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Abstract 
This paper studies a model for risk aversion when designing a flexible capacity expansion plan for a 
multi-facility system. In this setting, the decision maker can dynamically expand the capacity of each 
facility given observations of uncertain demand. We model this situation as a multi-stage stochastic 
programming problem, and we express risk aversion through the conditional value-at-risk (CVaR) 
and a mean-CVaR objective. We optimize the multi-stage problem over a tractable family of if–then 
decision rules using a decomposition algorithm. This algorithm decomposes the stochastic program 
over scenarios and updates the solutions via the subgradients of the function of cumulative future 
costs. To illustrate the practical effectiveness of this method, we present a numerical study of a 
decentralized waste-to-energy system in Singapore. The simulation results show that the risk-averse 
model can improve the tail risk of investment losses by adjusting the weight factors of the mean-
CVaR objective. The simulations also demonstrate that the proposed algorithm can converge to 
high-performance policies within a reasonable time, and that it is also more scalable than existing 
flexible design approaches.  

Keywords: Capacity expansion problem; System design; Real options; Risk 

aversion; Multi-stage stochastic programming; Decision rules.  

1  Introduction 

The capacity expansion problem aims to determine a capacity expansion plan 

(i.e., the optimal amount and timing of capacity acquisition) to address growing 

demand. This problem has been studied for a broad variety of systems, such as 

semiconductor manufacturing (Geng et al., 2009), airport facilities (Sun and 

Schonfeld, 2015), container terminals (Li et al., 2017), and waste-to-energy 

systems (Cardin and Hu, 2016). However, this problem is challenging because 
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future demand is uncertain, and also because capital expenditure is very 

expensive and usually irreversible.  

The traditional inflexible design determines the capacity expansion plan at the 

beginning of the planning horizon, before any demand is observed. This plan is 

then implemented regardless of the realizations of future demand. The inflexible 

design problem can be formulated as a two-stage stochastic programming 

problem, which has been widely studied in the literature 

(Swaminathan, 2002; Geng et al., 2009). However, this method may suffer 

unexpected costs if the actual demand realizations do not match the forecasts.  

Real options analysis copes with this issue by designing flexible systems in 

capacity expansion problems. In real options analysis, the decision to expand 

capacity is viewed as a series of options that can be exercised over time (Dixit 

and Pindyck, 1994; de Neufville and Scholtes, 2011). The main advantage of this 

framework comes from its “wait-and-see” nature: these decisions can be 

exercised or deferred based on the realizations of uncertain demand. A flexible 

system has the ability to dynamically adjust its capacity as demand is observed. 

We can then expand the capacity (i.e., exercise the option) if demand surges, 

and we may do nothing when demand remains steady. In the multi-facility 

capacity expansion problem (MCEP), a flexible system has the option not only to 

adjust the capacity but also to switch service between facilities. For example, if 

one facility runs out of capacity, then we can either expand the capacity of this 

facility or allocate the excess demand to another facility. It has been verified in 

many industrial case studies that flexibility can improve expected performance by 

10% to 30% compared with inflexible methods (de Neufville and 

Scholtes, 2011; Cardin et al., 2017).  

In real options theory, it is important to evaluate the economic performance of the 

flexible system and to quantify the value of flexibility (VoF), which is the 

difference between the performance of a flexible system and its inflexible 
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counterpart. This is because conferring flexibility on a system usually requires an 

upfront cost as a premium, compared with an inflexible system with its rigid 

design (Cardin and Hu, 2016). Another example in capacity expansion problems 

is that, if we want to expand capacity when observing an increase of demand, 

then we may buy capacity (e.g., machines) from the spot market. However, this 

cost may be greater than the cost of contracting additional capacity ahead of 

time.  

Optimizing a flexible MCEP is a dynamic optimization problem with demand 

uncertainty. We formulate this problem as a multi-stage stochastic programming 

(MSSP) problem, where the evolution of the uncertain parameters is modeled by 

a scenario tree. However, this problem is notoriously difficult to solve even for 

practically-sized problems: the size of the scenario tree grows exponentially with 

not only the number of stages, but also with the number of uncertain parameters. 

Even when the capacity decisions are discrete, MSSP may still be inefficient in 

solving the MCEP.  

An MSSP based on decision rules was proposed to address the problem of 

tractability. In a flexible capacity expansion problem, we need to find the optimal 

expansion policy, which is a mapping from historical data to capacity decisions. 

In this method, we optimize over a tractable class of parametrized policies (the 

decision rules) rather than the space of all policies. Here the focus is on 

optimizing the parameters of the decision rule rather than optimizing the policy 

itself: this is more tractable than traditional methods and can scale-up to larger 

problem instances. Well-known decision rules include linear and piecewise linear 

rules (Georghiou et al., 2015), although these rules may not be applicable to 

MCEP because the system is usually modular (i.e., the capacity is discrete).  

To solve MCEPs with discrete capacity, if–then decision rules have been 

proposed to approximate the policy space (Cardin et al., 2017; Zhao 

et al., 2018; Zhang and Cardin, 2017). An if–then rule states that if the capacity 

Acc
ep

te
d 

M
an

us
cr

ipt



gap of a facility exceeds a threshold, then its capacity is expanded to a certain 

level, and the capacity is unchanged otherwise. In this framework, we want to 

find the best if–then decision rule among all such policies. The if–then decision 

rule mimics the behavior of human decision makers, so they are intuitive and can 

be interpreted easily by non-experts (Cardin et al., 2017). In contrast, the optimal 

policies from dynamic programming (DP) and scenario-tree based MSSP may be 

difficult to interpret and explain in general. In numerical terms, a method based 

on decision rules can provide high-performance solutions for MCEPs, and its 

scalability has been verified (Zhao et al., 2018).  

Classical MCEP models under the framework of real options theory suppose that 

the decision makers are risk-neutral, that is, they maximize the expected reward. 

However, decision makers often have their own attitudes to risk. For example, 

due to the high expenditure and uncertainty, decision makers may underestimate 

the value of a flexible system if they are risk averse. To measure risk in our 

model, we employ the popular conditional value-at-risk (CVaR). The motivation 

for this choice is three-fold. First, CVaR is a monetary value that represents the 

expected tail loss, so it is intuitive for decision makers to compare it with the risk-

neutral design alternatives in terms of rewards/costs. Second, CVaR is a 

coherent risk measure that has strong decision-theoretic support (Artzner 

et al., 1999). Third, CVaR enjoys significant computational advantages compared 

to other risk-aware objectives (Rockafellar and Uryasev, 2000).  

Our present paper investigates a risk-averse MCEP with a mean-CVaR 

objective. Our specific contributions are as follows:  

1. We propose a generic MCEP by considering the risk preferences of the 

decision maker. The proposed risk-averse model contains the traditional 

risk-neutral model as a special case. We then solve this risk-averse 

problem, which is essentially an MSSP, by using an if–then decision rule 
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to approximate the expansion policy. We are not aware of any studies that 

have yet used decision rules for risk-averse MCEPs.  

2. We propose a customized decomposition algorithm to optimize over 

decision rules with respect to the risk-averse objective. This algorithm 

uses subgradient cuts of the cost functions to update the parameters of 

the decision rule, which is not only more efficient but can also provide 

insight into the problem when compared with the existing branch-and-cut 

based decomposition (BACD) algorithm in the literature (Zhao 

et al., 2018).  

3. We verify both theoretically and numerically that the VoF decreases if a 

risk-averse expansion policy is implemented. We also derive managerial 

insights by implementing comprehensive numerical studies with data from 

a case study on a waste-to-energy (WTE) system in Singapore. We find 

that, in a multi-facility system, a risk-averse expansion policy may not 

always establish smaller capacity at the beginning when compared with 

the risk-neutral policy. 

The rest of this paper is organized as follows. Section 2 summarizes the relevant 

literature. Section 3 first introduces the flexible capacity expansion problem and 

discusses the model assumptions. Then, the risk-averse MCEP model is 

presented. In Section 4, we approximate the capacity expansion policy of the 

risk-averse MCEP via if–then decision rules, and we transform the problem to a 

mixed-integer linear programming problem (MILP). Section 5 then presents a 

decomposition algorithm to optimize the decision rule. A detailed numerical study 

of a WTE system is given in Section 6. Finally, the strengths and limitations of 

the proposed method and opportunities for future research are summarized in 

Section 7. All proofs are gathered together in the online supplement.  

2  Literature Review 

2.1  Flexible Capacity Expansion Problems 
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Capacity expansion problems have been widely studied since the seminal paper 

by (Manne, 1961). Many variations of this original model have been studied. 

Comprehensive reviews may be found in (Van Mieghem, 2003; Martínez-Costa 

et al., 2014). Eberly and Van Mieghem (1997) studied a multi-factor capacity 

investment problem and characterized the structure of the optimal policy. 

Kouvelis and Tian (2014) studied a flexible capacity investment problem and 

investigated the value, when facing uncertain demand, of the option to postpone 

a commitment to increase capacity. Our work differs from these models because 

we deal with discrete capacity expansion decisions. Huang and Ahmed (2009) 

derived, for discrete capacity expansion problems, an analytical bound for the 

value of the multi-stage problem compared to the two-stage problem, but this 

result requires linear expansion costs. Cardin and Hu (2016) and Zhao 

et al. (2018) studied MCEPs with nonlinear expansion costs. The objective 

functions in these papers, however, are all risk-neutral.  

2.2  Risk Measures 

To capture the risk preferences of real decision makers, a variety of risk 

measures have been used in the literature, including utility functions, mean-

variance, value-at-risk (VaR), and CVaR. For example, Hugonnier and 

Morellec (2007) extended the standard real options analysis by introducing a 

utility function that addresses risk preferences. Birge (2000) incorporated utility 

functions into a general linear capacity planning model, and formulated the 

problem as an MSSP problem. Compared to utility functions, CVaR is more 

intuitive and easier to specify. Decision makers can express their risk 

preferences by directly adjusting the percentile terms of gains or losses 

(Krokhmal et al., 2002) rather than choosing a utility function. In addition, CVaR 

is a coherent risk measure and thus has strong decision-theoretic support 

(Artzner et al., 1999). Furthermore, CVaR can be formulated as a convex 

optimization problem and it is thus more tractable that other risk-aware objective 

functions (Rockafellar and Uryasev, 2000). Maceira et al. (2015) applied CVaR to 

a multi-stage power generation planning problem and solved it by combining a 
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scenario-tree based method with stochastic dual dynamic programming. 

Applications of CVaR can also be found in resilient facility location problems (Yu 

et al., 2017), energy capacity investments (Szolgayová et al., 2011), and 

transmission network expansion (Delgado and Claro, 2013).  

2.3  Solution Methods for Capacity Expansion Problems 

The early work on MCEP modeled the problem as a Markov decision process 

(MDP) and solved it with exact DP (Wu and Chuang, 2010) or approximate 

dynamic programming (ADP) (Zhao et al., 2017). However, these methods are 

subject to the curse of dimensionality. More specifically, the size of the action 

space of the MDPs grows exponentially in the number of facilities. Alternative 

methods of solving a risk-averse MDP can be found in 

(Ruszczyński, 2010; Haskell and Jain, 2015), but these methods can be 

inefficient when the actions are discrete and high-dimensional.  

Alternatively, scenario tree-based MSSP has been widely applied to MCEP 

(Huang and Ahmed, 2009; Taghavi and Huang, 2016). In this method, the 

evolution of uncertain parameters is modeled as a scenario tree, and the model 

is solved with decomposing by fixing the allocation plan (Huang and 

Ahmed, 2009), by a Benders decomposition-based heuristic (Taghavi and 

Huang, 2016), or by Lagrangian relaxation (Taghavi and Huang, 2018). 

Nevertheless, the size of the scenario tree grows exponentially when the number 

of stages or the number of uncertain parameters increases.  

To solve MCEPs with discrete capacity, many have investigated if–then decision 

rules and proposed customized decomposition algorithms to optimize the 

parameters of the decision rules, such as the Lagrangian decomposition method 

(Cardin et al., 2017) and the BACD algorithm (Zhao et al., 2018). The solution 

technique in the present paper is similar to the BACD algorithm proposed in 

(Zhao et al., 2018). However, our study differs from the previous literature in that 

we construct cuts for the master problem with the subgradients of the cumulative 
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future cost function, which is much less time consuming and can provide a better 

interpretability for the resulting policy.  

3  Model Formulation 

3.1  Problem Descriptions and Assumptions 

We consider a multi-facility capacity expansion problem, where multiple 

customers are served over a finite planning horizon. We first set the initial 

capacity before any realizations of the uncertain demand are observed. Then, in 

each period, customer demand is observed and allocated to the facilities subject 

to available capacity. In our model, profit is earned by satisfying customer 

demand and costs are incurred by capacity expansion. If the capacity is 

insufficient then an additional penalty is incurred. In practice, the penalty can be 

interpreted as lost sales, or the overtime costs for workers and machines that are 

incurred to meet the demand. We make the following assumptions:  

A1. The expansion lead time is negligible, so the capacity expanded at the 

end of the previous time period will be available at the beginning of the 

next period.  

A2. Contraction of capacity is not allowed.  

A3. The demand distribution is known and can be simulated.  

A4. The expansion cost function is piecewise linear (but possibly nonconvex). 

Assumption A1 is common in strategic capacity planning problems (Huang and 

Ahmed, 2009; Sun and Schonfeld, 2015; Cardin et al., 2017). Assumption A2 

holds in many industries where the capacity investment is irreversible. For 

example, the capacity of airport facilities, such as highway links and ports, is 

difficult to reduce once established (Sun and Schonfeld, 2015). Furthermore, 

many unpredictable shocks are industry-specific: a steel manufacturer intends to 

sell a steel plant when the market is depressed but it is likely that the plant has 

little value under these circumstances (Dixit and Pindyck, 1998).  
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Assumption A4 is general. If expansion costs benefit from economies of scale, 

the cost function will be concave with respect to the expanded capacity. A 

piecewise linear function can represent/approximate a variety of concave cost 

functions; for example, the fixed-charge function and the power function 

(Van Mieghem, 2003). Essentially, because capacity expansion decisions are 

discrete, we can use piecewise linear functions to represent any appropriate cost 

functions.  

In the inflexible capacity expansion problem, the capacity plan does not respond 

to changes in demand (see Figure 1a). In a flexible system with options for 

adjusting the capacity, the decision maker first observes customer demand and 

then decides, at the end of each period, whether to expand the capacity (see 

Figure 1b & 1c). In addition, when there are multiple facilities, we can switch 

services between facilities if one runs out of capacity. Therefore, we need to 

determine both when and by how much to expand the capacity, and also which 

facility to expand. These decisions are characterized by a capacity expansion 

policy, which is a function that maps historical demand to capacity decisions (i.e., 

when, how much, and which facility to expand).  

The objective is to maximize the economic performance of the system by 

optimizing the capacity expansion policy. If the decision maker is risk-neutral, the 

economic performance can be characterized by the expected net present value 

(ENPV) of the cumulative profits. However, if the decision maker is risk-averse, a 

risk metric may be incorporated into the objective function to capture the risk 

preferences.  

3.2  Formulation of Risk-Averse MCEP 

Now we introduce the flexible MCEP with risk aversion. The notation for this 

model is summarized in Table 1.  

For our flexible capacity expansion problem, we introduce a set of facilities 

, a set of customers , and a finite discrete planning  1, , N  1, , I
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horizon . We define  when the planning horizon includes 

0. Let  be the finite set of possible capacity levels, where 

 is the vector of maximum possible capacity levels. Denote 

by  the vector of the capacity installed at the end of time 

period , where K0 denotes the vector of initial capacities. Write 

 for the history of installed capacity levels up to time t. Let 

 and  be the changes in capacity at time 

. Without loss of generality, we assume that no capacity is installed at the 

beginning of t = 0 so that  (note that K0 is the amount of capacity 

installed at the end of period t = 0).  

Let  denote the sample space for the demand in time , and 

 as the realized demand, such that . Without loss of 

generality, we assume that the demand in period t = 0 (i.e., ) is known. 

Further, let  denote the history of demand up to time t, let 

 be the set of all possible demand sequence realizations, and let 

 denote a demand realization over the entire planning horizon.  

3.2.1  Capacity Expansion Policies for the Flexible MCEP 

In the flexible MCEP, capacity decisions are made sequentially based on realized 

demand. Specifically, the capacity decisions Kt are made according to a capacity 

expansion policy, which is a mapping from the historical demand  to the 

expansion decisions, for all . We require the expansion policies to be non-

anticipative: the capacity decision in time t may only depend on  (it cannot use 

future information). We then define the non-anticipative policies for the flexible 

MCEP as mappings  
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where  for any . Further, we let  denote 

the truncation of the policy up to time t. Under Assumption A2, the policy space 

(i.e., the set of non-anticipative and feasible policies) for the flexible MCEP is  

 

3.2.2  Profits and Costs 

In the MCEP, profit is earned by satisfying the customer demand, and is 

determined by an allocation problem. Let  denote the profit given the 

realized demand ξt and the installed capacity . Let zint be the demand 

allocated from customer  to facility  in time . Then,  is 

determined by the value of the following linear program problem:  

  (1)  

where rint is the unit revenue for satisfying customer i’s demand with facility n, 

and bit is the unit penalty for the unsatisfied demand of customer i.  

The expansion cost is given by a piecewise linear function. For all , let 

 be the capacity expansion cost given . Denote by  the 

set of indices for L line segments, and let  be the set of breakpoints 

for the expansion costs for facility  such that  and . Let 

pnlt and qnlt be the slope and intercept of the lth line segment of the expansion 

costs for facility n in time t. For all , the cost function is then:  
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 (2)  

Eq. (2) can represent arbitrary finite cost functions as  is finite. We can set 

 so that each line segment corresponds to a specific expansion cost 

at point .  

We have a discount factor . Given policies  and the profit/cost 

structure described above, the cumulative future costs from time period t = 0 to t 

= T for a particular  are  

 

If the decision maker is risk neutral, then the objective of the flexible MCEP is to 

find the capacity expansion policy, i.e., , that maximizes the ENPV:  

 (3)  

3.2.3  A Risk-Averse Flexible MCEP 

When the variance of demand is high, the profits in the risk-neutral Problem (3) 

can be low for some particular realizations of ξ. Therefore, we need consider the 

risk of . Specifically, we incorporate CVaR into the objective function to 

address this issue. One of the major motivations for using CVaR is that it is 

readily comparable to the risk-neutral objective function using the mean value, 

because they are in the same units. In addition, CVaR is a coherent risk measure 

and also enjoys computational advantages. Alternatively, if one incorporates e.g. 

mean-variance in the objective function, it is not comparable to the risk-neutral 

design alternative because of the inconsistency of the units, and the VoF is hard 

to quantify.  
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We first recall the definition of CVaR. For a continuous random variable X and a 

confidence level  is the expectation conditional on 

, where  (Sarykalin 

et al., 2008). This coincides with the definition of “expected shortfall” 

(Acerbi, 2002). If , then  approaches the worst-case cost; 

whereas if , it approaches the expected value of X.  

We introduce a weight factor  to obtain the mean-CVaR objective 

function for the MCEP (Shapiro, 2011):  

 (4)  

In this formulation, a decision maker can compromise between risk-neutral and 

risk-averse policies by adjusting the weight β. If we choose β  =  1, we recover 

the original risk-neutral model; but if β  =  0, we minimize .  

We have the following result, since  for all  for any 

continuous random variable X.  

Proposition 1. Given Problems (3) and (4), we have: (i)  is non-

decreasing in β given any , and (ii)  for any  

and .  

Proposition 1 states that  will not exceed  given appropriately 

chosen α and β. Furthermore, as β decreases, decision makers place more 

emphasis on minimizing CVaR rather than minimizing the expected cost, and so 

 decreases. That is, decision makers will tend to undervalue the 

system performance when they become more risk averse.  

From the perspective of real options theory, we often want to evaluate the VoF 

compared to an inflexible benchmark problem, because implementing a flexible 

design for a system usually requires upfront costs. The risk-neutral problem (i.e., 
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Problem (3)) and the risk-averse problem (i.e., Problem (4)) have the same level 

of flexibility (i.e., both have capacity adjustment options and facility switching 

options), and so the willingness of the decision maker to enable flexibility may 

decrease as risk aversion increases.  

4  Decision Rule Approximation of the Capacity Expansion Policy 

Problem (4) is an MSSP problem with a non-convex objective function. It is 

widely believed that MSSP is “computationally intractable already when medium-

accuracy solutions are sought” (Shapiro and Nemirovski, 2005).  

To develop a computationally tractable solution strategy, we approximate  with 

decision rules. In other words, we restrict the policy space to a class of 

parametrized functions , where  is some admissible set of 

parameters. Then, we can optimize the parameters  which determine the 

decision rule , instead of optimizing over all non-anticipative policies in . 

Of course, a particular decision rule does not guarantee global optimality over the 

problem space. They offer, however, significant computational advantages and 

managerial insights that help operators leverage the benefits of flexibility.  

4.1  If–Then Decision Rules 

We focus on if–then decision rules to approximate the policy space . The 

motivations for our choice of if–then decision rules are threefold. First, expansion 

decisions are binary by their very nature—the capacity is either expanded or it is 

not. In addition, the output of the decision rule should be integral because 

capacity is discrete, so a nonlinear decision rule is required. Second, if–then 

decision rules mimic the decision-making behavior of human beings and are 

more intuitive and interpretable in practical implementation (Cardin et al., 2017). 

Third, some optimal if–then policies for capacity expansion problems have been 

reported in the literature (Eberly and Van Mieghem, 1997; Angelus et al., 2000), 

and some numerical results have shown that if–then decision rules can yield 
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high-performance solutions for discrete MCEPs (Cardin et al., 2017; Zhao 

et al., 2018).  

An if–then decision rule in a single facility setting is stated as: if the capacity gap 

(i.e., demand minus capacity) of the facility exceeds a threshold, then we expand 

the capacity up to a certain level. However, capacity gaps for individual facilities 

are hard to quantify in multi-facility problems, as a facility can serve more than 

one customer. To address this feature of the MCEP, we introduce a weight 

matrix in order to calculate the weighted capacity gap for each facility. We take 

 as a preset weight matrix such that . Then, we compute the 

weighted capacity gaps , where  denotes the operation of 

rounding to the nearest integer. These weighted capacity gaps are the trigger 

conditions for our if–then rules. In the remainder of this subsection, we will first 

present the general form of the if–then decision rule and then introduce the 

choices of W.  

Let  denote the parameter that controls capacity adjustments when the if–then 

rule is triggered and let  be the threshold for the trigger condition. Define the 

parameter vectors  and . The admissible sets 

for the parameters θ1 and θ2 are  and 

, respectively. We further define  and 

.  

Our if–then decision rule is as follows: for all , we 

define  

  (5)  
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For given , we let  denote the vector of 

parametrized if–then decision rules encoded by the above policy. Note that we 

assume  is known, so the policy for the initial capacity decision (i.e., 

) is independent of θ.  

Policy (5) states that if the weighted capacity gap of facility n (i.e., 

) exceeds the threshold  and the expanded capacity does 

not exceed the maximum possible capacity level, then we expand the capacity of 

facility n up to level . Otherwise, the capacity is unchanged. Note 

that  is integral, so the decision rule automatically yields integral expansion 

decisions.  

In Policy (5), the design of the weight matrix W is case-specific. For example, it 

can be a preset allocation matrix of the demands of the customers conditional on 

there being sufficient capacity. From a managerial point of view, the entry Win of 

the weight matrix can also be interpreted as the profit coefficient of customer i 

with respect to facility n. In other words, if the per unit demand from customer i is 

more profitable for facility n, then we should tend to allocate more demand from 

customer i to facility n and so Win should be larger. For example, if there are the 

same number of facilities as customers (i.e., I = N), and there is a bijective map 

from each facility/customer to its most profitable customer/facility counterpart, 

then the weight matrix can be the N  ×  N identity matrix. In this case, the 

weighted capacity gap of a facility is calculated by subtracting the current 

capacity from the most profitable demand served by this facility. We refer 

interested readers to (Zhao et al., 2018) for further discussion of the choice of W.  

Now we want to optimize the scenario-independent policy parameters  of 

Policy (5), rather than the policy , with respect to the mean-CVaR 

objective function. Problem (4) can then be approximated by  
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 (6)  

which optimizes over policies of the form (5). Based on (Rockafellar and 

Uryasev, 2000, Theorem 2), we introduce an auxiliary variable  and recall 

the variational form of , where  denotes 

. Then, Problem (6) is equivalent to  

 (7)  

4.2  MILP Transformations of the Decision Rule-based Model 

In this subsection, we transform Problem (7) into an MILP. First, we use sample 

average approximation to transform the expectation in the objective function into 

a finite sum. Let  be the set of indices of the scenario, and  

be a set of sample paths generated via Monte Carlo simulation of customer 

demand, where  for all . We assume equal probabilities for 

the generated sample paths in this paper, but the proposed method also works if 

the samples have non-uniform probabilities. The SAA of Problem (7) is then  

 (8)  

To incorporate the specifics of  into this optimization, we develop the exact 

MILP formulation of Problem (8) by using the Big-M method. We introduce a set 

of auxiliary binary variables  for each , where  is 

such that the capacity of facility n is expanded to  if ; 

otherwise, the capacity is unchanged. To enforce this constraint, we introduce a 

large constant M  >  0, the N  ×  N identity matrix , and an N-dimensional 

vector of ones .  
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To linearize the nonlinear term , we can introduce an auxiliary 

variable  for each , such that  and . We 

ultimately obtain the following reformulation of Problem (8)  

 (9a)  

 (9b)  

 (9c)  

 (9d)  

 (9e)  

 (9f)  

 (9g)  

 (9h)  

 (9i)  

 (9j)  

 (9k)  

Problem (9) is an MILP (note that the piecewise cost functions  can be 

expressed via a set of linear constraints with binary and continuous auxiliary 

variables). Constraints (9b)–(9g) are the Big-M formulation for the if–then 

decision rule. These constraints are non-anticipative because the scenario-

dependent capacity decisions  are determined by θ and the historical 

 
  ,

T
Q u 



 
 

s
  s 

 
  ,

s s

T
Q u    0

s
 

        
0

0 0 1 1, , , , ,

1 1
m in 1 ,

1
s s s

t t

t s s s s s

t t t t t tK u K

s t

c K u c K K K
S

  


     


 

 

 
       

 
 

   
s s s

t t-1 2 , t N N t N
s.t . W -K - M - , t , s ,  


   1

 1 2 ,
, , ,

s s s

t t t N N t
W K M t s  

 
     

   1
, , ,

s s s

t t N N N t
K W M t s  


      1

   1
, , ,

s s s

t t N N t N
K W M t s  


      1

 1
, , ,

s s s

t t N N t
K K M t s

 
    

m ax
, , ,

s

t
K K t s   

      0 0 1 1
, , ,

s t s s s s

t t t t t t

t

c K c K K K u s  
 



       

 , , 0 ,1 , , ,
Ns s N s

t t
K t s 


     

0 0
, ,

s
K K s  

0
, , .K u   

 ·t
c

s

t
K

Acc
ep

te
d 

M
an

us
cr

ipt



information (i.e., ), having no access to future information. In addition, the 

right-hand sides of Policy (5) are integral, so Constraints (9b)–(9g) map from 

continuous capacity levels to discrete capacity expansion decisions. Constraint 

(9j) is introduced so that  is well defined in Eq. (9h).  

5  Solution Method: A Decomposition Algorithm 

In this section, we propose a decomposition algorithm for Problem (9). We first 

reformulate Problem (9) as a two-stage stochastic programming problem. The 

first stage determines the initial capacity, the parameters of the decision rule, and 

the auxiliary variable u. The second stage contains all of the subsequent 

dynamics of the system, including the capacity expansion decisions and the 

allocation decisions, in response to customer demand, and returns the future 

costs. We can further decompose the second stage over scenarios, compute the 

subgradients of the recourse function, and then update the initial capacity and 

the parameters of the decision rule.  

5.1  Two-Stage Decomposition 

The first stage corresponding to Problem (9) determines the parameters θ, the 

initial capacity K0, and the auxiliary variable u from the variational form of CVaR, 

which are all scenario independent (i.e., here-and-now decisions). The second-

stage decisions determine the capacity plan  and the auxiliary 

variables ηs and , which depend on the scenario (i.e., wait-and-see decisions). 

The recourse function defined by the second-stage problem for a specific 

scenario  is:  

 (10) 

The recourse function here returns the multi-period revenue over the time 

periods . Then, the first stage problem is  
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 (11) 

However, this two-stage problem is difficult to solve because the recourse 

function  is highly nonconvex due to the integer wait-and-see 

variables (i.e., ) and the nonconvex costs . Therefore, traditional methods 

like the Benders decomposition are not applicable.  

Fortunately, this problem has exploitable structure. Once the initial capacity K0, 

the control parameters θ, and u are all fixed, we can determine  and 

evaluate the expected future costs via Policy (5) given the demand vector ξs in 

scenario . Then, we can compute the subgradients of the recourse 

functions  and update the scenario-independent decisions.  

We remark that the subgradients of  with respect to θ2 are always 

zero because θ2 only appears in the trigger conditions of Policy (5). In this case, 

θ2 cannot be updated via the subgradients of the recourse function. To address 

this difficulty, we further decompose Problem (11) and update θ2 separately via a 

stochastic approximation scheme (see Step 1 of the decomposition algorithm).  

5.2  Algorithm Procedure 

In this subsection, we briefly summarize the procedure and the innovation of the 

algorithm (see the online supplement for the detailed implementation). Our 

algorithm updates the solutions iteratively via a cut generation method. 

Specifically, we solve the epigraph formulation of Problem (11) in the mth 

iteration:  

 (12a)  

 (12b)  

 (12c)  
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where Eq. (12b) contains the cuts generated up to iteration m, and  and  

are the coefficients corresponding to these cuts. Once the above problem is 

solved, we denote its optimal solution as . The algorithm then 

proceeds iteratively via three major steps:  

 Step 1: Fix  and update  by averaging the solutions via a 

stochastic approximation scheme.  

 Step 2: Once  are fixed, we compute subgradients of the 

recourse functions  for all  at , and construct 

subgradient cuts.  

 Step 3: We add the subgradient cuts to Eq. (12b), and compute 

 by solving Problem (12). We then go back Step 1 and 

proceeds the algorithm iteratively until our termination conditions are met. 

We now elaborate on these three steps in more detail.  

Step 1: Update  via Stochastic Approximation 

Suppose that we have fixed the first-stage decisions  in the mth 

iteration. One can update θ2 by solving  

 

where the objective is the expected future costs provided by Problem (10). 

However, this may result in a large-scale MILP because the number of scenarios 

S can be large.  

Instead, we select one scenario at a time and construct a corresponding single-

scenario problem. Let  be a counter for the inner iterations in Step 1. We 

assign equal probability to each scenario in , and randomly select one scenario 
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 for  without replacement. Based on Problem (10), we construct 

the following single-scenario problem to optimize θ2 given  and :  

 (13)  

where  is a small constant that is intended to regularize θ2. The objective of 

this problem is to find the optimal θ2 such that the cumulative costs given sample 

path  are minimized.  

We then average the optimal θ2 of the sampled single-scenario problems via an 

update rule (see Subsection B.1 of the online supplement for details). By this 

method, we can compute an approximate θ2 by evaluating a portion of, rather 

than all of, the scenarios in set . In particular, for practically-sized problem 

instances, a single-scenario problem only has a few hundred binary variables, 

which can be directly solved by commercial solvers in seconds.  

Step 2: Calculating the Subgradients of the Recourse Function 

Once  is computed, we can fix  and calculate the subgradients 

of the recourse functions with respect to . Given the subgradients, we 

then generate subgradient cuts and update  by solving Problem (12).  

Denote  as a subgradient of the recourse function with respect to 

 and  as the corresponding intercept, such that  

 

According to Eq. (10), we need to compute the subgradients of  and  in 

order to compute  and . We put the detailed computation of  and  

in the online supplement (Subsection B.2) and briefly summarize the procedures 

below:  
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 We first derive a closed form for the capacity decisions  with respect 

to  given scenario  (see Lemma B.1).  

 We compute the subgradient of  according to the definition of Eq. (2) 

(see Lemma B.2).  

 We compute the subgradient of  by solving the dual of Problem (1) 

(see Lemma B.3).  

 Finally, we compute  and , and construct the subgradient cut (see 

Proposition B.2). 

Given  and  for all  and , we can compute  and 

. Then, a new subgradient cut is given by  

 (14)  

We see that if , then the cut recovers . 

Otherwise, it returns the recourse along the computed subgradient.  

Step 3: Update  by Solving the First-Stage Problem 

Suppose we have a set of subgradient cuts computed from Step 2 up to iteration 

m. We add the subgradient cuts to Problem (12), and solve the problem in 

iteration m + 1. Problem (12) is an MILP with  integer variables. For 

practically-sized problems (e.g.,  and ), it can be directly solved with 

commercial solvers.  

The decomposition algorithm terminates when the value of the objective function 

of Problem (11), computed for the best-found solution , is close enough 

to that of Problem (12) or when a preset number of iterations is reached. The 

details of the entire procedure are provided in the online supplement (Subsection 

B.3).  
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6  Numerical Study: Capacity Planning for a WTE System 

The numerical study in this section is adapted and extended from a real case 

study of a multi-facility WTE system in Singapore (Cardin and Hu, 2016; Zhao 

et al., 2018). The decision maker aims to deploy WTE facilities to dispose of food 

waste. There are five candidate sites in different sectors of Singapore for 

establishing the WTE facilities. The WTE facility disposes of food waste collected 

from each sector using an innovative anaerobic digestion technique. This 

technique transforms the food waste into biogas, which can then be used to 

generate electricity. If the collected food waste exceeds the disposal capacity of 

the WTE system, undisposed waste will be sent to a landfill, incurring greater 

disposal costs (e.g., penalties). The revenues of the WTE system come from 

selling the electricity and from the fees collected for disposing of the food waste. 

The costs consist of unit disposal costs, transportation costs, penalty costs for 

undisposed food waste, and disposal capacity expansion costs. We omit annual 

fixed costs, which makes this setting slightly different from the problem in (Cardin 

and Hu, 2016; Zhao et al., 2018). However, the proposed method can still be 

used with some modifications.  

This problem can be formulated as an MCEP with five WTE facilities and five 

customers (i.e., sectors). The waste generated in each sector can be viewed as 

stochastic demand for disposal. The decision maker wants to maximize the 

economic performance by optimizing the capacity expansion policy of the WTE 

facilities over a 15-year planning horizon.  

Given that the inspection of historical waste generation patterns show a clear 

combination of mean drift and random fluctuations, the generation of food waste 

in each sector (i.e., the demand of each customer) is assumed to be standard 

geometric Brownian motion (GBM) (Cardin and Hu, 2016). Demand evolves 

according to:  

    1
, {1, , 5} , {1, ,1 5} ,

i t t i t
i t    


      

Acc
ep

te
d 

M
an

us
cr

ipt



where ξit is the amount of waste generated in sector i at time t,  is the 

percentage drift,  is the percentage volatility, and ωt are standard i.i.d. normal 

random variables for all . In the numerical study, we assume that  is 4% 

and  is 16%, and the initial waste is the vector  (unit: 

tonnes per day).  

The WTE facilities are modular so the capacity decisions are discrete. One unit 

of capacity can dispose of 100 tonnes of food waste per day, and the maximum 

capacities for the five candidate sites are given by . The 

WTE system enjoys economies of scale, and capacity expansion costs are given 

by a power function. We linearize the power function to derive the cost function 

presented in Eq. (2). We set the discount factor  according to (Cardin 

and Hu, 2016). The detailed data, the evaluation of the unit revenue (i.e., rint) and 

the expansion costs, and supplemental numerical studies can be found in the 

online supplement (see Section C).  

6.1  Comparison of Different Design Approaches 

We compare two policies for the capacity planning of the multi-facility WTE 

system:  

 An inflexible policy that sets up a static capacity expansion plan at the 

beginning of the planning horizon and does not revise the plan regardless 

of the realizations of stochastic demand for waste disposal.  

 A flexible if–then policy that dynamically adjusts the capacity of the WTE 

facilities based on realizations of stochastic demand. 

The inflexible policy is derived from an inflexible MCEP model, which can be 

solved to optimality by Benders decomposition (Benders, 1962). The inflexible 

policy can be viewed as an attainable lower bound for the multi-stage MCEP 

considered in this paper. The detailed model and algorithm to solve the inflexible 

model can be found in the online supplement (see Subsection C.3).  
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The flexible if–then policy is determined by our proposed method. For our 

simulations, we design the weight matrix W in the decision rule (5) using the 

technique of (Zhao et al., 2018). We consider the allocation of waste of sector 

 to its three closest facilities after analyzing the distances between the 

candidate sites and tuning the parameters. As an illustration, the weight factors 

for facility n = 1 are given by  (see the online 

supplement for a detailed calculation). Then, the decision rule for facility n = 1 in 

time  is  

 

The flexible and inflexible models are solved separately by generating 4,000 

demand scenarios via Monte Carlo simulation. To compare them, we evaluate 

the economic performance of each design by using an identical evaluation 

sample set. The evaluation sample set consists of 12,000 scenarios that are 

generated via Monte Carlo simulation. The rationale underlying this evaluation 

test is to eliminate the bias introduced by using different sample sets to optimize 

different models.  

In our numerical studies, we analyze the economic performance of the system 

given different risk preferences of the decision maker reflected by the parameter 

β. Given the inflexible baseline design, we can calculate the difference between 

the economic performance of the flexible policy and its inflexible counterpart (i.e., 

the VoF).  

6.2  Simulation Results and Discussion 

6.2.1  The proposed method captures the decision-maker’s risk preferences 

In this subsection, we test the performance of the proposed method under 

different risk preferences by tuning α and β. In practice, we suggest fixing α and 

tuning β because the parameter α is more intuitive and more easily interpretable. 
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Common choices of α are 0.99, 0.95, and 0.90, which means that we try to 

minimize the mean values of the worst 1%, 5%, and 10% losses, respectively 

(Krokhmal et al., 2002).  

In the remainder of this subsection, we set  unless otherwise specified. 

When , we minimize the expected costs above the -percentile of all 

costs. Equivalently, the objective of Problem (4) is to maximize the expected 

profits below the -percentile. A detailed two-way sensitivity analysis on α and 

β can also be found in the online supplement.  

The simulation results for different policies are presented in Table 2, where the 

five metrics are the statistical results of the net present values (NPVs) computed 

using 12,000 scenarios in the evaluation test. The expected net present values 

(ENPVs) are the mean values of the NPVs of the test scenarios, and “Min” (“Max

”) indicates the result of the worst (best) scenario. Each case is run three times 

and then the values are averaged.  

If we use an inflexible capacity expansion policy, the ENPV is 238.0 million S$, 

the -percentile of the NPVs is 145.0 million, and the worst-case NPV is –246.9 

million. If we use a flexible policy (with  and ), then the ENPV is 

295.7 million, the -percentile is 221.9 million, and the worst-case NPV is 83.6 

million. We see that the flexible policy dominates the inflexible policy in terms of 

the five metrics presented in Table 2. In particular, the worst-case NPV is 

significantly improved. The worst-case NPV for the inflexible policy is negative, 

while the worst-case NPV of the flexible policies ranges from 78.2 million to 87.8 

million.  

These results demonstrate that the -percentile of the NPVs decreases as β 

increases, while the ENPV increases as β increases (see Figure 2a). If we fix 

 and change β from 0.99 to 0.01, the -percentile rises from 221.9 

million to 230.7 million and the ENPV declines from 295.7 million to 286.3 million. 

In addition, the VoF decreases from 57.7 million to 48.3 million, which means that 
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the expected value gained from flexibility decreases as the weight factor β 

decreases. This phenomenon may occur because our particular flexible capacity-

expansion policy focuses on improving the upside potential. This means that 

from the perspective of a risk-averse decision-maker, the system gains less 

value by having the option of adjusting its capacity. The result from Figure 2a 

also verifies the conclusion of Proposition 1 numerically.  

6.2.2  The risk-averse policy is more conservative in expansion 

We examine the optimal solutions of Problem (4) for different risk preferences. 

The optimal initial capacity given  is  and the optimal 

parameter of the decision rule is . In contrast, the optimal 

solutions given  is  and .  

Intuitively, one may expect that a more conservative decision maker will choose 

smaller initial capacities. However, it is interesting to see from the simulation 

results that the risk-averse expansion policy may not always establish smaller 

initial capacities. The initial capacity of facility n = 3 under the risk-neutral policy (

) is zero. This happens because the initial amount of waste from sector i 

= 3 is small ( ), so this policy tends to take the risk of transporting the 

demand from this sector to others. However, the risk-averse policy ( ) 

establishes four units of capacity in this sector. For other sectors that have more 

initial waste (i.e., facility 1, 2, 4, 5), the policy with  installs less initial 

capacity, and its expansion in these sectors is also more conservative when the 

decision rule is triggered.  

The cumulative density functions of the evaluation samples of these two policies 

are plotted in Figure 2b. We see that the policy with  does not fully exploit 

the upside expansion opportunity, whereas the one with  does, but it 

does reduce the downside risk because it is more conservative.  

6.2.3  Flexible policies are more robust than inflexible policies against variations in the amount of waste 
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We analyze the sensitivity of the VoF to the percentage volatility of the amount of 

waste. As can be seen from Table 3, the VoF of the risk-neutral flexible policy 

(i.e., ) increases as the volatility increases but decreases when the 

volatility declines. However, the VoF of the risk-averse flexible policy (i.e., 

) slightly decreases when the volatility increases from 0.16 to 0.24. This 

is because the VoF is calculated in terms of the ENPV. Even though the VoF 

may increase when the amount of waste has higher volatility, the downside risk 

of the system is also higher (more specifically, the -percentile of the NPV 

decreases from 230.7 to 166.4 million S$). In this situation, a risk-averse decision 

maker may underestimate the VoF.  

We also test the robustness of the policies when the demand model generating 

evaluation samples differs from the one generating the training samples. These 

results imply that the flexible policy is more robust than the inflexible policy to 

inaccuracy in the demand model (see Subsection C.2 of the online supplement).  

6.2.4  The proposed method yields high performance policies and is more scalable 

We compare the proposed method with: (i) an ADP with neural networks being 

approximators (Zhao et al., 2017); and (ii) the decision rule-based method solved 

by BACD (Zhao et al., 2018). As ADP and BACD are designed for risk-neutral 

MCEPs, we set β  =  1 in our proposed method. According to Proposition 1, any 

policies with  yield smaller ENPVs. Among these methods, the result from 

ADP can be viewed as an upper bound, as it can derive ϵ-optimal solutions with 

high probability when the approximator is rich enough (Munos and 

Szepesvári, 2008). The numerical studies were performed on a workstation with 

an Intel Xeon Gold 5218 CPU and 32 GB RAM via a Matlab R2018a 

environment. All simulations were accelerated by parallel computing with 16 

cores.  

The simulation results are presented in Table 4. The ENPV calculated by the 

proposed method is 295.8 million, which is close to the performance of ADP and 
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slightly outperforms BACD. The CPU time of the proposed method is only 391 s, 

but it takes 4107 s for BACD and more than 100 hours for ADP. Though the CPU 

time of the inflexible design is merely 351 s, it is dominated by all of the flexible 

designs in terms of the metrics listed in Table 4.  

The proposed method is much faster than BACD. In BACD, cuts are generated 

by solving large-scale LPs. However, the proposed method generates the 

subgradient cuts via some analytical results, and by solving small-scale LPs, 

which is more time-efficient than BACD. We test the scalability of these two 

methods via problem instances with N = 5 and S = 4000. We then increase the 

number of customers I and the number of time periods T. As can be seen in 

Table 5, the CPU times of the proposed method are less than 1000 seconds 

when the problem size increases, but the time of BACD increases significantly. 

These results indicate that the proposed method is more scalable than BACD in 

solving large-scale problems.  

7  Conclusion 

In this paper, we have established a flexible model for multi-facility capacity 

expansion that captures the risk preferences of decision makers using a mean-

CVaR objective. To solve our risk-averse model, we approximated the capacity 

expansion policy of the multi-stage problem with an if–then decision rule, and 

then optimized over if–then decision rules with a customized decomposition 

algorithm.  

Our simulation results show that the decision maker is able to choose a policy 

with a higher ENPV or with a higher -percentile of the NPVs by simply 

adjusting a weight factor in the objective function. In addition, the ENPV 

decreases as the decision maker becomes more risk averse, indicating that the 

decision maker may prefer to pay less for flexibility. Further, our simulation 

results show that a risk-averse expansion policy may not always establish 
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smaller initial capacity—a risk-neutral policy may expand less than a risk-averse 

policy in certain facilities if the corresponding demand is low.  

Although we emphasized CVaR in this paper, our proposed method can be 

extended to other risk measures. For example, if we capture risk with a utility 

function, then we can still use if–then decision rules to approximate the policy 

space, and then calculate subgradients of the cost/profit functions to construct 

cuts to update the here-and-now decisions.  

Our algorithm is an improvement on the BACD algorithm in (Zhao et al., 2018). 

BACD is proposed to solve risk-neutral MCEPs with if–then rules approximation, 

but our algorithm can handle risk-averse problems. In addition, we improve the 

algorithm with respect to the cut-generation method (i.e., Step 2 of the algorithm). 

In BACD, the cuts are generated via branch-and-cut, where large-scale LPs need 

to be solved in each iteration. In this paper, subgradient cuts are generated via 

some analytical results, and by solving small-scale LPs. Our numerical studies 

show that the proposed algorithm is more scalable than BACD, especially as the 

number of time periods or the number of customers increases.  

Though our algorithm may not obtain an optimal policy, our numerical studies 

show that its performance is close to ADP—which can find a near-optimal policy 

but is extremely slow. In addition, the improvement of the system performance of 

the proposed decision-based method over the baseline design (i.e., the inflexible 

MCEP) is more than 20%. This improvement is even higher when the demand 

model is inaccurate.  

There are many possibilities for future work. In this paper, we use if–then 

decision rules to solve strategic capacity expansion problem. Further research 

can incorporate expansion lead time, or explore other families of decision rules. 

We may also consider robustness against an unknown demand model. Our 

present numerical experiments suggest that our approach has some intrinsic 
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robustness against demand uncertainty, so we can build on this initial proof of 

concept.  
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Fig. 1 Illustration of (a) inflexible design approach and (b) flexible design 

approach, and (c) decision procedure of a flexible capacity expansion policy. 
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Fig. 2 (a) Simulation results given different β, and (b) cumulative distribution 

functions of different policies. 

Acc
ep

te
d 

M
an

us
cr

ipt



Table 1 Notations for the flexible MCEP 

SETS   

  Set of customers,  and   

  Set of facilities, , and   

  Set of time periods, , and   

  Set of line segments of the piecewise expansion cost,  and   

Ξt  Sample space of the uncertain demand in time   

  
The feasible set of capacity   

  Set of capacity expansion policies that are feasible to MCEP  

Θ  Admissible set for parameters of the if–then decision rule,   

PARAMETERS AND FUNCTIONS   

ξit  Amount of demand generated from customer  in time ; its vector form is  

  The maximum capacity of facility ; its vector form is   

γ  Discount factor,   

rint  Unit revenue from satisfying customer  with facility  in time   

bit  Unit penalty cost for unsatisfied customer  in time   

i  I

n  N

,t T 
0

{0}

l  L

t 

 
m a xN

K K K


 

 1 2
,   

i  t   1
, ,

t t It
   

m a x

n
K n   

m ax m ax m ax

1
, ,

N
K K K 

0 1 

i  n  t 

i  t 
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SETS   

pnlt, qnlt  Slope/intercept of the lth line segment of the expansion costs corresponding to facility n in time t  

α  Confidence level of CVaR,   

β  Weight factor of the objective function,   

  Profit function given the installed capacity and realized demand in time   

  Expansion cost function in time   

  Cumulative future costs given a policy  and a particular   

VARIABLES   

Knt Capacity of facility  at the end of time ; its vector form is   

  Expansion policy mapping from the historical demand  to the capacity decisions in time   

zint  Amount of demand allocated from customer  to facility  in time   

u  Auxiliary variable for CVaR  

  Parameter to adjust capacity when the if–then rule for facility  is triggered; its vector form is  

   

  Threshold for the trigger condition of the if–then rule for facility  in time ; its vector form  

 is   

0 1 

0 1 

 ·t
 t 
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c t 
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Table 2 Simulation results with varying α and β (unit: million S$). 

Method  α β Metric (unit: million S$) VoF 

   Min  

-

percentile ENPV 

-

percentile Max   

Flexible policy  0.95  0.01  78.2  230.7  286.3  343.0  431.2 48.3 

 0.95  0.25  79.4  230.1  287.2  344.3  431.6 49.2 

 0.95  0.5  80.4  229.5  292.9  356.6  435.6 55.0 

 0.95  0.75  87.8  226.9  293.2  359.8  444.6 55.2 

 0.95  0.99  83.6  221.9  295.7  365.8  461.5 57.7 

 0.50  0.01  93.2  228.4  291.5  351.8  420.7 53.5 

 0.05  0.01  119.5  221.7  295.2  364.6  451.7 57.2 

Inflexible 

policy -  -  

–

246.9  145.0  238.0  307.3  346.5 -  
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5
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Table 3 Sensitivity analysis on the percentage volatility (unit: million S$). 

Case  Policy  -percentile Mean VoF 

GBM(0.04, 0.08) Flexible policy ( ) 280.4  314.5 37.0 

 Flexible policy ( ) 277.4  315.9 38.6 

 Inflexible policy  228.9  277.3 -  

GBM(0.04, 0.16) Flexible policy ( ) 230.7  286.3 48.3 

 Flexible policy ( ) 221.9  295.7 57.7 

 Inflexible policy  145.0  238.0 -  

GBM(0.04, 0.24) Flexible policy ( ) 166.4  238.6 48.0 

 Flexible policy ( ) 159.2  261.1 70.5 

 Inflexible policy  60.1  190.6 -  

     

 

th
5

0 .0 1 

0 .9 9 

0 .0 1 

0 .9 9 
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Table 4 Comparing the proposed method with the benchmarks. 

 Method  Metric (unit: million S$) 

CPU 

time  

  Min  

-

per. Mean 

-

per. Max   

Flexible policy  ADP  123.0  224.2  296.2 372.0  471.1  h 

 

Proposed 

method 117.6  219.5  295.8 366.1  448.5 391 s  

 BACD  82.8  220.1  293.4 361.3  425.7 4107 s  

Inflexible 

policy -  

–

246.5  144.9  237.8 306.5  343.2 351 s  

        

 

th
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Table 5 Scalability test of the proposed method given N = 5 and S = 4000. 

Method  Indicator     

Proposed 

method 

CPU time 

(seconds) 473  508  754  

 ENPV (million S$)  237.7  306.3  400.9  

BACD  

CPU time 

(seconds) 5499  6749  20437  

 ENPV (million S$)  237.0  307.5  399.0  

     

 

( 8 , 1 5 )I T  ( 1 0 , 1 5 )I T  ( 1 0 , 2 0 )I T 
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