ∈ (0, ε0). Hence, |Xε − X̄|Cα([0,T ]) → 0 in probability as ε → 0, as required. �

REMARK 4.24. The proof above shows that we can choose

λ0 = inf
x∈Rd

	(κ,R,p)

for any p > max(2, (H − α)−1) in Theorem 1.2. Here, 	 is the constant from Proposi-
tion 3.13.
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4.4. Smoothness of the averaged coefficients. Let us finally show that an everywhere
contractive fast process falls in the regime of Theorem 1.2. While smoothness of ḡ also holds
under less restrictive conditions, the proof becomes much more involved. To keep this article
concise, we chose to report on these results in future work.

COROLLARY 4.25. Suppose that:

• g ∈ C3
b(Rd ×R

n,L(Rm,Rd)),
• there is a κ > 0 such that b(x, ·) ∈ S(κ,0,0) for every x ∈ R

d ,
• b ∈ C3(Rd ×R

n,Rd) is globally Lipschitz continuous and there is an N ∈ N such that, for
each i, j, k ∈ {x, y},∣∣D2

i,j b(x, y)
∣∣+ ∣∣D3

i,j,kb(x, y)
∣∣� 1 + |y|N ∀x ∈ R

d, ∀y ∈R
n.

Then the conclusion of Theorem 1.2 holds.

EXAMPLE 4.26. Let V ∈ C4(Rd × R
n). If infx,y D2

y,yV (x, y) ≥ κ , |D2
x,yV |∞ +

|D2
y,yV |∞ < ∞, and, for each i, j, k ∈ {x, y},

∣∣D3
i,j,yV (x, y)

∣∣+ ∣∣D4
i,j,k,yV (x, y)

∣∣� 1 + |y|N ∀x ∈ R
d, ∀y ∈ R

n,

then b = −DyV falls in the regime of Corollary 4.25. To give a concrete example, we
can choose V (x, y) = (2 + sin(x))(y2 + sin(y)), which furnishes the drift b(x, y) = −(2 +
sin(x))(2y + cos(y)).

PROOF OF COROLLARY 4.25. In order to apply Theorem 1.2 it is enough to show that,
for any g ∈ C3

b(Rn), the function

h̄(x) �
∫
Rn

g(y)πx(dy)

is again of class C2
b(Rd). To this end, we define ht (x) � E[g(Y x

t )] where Yx is the solution
to the SDE

dY x
t = b

(
x,Y x

t

)
dt + σ dB̂

started in the generalized initial condition δ0 ⊗ W. Note that ht → h̄ pointwise as t → ∞ by
Theorem 1.3. Since ht ∈ C2

b(Rd) for each t ≥ 0, it thus suffices to show that

(4.21) sup
t≥0

(|Dht |∞ + ∣∣D2ht

∣∣∞)
< ∞

and both Dht and D2ht converge locally uniformly along a subsequence. By a straight-
forward “diagonal sequence” argument, we actually only need to prove uniform convergence
on a fixed compact K ⊂ R

d .
Under the assumptions of the corollary, it is easy to see that the mapping x �→ Yx

t is three-
times differentiable for each t ≥ 0 and it holds that

DxYx
t =

∫ t

0
Js,tDxb

(
x,Y x

s

)
ds,

D2
x,xY x

t (u ⊗ v) =
∫ t

0
Js,t

(
D2

x,xb
(
x,Y x

s

)
(u ⊗ v) + 2D2

x,yb
(
x,Y x

s

)(
u ⊗ DxYx

s (v)
)

+ D2
y,yb

(
x,Y x

s

)(
DxYx

s (u) ⊗ DxYx
s (v)

))
ds,
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where Js,t solves the homogeneous problem

Js,t = id +
∫ t

s
Dyb

(
x,Y x

r

)
Js,r dr.

Since b(x, ·) ∈ S(κ,0,0), it is not hard to see that, for each x ∈ R
d and y ∈ R

n, Dyb(x, y) ≤
−κ in the sense of quadratic forms. In particular, the operator norm of J satisfies the bound

|Js,t | ≤ e−κ(t−s).

By an argument similar to Lemma 4.10, it follows that, for any p ≥ 1,

sup
t≥0

sup
x∈Rd

∥∥DxYx
t

∥∥
Lp < ∞ and sup

t≥0
sup
x∈Rd

∥∥D2
x,xY x

t

∥∥
Lp < ∞.

Based on this, it is straight-forward to verify (4.21). Consequently, by the Arzela–Ascoli
theorem, there is a subsequence of times along which Dh converges uniformly on K . By a
similar—albeit more tedious—computation, the reader can easily check that also

sup
t≥0

sup
x∈Rd

∥∥D3
x,x,xY x

t

∥∥
Lp < ∞.

In particular, D3h is uniformly bounded, whence we can pass to a further subsequence along
which D2h also converges uniformly on K . Therefore, h̄ ∈ C2

b(Rd) as required. �
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