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Abstract 

An isotropic dynamical system is one that looks the same in every direction, i.e., if we imagine -

standing somewhere within an isotropic system, we would not be able to differentiate between 

different lines of sight. Conversely, anisotropy is a measure of the extent to which a system 

deviates from perfect isotropy, with larger values indicating greater discrepancies between the 

structure of the system along its axes. Here, we derive the form of a generalised scalable 

(mechanically similar) discretized field theoretic Lagrangian that allows for levels of anisotropy to 

be directly estimated via timeseries of arbitrary dimensionality. We generate synthetic data for 

both isotropic and anisotropic systems and, by using Bayesian model inversion and reduction, 

show that we can discriminate between the two datasets – thereby demonstrating proof of 

principle. We then apply this methodology to murine calcium imaging data collected in rest and 

task states, showing that anisotropy can be estimated directly from different brain states and 

cortical regions in an empirical in vivo biological setting. We hope that this theoretical foundation, 

together with the methodology and publicly available MATLAB code, will provide an accessible 

way for researchers to obtain new insight into the structural organization of neural systems in 

terms of how scalable neural regions grow – both ontogenetically during the development of an 

individual organism, as well as phylogenetically across species.  
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Introduction 

Two of the main concepts upon which computational neuroscience models are based are those 

of the ‘particle’ [1] and the ‘field’ [2] – both terms that are inherited from theoretical physics.  

 
Particle theoretic models: In the particle theoretic approach we treat every node within a neural 

system as a zero-dimensional (point-like) element – a so-called ‘particle’ that evolves in time. 

The ways in which each one of these neural particles evolve influences the rest of the connected 

system, such that collectively, the particles form nodes of a dynamically evolving graph [3]. 

Particle theoretic frameworks yield experimental advantages for neuroimaging modalities such 

as electroencephalography (EEG), in which there are usually very few measurement locations. 

Furthermore, particle theoretic frameworks have computational and statistical advantages for 

neuroimaging analyses due to associated dimensionality reduction – an attribute that becomes 

increasingly important for large-scale recordings of neural systems [4]. However, this 

computational expediency comes at the cost of losing the spatial information contained in a 

continuum description. 

 
Field theoretic models: On the other hand, the field theoretic approach treats a neural system 

as a continuous structure called a ‘field’ that is a function of position, with position treated as a 

continuous variable. A neural field can exist in 2D or 3D space: it is natural to work in a two-

dimensional space when modelling a single cortical sheet or a three-dimensional space for a 

cross-cortical volume [5]. In this paper, we use a model that is in essence a compromise 

between the particle and field models, by taking a continuous field and discretizing it such that 

we only consider certain points in space – which we henceforth refer to as a discretized field 

theoretic model. 

 
Isotropic vs. anisotropic systems: A system is said to be isotropic if it looks identical in every 

direction. This means that if we imagine ourselves standing somewhere within an isotropic 

structure, then we would see precisely the same structure along all lines of sight. Conversely, 

anisotropy is a measure of the extent to which a system deviates from perfect isotropy. For 
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example, a sheet of wood is anisotropic due to the preferential directionality of the grain – which 

we can see by the fact that it is easier to break the wood along the grain than it is to break it 

against the grain. We present a discretized field theoretic model that allows for the estimation of 

anisotropy in connected dynamical systems of arbitrary dimensionality. We provide 

accompanying MATLAB code in a public repository that can be readily used to measure levels of 

anisotropy on a node-wise basis via timeseries measurements.  

 

Here, we focus on isotropy as the main parameter of interest, as this quantity is usually studied 

in neuroscience in the context of diffusion tensor imaging (DTI). The latter allows for structural 

integrity measures of axons, by quantifying the extent to which water molecules diffuse along the 

axons — i.e., anisotopically. Damage to white matter caused by e.g., traumatic brain injury (TBI) 

can cause axonal tissue to rupture, resulting in water molecules leaking more isotropically than in 

an intact axon. The measure of isotropy we propose here, as opposed to DTI, can be estimated 

directly from any region-specific neuroimaging timeseries. This allows for us to implement the 

mathematical framework of Lagrangian field theory in the study of a dynamically (as opposed to 

structurally) derived measure of anisotropy. Furthermore, as we are embedding the isotropy 

measure into a scalable mathematical framework, we allow for an estimation of how similar 

(isotropic) or dissimilar (anisotropic) the signals of neighbouring regions are during the growth of 

neural systems. 

 

Inference of anisotropy: We estimate anisotropy in arbitrary neuronal timeseries, together 

with hyperparameters that describe the variance of states and parameters, by using 

Dynamic Expectation Maximisation (DEM) [6] within the Statistical Parametric Mapping 

(SPM) software. This inference method uses generalised coordinates of motion within a 

Laplace approximation routine of states and parameters (multivariate Gaussians). In 

contrast with other inference methods, DEM allows us to use four embedding dimensions, 
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which encompass smooth noise processes, unlike e.g., traditional Kalman filters that employ 

martingale assumptions [7].  

 
Specifically, DEM approximates the posterior of a parameter quantifying anisotropy using 

three steps: 1) The D step corresponds uses variational Bayesian filtering as an 

instantaneous gradient descent in a moving frame of reference for state estimation in 

generalised coordinates;  

2) The E step estimates the model parameter quantifying anisotropy by using gradient 

ascent on the negative variational free energy. The variational free energy combines both 

accuracy and complexity when scoring models 𝐹 = 〈𝑙𝑜𝑔 𝑝 (𝑦|𝜃,𝑚)〉01111211113
!""#$!"%

− 𝐾𝐿[𝑞(𝜃), 𝑝(𝜃|𝑚)]01111211113
"&'()*+,-%

 , 

where 𝑙𝑜𝑔𝑝(𝑦|𝜃,𝑚) is the log likelihood of the data 𝑦 conditioned upon model states, 

parameters and hyperparameters 𝜃, and model structure 𝑚. We seek a model that provides 

an accurate and maximally simple explanation for the data. 

and 3)  The M step repeats this process for the hyperparameters, given by the precision 

components of random fluctuations on the states and observation noise [6].  

 
 
Overview: This paper comprises three sections. 

 
In the first, we outline the theoretical foundations of Lagrangian field theory and the form of a 

generalised scalable discretized equation of motion that can be used both for forward generative 

models and for model inversion via neural timeseries. 

 
In the second section, we generate in silico data via forward models of an isotropic and an 

anisotropic system. We then use Bayesian model inversion and subsequent Bayesian model 

reduction to show that we can correctly discriminate between the isotropic and anisotropic 

systems – thereby providing construct validation.  
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In the third section, we use murine data collected in both rest and task states to map levels of 

anisotropy across different cortical regions directly via the in vivo timeseries. These wide-field 

calcium imaging data were collected across the left hemisphere of mouse cortex expressing 

GCaMP6f in layer 2/3 excitatory neurons [8-10], with cortical areas aligned to the Allen Mouse 

Common Coordinate Framework [11],  

 
We suggest that the presented methodology could be valuable in future large-scale studies of 

neural systems, in which the quantification of region-wise anisotropy may shed light on how 

neural systems grow both phylogenetically within the lifespan of an individual animal, as well as 

ontogenetically across species [12].  

 

Methods 

We will now cover the technical foundations of the approach, starting with Lagrangian field theory 

and the principle of stationary action. We then derive a generalised, scalable, discretized field 

theoretic Lagrangian and consider the empirical estimation of anisotropy under this formulation 

using empirical (timeseries) data and Bayesian estimators.  

 
Lagrangian field theory: We remind the reader of the basic concepts underlying Lagrangian 

field theory and the principle of stationary action in Appendix I. In brief: we represent the state of 

a system by a field which is a function of the 4D space-time position 𝑟 ≡ (𝑡, 𝑥, 𝑦, 𝑧). The equations 

of motion that describe how this field evolves in time are obtained by requiring that the field 𝜑(𝑟) 

renders the value of a quantity known as the action S stationary: 

 𝑆[𝜑(𝑟)] = 0𝑑!𝑟	ℒ(𝑟, 𝜑, 𝜕𝜑).
"

 (1) 

 
The integral in the definition of the action is over the space-time domain Ω encompassing all 

space from the initial time 𝑡# to the final time 𝑡$. The integrand, which is known as the Lagrangian 

density ℒ(𝑟, 𝜑, ∂𝜑), defines the system of interest as a function of 𝑟, the values of the fields 𝜑 at 

𝑟, and their spatiotemporal derivatives ∂𝜑 at 𝑟.  
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Scale transformations: We define a scale transformation as a mapping from arbitrary points in 

the 5-D space with axes labelled (𝜑, 𝑟) = (𝜑, 𝑡, 𝑥, 𝑦, 𝑧) to scaled points (𝜑%, 𝑟%) = (𝜆𝜑, 𝜆&𝑟), where 

𝜆 is an arbitrary scale factor and 𝛼 is a constant. A field configuration 𝜑 = 𝜑(𝑟) is a 4-D surface 

in this 5-D space, and the scale transformation takes points on that surface to points on a new 

4D surface, defining a new field configuration. The value of the new field 𝜑% at the scaled space-

time point 𝑟% = 𝜆&𝑟 is related to the value of the original field 𝜑 at the unscaled point 𝑟 via 

 𝜑%(𝑟%) = 𝜆𝜑(𝑟) 		⟹			𝜑%(𝜆&𝑟) = 𝜆𝜑(𝑟) 			⟹			𝜑%(𝑟) = 𝜆𝜑(𝜆'&𝑟). (2) 

It is convenient to allow different scaling exponents in different space-time directions, so from 

now on 𝜆&𝑟 is to be understood as shorthand for the vector (𝜆&!𝑡, 𝜆&"𝑥, 𝜆&#𝑦, 𝜆&$𝑧).  

 

 

Taking partial derivatives of Eq. (2), we obtain: 

 𝜑%((𝑟) = 𝜕(;𝜑%(𝑟)< = 𝜆)'&%𝜑((𝜆'&𝑟), (3) 

where 𝜆)'&% depends only on the 𝜇*+ component of the vector of exponents	𝛼 = ;𝛼, , 𝛼- , 𝛼. , 𝛼/<. 

From now on, we denote the vector with components 𝜆)'&%𝜑((𝜆'&𝑟) as 𝜆)'&𝜕𝜑(𝜆'&𝑟). 

 
Scaling the action: Using Eqs. (39), (2) and (3), we see that the scaled action is given by: 

 𝑆[𝜑%(𝑟)] = 0 𝑑𝑡
0&!,'

0&!,(
> 𝑑𝑥𝑑𝑦𝑑𝑧	ℒ;𝑟, 𝜆𝜑(λ'1𝑟), λ)'1𝜕𝜑(𝜆'&𝑟)<

233	5,7,8

, (4) 

 
We then change variables in Eq. (4), setting 𝑟′ = 𝜆'&𝑟 such that: 

 𝑆[𝜑%(𝑟)] = 	 𝜆∑ &)) 0 𝑑𝑡:
,'

,(
> 𝑑𝑥:𝑑𝑦:𝑑𝑧:
	

233	-,.,/

	ℒ;𝜆&𝑟:, 𝜆𝜑(𝑟:), 𝜆)'&𝜕𝜑(𝑟:)< (5) 

 
where 𝜆∑ &)) 	is the Jacobian that accounts for the change in integration variables and ∑ 𝛼;; =

𝛼, + 𝛼- + 𝛼. + 𝛼/. The integrals are now over the same space-time region Ω as in the original 

un-scaled action in Eq. (39), which means that we can re-write Eq. (5) using the same simple 

notation: 

 𝑆[𝜑%(𝑟)] = 𝜆∑ &)) 0𝑑!𝑟	
"

ℒ;𝜆&𝑟, 𝜆𝜑(𝑟), 𝜆)'&𝜕𝜑(𝑟)<. (6) 
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Scalable systems: The action 𝑆[𝜑(𝑟)] is said to be scalable, or equivalently to possess 

‘mechanical similarity’ [13] if, for any choice of 𝜑(𝑟), not just choices that make the action 

stationary and therefore satisfy the Euler-Lagrange equation of motion (see Appendix I), the 

following relationship holds: 

 𝑆[𝜑%(𝑟)] = 𝜆<𝑆[𝜑(𝑟)], (7) 

where 𝑛 is a constant. Note that a ‘scalable’ system should not be confused with a ‘scale free’ 

system, which is one that lacks a characteristic length scale, such as those studied in the physics 

of phase transitions. 

 
More explicitly, we can use Eqs. (6) and (7) to express the scalability condition as follows: 

 0𝑑!𝑟	ℒ(𝜆&𝑟, 𝜆𝜑(𝑟), 𝜆)'&𝜕𝜑(𝑟))
=

= 𝜆<'∑ &)) 0𝑑!𝑟	ℒ(𝑟, 𝜑(𝑟), 𝜕𝜑(𝑟))
=

. (8) 

 
Generalised scalable Lagrangians: We can expand any analytic Lagrangian density ℒ(𝜑, 𝜕𝜑) 

as a power series: 

 ℒ = D C>,?!,?",?#,?$
>,?!,?",?#,?$

𝜑>�̇�?!𝜑-?"𝜑.?#𝜑/?$ , (9) 

 
where C>,?!,?",?#,?$ is an expansion coefficient and the summations over the integers 

𝑎, 𝑏, , 𝑏- , 𝑏. , 𝑏/	range from 0 to ∞. We have assumed for the sake of simplicity that the Lagrangian 

density has no explicit dependence on 𝑟.  This is normally the case when the system of interest 

is not driven by external forces or other influences. We next use Eq. (9) to obtain ℒ(𝜆𝜑, 𝜆)'&𝜕𝜑): 

 ℒ(𝜆𝜑, 𝜆)'&𝜕𝜑) = D C>,?!,?",?#,?$
>,?!,?",?#,?$

	𝜆>@∑ ()'&))?)) 	𝜑>�̇�?!𝜑-?"𝜑.?#𝜑/?$ 	. (10) 

For the action to be scalable, Eq. (8) tells us that Eq. (10) must equal: 

 
𝜆<'∑ &)) D C>,?!,?",?#,?$

>,?!,?",?#,?$

𝜑>�̇�?!𝜑-?"𝜑.?#𝜑/?$ . 
(11) 

We conclude that the action is scalable if and only if 

 𝑎 +D(1 −	𝛼;)𝑏;
;

= 𝑛 −D𝛼;
;

 (12) 

 
for all choices of the integers 𝑎 and 𝑏; at which C>,?!,?",?#,?$ is non-zero. If, for example, we 

consider possible contributions to the Lagrangian with specific values of 𝑏,, 𝑏-, 𝑏., and 𝑏/, Eq. 
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(12) tells us that C>,?!,?",?#,?$ must be zero unless 𝑎 = 	𝑛 − ∑ 𝛼;; −		∑ (1 −	𝛼;)𝑏;; . The value of 𝑎 

is determined by the values of 𝑏,, 𝑏-, 𝑏., 𝑏/ and the summation over 𝑎 is no longer required. The 

generalised scalable discretized field theoretic Lagrangian may therefore be written as follows: 

 ℒ = D C?!,?",?#,?$𝜑
<@∑ ((&)'))?)'&))) �̇�?!𝜑-?"𝜑.?#𝜑/?$

?!,?",?#,?$

 (13) 

 

The anisotropic wave equation: Let us now design a special case of Eq. (13) in two spatial 

dimensions. Having chosen to set 𝛼, = 𝛼- and 𝑛 = 𝛼. + 2, we construct a Lagrangian density 

with three non-zero terms. In the first term, 𝐶?!,?",?# = 1, 𝑏, = 2, and 𝑏- = 𝑏. = 𝑏/ = 0; in the 

second term, 𝐶?!,?",?# = −1, 𝑏- = 2, and 𝑏, =	𝑏. = 𝑏/ = 0; and finally, in the third term,	𝐶?!,?",?# =

−1, 𝑏. = 2, and 𝑏, = 𝑏- = 𝑏/ = 0.  

This yields the Lagrangian density: 

 ℒ = �̇�C − 𝜑-C − 𝜑CD𝜑.C, (14) 
 
where the exponent 𝛽, which is by defined by 𝛽 = 𝛼. − 𝛼-, quantifies the degree of anisotropy, 

such that the system is perfectly isotropic when 𝛽 = 0	 ⟹	𝛼. = 𝛼-. To provide intuition for the 

way in which the 𝛽 parameter affects the system’s dynamics, we run a series of forward models 

for a range of values in Supplementary Figure 1. 

 

The corresponding equation of motion – the two-dimensional Euler-Lagrange equation (see 

Appendix I) – is: 

 �̈� = 𝜑-- + 𝜑CD𝜑.. + 𝛽𝜑CD')𝜑.C. (15) 

We can verify that if 𝜑(𝑡, 𝑥, 𝑦) is a solution of this equation, so is the scaled field 𝜑%(𝑡, 𝑥, 𝑦) =

	𝜆𝜑(𝜆'&!𝑡, 𝜆'&"𝑥, 𝜆'&#𝑦) = 𝜆𝜑;𝜆'&"𝑡, 𝜆'&"𝑥, 𝜆'(&"@D)𝑦< (see Appendix II).  

 
In the case of an isotropic system, when 𝛽 = 0, the Euler-Lagrange equation becomes: 

 �̈� = 𝜑-- + 𝜑.. . (16) 
 
We see that the Lagrangian density of Eq. (14) leads to an equation of motion (15) that reduces 

to the wave equation (16) in the case of an isotropic system. This makes it an intuitive test case. 
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Spatial discretisation: For Eq. (15) to be used in the modelling of neural timeseries we must 

first discretize the partial spatial derivatives. This is necessary because we do not deal with 

spatially continuous data in neuroimaging, but rather with data collected at a discrete set of 

points. We therefore make the following standard transformations: 

 

𝜑. →
1
2 ;𝜑

(𝑥, 𝑦 + 1) − 𝜑(𝑥, 𝑦 − 1)<, 
 

												𝜑-- → 𝜑(𝑥 + 1, 𝑦) − 2𝜑(𝑥, 𝑦) + 𝜑(𝑥 − 1, 𝑦), 
 

											𝜑.. → 𝜑(𝑥, 𝑦 + 1) − 2𝜑(𝑥, 𝑦) + 𝜑(𝑥, 𝑦 − 1), 
 

(17) 

where 𝜑(𝑥, 𝑦) is the value of the field at the point (𝑥, 𝑦) and, e.g., 𝜑(𝑥 + 1, 𝑦) is the value of the 

field one ‘step’ in the positive 𝑥 direction in the graph from the point (𝑥, 𝑦). 

 
Applying the transformations to Eq. (15), we obtain: 

 

�̈�(𝑥, 𝑦) = 𝜑(𝑥 + 1, 𝑦) − 2𝜑(𝑥, 𝑦) + 𝜑(𝑥 − 1, 𝑦)
+ 𝜑(𝑥, 𝑦)CD;𝜑(𝑥, 𝑦 + 1) − 2𝜑(𝑥, 𝑦) + 𝜑(𝑥, 𝑦 − 1)<

+ 𝛽𝜑(𝑥, 𝑦)CD') R
1
2 ;𝜑

(𝑥, 𝑦 + 1) − 𝜑(𝑥, 𝑦 − 1)<S
C

, 
(18) 

 
which we split into two first-order differential equations by defining a new variable to obtain the 

final form of the equations of motion used in all subsequent forward models and Bayesian model 

inversions presented in this paper: 

 

�̇� = 𝜃 
 

�̇�(𝑥, 𝑦) = 𝜑(𝑥 + 1, 𝑦) − 2𝜑(𝑥, 𝑦) + 𝜑(𝑥 − 1, 𝑦)
+ 𝜑(𝑥, 𝑦)CD;𝜑(𝑥, 𝑦 + 1) − 2𝜑(𝑥, 𝑦) + 𝜑(𝑥, 𝑦 − 1)<

+ 𝛽𝜑(𝑥, 𝑦)CD') R
1
2 ;𝜑

(𝑥, 𝑦 + 1) − 𝜑(𝑥, 𝑦 − 1)<S
C

. 

(19) 

 
where the observation equation consists of the 𝜑 variable. 

 
We then use Eq. (19) as the equations of motion for subsequent model inversion with the 

Statistical Parametric Mapping (SPM) software. The associated observer equation comprises the 

𝜑 variables – i.e., we assume that the strength of the field 𝜑(𝑥, 𝑦) is what is being measured in 

the neural timeseries at the (𝑥, 𝑦) coordinate. 
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Eq. (19) is the basis of the MATLAB code made available for the use with forward generative 

models, as well as with Bayesian model inversion of timeseries of arbitrary dimensionality from 

any neuroimaging modality.  

 
Synthetic data: We consider a 2D grid of size 3x3 pixels, where each of the nine pixels is given 

different initial conditions and subsequently allowed to evolve according to the equation of motion 

in Eq. (19). We run two forward models: a) one isotropic case in which 𝛽 = 0; and b) one 

anisotropic case in which 𝛽 ≠ 0. Having created these synthetic data with a prior of 𝛽 = 0, we 

then perform Bayesian model inversion using Dynamic Expectation Maximization (DEM) [6] to 

infer the latent states and estimate both the 𝛽 parameter, as well as the hyperparameters – the 

components of precision of random fluctuations on the observation noise and states. Model 

inversion for any discrete system can be performed on a node-by-node basis, by considering the 

ways in which the dynamics evolve in the immediate neighbourhood of the current node under 

consideration. When this model is equipped with fluctuations one can use standard (Variational 

Laplace) Bayesian model inversion procedures to estimate the exponents for any given 

timeseries. We then set the prior for the free parameter 𝛽 to zero and DEM to obtain a posterior 

estimate for 𝛽 from both the synthetic isotropic and anisotropic data. Following model inversion, 

we use Bayesian model reduction [14, 15] to test the evidence for a perfectly isotropic system in 

which 𝛽 = 0 by setting the prior variances of 𝛽 to zero. We are therefore able to test whether we 

can correctly identify the ground truth isotropic data (created with 𝛽 = 0) with a higher evidence 

for the reduced model and conversely whether we can correctly identify the ground truth 

anisotropic data (created with 𝛽 ≠ 0) with a higher evidence for the full model. 

 
Empirical data: All animal experiments were carried out according to the guidelines of the 

Veterinary Office of Switzerland following approval by the Cantonal Veterinary Office in Zürich. 

All murine calcium imaging data were collected as previously reported [8-10]. As with the 

synthetic data, we perform Bayesian model inversion to obtain posterior estimates for the 𝛽 

parameter quantifying the extent to which the time series for each pixel deviate from isotropy at 

𝛽 = 0. We perform this model inversion once for every second pixel (𝑛 = 6651) within each trial 
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(𝑛 = 10), mouse (𝑛 = 3) and condition (𝑛 = 2, task and rest). Following model inversion, we 

average the posteriors for the 𝛽 parameter across trials to obtain results per mouse and 

condition and then average these posteriors once more across mice. We then filter these 

averaged images with 2-D Gaussian moving average smoothing kernels with a semi-width 

window of 7 pixels.  

 

Results 

We show the ways in which the synthetic timeseries evolve for the isotropic (Figure 1A) and 

anisotropic (Figure 1B) cases. Each of the regions in the 3 × 3 synthetic data is given a different 

initial value and rate of change ranging between ~1 and 2, to initialize dynamics in the absence 

of external inputs. Exact values of model parameters, boundary conditions, and initial values are 

listed in the publicly available code. Following model inversion and reduction, we then 

demonstrate proof of principle by showing that there is higher evidence for the ground truth 

isotropic data having been created with the isotropic model (Figure 1C) and conversely for the 

ground truth anisotropic data having been created with the anisotropic model (Figure 1D). The 

results in Figures 1C and 1D remain when initial conditions and observation noise are varied by 

~10%, as commented in the publicly available code. Finally, we show the different degrees of 

anisotropy in the murine calcium imaging data in rest and task states (Figure 1E), together with 

averaged signals (Figure 1F). Note that the negative posterior 𝛽 values in Figure 1E are a result 

of the specific choice of model parameters, observation noise, and initial conditions used.  

 

Overall, there is a marked variability in the degrees of anisotropy across mice and states. On the 

other hand, the secondary motor cortices show consistently high degrees of anisotropy across 

mice and states. The generation (Figure 1 A& B) and inversion (Figure C & D) for the synthetic 

data can be fully reproduced with the accompanying MATLAB code and the murine calcium 

imaging data in Figure 1 E & F is made available in a public repository.  
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Figure 1: Synthetic and 
experimental data. A) Synthetic 
data generated using the isotropic 
model in Eq. (19) with 𝛽 = 0. The 
colours of the wavefronts 
correspond to pixels in the grid 
inset top right. The x and y axes 
show the amplitudes of the 
wavefronts multiplied by cos(time) 
and sin(time), respectively. B) 
Synthetic data generated using the 
anisotropic model in Eq. (19) with 
𝛽 = −3. The colours of the 
wavefronts correspond to pixels in 
the grid inset top right. The x and y 
axes show the amplitudes of the 
wavefronts multiplied by cos(time) 
and sin(time), respectively. C) 
Approximate lower bound log 
model evidence given by the free 
energy (F) following Bayesian 
model reduction for isotropic (i.) 
and anisotropic (a.) models using 
the isotropic ground-truth data. 
Corresponding probabilities (p) 
derived from the log evidence are 
shown in the inset on the right. D) 
Approximate lower bound log 
model evidence given by the free 
energy (F) following Bayesian model reduction for isotropic (i.) and anisotropic (a.) models using 
the anisotropic ground-truth data. Corresponding probabilities (p) derived from the log evidence 
are shown in the inset on the left. E) Left hemisphere of calcium imaging data collected in three 
mice (first three rows) in rest (left column) and task (right column) states. The final fourth row 
shows average values across the three mice. The colour bars indicate the value of the 𝛽 
exponent ranging from isotropic (i.) to increasingly anisotropic (a.) pixels. F) Timecourses of 
normalized signal intensity (z) averaged across all pixels, with the layout corresponding to that in 
E), i.e., for each of the three mice (first three rows) across the two states (columns), together with 
signals averaged across mice (last row) 
 

 

Discussion 

We present a theoretical framework, together with a practical numerical analysis, designed for 

the estimation of anisotropy in arbitrary timeseries from any connected dynamical system. The 

basis for this framework rests upon classical Lagrangian field theory applied to scalable 

(mechanically similar) dynamical systems. Scalability entails a situation whereby a system 

continues to obey the same equation of motion as it changes size. In other words, a dynamical 

system that grows or shrinks will begin producing states that are different from those of the 



 13 

original (unscaled) system. However, in systems possessing the property of scalability, the new 

states in the scaled system will still be described by the same equation of motion used to 

describe the original (unscaled) system.  

 
It stands to reason that the dynamical evolution of the signals propagating in neural systems 

possess some form of scalability, given that evolutionary processes add new neuroanatomy to 

existing structures i.e., the same basic architecture extends itself whist maintaining information 

processing capabilities [16-18]. Similarly, a neural structure changes scale during development, 

whilst allowing for information processing to remain intact. It is therefore of interest to develop 

tools that allow for the analysis of scalable systems. We therefore pose the following question: 

given that neural systems possess some form of scalability, what are the consequences thereof 

and what further questions present themselves? It is in this spirit that we present a formalism that 

applies to any scalable dynamical system that is sufficiently general to accommodate the 

evolution of any (driven or non-driven) system in any number of spatial dimensions.  

 
With reference to the murine calcium imaging results, we note the following three main results: a) 

there is a high variability in anisotropy across mice and states, which may be due to the low 

number of trials and/or to the fact that anisotropy values may vary from trial to trial depending on 

neural activity; b) there is no clear difference in anisotropy across rest/task states; and c) there 

are consistently high levels of anisotropy in the secondary motor cortex (Mos) across mice and 

states, which may reflect the non-homogeneous nature of local networks.   

 
We construct a methodology that is set within the Bayesian model inversion scheme of Dynamic 

Causal Modelling (DCM). This means that, by using the timeseries measured from any (e.g., 

neuroimaging) modality, we obtain posterior estimates of spatial stretch factors – one for each 

spatial dimension. The discrepancy between these stretch factors then directly provides an 

estimate of the anisotropy at every voxel in the neuroimaging data. We thus obtain an intuitive 

understanding of what these measures mean by imagining ourselves standing at a certain node 

in a neural system. If the system is isotropic then, as we look in every direction – up-down, left-
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right, and back-forward, we will see no difference in the ways in which the signals evolve in time 

in these different directions. On the other hand, if the system is anisotropic then we will see a 

difference in our lines of sight along the different axes – and the greater this difference becomes 

the greater the degree of anisotropy. We demonstrate proof of principle by generating synthetic 

data using a special case of the generalised Lagrangian that reduces to the wave equation in the 

limit of the perfectly isotropic case. Using Bayesian model inversion and reduction, we show that 

we can correctly identify which of the two models (anisotropic and isotropic) were used to 

generate each dataset, thus showing the discriminatory ability of the proposed methodology. 

 

It should be noted that, in addition to the Lagrangian framework presented here, the Martin–

Siggia–Rose–DeDominicis–Janssen (MSRDJ) is an alternative formalism that allows for 

stochastic differential equations (e.g., the Langevin equation) to be solved probabilistically 

[19]. In contrast to our methodology, in which we examine a single solution of a stochastic 

differential equation, the MSRDJ framework encompasses a probability distribution of 

possible solutions and the ways in which they evolve in time [20]. Furthermore, it should be 

noted that whereas resting-state brain dynamics are usually modelled by equilibrium 

fluctuations about a steady-state (i.e., a stable point attractor), here we employ a limit-cycle 

model. The choice of which type of model (e.g., fixed point vs. limit cycle) will naturally 

depend on the nature of the system under consideration.  

 

An empirically determined estimation of anisotropy could be informative in imaging neuroscience, 

as it facilitates a direct empirical measurement of how sub-structures within the brain grow 

(under the assumption of scalability). This provides a new way of assessing the ways in which 

anatomy changes across both an evolutionary timeline, as well as across the lifespan of an 

individual organism. It is our hope that the theory, methodology, and accompanying tools will 

allow for these kinds of questions to be addressed by researchers and that these will lead to a 

clearer understanding of spatial dependencies, growth, and development of neural systems.   
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Appendix I 

The classical real scalar field of interest in this work depends on position and time, and it turns 

out to be convenient to treat it as a function of the four-dimensional Cartesian vector  

 𝑟 ≡ (𝑡, 𝑥, 𝑦, 𝑧), (20) 
 
where 𝑡 is time, and 𝑥, 𝑦, 𝑧 are spatial length, width, and height coordinates, respectively. 

Individual components of the vector 𝑟 are written 𝑟(, with 𝜇 any element of the set {𝑡, 𝑥, 𝑦, 𝑧}. The 

field 𝜑 is a function of 𝑟:    

 𝜑 = 𝜑(𝑟). (21) 
 
The vector 𝜕𝜑 of partial derivatives of 𝜑 at 𝑟 is given by 

 𝜕𝜑 =	 ;𝜕,𝜑, 𝜕-𝜑, 𝜕.𝜑, 𝜕/𝜑< 
  

(22) 
and its components are written 𝜕(𝜑 or, more simply, 𝜑(. 

The central quantity in Lagrangian field theory is the Lagrangian density,	ℒ, which is a function of 

𝑟, 𝜑, and	𝜕𝜑: 

 ℒ = ℒ(𝑟, 𝜑, ∂𝜑). 
 

(23) 

Note that we have not yet assumed any relationship between the values of 𝑟, 𝜑 and 𝜕𝜑; the 

Lagrangian density can be evaluated for any choices of the 9 real numbers required to specify 

the scalar field 𝜑 and the two four-component vectors 𝑟( and 𝜕(𝜑. 

Given a particular choice of field ‘trajectory’ 𝜑(𝑟), the standard definition of the action as a 

functional of 𝜑(𝑟) is: 

 S[𝜑(𝑟)] = 0𝑑!𝑟	ℒ(𝑟, 𝜑, ∂𝜑).
"

 (24) 

A trajectory in this context consists of the values of the field 𝜑(𝑟) = 	𝜑(𝑡, 𝑥, 𝑦, 𝑧) at all spatial 

points (𝑥, 𝑦, 𝑧) and all times 𝑡 between a chosen initial time 𝑡# and a chosen final time 𝑡$. The 

four-dimensional integration volume Ω coincides with the region in which the trajectory is defined. 

Note that we are now assuming that the field 𝜑 and its derivatives 𝜑( are functions of 𝑟, so 𝜑 and 

𝜕𝜑 are now related to each other. We are also assuming that 𝜑 and 𝜑( tend to zero as the 

spatial distance 𝑑 = 	a𝑥C +	𝑦C +	𝑧C	 from the origin tends to infinity.  
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The principle of stationary action tells us that the evolution of 𝜑(𝑟) between the initial and final 

times, 𝑡# and 𝑡$, renders the action stationary with respect to all variations 

 δ𝜑(𝑟) = δ𝜑(𝑡, 𝑥, 𝑦, 𝑧) (25) 
 
that vanish when 𝑡 = 𝑡# and 𝑡 = 𝑡$.  

Using Eq. (24), we evaluate the variation of the action as follows: 

																				𝛿𝑆 = 0 𝑑!𝑟	 R
𝜕ℒ
𝜕𝜑 𝛿𝜑 +

𝜕ℒ
𝜕𝜑(

𝛿𝜑(S
=

= 0 𝑑!𝑟	 d
𝜕ℒ
𝜕𝜑 𝛿𝜑 +

𝜕ℒ
𝜕𝜑(

𝜕((𝛿𝜑)e
=

 

 = 0 𝑑!𝑟	 R
∂ℒ
∂𝜑 δ𝜑 + 𝜕( R

∂ℒ
∂𝜑(

δ𝜑S − ∂( R
∂ℒ
∂𝜑(

S δ𝜑S
"

, (26) 

where we are using the Einstein summation convention according to which terms in which the 

same suffix appears twice are automatically summed over all four values of that suffix. We next 

convert the middle term on the second line to a surface integral by using the 4-D version of the 

divergence theorem to obtain: 

 δS = 0 𝑑!𝑟	 d
∂ℒ
∂𝜑 − ∂E R

∂ℒ
∂𝜑(

Se
"

δ𝜑 +0
∂ℒ
∂𝜑(

δ𝜑	𝑑𝑆(
F"

, (27) 

where 𝜕Ω is the surface of the 4-D volume Ω and 𝑑𝑆( is an element of the 3-D surface of Ω. If the 

field decays to zero rapidly enough as the spatial distance from the origin tends to infinity, and 

remembering that 𝛿𝜑 = 0 when 𝑡 = 𝑡# and 𝑡 = 𝑡$, the surface integral vanishes, and we obtain: 

 δS = 0 𝑑!𝑟	 d
∂ℒ
∂𝜑 − 𝜕( R

∂ℒ
𝜕𝜑(

Se
"

δ𝜑 = 0. (28) 

Since 𝛿𝜑 is arbitrary except for the constraint that it vanishes at the surface 𝜕Ω, the principle of 

stationary action (𝛿𝑆 = 0) implies that the fields evolve according to the Euler-Lagrange 

equation: 

 
∂ℒ
∂𝜑 − 𝜕( R

∂ℒ
∂𝜑(

S = 0, (29) 

or more explicitly: 

 
𝜕ℒ
𝜕𝜑 −

𝜕
𝜕𝑡 f

𝜕ℒ
𝜕�̇�g −

𝜕
𝜕𝑥 f

𝜕ℒ
𝜕𝜑-

g −
𝜕
𝜕𝑦 R

𝜕ℒ
𝜕𝜑.

S −
𝜕
𝜕𝑧 f

𝜕ℒ
𝜕𝜑/

g = 0. (30) 
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Appendix II 

To show that the scaled field 𝜑% = 𝜆𝜑;𝜆'&"𝑡, 𝜆'&"𝑥, 𝜆'(&"@D)𝑦< is also a solution of Eq. (15), we 

differentiate 𝜑% twice with respect to time: 

 𝜕C𝜑%
𝜕𝑡C = 𝜆)'C&"

𝜕C𝜑
𝜕𝑡C  (31) 

 
as well as twice with respect to the 𝑥 coordinate: 

	 𝜕C𝜑%
𝜕𝑥C = 𝜆)'C&"

𝜕C𝜑
𝜕𝑥C  (32)	

 
and twice with respect to the 𝑦 coordinate: 

	
𝜕C𝜑%
𝜕𝑦C = 𝜆)'C(&"@D)

𝜕C𝜑
𝜕𝑦C  

	
(33)	

We then take raise 𝜑% to the power of 2𝛽: 
 
	 𝜑%

CD = 𝜆CD𝜑CD 	 (34)	
 
which, together with Eq. (33), means that: 
 

	 𝜑%
CD 𝜕C𝜑%

𝜕𝑦C = 𝜆CD𝜆)'C(&"@D)𝜑CD
𝜕C𝜑
𝜕𝑦C = 𝜆)'C&"𝜑CD

𝜕C𝜑
𝜕𝑦C 	

(35)	

 
We then differentiate 𝜑% once with respect to the 𝑦 coordinate and take the square: 
 

	 f
𝜕𝜑%
𝜕𝑦 g

C

= 𝜆CG)'(&"@D)H f
𝜕𝜑
𝜕𝑦g

C

 

	
(36)	

which, together with Eq. (34), means that: 
 

	 𝛽𝜑%
CD') f

𝜕𝜑%
𝜕𝑦 g

C

= 𝛽𝜆CD')𝜆CG)'(&"@D)H𝜑CD') f
𝜕𝜑
𝜕𝑦g

C

= 𝛽𝜆)'C&"𝜑CD') f
𝜕𝜑
𝜕𝑦g

C

 (37)	

Therefore, by using Eqs. (31), (35) and (39) with the original equation of motion in Eq. (15): 

	 𝜆C&"')
𝜕C𝜑%
𝜕𝑡C = 𝜆C&"') R

𝜕C𝜑%
𝜕𝑥C + 𝜑%

CD 𝜕C𝜑%
𝜕𝑦C + 𝛽𝜑%

CD') f
𝜕𝜑%
𝜕𝑦 g

C

S	 (38)	

 
where the 𝜆C&"') factor cancels, leaving the form of the original equation of motion in Eq. (15): 

	 𝜕C𝜑%
𝜕𝑡C =

𝜕C𝜑%
𝜕𝑥C + 𝜑%

CD 𝜕C𝜑%
𝜕𝑦C + 𝛽𝜑%

CD') f
𝜕𝜑%
𝜕𝑦 g

C

	 (39)	

 

We have therefore shown that if 𝜑(𝑡, 𝑥, 𝑦) is a solution of Eq. (15), so is the scaled field 

𝜑%(𝑡, 𝑥, 𝑦) = 	𝜆𝜑(𝜆'&!𝑡, 𝜆'&"𝑥, 𝜆'&#𝑦) = 𝜆𝜑;𝜆'&"𝑡, 𝜆'&"𝑥, 𝜆'(&"@D)𝑦<. 
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Data availability: The MATLAB code used to produce Figure 1 A, B, C & D is made available at 

the following public repository: github.com/allavailablepubliccode/anisotropy 

All pre-processed murine calcium imaging data used to produce Figure 1 E & F are made 

available in the following public repository: 

figshare.com/articles/Murine_calcium_imaging_data/12012852 

 
Author contributions: All authors conceived of the analysis and wrote the paper. 

 
Acknowledgements: E.D.F. was supported by a King’s College London Prize Fellowship; K.J.F. 

was funded by a Wellcome Principal Research Fellowship (Ref: 088130/Z/09/Z); R.J.M was 

funded by the Wellcome/EPSRC Centre for Medical Engineering (Ref: WT 203148/Z/16/Z); R.L 

was funded by the MRC (Ref: MR/R005370/1). The authors would also like to acknowledge 

support from the Data to Early Diagnosis and Precision Medicine Industrial Strategy Challenge 

Fund, UK Research and Innovation (UKRI), the National Institute for Health Research (NIHR), 

the Biomedical Research Centre at South London, the Maudsley NHS Foundation Trust, and 

King’s College London. 

 
Conflict of Interest: The authors declare that they have no conflict of interest. 

 

 

 

 



 20 

 

Supplementary Figure 1: Synthetic data generated using the model in Eq. (19) with values of 𝛽 

ranging between -3 (top left) to +3 (bottom right). The colours of the wavefronts correspond to 

the pixels in the grid inset top right. The x and y axes show the amplitudes of the wavefronts 

multiplied by cos(time) and sin(time), respectively. 

 


