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Abstract. Recent research has shown the potential for neural networks
to improve upon classical survival models such as the Cox model, which
is widely used in clinical practice. Neural networks, however, typically
rely on data that are centrally available, whereas healthcare data are
frequently held in secure silos. We present a federated Cox model that
accommodates this data setting and also relaxes the proportional hazards
assumption, allowing time-varying covariate effects. In this latter respect,
our model does not require explicit specification of the time-varying ef-
fects, reducing upfront organisational costs compared to previous works.
We experiment with publicly available clinical datasets and demonstrate
that the federated model is able to perform as well as a standard model.

1 Introduction

Estimating how long patients might live for is a key task in clinical medicine, and
is a common question from patients. Survival analysis is the statistical branch
used to perform these estimates, which can range in its application from predict-
ing death following diagnosis to loan defaults or machine part failures. Amongst
survival models, the Cox model [6] is one of the most widely used.

Machine learning techniques have received attention for their potential to
improve upon the performance of the Cox model. Many recent efforts [13,20,16]
have exploited neural networks (NNs) to model more complex relationships as
well as enable typically unsupported input data types such as images [27,28,17,4].
Notwithstanding, the Cox model has remained the standard in survival analysis
[24]. Indeed, the adoption of machine learning has progressed haltingly in many
areas of healthcare [14].

One challenge lies in the distributed nature of healthcare data [25]. In much
of machine learning, data are centralised, whereas privacy concerns often result
in secure data “silos” in healthcare. Federated learning (FL) accommodates this
decentralised data environment and has shown promise in clinical contexts [23].

Despite a fast emerging literature in FL, there has been scant work on fed-
erated survival analysis. [1] propose a federated Cox model that is closest to
this paper. The standard Cox model is, however, limited in that it can only
correctly model proportional hazards. We take an alternative approach allowing
us to embed time-varying covariate effects (non-proportional hazards) directly
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in the architecture, potentially reducing organisational setup costs for federa-
tions. Such effects are relevant to adapt models for patients such as those with
breast cancer where the proportional hazards assumption has been shown to be
violated [3,5,11].

In the following, we briefly discuss relevant background and highlight related
work (Section 2), before defining our model (Section 3), instantiating it with
different hazards assumptions and presenting our experiments with real-world
clinical datasets (Section 4). Section 5 concludes with potential directions for
future work.

2 Background and Related Work

The promise of greater control over data ownership and enhanced privacy that
FL affords has generated interest in the healthcare community. Few works, how-
ever, have investigated the intersection between survival analysis and FL. We
present background on each of these areas separately before discussing their
intersection relevant for this work.

Background on Federated Learning (FL). FL is a framework for decen-
tralised data that cannot be shared due to their sensitive content or prohibitive
communication costs [21]. In the context of healthcare, patient data may be
kept in this way by the clinical unit (e.g., the hospital) at which the patient
was treated. In the following, we will simply refer to these data-keeping units
as federation members or centres. Typically (and in this paper), the federated
objective is to minimise LF (X,ϕ) with respect to ϕ with:

LF (X,ϕ)=
∑
k∈K

wkLk(Xk, ϕ) (1)

where LF represents the global loss: an average of the local losses Lk computed
by the federation members in K on their own data Xk weighted by wk, where
ϕ represents the model parameters. Typically, each member customises ϕ for a
number of local optimisation rounds before aggregating the customised ϕ for a
new global consensus model.

Background on Survival Analysis. Survival analysis estimates the time to
an event for a population N with data D = {(xi, ti, si)}i∈N where each person
i has covariates xi = (xi1, ..., xip)

⊤, a time of observation ti and an indicator
si ∈ {0, 1} which equals 1 if i has experienced the event or 0 if not, i.e., if i is
censored.

The Cox model [6] is one of the most widely used survival models. It defines
a hazard function h, which expresses the rate of failure at time t subject to
survival until then as follows:
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h(t|xi) = P (T = t|T > t− 1)

= h0(t)exp[g(xi)] with g(xi) = β⊤xi

(2)

where h0(t) is some baseline hazard and where β = (β1, ..., βp)
⊤ is a coeffi-

cient vector. Later works replace the linear predictor β⊤xi with NNs gϕ(xi),
demonstrating competitive performance [9,13]. The coefficients are estimated by
minimising the negative partial log-likelihood given by:

−
∑
i∈N

si[g(xi)− log(
∑
j∈Ri

exp[g(xj)])] (3)

where Ri = {j ∈ N : tj ≥ ti} denotes the individuals who are still at risk when
i experiences the event.

In a federated setting, this loss generally cannot be decomposed into local
losses due to the logarithmic term, as the risk set Ri can contain individuals from
centres other than the one of i. This therefore does not match the formulation of
Eq. 1. The hazard function also assumes proportional hazards (PH) – differences
in covariates result in constant proportional differences in hazards. Over long
time horizons, this can be restrictive [16,3,2].

State-of-the-Art in Federated Survival Analysis. Our work is situated in
the intersection of federated learning and survival analysis and proposes a novel
framework. A handful of works have already proposed such frameworks of which
we provide a brief overview here. The works of [19] and [8] embody one approach
which relies on substantial sharing of summary statistics over the local datasets
in every training iteration. This differs in spirit from FL where more abstract
parameters are shared and, often, infrequently so. Moreover, their models are
based on linear predictors and do not address integration with NNs.

Recent work by [1] is closest to our approach. Their model exploits a dis-
cretisation of the Cox model (also by [6]) with an NN-based predictor:

h(t|x)
1− h(t|x)

=
h0(t)

1− h0(t)
exp[gϕ(xi)] (4)

which can be rewritten in a sigmoid form:

h(t|xi) =
1

1 + exp[−(αt + gϕ(xi))]
(5)

where αt = log( h0(t)
1−h0(t)

).

They follow [7] in estimating this function like a logistic regression with
negative log-likelihood:

−
∑
i∈N

ti∑
k=1

[yik log[h(k|xi)] + (1− yik) log[(1− h(k|xi))]] (6)
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where yij = 1{tj = ti, si = 1}. Importantly, this loss does not depend on risk
sets and is therefore separable – each centre’s loss only depends on local data –
recovering the federated objective (Eq. 1).

[1] demonstrate that a federation of this model can draw even in performance
with a model trained on pooled data. This is, however, only shown with aggre-
gation after every local optimisation round – a setup that may need to differ in
practice [23] – and assuming PH, as their predictor gϕ(xi) is time-invariant.

We note that non-PH can be admitted to their model by including time
interactions (giving gϕ(xi, f(t))) – an approach sometimes taken in standard Cox
models – as demonstrated on pooled data by [7]. This could, however, introduce
a dependency on the specification of f(t) and its interactions. Crucially, this may
add to the organisational setup costs of a federation: even though interactions
could be learned, f(t) needs to be fully specified and agreed upon in advance. In
contrast, we follow [10] by making the choice between PH and non-PH a binary
decision over the architecture of the output layer.

3 Model

We build upon the discretised Cox model and detail how the PH assumption
is relaxed and formulate the federated objective. We describe a discretisation
procedure and an optional interpolation scheme for smooth predictions. Lastly,
we outline two complementary performance metrics.

Non-Proportional Hazards. We use a discretised Cox model (Eq. 5) but parame-
terised with a time-varying, NN-based predictor gϕ,t(x). Following [10], we allow
for non-PH by fully connecting the output layer to the previous layer. The out-
put layer thus encodes time-varying covariate effects in time-specific weights. A
sigmoid is used to retrieve the hazard rates.

For PH, the output component is split into a first layer with a single neuron
and no bias. The output of this neuron is passed into a second layer with as
many neurons as time steps. This captures time-varying baseline hazards in the
second layer and time-invariant covariate effects in the first. The difference in
components is illustrated in Figure 1.

Federated Objective. To conform to a federated formulation (Eq. 1), we split the
objective (Eq. 6):

LF =
∑
k∈K

wkLk(Xk, ϕ)

= −
∑
k∈K

|Nk|
|N |

∑
i∈Nk

ti∑
j=1

[
yij log[h(j|xi)] + (1− yij) log[(1− h(j|xi))]

] (7)

where yij = 1{tj = ti, si = 1}. Each centre calculates Lk(Xk, ϕ) on its own
subset of the population Nk. We adapt the FedAvg algorithm of [21] to minimise
this loss (Algorithm 1).
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Fig. 1: Output components for 3 time steps.

Algorithm 1 Procedure to optimise the federated objective.

1: Initialise global model with ϕ0

2: for each round t = 1, ..., T do
3: for each centre k = 1, ...,K in parallel do
4: Send ϕt−1 to centre k
5: for each local round b = 1, ..., B do
6: Local update ϕk

t ← ϕk
t − λ∇Lk(Xk, ϕ

k
t )

7: end for
8: Receive ϕk

t from centre k
9: end for
10: Aggregate ϕt ←

∑
k∈K

|Nk|
|N| ϕ

k
t

11: end for
12: return ϕT

Discretisation. The model operates on discretised time, so that t indexes into a
set of intervals [τt−1, τt). Following [15] we discretise on Kaplan-Meier quantiles.
Defining the survival curve S(τ) = S(τ−1)(1−h(τ)), the quantiles {τ1, τ2, ..., τm}
can be obtained as:

S(T = τj)− S(T = τj+1) =
1− S(T = τmax)

m
(8)

for j = {0, 1, ...,m − 1}. This discretisation procedure yields a set of steps
{τ1, τ2, ..., τm} where each step results in the same decrease in survival (an illus-
tration is provided in Appendix A).

Interpolation. To smooth step-wise predictions, we use constant density inter-
polation [15]. Letting S̃(τ) denote the interpolation of the survival curve S(τ),
we then have:
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S̃(τ)=S(τj−1) + [S(τj)− S(τj−1)]
τ − τj−1

τj − τj−1
(9)

for a given time τ ∈ (τj−1, τj ]. Intuitively, the step survival curve is linearly
interpolated between any adjacent steps, resulting in constant densities in the
corresponding interval (an illustration is provided in Appendix A).

Performance Metrics – Concordance. We use the time-dependent concordance
index [2], or c-index, which is a discriminative measure for how well the model
ranks the relative survival between patient pairs, expressed as:

P (S(ti|xi) < S(ti|xj) & ti < tj & si = 1) (10)

which is estimated as follows:

ĉ =

∑
i∈N

∑
j∈N,j ̸=i concij∑

i∈N

∑
j∈N,j ̸=i compij

(11)

compij = 1{ti < tj & si = 1}+ 1{ti = tj & si = 1 & sj = 0} (12)

concij = 1{S(ti|xi) < S(ti|xj)} compij (13)

Performance Metrics – Calibration. While the c-index measures the discrimi-
native performance of the model, it does not measure how well calibrated these
estimates are (an illustration is provided in Appendix A).

As a measure of calibration, we follow [12] who propose a Brier score for use
with censored data defined as follows:

BS(t) =
1

|N |
∑
i∈N

wi(t)
(
yi(t)− h(t|xi)

)2

(14)

wi(t) =

{
si/G(t), if ti ≤ t

1/G(t), if ti > t
(15)

where yi(t) = 1{ti = t} and G(t) is the Kaplan-Meier estimate of the censor-
ing distribution (i.e., estimated on {(xi, ti, 1− si)}i∈N ). To measure calibration
across the entire time horizon, we numerically integrate the Brier score using
100 time points [16].

4 Experiments

We introduce the datasets we experiment on, describe the setup of a simulated
federation and instantiate our model with three different linearity and hazards
assumptions, and present our results.1
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Dataset Size Features Prop. censored Last event

METABRIC 1,904 9 42% 355 days
SUPPORT 8,873 14 32% 1,944 days
GBSG 2,232 7 43% 83 days

Table 1: Overview of datasets.

4.1 Datasets

We experiment on three clinical datasets (Table 1; for Kaplan-Meier curves
see Appendix A) made available by [13], namely the Molecular Taxonomy of
Breast Cancer International Consortium (METABRIC), the Study to Under-
stand Prognoses Preferences Outcomes and Risks of Treatment (SUPPORT),
and the Rotterdam tumour bank and German Breast Cancer Study Group
(GBSG). METABRIC and GBSG both relate to breast cancer patients, a group
for whom non-PH have been noted [3,5], while SUPPORT presents serious hos-
pitalisations for a second application area.

4.2 Setup

We simulate two federated data cases: In the first, data are randomly distributed
(“IID”), simulating the case of each centre seeing a similar sample of the patient
population. In the second, data are stratified on the time to event (“Non-IID”),
simulating the case that each centre sees a non-overlapping quantile of the pop-
ulation – from centre 1 seeing only the shortest survivals leading to centre 4 with
the longest survivals (Figure 2). For comparability, we maintain the total number
of local training rounds at 100. A pooled data baseline is provided (“Pooled” –
no distinction between local and global rounds). In all cases, 80% of the overall
data are split, if federated, and used for training, while 20% are held out for
evaluation.

We instantiate the model with different choices for g(x) – with a linear predic-
tor or with an NN, with and without PH (Table 2). For baselines, we considered
the works of [1] and [7]. The former assumes PH, however, while the latter is a
pooled data model. Both require upfront agreement on a specification of f(t) to
include non-PH, adding to the setup costs of a federation. We further note that
no implementations of these models are available. We therefore provide the NN
PH model to approximate the model of [1] – a federated NN-based Cox model
with PH – and the Linear PH model as a standard baseline.

Architectures (Figure 1) are implemented in PyTorch 1.8.0 [22] with two
hidden layers of 32 neurons for NN models and none for the linear model. Op-
timisation uses Adam with grid-sought learning rates (10−1 to 10−5 on 20% of
the training data) and a batch size of 256. Base case discretisation uses 10 time
steps.

1 For source code, see https://github.com/dkaizhang/federated-survival.

https://github.com/dkaizhang/federated-survival
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Fig. 2: Event time distribution for IID and non-IID data using stratification by
event time on METABRIC.

Model Predictor

Linear PH β⊤x
NN PH gϕ(x)
NN nonPH gϕ,t(x)

Table 2: Model choices.

4.3 Results

In this section, we first compare the performance of the three models trained
in a centralised fashion on pooled data against their federated performance on
decentralised data. We next provide additional experiments exploring the impact
of the discretisation grid chosen for the base case. We report averaged 5-fold
cross-validation performance throughout.

Federated Performance. On pooled data, the NN nonPH model outperforms
or ties in concordance (Table 3) and ties with the best in calibration (Table 4),
indicating a gain from the relaxation of the PH assumption. For METABRIC
and GBSG this aligns with [3,5,11] who find non-PH amongst this patient group.

Comparing this to the federated setting with IID data, all three models main-
tain their performance (within one standard deviation) in concordance and cal-
ibration when aggregation is frequent. First hints of performance degradation
amongst the NN-based models occur as aggregation becomes very infrequent
(rightmost columns) while the Linear PH model appears largely unaffected. This
observation is noteworthy, as infrequent aggregation will be a likely feature in
practice given communication costs. This indicates a potential trade-off between
model complexity and achievable aggregation frequency to support its training.
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In practice, data are likely to be non-IID across centres. The results show
that the performances of all three models suffer when this is the case. Generally,
the NN-based models experience the most severe losses in performance and are
largely outperformed by the Linear PH model. When aggregation is infrequent,
the NN-based models on SUPPORT and GBSG effectively approach a no-skill
predictor in concordance (average c-index of 0.5). Further, performance losses
under infrequent aggregation of the NN-based models are, as would be expected,
worse than under IID data. On SUPPORT, the NN-based models exhibit much
greater performance differences than on the other datasets. In this respect, we
note that SUPPORT has much longer survival times than METABRIC or GBSG
(Table 1), so that stratification by event time likely results in a more significantly
different partition of the data for the former than for the latter two.

Impact of Discretisation Fineness. We re-train models on finer time grids
using 100 global and 1 local rounds. A finer grid on METABRIC (Figure 3 upper
panel) and GBSG (Figure 3 lower panel) did not improve performance and, in
fact, appears to degrade performance. Notably, the Linear PH model becomes
a no-skill predictor in terms of concordance on the non-IID GBSG case. The
results are less conclusive on SUPPORT (Figure 3 middle panel), as a finer time
grid appears to result in a minor to no increase in concordance at the expense
of a loss in calibration.

A finer time grid can be expected to result in a trade-off between closer
approximation of true (smooth) survival and a reduction in data available in
any given time step. An increase from 10 to 20 time steps, for instance, halves
the number of available data points to estimate a given step. The latter effect
appears to dominate on the smaller METABRIC and GBSG datasets, and less
so for the approximately 4-times larger SUPPORT dataset.

5 Conclusion

We present a federated Cox model that relaxes the proportional hazards (PH)
assumption and demonstrate its ability to maintain concordance and calibra-
tion relative to a pooled baseline under various linearity and PH assumptions.
Compared to prior work, this federation scheme encodes the decision between
PH and non-PH in a binary choice over the output layer, rather than requiring
upfront agreement on a specification of f(t). We note that our model is not
restricted to a particular data type or network architecture excepting the out-
put component. Future work could adapt the model for image-based federated
survival predictions.

The decrease in performance on non-IID data (even if pathologically derived
in this paper) represents a challenge to the application of federated learning in
practice. Extensions could include exploring methods accounting for statistical
heterogeneity [26,18] or other federation topologies which maintain locally spe-
cialised models trained in a peer-to-peer fashion [23]. While the heterogeneity
in this paper was derived from label stratification, other types of heterogeneity,
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Fig. 3: Model performance with increasing discretisation fineness. Federated
models were trained with 100 global and 1 local rounds. Performance decreases
on smaller METABRIC and GBSG datasets with mixed results on the larger
SUPPORT dataset.
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such as covariate shifts, could be explored: for image-based survival predictions,
differences in acquisition protocols could provide one such avenue.
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Fig. 6: Kaplan-Meier estimates with 95% confidence interval.
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