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Abstract

As supermarkets are known to be very energy intensive, improvements
made to their efficiency can enable operators to reduce not only carbon
emissions but also costs, in line with corporate and legislative targets. This
study presents a novel benchmarking method to appraise emission and
cost performances across a portfolio, enabling building managers to iden-
tify sites that are underperforming, taking as a case study a large number
of food retail stores. Multiple layers, detailed variable selection including
weather features and regression technique comparisons (Multivariate Linear
Regression (MLR), Artificial Neural Network (ANN) and Decision Tree
(DT)), are considered in model construction. Efficiency is evaluated on
multiple bases with a focus on emissions. These are clustered together to
produce a benchmark to inform investment decision-making across a port-
folio. The DT technique was found to be the most effective, producing a
benchmark with low average error (1.5 kgCO2m

−2period−1) and high max-
imum error (21 kgCO2m

−2period−1) indicating high accuracy and high dis-
cernment respectively. This model also correctly classified buildings known
to perform poorly into the worst 30% of buildings in the portfolio. This
work highlights the need for further research into natural gas consumption
benchmarking and particularly the use of humidity data to this end.
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Abbreviation Full Name
ANN Artificial neural network
CBECS Commercial Buildings Energy Consumption Survey
CCR Combined cost residual
CER Combined emission residual
CDD Cooling degree day
CEDA Centre for environmental data analysis
CF Carbon factor
CHP Combined heat and power

COV ID − 19 Coronavirus disease 2019
DT Decision tree
HDD Heating degree day
MAE Mean absolute error
MLR Multivariate linear regression
MME Mean maximum error
MSE Mean square error

RFECV Cross-validated recursive feature elimination
UK United Kingdom
US United States

Symbol Description Unit
CFelec,i Electricity Carbon factor of building i kgCO2kWh−1

CFgas,i Natural gas Carbon factor of building i kgCO2kWh−1

n Number of observations -
PFelec,i Electricity price factor of building i £kWh−1

PFgas,i Natural gas price factor of building £kWh−1

Relec,i Electricity residual of building i kWhm−2period−1

Rgas,i Natural gas residual of building i kWhm−2period−1

Si Set i of buildings -
Ti Average daily temperature on day i k
Tbc Cooling baseline temperature k
Tbh Heating baseline temperature k
ui Binary variable indicating if Ti is below Tbh -
vi Binary variable indicating if Ti is above Tbc -

Xpredicted Building predicted energy intensity kWhm−2period−1

Xreal Building observed energy intensity kWhm−2period−1

Xi Variable i for set of buildings X -
xik Output of node k from layer i -
xmn MLR variable n for store m -

yi,predicted Predicted energy use intensity kWhm−2period−1

yi,real Observed energy use intensity kWhm−2period−1

α Zeroth order coefficient of MLR -
βn First order coefficient of MLR for variable n -
γ Zeroth order coefficient of ANN node -
εk First order coefficient of ANN node input from node k -
µk Centre of K means cluster k -
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1. Introduction

In 2019, building operation made up 30% of global CO2 emissions with
10 GtCO2 emitted annually [1]. The Intergovernmental Panel on Climate
Change estimates that non-domestic buildings could achieve an 18% reduc-
tion in carbon emissions through low cost efficiency improvements [2], they5

cite this “untapped energy efficiency potential” as one of the most impor-
tant pathways to reduce building emissions [1]. The food retail industry is
large and complex providing the vital service of supplying goods to society.
Supermarkets contribute to approximately 1% of the UK’s GHG annual
emmissions [3], in 2020 this was equivalent to 4.1 MtCO2e [4]. The esti-10

mated revenue of the food industry in 2020 was £12.8 billion [5]. In par-
ticular, food retail buildings are energy intensive due to features including,
lighting, heating, ventilation, air conditioning and refrigeration required to
maintain customer comfort and food freshness [3]. Other features including
large heating volumes, high operational intensity and outdated insulation15

have been identified as contributors to increased intensity of supermarket
operation [6]. Supermarkets are therefore a building class that require care-
ful monitoring to ensure resources are used efficiently [7]. Due to their high
energy use and strong economic presence this paper focuses on analysing
the performance of food retail buildings.20

To identify the best set of solutions to reduce emissions and costs, it is nec-
essary to understand the complex load requirements of power, heating, and
cooling of energy intensive buildings [8]. Through careful analysis and deep
understanding of energy demand, organisations can understand the im-
pact of their investments and begin to devise a low emissions roadmap to25

meet long term environmental targets and introduce technical solutions [9].
Hence, it is evident that modelling and benchmarking tools for building
performance can inform decision-makers on best carbon mitigation strate-
gies.
There exists a significant amount of literature on the analysis of building30

energy use and performance efficiency. Technical, statistical and data-
driven techniques have been developed for energy demand prediction [10].
A good example of this at the city scale is the work of Larivière and Lafrance,
who present a model of urban energy consumption based upon city charac-
teristics, to aid future planning and design for efficient cities [11]. Other35

works include tools for diagnosis and retrofitting of individual buildings
[12, 13]. Here Kalogirou and Bijou’s work using neural networks to eval-
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uate the implementation of solar energy to new designs stands out for its
clear focus on a specific, singular application [14]. Furthermore, extensive
work exists in the field of building performance benchmarking [15, 6].40

Within the building sector, benchmarking refers to the comparison of en-
ergy performance across similar buildings that share common attributes
[16]. These typically result in a performance score or rating. Benchmarking
is an essential and distinct component of the building performance mod-
elling field as it emphasises building comparison over model accuracy and45

hence is better aligned with industry use. While a highly accurate energy
use intensity model may be useful for forecasting investment scenarios, it is
not calibrated to inform end-users how efficiently a building is performing
against its cohort. Hence, in industrially focused works such as this, bench-
marking is typically the researcher’s tool of choice. A number of white-box50

methods [17] have been developed based on detailed industry knowledge.
The most renowned of these models being the Energy Star methodology
[18], a benchmark designed by the US Environmental Protection Agency,
whereby each building is assigned a 1-100 rating for energy performance
with the goal of justifying building upgrades and improving performance.55

While white-box initiatives such as these act as a useful form of perfor-
mance disclosure, their reliance on detailed technical information means
they are less suited to evaluating building performance at scale. There-
fore, by leveraging improved reporting across building portfolios, black-box
data-driven methods offer significant potential for large building datasets60

[19]. Although such methods are in increasing demand, due to their abil-
ity to use generic information to identify meaningful insights, such meth-
ods have rarely been developed and demonstrated for commercial building
portfolios.
Data-driven methods employed for building energy performance predic-65

tion and benchmarking include multivariate linear regression (MLR) [15],
decision trees (DT) [20], and K-means clustering [6]. More nuanced and
novel approaches include work by Lara et al. [21] where K-means cluster-
ing was used to distribute 59 schools across Italy into three groups by a set
of attributes, before energy use prediction through MLR is applied. This70

resulted in an improved prediction with a higher coefficient of determi-
nation (R2). Yalcintas’ 2006 work used aritifical neural networks (ANNs)
to benchmark and predict energy demand from lighting, plug loads and
HVAC systems in over 60 Hawaiian school buildings, while modelling how
retrofitting efforts would affect these benchmarks [22].75
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Gao and Malkawi’s K-means clustering based benchmark, evaluated rel-
ative importance of variables for electricity use prediction, utilising 2,000
buildings from the US’ commercial buildings and energy consumption sur-
vey (CBECS) [6]. This work also incorporated heating and cooling degree
day (HDD/CDD) metrics designed to quantify the sensitivity of heating80

and cooling loads over a given time period. However, this analysis indi-
cated these weather variables showed limited predictive value. Similar find-
ings were observed by Spyrou et al. in their regression based energy predic-
tion models, this work is also noted for being one of few using data from a
commercial food retailer [23]. It is somewhat surprising that weather data85

have historically shown little value to energy benchmarking methods cov-
ering long-periods of time and diverse climates. Therefore, previous works
have suggested that effective implementation of weather features may add
value to the academic literature [19].
Several works in the literature have contrasted and evaluated different90

regression techniques for energy demand prediction within benchmark-
ing applications. Ding and Liu for example, compared the Energy Star
method, China’s national energy consumption standard and stochastic
frontier analysis [24]. Here, benchmark value was evaluated in terms of
consistency across the models, and the differences in categorisation were95

considered carefully. It should be noted that the selection of models used
focused on applications for policy makers, as opposed to building man-
agers. Meanwhile, Tso and Yao compared MLR, ANN and DT regression
models for building energy consumption prediction [25]. This was consid-
ered to add significant value to the field, for future prediction methods.100

However, model construction and performance evaluation were undertaken
with emphasis upon accuracy, rather than the strategic value of the model
as a diagnostic tool.
This work builds upon the wealth of existing benchmarking research to de-
velop a novel, industrially applicable method for the evaluation and iden-105

tification of emissions reduction opportunities across a building portfolio
using data provided by a major UK retailer. Several opportunities were
identified to produce an enhanced, and hence more industrially relevant
benchmark. First, by providing efficiency scores on both carbon and cost
bases, greater insight is provided decision makers, leading to more efficient110

and rapid decarbonisation. Efficiency benchmarks in financial terms have
not been produced in this field previously, and localised energy cost data
used in this work ensured this output could be produced at high quality.
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Additionally, the implementation multi-layered regression model similar
to the work of Lara et al. [21], for benchmarking outcomes was identified115

as an opportunity to produce a more accurate model providing more ac-
tionable insight than previous benchmarks. To further the work of Lara
et al. an outlier removal layer within the regression is proposed to reduce
model skew. Finally, particular attention is paid to the enhanced imple-
mentation of weather variables such as humidity, a previously unused vari-120

able. This capability enhanced the benchmark’s ability to assess building
performance, accounting for seasonal or climate factors alongside variables
designated as strategically unmanageable, including building age and size.
Further, this work evaluates the performance of energy prediction regres-
sion methods specifically for commercial benchmarking applications. This125

has been highlighted in literature as an area for further work [20, 26]. Three
regression techniques for a commercial benchmarking approach were as-
sessed; MLR, ANN and DT. This comparison offered compelling insights
into relative variable importance, and the inherent differences between
these techniques, ensuring an incisive final model.130

This paper is composed of five sections. The current section has provided
the motivation, background, purpose, and scope of the problem. The sec-
ond section describes the methodology, mathematical formulation of the
model and the means through which it was evaluated. The third section
provides the results from the electricity and natural gas consumption bench-135

marking. It goes on to discuss the differences in results and variable impor-
tances derived from the different regression techniques. The fourth section
discusses the trade-offs between different regression techniques and the lim-
itations of the benchmark. The last section of this work provides conclud-
ing remarks.140

2. Methodology

The benchmark method was developed through several steps. First, care-
ful data collection and processing was undertaken. Next, a variety of data
driven techniques were implemented in a multi-layered structure to pro-
duce the final benchmark. Finally, the performance of different benchmark145

were compared. The methods behind each step are elucidated below.
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2.1. Data Collection and Treatment

2.1.1. Building Data

A list of buildings and their attributes was sourced from a commercial
food-retailer. Their respective electricity and natural gas consumption in150

four-week periods, spanning financial years beginning 2017 through 2019,
was collected and appended. This dataset contained details of approxi-
mately 2,000 buildings. It was desired to study buildings of a single cate-
gory type, as this ensured similar assets and operations were compared. As
large food retail sites were identified as having higher energy requirements155

[23], only properties categorised by the business as supermarkets were con-
sidered. This left 584 buildings available for the undertaking of this study.

2.1.2. Weather Variable Creation

Hourly temperature and humidity data from across the UK were sourced
from the Centre for Environmental Data Analysis (CEDA) [27]. These160

datasets were loaded into an SQLite database from which they could be
called. Data was collected for each building by matching its postcode loca-
tion to the closest weather station.
Weather variables in CEDA include: hourly and daily average tempera-
ture, and humidity. Daily temperature data was converted to heating de-165

gree days (HDD) and cooling degree days (CDD), as shown in equations 1
and 2 respectively. The basis of these degree day metrics is to measure the
cumulative days when temperature is above or below a given baseline, and
the magnitude of deviation from this baseline. These may be interpreted
as demand on heating and cooling systems over the time period considered,170

for example HDD is expected to be positive in the winter, and zero in the
summer. These values are commonly used in literature [22] as they reflect
more accurately weather effects on energy demand.

HDD =
∑
i=day

vi(Ti − Tbh) vi

{
1 Ti < Tbh

0 Else
(1)

CDD =
∑
i=day

ui(Ti − Tbc) ui

{
1 Ti > Tbc

0 Else
(2)

To maximise the value of the HDD and CDD datasets, analysis of their175

correlation with electricity was completed for different baseline tempera-
tures Tb across a range of 10-20 °C. Correlation was measured as the R2 of
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linear regression of HDD and CDD with electricity consumption. Baseline
values of 15.5°C for CDD and 12°C for HDD were selected. These were val-
idated as appropriate baseline values through consultation with industry180

experts on standard baselines for supermarket performance analysis specific
to the UK.

2.1.3. Carbon and Price Factors

A carbon emissions factor (CF) represents the CO2 produced per unit en-
ergy consumed (kgCO2kWh−1). A specific CF provided by the industrial185

partner was used to convert the energy consumption in kWh of each build-
ing to a carbon emissions basis. As CF values were only provided for the fi-
nancial year 2017, the electricity CF values were reduced at a constant rate
of 10% per year, based on the rate of decarbonisation of the UK’s energy
grid in 2019 [28]. It is noted that this forecasting approach reduced model190

carbon accuracy, this is designated an opportunity for model improvement.
On the other hand, a constant natural gas CF of 0.184 kgCO2kWh−1 was
taken from government data, as negligible change was observed across the
period [28]. Similarly, electricity and natural gas price factors (PF) with
units of £kWh−1 were implemented to convert energy consumption to an195

economic KPI. These provided tangible metrics of carbon and cost inten-
sity for each building (kgCO2m

−2period−1 and £m−2period−1). It should
be noted CCR and CER values are given on a per-period basis, where a
period is a 28 day interval, corresponding to the resolution of consumption
data used in this study.200

2.1.4. Variable Selection

Once all datasets were collected, qualitative and quantitative methods
were used to eliminate variables which would not meaningfully contribute
to model performance. A full list of variables available is provided in ap-
pendix Appendix A.1.205

Factors considered easily improvable, such as light fitting type, refriger-
ant type or CHP capacity, are frequently excluded from energy intensity
benchmarking models in literature [7]. This is to avoid penalising improved
buildings. This reasoning is best understood through the consideration of
two identical buildings, one with efficiency improvements made to its man-210

ageable variables, and one without. In the case that these variables are
not considered in the energy use prediction model, both buildings will be
predicted to perform at the same level. Hence, the unimproved building
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will be identified as underperforming against predictions and thus will be
assigned higher priority for improvement. In the case that the model ac-215

counted for improvable variables, it is possible the improved building would
be assigned higher priority for investment, despite having a smaller mar-
gin for improvement. Therefore, factors considered as easily improvable or
attainable were excluded from the prediction model in this work.
Next, variables with low variance (below 5%) were removed from consid-220

eration, as they reflected variables that changed little across the entire
database, providing limited predictive insight. Likewise, variables with high
degrees of co-variance were removed. This prevented the amplification of
a single characteristic that would otherwise be captured in another vari-
able: cafés and petrol stations were removed here as they were found to be225

strongly (r > 0.6) associated with building sales area.
Analytical variable selection was undertaken using a cross-validated re-
cursive variable elimination (RFECV) algorithm for the MLR model re-
gression. Variables were scored on their importance to the model (see sec-
tion 2.4.3) by assessing its coefficient from an MLR regression (see section230

2.2.2), the lowest value variable was removed and the process was repeated.
The number and combination of variables, which minimised model error
(Mean absolute error, MAE, see equation 10) was selected for the MLR
regression. The variables removed in each step and final variables used in
each model can be found in Appendix A.1.235

2.2. Data Science Techniques

Data-driven techniques were employed in this work to provide insight un-
available through traditional methods. The techniques used are elucidated
below.240

2.2.1. K-Means Clustering

K-means clustering is a popular method for grouping m items into k clus-
ters in which each item belongs to the cluster with the closest centroid.
Given a set of observations (x1, ..., xm), where each contains n variables, K-245

Means clustering defines sets S = S1, ..., Sk with d-dimensional centroids µ
so as to minimise the sum of square error within the group (i.e. variance):
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argSmin
∑
k

∑
nk

|| x− µk ||2 (3)

2.2.2. Multi-variate Linear Regression (MLR)

MLR closely fits an n − 1 dimensional hyperplane for m observations in an250

n dimensional space. The n dimensions correspond to variables evaluated,
where the nth attribute is predicted by the n − 1 dimensional hyperplane.
This may be expressed as an equation of the form shown in equation 4 be-
low.
For example, a two-dimensional plane may be defined in a three-dimensional255

space, with the first two dimensions corresponding to attributes area and
age. Here, the plane would specify, or predict the third dimension, electric-
ity consumption.

yi = α +
n−1∑
n=1

βnxmn (4)

The coefficient of each variable βn and intercept α are determined to min-
imise a cost function equivalent to model error, in this case mean squared260

error (MSE), as given in equation 5.

MSE =
∑
m=1

(yi,predicted − yi,real)2 (5)

2.2.3. Artificial Neural Network (ANN)

Similarly to the MLR method, the ANN regression predicts values of an
nth variable from n − 1 variables after fitting with m observations. This is265

achieved by passing the values of the n − 1 attributes through a network
of nodes. The output of this network is the predicted value of the nth vari-
able. This structure is based on the way the brain learns [29].
There are three types of nodes in an ANN: input nodes, hidden nodes and
output nodes. Each input node, sits in the first layer, and takes the value270

of a variable for a given observation. Each output node sits in the final
layer and yields a predicted value.
These two groups of nodes are connected by a network of j layers of hidden
nodes. In this work, the hidden nodes are arranged in a feed-forward struc-
ture. Here, nodes are arranged such that each node in layer i takes inputs275
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from all nodes in layer i − 1 and transform them according to a series of
weights, as shown in equation 6.

xi,j = γ +
∑
k=1

εkxi−1,k (6)

Where xi−1,k is the output of node k from the previous layer, and xi,j is the
output of the node. γ and εk are weights assigned to minimise the model’s
cost function, in this work MAE was used as shown in eq. 10, as squared280

error metrics amplify the influence of outliers.

2.2.4. Decision Tree (DT)

Decision trees, when applied to continuous outcomes, are referred to as re-
gression trees. These work by partitioning data into subsets via a series of285

binary splits using Boolean logic. Each point at which a decision is made is
referred to as a node.
The Classification and Regression Tree algorithm was selected for deci-
sion tree construction, as it accepts continuous inputs and outputs, and
has been employed for benchmarking outcomes previously [20]. For regres-290

sion models, each split was made to minimise error (MAE) between the
mean of the generated subset and each of its datapoints. MAE was chosen
to minimise the influence of outliers as discussed in section 2.2.3 above.

2.3. Building Energy Performance Benchmark Modelling295

2.3.1. Model Structure

The benchmark model has been developed based on a combination of pre-
vious works [6, 24, 21], whereby electricity and natural gas consumption
is predicted for each building using regression techniques. These predicted
values are designed to be specific efficiencies at which each building could300

operate. The difference between the actual and predicted consumption val-
ues are labelled consumption “residuals”, these are obtained as shown in
eq. 7. These are used to indicate the performance level of a building with
respect to its predicted consumption, where greater than predicted energy
use yields a positive residual. Positive residuals indicate opportunities for305

improvement in efficiency. Additional steps included in this model are: out-
lier removal, K-means clustering prior to regression for MLR and ANN
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models and final priority clustering by investment KPIs. A detailed step-
by-step outline of the model structure is shown in figure 1.

R = XReal −XPredicted (7)

While the three models used different regression techniques, to maintain310

valid comparisons a consistent model structure and output was defined.
This was made up of four steps as detailed below and in figure 1.
K-means clustering, was used in steps one and three, to distribute super-
markets into manageable groups with similar variables prior to regression
modelling to improve model resolution. This is based on work by Lara et315

al. [21]. As the decision tree model created its own subsets, K-means clus-
tering prior to implementation was deemed unnecessary in this case.
Regressions were undertaken on a period-by-period basis to avoid repeat
observations of the same buildings which were found to lead to overfitting.
Buildings which did not use gas were not included in the natural gas con-320

sumption regression.
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1. Data Pre-processing:
Prepare the data to be fed into the model. This included the colla-
tion of weather data and building characteristics.

2. Removal of Outliers on Carbon Residual basis:325

Reduces the impact of significant outliers on the regression model.

(a) K-Means Clustering:
Clustered the buildings into 3 groups based on characteristics
such as size or age.

(b) MLR Fitting & Prediction Modelling:330

Generates initial benchmark values for the entire dataset using
an MLR method.

(c) Carbon Residuals Generated:
The carbon residuals were calculated as the difference between
the actual consumption values and a buildings benchmark.335

(d) Buildings with residuals outside of 2 standard deviations are
removed:
Removes buildings with large acting residuals. Passes 95% of
buildings to step 3 for training.

3. Main Benchmark Iteration:340

Final residual metrics generated for use in step 4 and analysis.

(a) K-Means Clustering:
Models One & Two: Clustered the buildings into 3 groups based
on characteristics such as size or age.
Model Three: Step skipped as Decision Tree performs clustering345

step inherently.
(b) Fitting & Prediction Modelling:

Different regression techniques were used in each model to gen-
erate benchmark values for each building:

Model One: Multivariate Regression350

Model Two: Artificial Neural Network
Model Three: Decision Tree

(c) All Residuals calculated and stored:
Residuals were calculated as the deviation from the predicted
metrics such as electricity consumption or carbon emissions.355

4. Priority K-Means Clustering:
Final investment priority groupings were developed with respect to
investment criteria such as cost or carbon residuals.
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Figure 1: Model Structure Flowsheet360

As all model construction algorithms (see sections 2.2.2, 2.2.3, 2.2.4) aim
to minimise prediction error, buildings with abnormal electricity or nat-
ural gas demands have greater influence over the regression models. This
was considered undesirable as significant deviations would lead to unreal-
istic benchmark values for all buildings. Therefore, in step two, buildings365

beyond two standard deviations from the mean were removed, leaving ap-
proximately 95% of buildings as the training set. This was to limit the in-
fluence of outliers on the predicted carbon residuals.
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2.3.2. ANN Model Specifications

Where ANN regression is used, a network with one hidden layer and nodes370

equivalent to half the number of input nodes was selected as appropriate
based upon previous ANN models developed for benchmarking purposes
[26, 22]. In this case the separate electricity regressor had 16 input nodes
and the natural gas regressor had 15. Both had a single output node, cor-
responding to the predicted performance value. The feed forward design of375

ANNs in this work present no memory or competition between nodes.

2.3.3. DT Model Specifications

Decision trees use short-sighted decision-making processes, meaning each
split was optimised without consideration of decisions further down the
tree. A maximum of five splits and minimum leaf size of 5% of buildings380

were specified to avoid overfitting. These values were specified based on
previous building energy efficiency benchmarking works [20, 30].

2.3.4. Model Output

Within each model, a period-specific and unique benchmark value for elec-385

tricity and natural gas demand was calculated as the deviation of the build-
ing’s consumption from its predicted value.
Combined Emissions Residual (CER) and Combined Cost Residual (CCR)
were identified as powerful KPIs to compare buildings in terms of their en-
vironmental and economic impact respectively. These metrics were inclu-390

sive of natural gas and electricity components. CER were calculated as a
sum of carbon residuals (the products of each consumption residual and
their respective carbon factors), accounting for both electricity and natu-
ral gas over the entire period considered as shown in equation 8. Likewise,
CCR were calculated using price factors (PF) for electricity and natural395

gas, as shown in equation 9.

CER =
i∑

Time

(RElec,i × CFElec,i + RGas,i × CFGas,i) (8)

CCR =
i∑

T ime

(RElec,i × PFElec,i + RGas,i × PFGas,i) (9)
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When plotting the outputs of each model, minor differences were difficult
to observe visually due to the large number of datapoints included. How-
ever, it was clear that for each model there existed buildings which lay out-
side of the high density regions; these were successfully identified by the400

priority clustering step which highlighted similar numbers of extreme poor-
performers across the models, as shown in priority cluster one in table 1.
Similar clustering patterns emerged for each model. These were arranged
from worst to best by euclidian distance of the centroids with respect to
CCR and CER from the best performing observation. Using these priority405

clusters to identify smaller groups of stores, the model succinctly indicates
where the performance of a building falls within its portfolio with respect
to costs and emissions.

2.4. Model Testing

To create a rounded view of each models applicability, a variety of evalua-410

tion methods were used. This section explains how each model performed.

2.4.1. Model Error

Model error is a common means of understanding and comparing model
performance [26, 30]. Error metrics were taken as averages for each model.415

As MAE was utilised in construction of the ANN and DT regressions, it
was deemed the most relevant metric for model evaluation. This repre-
sented the model’s ability to realistically predict energy consumption. How-
ever, as residuals, equivalent to model error, are a key model output, com-
plete minimisation was not desired, this is explored further in Results sec-420

tion 3.2.1. MAE is defined by equation 10 as:

MAE =

∑
i |yi,predicted − yi,real|

n
(10)

MME = max(|yi,predicted − yi,real|) (11)

To supplement MAE, mean maximum error (MME), given in eq. 11, was
collected for each model to provide insight into the maximum deviation
from a benchmark value; this indicated the harshness of the benchmarks.
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2.4.2. Model Validation425

A list of buildings with known under-performing supermarkets was iden-
tified and collated by the commercial partner. The benchmarks of each of
these buildings were qualitatively analysed to ascertain the realism and
validity of each model, by considering if such buildings were in line with
previous works. A full description of each building can be found in the Ap-430

pendix section A.6.

2.4.3. Variable Importance

The relative importance of the variables used in each model were deter-
mined. The permutation importance method was employed, as it can be435

applied to all regression methods ensuring comparable outcomes. [31]. This
method determined the importance of variable n by measuring the impact
on model error (here MAE), when observations of variable n are randomly
shuffled between buildings.

3. Results440

In order to understand the effectiveness of the benchmarking methodology
developed above, the different models were evaluated against one another.
Additionally, the benchmarks allocated to case-study buildings were con-
sidered as a means of model validation. Finally, the importance assigned
by the models to different variables offered further insight into differences445

between model prediction methods.

3.1. Model Outputs

Table 1 shows the distribution of buildings between clusters for each model.
Although the models showed similar distributions of buildings between
clusters, it was observed that the DT model distributed buildings some-450

what less evenly between clusters with a variance of 3.9%. Further, the
DT model provided a more discerning prediction of the portfolio, with the
largest proportion of buildings (52.7%) categorised as under-performing.
Meanwhile, the MLR model was the most benign or optimistic with 49%
of buildings categorised as over performing, and showed more evenly dis-455

tributed clusters with a variance of 1.7%. This was due to the inherent
differences between regression methods. While the MLR method was con-
structed using MSE, which emphasised anomalies during model fitting, the
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ANN and DT methods minimised MAE, which weighted anomalies less, re-
sulting in higher residuals for these buildings. Hence, the use of MAE did460

ensure a more discerning model, a better fit to inform and guide decision-
makers.

Table 1: Distribution of buildings by priority cluster and over vs under
performance by model

Number of buildings Proportion of buildings %

Priority Cluster MLR ANN DT MLR ANN DT

1 6 5 3 1.0 0.9 0.5

2 97 40 13 16.7 6.9 2.2

3 190 181 175 32.6 31.1 30.1

4 186 259 277 32.0 44.5 47.6

5 103 97 114 17.7 16.7 19.6

Performance

Over 285 279 275 49.0 47.0 47.3

Under 297 303 307 51.0 52.1 52.7

3.2. Model Comparisons

3.2.1. Model Error465

The average MAE and MME of each model for both natural gas and elec-
tricity were computed, as shown in table 2.
The DT regressions yielded the lowest MAE, averaging 1.49 kgCO2m

−2period−1,
followed by the ANN model for electricity, while the two showed similar
MAE values for natural gas regressions at around 1.7 kgCO2m

−2period−1.470

The MLR model consistently scored the highest MAE, with an average of
1.68 kgCO2m

−2period−1. It should be noted that the period unit corre-
sponds to 28 days, as discussed in section 2.1.3. The differences in error
can be partially explained by the fact that the error MLR minimised was
MSE, hence it was expected to achieve a sub-optimal MAE. However, the475
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Table 2: MAE and MME for overall models, electricity regressions and
natural gas regressions

Model MAE kgCO2m
−2period−1 MME kgCO2m

−2period−1

MLR 1.68 14.9
Electricity 1.50 11.5

Gas 1.86 18.3
ANN 1.53 15.0

Electricity 1.38 11.3
Gas 1.67 18.6
DT 1.49 21.1

Electricity 1.27 13.6
Gas 1.70 28.6

discrepancy also suggested that the relationship between the variables and
electricity and natural gas consumption intensity showed a non-linear be-
haviour, which the ANN and DT models were able to capture, unlike the
MLR [24]. These relationships are similar to the results and conclusions
drawn by Yalcintas and Ozturk, in their work predicting energy consump-480

tion for buildings from the CBECS using ANNs [26].
MAE was consistently higher for natural gas regressions than for electric-
ity. One explanation may be that natural gas demand was less comprehen-
sively explained by variables considered here. For example, Mavromatidis
et al. [12] research on energy use in a supermarket by service, uses hourly485

weather and indoor building average temperatures as inputs for predict-
ing boiler energy usage. However, such data was not available during the
development of these models.
MME gave a strong indication of the maximum size of residuals produced
by each model. Despite producing the lowest MAE, the DT model showed490

the highest MME, an average of 21.1 kgCO2m
−2period−1. This was ex-

pected, as the DT model assigned a mean benchmark value to all build-
ings within a given leaf. As these values were less tuned to each individ-
ual building, greater errors were produced for anomalies. This approach
seemed to produce greater insight as buildings with the greatest need for495

investment were assigned more distinct residual values. This also explained
the less even distribution of buildings between clusters in the DT model,
see table 1.
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3.2.2. Model Validation500

While co-comparison of models offered insight into their relative perfor-
mances, it was also necessary to validate benchmarks using case study
buildings. Therefore, the ability of the models to diagnose the poorly per-
forming buildings (A-D) from Appendix Section Appendix A.2 was taken
as a qualitative measure of each model’s validity. The CER, emissions per-505

centile and benchmark score for each case-study building are given in table
3.

Table 3: Carbon residual, percentile rank with lowest percentile as
worst and priority cluster rank of sample buildings

Carbon kgCO2m
−2period−1 Percentile % Cluster Rank

Building MLR ANN DT MLR ANN DT MLR ANN DT

A 30.2 29.9 149 34.4 36.4 4.8 5 3 4

B -23.9 -7.73 107 60.8 57.4 9.3 4 3 3

C 58.2 21.8 61.5 23.5 40.0 21.5 3 4 3

D -44.6 -47.8 45.9 68.2 76.1 26.6 4 4 3

Buildings A-D were manually identified by the commercial partner as amongst
the worst performing. While buildings which were known to be leaking
(A & C, see Appendix section Appendix A.2) were registered as poor-510

performing by all models, only the DT model identified all case study build-
ings as under-performing with respect to the carbon residuals.
A point of concern was that models MLR and ANN suggested that build-
ings B & D were actually over-performing, given building B was identified
for high demand and D for age. It was found that these models predicted515

higher than observed natural gas consumption, resulting in favourable (i.e.
negative) gas residuals. This effect dominated CER values as natural gas
is more carbon intensive. This highlighted the value of the DT model for
decision-making as its harshness meant that electricity consumption above
predicted levels was still highlighted despite lower-than-predicted natural520

gas use.

20



Furthermore, the DT model ranked these buildings within the worst 30%.
Hence, the DT model was considered the most valid, and therefore use-
ful for decision-makers, as it most appropriately categorised known worst
performers. Additional discussion of case study buildings may be found in525

appendix section Appendix A.2.

3.2.3. Variable Importance

The relative importances of variables for natural gas and electricity predic-
tion regression are given in figures 3 and 2.530

Figure 2: Variable importance by model for natural gas use regression

Figure 3: Variable importance by model for electricity use regression

As the models were applied across an extended operation period (3 years),535

weather variables were of particular interest to minimise seasonal effects
upon the model.
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Humidity is a variable yet to be implemented in building performance
benchmarking. While humidity had been identified as a high value energy
use predictor [32], figure 2 provided further support for this observation as540

it was identified as a variable of second highest importance for MLR and
ANN models for natural gas use prediction. Humidity was concluded to be
a candidate for further investigation due to its complex relationship with
experienced temperature and heating efficiency.
As heating was assumed to be the primary use of natural gas within su-545

permarkets, weather variables were expected to be of greater importance
to gas regression models than electricity. This assumption appeared valid
for the MLR and DT models, where weather variables were of negligible
importance for electricity regression. On the other hand, the ANN model
assigned moderate to high importance to all three climate variables. As the550

other models and previous work [23, 6] suggested weather variables should
be of limited value for electricity use prediction, the fact that the ANN
model derives value from these attributes suggested it was overfit rather
than deriving meaningful insight. However, ANN models are more able to
capture non-linear relationships in data. It was therefore considered possi-555

ble that those variables less valued by other models may simply have had a
non-linear relationship with energy use intensity. Hence, further investiga-
tion was required.
A number of points suggested that the ANN model was indeed overfit.
First, despite appearing to have extracted insights from variables unused560

by the MLR and DT models, the ANN model error was of a similar magni-
tude to the other models, as shown previously in table 2. Furthermore, an
investigation of variable importance across different time intervals indicated
that this model was assigning importance to variables less consistently, as
shown in Appendix Section Appendix A.3. This implied the data was not565

being interpreted in a physically meaningful way, rather the ANN model
was forcing value from these variables. Finally, the low volume of data per
regression, with the 582 buildings separated into three clusters before re-
gression, was considered a potential cause of overfitting. It was therefore
concluded that a degree of overfitting was at play in the ANN model.570

The binary variable indicating if a supermarket had a biomass furnace was
extremely important to all models for natural gas regression. This was un-
surprising as biomass boilers reduce demand on gas boilers. It also offered
some explanation as to the poor performance of natural gas regression ob-
served in section 3.2.1, as the models appear to over-rely on a low resolu-575
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tion variable which cannot produce accurate predictions.
A key difference in variable importance was observed in figure 3. The MLR
and ANN models selected the binary indicator for natural gas use as their
most important variable for electricity use prediction, while the DT model
selected area. This was attributed to two factors. First, the model opti-580

misation algorithm for the DT model is distinct in that it makes short-
sighted decisions for each branch, while MLR and ANN weigh each vari-
able at once. Additionally, it was considered possible that the relationships
between area, age and electricity usage were multimodal rather than con-
tinuous, hence the splitting of buildings by these variables as in the DT585

model would be of greater value than the assignment of a coefficient.
The low MAE, high MME and correct identification of buildings with known
performance by the DT model was understood to be more impressive given
the small number of variables used to achieve these results. This was con-
sidered more applicable as only a small number of variables were required590

to produce a robust model. Furthermore, the consistency of variable im-
portances suggested physically meaningful interpretation of data was achieved
by the DT, with an average variance of 0.05% for electricity regression.
Variable importance variances are given in full in Appendix A.3.
Finally, as variable importance did not seem to vary by model error metric595

(MSE for MLR, MAE for ANN and DT), it was concluded that the im-
plementation of MAE had not impacted model interpretation of variables.
Hence MAE was concluded to produce a more discriminating and hence
interpretable model, with minimal impact on physical meaning extraction.

4. Discussion600

The strategic variable selection approach, and layered model structure em-
ployed here, focused the energy prediction benchmark on physically achiev-
able efficiency improvements to aid building managers in allocation of de-
carbonisation investments.
With the comparison of regression techniques having shone light on their605

respective strengths and weaknesses, it was concluded that the DT based
model performed most effectively. Furthermore, its more scrupulous nature
suits it well as a tool for clear decision-making. The ease of implementa-
tion and interpretation of this technique, shown both here and in other
literature [20, 30] go further to highlight the relevance of DT for bench-610

marking outcomes.
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The introduction of K-means clustering of investment KPIs, illustrates a
holistic approach to benchmarking for sustainable investment. While emis-
sions and costs are considered here, further KPIs may be introduced.
A manager of a portoflio of buildings could use this tool both to identify615

targets for decarbonisation investments and study broader trends within
their portfolio.
While the model was validated, a key shortfall was poor performance of
natural gas use prediction. This is of particular concern as natural gas
will tend to dominate emissions as the UK’s electricity grid decarbonises.620

There is therefore potential for further work in gas use prediction.
This benchmark was developed for a single commercial portfolio. The pos-
sibility must be considered that further tuning, or an entirely different ap-
proach may be required for a portfolio of different size, or nature.
Finally, while this tool has value for short term decision-making, forecast-625

ing is necessary to enable the development long term decarbonisation strate-
gies. A forecasting capability would therefore add significant value to this
method.

5. Conclusions

An innovative, multi-stage benchmarking method was developed using en-630

ergy demand prediction models. The implementation of building-specific
carbon factors ensured that emissions, rather than simply energy usage,
were minimised when producing unique benchmark values. This allowed
for the provision of quantitative, realistic and comparable carbon and cost
figures. A key unique feature of the benchmarks was the insightful prior-635

ity clustering of model residuals. This enables decision-makers to rapidly
identify groups of buildings requiring improvement with respect to invest-
ment KPIs. This clustered output approach was found to correctly iden-
tify known poor performers as within the worst 30% of supermarkets in
the portfolio for the selected DT model. Furthermore the model produced640

maintained high accuracy with only 1.49 kgCO2m
−2period−1 MAE, but

clearly highlighted poor performers with an MME of 21.1 kgCO2m
−2period−1.

A strategic, layered approach to model design ensured the data-driven
methods employed in this work translated into practical insights. This in-
cluded distinction between improvable and non-improvable variables and645

emphasis on high carbon standards through rigorous outlier removal and
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use of anomaly-minimising error metrics. This resulted in a more mean-
ingful model able to rapidly highlight investment targets to building man-
agers.
This work supports previous conclusions on the implementation of weather650

data for benchmarking outcomes. The analysis and selection of baseline
temperature for degree day metrics offered an opportunity for creating
energy demand prediction models more robust to disparate climates. Hu-
midity was identified as a particularly important variable for natural gas
intensity prediction which had yet to be implemented in other benchmark-655

ing applications. Opportunity for further investigation into humidity as an
energy use predictor was highlighted.
Another area identified as a shortcoming of this research, and hence a tar-
get for further work was each regression’s notable limitations in natural
gas demand prediction. Variables with potential to improve gas regression660

include humidity, as well as hourly weather data and average indoor tem-
peratures [12]. The implementation of decreasing electricity carbon factors
in line with the decarbonisation of the grid highlighted the increasing rel-
evance natural gas energy intensity will experience. Additionally, while a
number of regression techniques were investigated in this work, a compre-665

hensive optimisation of their hyperparamaters was not undertaken. It is
suggested, particularly in the case of the favoured DT model, that more
rigorous model tuning may add significant value to a benchmarking model
similar to this.
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Appendix A. Appendix

Appendix A.1. Variable Selection Results

Table A.4: Variables Removed from Models and Rationale for decision

Initial Variables Tech. factor Low Var. High Covar RFECV
Most Recent Investment Type • - - -

building has CHP - • - -
HDD - - - ∗

Humidity - - - ∗
Building Location Type - - - ◦
Type of Light Fixture • - - -

Last Update of Light fixtures • - - -
Building has Click and Collect - - - •

Building has Goods Online - • - -
Building has Clothing Section - - • -

Building has Petrol Station - • - -
Building has EV Charging • - - -

Building has Café - - • -
Number of additional shops in building • - - -

Refrigerant type • - - -
Rate of refrigerant lost • - - -
Solar panels Installed? • - - -

• - Removed ◦ - Partially removed ∗ - Removed for electricity regression
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Table A.5: Final Variables Used in Each Model

MLR ANN DT
Variable Elec Gas Elec Gas Elec Gas

Area • • • • • •
Op. Hours • • • • • •
Food Ratio • • • • • •

Building Age • • • • • •
Biomass? • • • • • •

Gas • • •
CDD • • • • • •
HDD • • • • •

Humidity • • • • •
Click and Collect • • • • •

Town Edge • • • • • •
Town Centre • • • • • •
Retail Park • • • • •
Small Town • • • • •
Standalone • • • • •

Suburban HS • • • • • •

• - Included

Appendix A.2. Sample Building Descriptions and additional performance
discussion

Building F was identified as an extreme poor performer with respect to
carbon residual. This was due to its use of a combined heat and power
(CHP) technology, where power is generated through the building’s heat-
ing mechanism. Although CHP lowered electricity demand, as suspected,
more natural gas was used which was also considered more carbon inten-
sive by each model. Therefore, all models classified this building in their
worst 26% of performers. Focusing only on carbon emissions, CHP technol-
ogy was no longer as sustainable as when such technology was implemented
due to the decarbonisation of the UK’s electricity supply. However, build-
ing F was still clustered into mid-low priority rankings, as gas was signifi-
cantly cheaper than electricity. This illustrated the balance of financial and
sustainability considerations weighed by the output clustering approach,
such findings can enable nuanced investment decision-making.
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Table A.6: Sample Building Details

Variable A B C D E F

Opening Year 2013 1980 1992 1978 1991 2000

Petrol Station Yes Yes Yes Yes Yes Yes

Charging Spaces 4 0 0 0 0 4

CHP Capacity No No No No No Yes

Weekly Opening Hours 101 101 101 101 142 96

Classification Standalone Edge of Town Retail Park Retail Park Retail Park Standalone

Cafe Yes Yes Yes Yes Yes Yes

Good Online Yes Yes Yes Yes Yes Yes

Click and Collect No No Yes No Yes Yes

PV Capacity Yes No Yes Yes Yes Yes

Gas Capacity Yes Yes No Yes Yes Yes

2019 Electricity CF 213.2 213.2 213.2 199.7 213.2 202.5

Food Ratio 0.164 0.411 0.376 0.353 0.426 0.049

Selection Reason Leaking High Demand Leaking Age Largest Area CHP

Appendix A.3. Variable Importance Variance Background

The below table categorised the variance in importance assigned to vari-
ables between periods by each model for both gas and electricity predic-
tion.

Table A.7: Average Variance in Variable Importance Score by Period

Model Electricity Gas

% %

MLR 6.87 3.02

ANN 7.02 4.28

DT 0.05 2.58
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