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The study of phases is useful for understanding novel states of matter. One such state of matter are
time crystals which constitute periodically driven interacting many-body systems that spontaneously
break time translation symmetry. Time crystals with arbitrary periods (and dimensions) can be
realized using the model of Bose-Einstein condensates bouncing on periodically-driven mirror(s). In
this work, we identify the different phases that characterize the two-dimensional time crystal. By
determining the optimal initial conditions and value of system parameters, we provide a practical
route to realize a specific phase of the time crystal. These different phases can be mapped to
the many-body states existing on a two-dimensional Hubbard lattice model, thereby opening up
interesting opportunities for quantum simulation of many-body physics in time lattices.
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I. INTRODUCTION

The ability to trap ultra-cold atomic gases and control
their interactions with high precision has lead the way
towards the realization of new phases of matter [1–4].
These include the superfluid and Mott insulator phases
of the Hubbard model [5], topological states of matter
[6–8], atoms with artificial gauge potentials [9–13], su-
persolidity [14, 15] as well as many-body crystals [16–
18]. Crystalline structures are examples of strongly cor-
related many-body systems generally resulting in spa-
tially ordered configurations of the constituent particles.
In recent years, there has been considerable interest in
studying a more unconventional type of crystals, namely
discrete time crystals [19–23].

Discrete time crystals constitute periodically driven
quantum many-body systems that spontaneously break
discrete time translation symmetry and have been ob-
served experimentally [24–28]. So far these realizations
of discrete time crystals have been restricted to systems
that can be mapped to one dimensional (1D) models and
the ratio of the period of their time evolution to the driv-
ing period was small (≤ 3). There are theoretical propos-
als that study discrete time crystals with larger periods
[29–34] as well as time lattices that map to higher di-
mensional lattice problems [22, 23, 35–40]. The study
of higher dimensional lattices in the context of discrete
time crystals is appealing as it provides an additional
degree of freedom to investigate the gradual time trans-
lation symmetry breaking processes and its connection
with different discrete phases in the system. So far, such
studies were done only in 1D models [30, 41–43].
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FIG. 1: (a) Ultra-cold atoms with attractive interactions are
initially trapped in the lowest mode of a 2D harmonic trap.
On its release, it falls under gravity (whose direction is indi-

cated with ~Fg) resulting in the bouncing of the atoms between
the two harmonically oscillating orthogonal mirrors. Both
mirrors oscillate with frequency ω, but with individual ampli-
tudes λx,y respectively. In order to obtain stable dynamics,
the initial conditions (position and momentum) need to be
optimized which depend on heights (hx, hy). (b) Density of
non-interacting atoms bouncing between two oscillating mir-
rors at t = 2π/3ω and corresponding to a resonant Floquet
state. (c) The probability density for detecting a particle at
fixed position r = (16, 37) in (b) at different times. (d) The
system maps to an effective sx × sy Bose-Hubbard model.
By tuning the strength of the attractive interactions, three
different phases are identified.

Similar to the 1D case, one of the main challenges in
realizing higher dimensional time lattices is to find ap-
propriate initial conditions for the many-body quantum
dynamics that follow periodic classical trajectories [32].
The system studied in the present paper consists of a
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Bose-Einstein condensate (BEC) bouncing on a pair of
orthogonal atom mirrors that are periodically driven as
shown schematically in Fig. 1(a). In the classical descrip-
tion, this system reveals nonlinear resonances and the
motion for a single particle can be irregular. However,
if the driving amplitude of the periodically driven mir-
ror is small enough, there exist regular resonance islands
in the phase space that are located around periodic or-
bits. For sufficiently large resonance islands, a quantum
description is adopted where localized wave-packets [see
Fig. 1(b)] that evolve along these periodic orbits form a
basis of Wannier-like states of a tight-binding model that
describes a 2D time lattice [22, 23, 36, 38, 39]. Phys-
ically, this means that when we locate a detector close
to the classical trajectory at fixed r = (x, y), the proba-
bility of its clicking will be periodic in time and reflects
a cut of the 2D lattice as shown in Fig. 1(c). Choos-
ing r close to different points on the classical trajectory,
one can observe different cuts, which all together show a
2D crystalline structure in the time domain [36, 38]. In
the presence of the attractive interactions between atoms,
the system can break the time translation symmetry. The
different crystalline phases reflect the degree to which the
time translation symmetry is broken which is schemati-
cally depicted in Fig. 1(d).

In this work, we use statistical machine learning with
Bayesian inference to find optimal conditions that real-
ize robust discrete time crystals for higher dimensional
lattices. The most general approach to find these suit-
able initial conditions would involve optimizing over N
particles for the many-body system as well as taking into
account any possible noise that may occur in preparing
the initial state. Such an optimization task is intractable
even at the theoretical level. However we can simplify
the optimization task by approximating the many-body
wave function as a single quantum wave-packet thereby
reducing the control parameters to a manageable number
of six consisting of initial position, momentum and size
of the wave-packet determined by the 2D harmonic trap
in which the condensate is initially stored, see Fig. 1(a).
This approximation is justified in the mean-field limit
for the gas of bosonic atoms if the time required to pre-
pare the initial state is much shorter than the overall
dynamics of the discrete time crystal. We report the ex-
istence of three distinct phases for the 2D time crystal
where the gradual breaking of time translation symme-
try can be achieved by either modulating the interaction
strength between the atoms or by tuning the individual
mirror amplitudes and frequency of the mirror oscilla-
tions. Moreover, one can selectively control the direction
in which the time symmetry is broken which is reflected
as selective filling of the lattice along a given direction in
the Bose-Hubbard picture as shown in the partial sym-
metry breaking regime in Fig. 1(d).

II. THEORY

The system considered in this paper is a cloud of ultra-
cold atoms bouncing on mirrors, but despite its many-
body character, certain salient features of the model are
best understood in the single particle picture [38]. Thus,
we first introduce the time-dependent model for the sin-
gle particle which is naturally extended to incorporate
the many-body Floquet Hamiltonian. The mapping of
this system to the Bose-Hubbard model has been well
studied [23, 29, 38, 39] for which we provide a brief
overview. Finally, we discuss the numerical method used
to solve the many-body dynamics and the control tech-
niques to obtain the optimal solutions.
Single-particle model: The static Hamiltonian for the

single-particle in 1D is classically integrable and the
phase-space is completely foliated with periodic orbits
on invariant tori. One finds that certain periodic orbits
are localized inside the resonant islands when the mirror
oscillations are on and provided the amplitude of the os-
cillation is sufficiently small. In the quantum description,
it implies that if a resonant island is large enough it can
support one or more quantum states.

Consider a single particle bouncing resonantly on a
pair of oscillating orthogonal mirrors under the influence
of gravity. We assume that the mirrors oscillate with the
same frequency ω. In the frame moving with the mirrors,
the Hamiltonian of the system is given by

H(t) =
∑
α=x,y

[
p2α
2

+ α+ λαα cos(ωt+ δα)

]
, α ≥ 0 (1)

where δα=x,y and λα=x,y denote the phases and ampli-
tudes of the mirror oscillations. In this work, all calcu-
lations are done in gravitational units but the gravita-
tional acceleration is re-scaled by a factor 1/

√
2. Since

the mirrors are orthogonal, the single-particle dynamics
separates into two independent motions along the x and
y directions.

Using the Floquet theorem, one can obtain time-
periodic eigenstates of the Floquet Hamiltonian H(t) −
i∂t, which evolve with the driving period T ′ = 2π/ω
[38, 44]. Defining Ωx and Ωy as frequencies for the un-
perturbed classical motion of the particle along the re-
spective direction, we assume sxΩx = syΩy = ω, where
sx,y are integers. This is the condition for resonant driv-
ing of the 2D system. Shape of the resonant orbits in the
2D space depends on the ratio Ωx/Ωy as well as on the
relative phase of the mirrors δ = δx − δy. If sx,y � 1,
the quasi-energies corresponding to the resonant Floquet
states form a band structure. Within the tight-binding
approximation, we restrict the analysis to the first energy
band of the single-particle Floquet Hamiltonian and con-
struct 2D Wannier functions Wi(x, y, t) that are products
of localized wave-packets wix(x, t) and wiy (y, t) moving
along the x and y directions with the periods sxT

′ and
syT

′, respectively [38]. Here i = (ix, iy) is a double
index with components in the range ix = 1 . . . sx and
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iy = 1 . . . sy. The Wannier functions Wi(x, y, t) move in
the 2D space along the classical resonant orbit with the
period T = sxsyT

′.
Many-particle model: The many-body Floquet Hamil-

tonian of ultra-cold bosonic atoms which are bouncing
resonantly on the pair of oscillating mirrors can be writ-
ten in the form [19, 23, 45],

Ĥ =
1

T

T∫
0

dt

∫
dxdy ψ̂†

[
H(t) +

g(t)

2
ψ̂†ψ̂ − i∂t

]
ψ̂, (2)

where H(t) is the single-particle Hamiltonian given in

Eq. (1), ψ̂(x, y, t) is the bosonic field operator and g(t) =
g0f(t), where g0 is the strength of the contact interac-
tions between the atoms and f(t) is an arbitrary periodic
function with period T which describes possible modu-
lation of the strength of interactions between atoms in
time. Expanding the bosonic field operator in the Wan-

nier basis, we get ψ̂(x, y, t) ≈ ∑i âi Wi(x, y, t) where âi
are the bosonic annihilation operators. The description
of a resonantly driven many-body system within the first
energy band of the single particle system can be mapped
to an effective tight-binding Hamiltonian

Ĥ ≈ −1

2

∑
〈i,j〉

Jij â
†
i âj +

1

2

∑
i,j

Uij â
†
i â
†
j âjâi. (3)

The above Hamiltonian is the Bose-Hubbard model in a
time-periodic basis with the effective interaction coeffi-
cients

Uij = (2− δij)
N

T

T∫
0

g(t)dt

∫
dxdy |Wi|2|Wj|2, (4)

and the tunneling amplitudes as

Jij = − 2

T

∫ T

0

dt

∫ ∞
0

dxdy W ∗i (t) [H(t)− i∂t]Wj(t).

(5)
Here we have assumed that the interaction energy per
particle is smaller than the energy gap between the first
and second quasi-energy bands of the single-particle sys-
tem [38] which limits the overall allowed strength of the
interactions. The tunneling amplitudes Jij depend on
the amplitudes and frequencies of the mirrors’ oscilla-
tions. In general, for attractive interactions, the ground
state of the Hamiltonian (3) within the mean-field ap-
proximation can be superposition of the Wannier states,
i.e.

ψ(x, y, t) ≈
∑
i

aiWi(x, y, t) (6)

with complex amplitudes ai. Having derived the Bose-
Hubbard model for the setup in the reduced Hilbert space
(first energy band of the single particle system), it is often
also useful to solve the mean-field BEC dynamics in the

full Hilbert space in order to capture all the details of the
dynamics.
BEC dynamics: For a Bose-Einstein conden-

sate, all N atoms occupy the same single-particle
state and the many-body wave-function factorizes
as φ(x1, y1, t)φ(x2, y2, t) . . . φ(xN , yN , t) [46]. Within
the mean-field approximation, the single-particle state
φ(x, y, t) satisfies the Gross–Pitaevskii (GP) equation
[46],

i∂tφ(x, y, t) =
[
H(t) + g(t)N |φ(x, y, t)|2

]
φ(x, y, t). (7)

Physically, the resonant dynamics corresponds to the
coherent propagation of localized wave-packet along
classical resonant orbit as shown in Fig. 1(b).

Optimal control of the many-body dynamics: The ex-
perimental realization of time crystals requires precise
control over the initial conditions of the BEC dynamics.
More specifically, the initial position and momentum of
the quantum many-body wave-packet has to lie on the
resonant classical trajectory. In order to determine the
optimal initial conditions in the laboratory, we simulate
experimental optimization by menas of the Bayesian opti-
mization method since it tends to rapidly converge to op-
timal solutions for certain many-body problems [47, 48].
For sufficiently strong attractive interactions, the low-
est energy state within the resonant Hilbert subspace
can be described by a 2D wave-packet thereby reduc-
ing the control parameters for an N particle quantum
wave-packet to a tractable number of six, namely ini-
tial position (x0, y0), momentum (px0 , py0) as well as
the width of the wave-packet (σx0 , σy0) along each di-
rection. The wave-packet widths are related to the har-
monic trap frequencies along the relevant direction [see
the schematic figure in Fig. 1(a)]. Furthermore, we can
treat the initial cloud of atoms to be non-interacting sim-
ilar to the single-particle problem. This approximation is
valid provided the time to prepare the initial wave-packet
is much smaller than the typical tunneling time between
the wave-packets when the weak interactions influence
the dynamics. In this limit, the Hamiltonian becomes
separable along each dimension and we can perform op-
timization in either dimension independently. Without
loss of generality, we focus on the x direction and assume
a Gaussian wave-packet as our initial state,

φ(x, t = 0) =

(
ω̃x
π

)1/4

exp

[
− ω̃x(x− x̃)2

2
− ip̃x(x− x̃)

]
,

(8)
where x̃, p̃x and ω̃x are parameters to be determined (ω̃x
corresponds to the frequency of the harmonic trap where
a BEC is initially prepared — the width of the particle
density in the trap equals

√
ω̃x). In order to simulate

the experimental conditions, especially the noise in the
initial conditions, we sample these parameters randomly
from a uniform distribution: x̃ ∈ (x0 − δx0, x0 + δx0),
p̃x ∈ (px0

−δpx0
, px0

+δpx0
) and ω̃x ∈ (ωx−δωx, ωx+δωx).
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The figure of merit

FM = D(2T ) +D(3T ), (9)

is the sum of the overlaps

D(t) = CN

∫
dx|φ(x, 0)|2|φ(x, t)|2, (10)

of the atomic densities, where CN = 1/
∫
dx|φ(x, 0)|4

is the normalization constant. The merit of using FM
rather than the squared overlap | 〈φ(0)|φ(t)〉 |2 as the
figure of merit is that FM , in contrast to the overlap,
can easily be recovered experimentally from an average
particle-number distribution. The overlap of densities is
not sensitive to velocities two overlapping wavepackets
pass each other. We have found that in order to miti-
gate this problem, one can use the sum of the density
overlaps at two different moments of time, cf. Eq. (9).
The optimization was done using the GPyOpt package
[49] and the choice of the acquisition function was ex-
pected improvement. For more details about Bayesian
optimization, see Refs.[50, 51].

III. RESULTS

The main result of our work is the identification of
the different phases that characterize the discrete time
crystal in two dimensions. Typically the ground state of
the Hamiltonian (3) follows a discrete time translation
symmetry which is spontaneously broken for sufficiently
strong attractive interactions. However, when compared
to the 1D time crystals, we find that the additional spa-
tial degree provides more flexibility in breaking the time
translation symmetry. For example, in this work, the
time translation symmetry is also broken by selectively
tuning the mirror oscillation amplitudes in either direc-
tion independently. Controlling the oscillation of the or-
thogonal pair of mirrors affects the tunneling amplitudes
Jij in the Bose-Hubbard picture (3). Although the dif-
ferent phases obtained for our periodically driven system
can be understood by how strong the time translation
symmetry is broken, it has a simple and elegant cor-
respondence to the 2D Bose-Hubbard lattice as shown
schematically in Fig. 1(d).

The three relevant phases found in the model are
shown in Fig. 2. When the time translation symmetry
is preserved then the ground state is a uniform super-
position of Wannier states in Eq.(6) and the parameter
a2max = max{|ai|2} takes the value 1/6 (since sx = 2 and
sy = 3) which is represented by region (i) in Fig. 2. The
scenario where the time translation symmetry is com-
pletely broken such that all N atoms occupy a single site
in the lattice model and ground state of the system can
be described by a single Wannier state is represented as
region (iii) in Fig. 2. The more interesting scenario is
when the time translation symmetry is partially broken,
in the sense that it is broken in one of the lattice direction
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FIG. 2: Three different regimes of the interaction strength
(for the case of sx = 2 and sy = 3) characterized by the
parameter a2max = max{|ai|2}, cf. Eq. (6). Different re-
gions correspond to the ground state solutions of the Hamil-
tonian (3) with time translation symmetry (i) being preserved
in both lattice directions, (ii) broken only in one of the lat-
tice direction and (iii) broken in both the lattice directions.
Two different strategies have been used to break the sym-
metry. The first (depicted with red circles) corresponds to
isotropic tunneling Jx = Jy (where Jx = J(ix,iy ;ix+1,iy) and
Jy = J(ix,iy ;ix,iy+1)) with significant nearest-neighbor interac-
tions in one direction, Ux � Uy (where Ux = U(ix,iy ;ix+1,iy)

and Uy = U(ix,iy ;ix,iy+1)). The other (depicted with blue
squares) corresponds to anisotropic tunneling Jx 6= Jy. The
former method results in 1/6 < a2max < 1/3 while the latter
gives 1/6 < a2max < 1/2 in regime (ii). As a consequence
of our choice of the system parameters, different symmetry
regimes in both strategies coincide with each other — in
general they can be located at different ranges of g0N . We
use mirror amplitudes λx = 0.094 and λy = 0.03, frequency
ω = 1.1 and relative phase of δ = 2π/3 to get isotropic tun-
nelling, Jx = Jy = 4.8 × 10−6. For anisotropic tunnelling
rates, we used λx = 0.12, λy = 0.09, ω = 1.4 and δ = π/8
giving Jx = 7.2× 10−4, Jy = 3.7× 10−5.
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FIG. 3: (a-b) Modulation of the contact interactions between
atoms as function of time. (c-d) Values of the interaction coef-
ficients along the two lattice directions for the Bose-Hubbard
model corresponding to (a-b) respectively. Small variation of
the contact interactions is sufficient to generate non-negligible
anisotropic interactions for nearest-neighbours.
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FIG. 4: Overlap between the instantaneous state and the
initial state, O(t) = |

∫
dxdyφ∗(x, y, t)φ(x, y, 0)|2 for interac-

tion strengths corresponding to the three different regimes:
g0N = 0 (regime (i) in Fig. 2), g0N = −0.04 [regime (ii)] and
g0N = −0.2 [regime (iii)]. The initial state has been chosen
as φ(x, 0)φ(y, 0) where φ defined in Eq. (8) is obtained by the
optimization procedure.

but not the other which is given by (3) and corresponds
to region (ii) in Fig. 2. This occurs for higher dimensional
(d > 1) lattices, where the ground state of the Hamilto-
nian (3) is a superposition of either sx or sy wave-packets
depending on the direction in which the symmetry is bro-
ken. This phase is interesting because the corresponding
ground state of the lattice model can have many different
possibilities (in terms of lattice filling although a specific
case has been schematically shown in Fig. 1(d)).

We recognize two different pathways of obtaining the
phase (ii): (a) Directionally isotropic tunneling rates with
anisotropic nearest-neighbour lattice interactions shown
with red circles in Fig. 2, and (b) directionally anisotropic
tunneling rates shown with blue rectangles in Fig. 2.
Thus depending on the which strategy is chosen, the do-
main of the weakly interacting phase (ii) in Fig. 2 is de-
termined by the details of anisotropy of either the tunnel-
ing rates or lattice interaction strengths. As mentioned
before, the tunneling amplitudes can be controlled by
choosing specific values for the mirror oscillation ampli-
tudes which can take a large range of values provided we
satisfy the small amplitude approximation of the mirror
oscillations [78]. Fig. 3 shows that the interaction co-
efficients |Uij| in Eq. 4 are controlled by modulating the
scattering length for the contact interactions between the
atoms at specific moments in time. These times corre-
spond to the exact moments when Wannier states Wi

and Wj pass each other. Thus, by mildly modulating
g(t)N over time, we get significant anisotropy in the
nearest-neighbour interactions when compared to keep-
ing the scattering length constant. Although the inter-
action modulations shown in Fig. 3 are specific to the
parameters chosen for Fig. 2, the protocol is completely
generic for any set of parameters.

FIG. 5: Density plot of BEC dynamics obtained with opti-
mized parameters for the initial state. The white curves rep-
resent classical trajectories. (a-c) correspond to short time
dynamics, which is the same for any g0, for three different
times (a) t = 0, (b) t = T/3 and (c) t = T/2. (d-f) cor-
respond to long-time dynamics for different interactions, (d)
g0N = 0, (e) g0N = −0.04 and (f) g0N = −0.2 at fixed time
t = 700T .

Our next analysis is regarding the search of optimal ini-
tial conditions that can realize any of the discrete time
crystal phases. We focus on the strongly interacting case
for which we expect a discrete time crystal [19, 29, 33, 38]
and use it to benchmark the required initial conditions
for any arbitrary phase. Thus, FM (t) (see Eq. 9) is
maximized with respect to the initial state parameters
such that the initial state is periodically retrieved at long
times in integer multiples of T = sxsyT

′. FM (t) is evalu-
ated from φ(x, t), which is obtained by numerically solv-
ing the Gross–Pitaevskii Eq. 7 using the split-step fast
Fourier transform method with step-sizes dx = 0.002x0
and dt = 0.001T . The Bayesian optimization provided
the optimal parameters for initial wave-packet defined in
Eq. (8) [79], which were obtained with 20 initial points,
100 iterations and averaged over 10 different noise real-
izations. However, since optimization of the initial state
is performed in the short-time scale limit, it is indepen-
dent of the interaction strength. In order to test how
the optimized state evolves in the presence of the inter-
actions we have integrated the GP equation. Using the
same parameters as in the anisotropic tunneling case in
Fig. 2, the results of these calculations are depicted in
Fig. 4 which shows the overlap of the optimized initial
state with its time evolution φ(x, y, t) at long times for
different interactions strengths. As expected, one can
see that stable BEC dynamics in 2D is possible if the
interactions are sufficiently strong and the system per-
forms periodic evolution for a long time. The presented
results are based on the mean-field approach. However,
since the relation of the interaction energy per particle to
the energy gap between the bands of the resonant quasi-
energies is similar as in Refs. [32, 45, 52] where quantum
many-body effects are analyzed, we also expect that the
beyond mean-field approach will not show any signature
of heating of the system by the periodic drive.
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Results of the integration of the GP equation in the
2D space show also that the description of the system
indeed reduces to the resonant Hilbert subspace spanned
the sxsy Wannier-like wave-packets, cf. Eq. (6). In Fig. 5
we present time evolution of the density of atoms start-
ing with the optimized initial wave-packet for different
interaction strengths. Within the single period T , we
find that the wave-packet is moving along the classical
resonant orbit (white curve in Fig. 5) and only inter-
ference fringes are observed when it hits a mirror [cf.
Fig. 5 (c)]. It should be noted that the short time dy-
namics (t ≤ T ) is almost independent of g0, see Fig. 5(a-
c). The reason for this is the interactions are very weak
and can only modify tunneling process of atoms between
different wave-packets which takes place at much longer
time, i.e. t ≈ 1/J � T . At long time scales, the in-
teractions play a crucial role in the dynamics which is
clearly visible in Fig. 5(d-e). For weak interactions (al-
most non-interacting system), the localized wave-packet
starts spreading into the six Wannier states, while for
sufficiently strong interactions (|g0N | > 0.1) the wave-
packet remains localized indicating that one particular
Wannier state is dominant. This is consistent with Fig. 2.
The partial symmetry breaking regime corresponds to
suppression of tunneling along one of the directions in
the lattice described by the Bose-Hubbard model (3), see
Fig. 1(d).

IV. CONCLUDING REMARKS

In this work, we characterize the different phases real-
izable in a time crystal that map to a 2D lattice model.
We find that one of the benefits of time crystals with
properties of higher dimensional systems is the higher
degree of freedom in controlling the system and prepar-
ing it in a certain phase. This is especially reflected in
the scenario where the gradual breaking of time transla-
tion symmetry in either lattice directions is achieved by
selectively varying the system parameters. Optimal con-
trol was used not only in realizing the time crystals but
also to observe signatures of the different phases.

The different phases correspond to the state which
evolves with the period T ′, sxT

′ or syT
′ and (sx × sy)T ′

respectively. In order to distinguish the partial symmetry
breaking regime, one should prepare the initial state as a
superposition of sx or sy localized wave-packets moving
with different velocities and with a specific relative phase
between them, which is experimentally challenging. Al-
ternatively it is much easier to prepare a single localized
wave-packet and monitor its evolution along the resonant

orbit, but this implies that one can observe only signa-
tures of different phases from the particle density using
time-of flight measurements. Although our analysis was
done for sx = 2 and sy = 3 number of resonances along
each direction, it is expected to be valid for higher res-
onances which is more suitable for experiments [29, 33].
Already there exist experimental realizations similar to
the setup described in this work [53–61]. The modula-
tion of the interaction is routinely done by changing the
s-wave scattering length using Feshbach resonance mech-
anism [62–64]. Typical values of the tunneling rates for
the lattice would be in the order of tens of Hz while the
interaction coefficients would range from tens of Hz to
tens of kHz [29]. Although our numerical results suggest
stable BEC dynamics, further investigation of the effects
of quantum heating would be useful.

The discrete time crystals with properties of higher di-
mensional lattice systems are in general appealing for
simulating novel physics in condensed matter physics
[40, 65–68] , most of which are yet to be realized in real
experiments. The use of Bayesian optimizers for real ex-
periments can be useful as it performs better with noisy
control landscape [69]. The ability for the Bayesian op-
timizer to find optimal initial conditions for BEC dy-
namics can have more general applications apart from
constructing time crystals. For example, it can be used
to efficiently transfer BEC from an initial harmonic trap
into a desired state with high fidelity [70]. The desired
state can be a particular band in an optical lattice [71], a
specific initial state needed for coherent BEC dynamics
under the influence of gravity [72, 73] or an initial set of
conditions required for observing stable soliton dynam-
ics [74, 75]. Examples of controlled continuous loading
of a BEC have relevant implications for an atomic laser
[76] and in reducing two- and three-body losses, thereby
enhancing the lifetime of typical BEC experiments[77].
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ugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt,
X. Chen, and J. G. Muga, 62, 117 (2013), ISSN 1049-
250X, URL https://www.sciencedirect.com/science/

article/pii/B9780124080904000025.
[71] X. Zhou, S. Jin, and J. Schmiedmayer, New Journal of

Physics 20, 055005 (2018).
[72] K. Bongs, S. Burger, G. Birkl, K. Sengstock, W. Ertmer,

K. Rza̧z˙ewski, A. Sanpera, and M. Lewenstein, Phys.
Rev. Lett. 83, 3577 (1999), URL https://link.aps.

org/doi/10.1103/PhysRevLett.83.3577.
[73] M. R. de Saint-Vincent, J.-P. Brantut, C. J. Bordé,

A. Aspect, T. Bourdel, and P. Bouyer, EPL (Europhysics
Letters) 89, 10002 (2010), URL https://doi.org/10.

1209/0295-5075/89/10002.
[74] K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G.

Hulet, Nature 417, 150 (2002).
[75] J. H. V. Nguyen, P. Dyke, D. Luo, B. A. Malomed, and

R. G. Hulet, Nature Physics 10, 918 (2014).
[76] M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee,

C. G. Townsend, and W. Ketterle, Phys. Rev. Lett. 78,
582 (1997), URL https://link.aps.org/doi/10.1103/

PhysRevLett.78.582.
[77] L. Santos, F. Floegel, T. Pfau, and M. Lewenstein, Phys.

Rev. A 63, 063408 (2001), URL https://link.aps.org/

doi/10.1103/PhysRevA.63.063408.
[78] For this work, in gravitational units, we use mirror am-

plitudes λx = 0.094 and λy = 0.03, frequency ω = 1.1
and relative phase of δ = 2π/3 to get isotropic tunneling,
Jx = Jy = 4.8×10−6. For anisotropic tunneling rates, we
used λx = 0.12, λy = 0.09, ω = 1.4 and δ = π/8 giving
Jx = 7.2× 10−4, Jy = 3.7× 10−5.

[79] In gravitational units, x̃ ∈ [0.98, 1.02]x0, p̃x ∈
[0.98, 1.02]px0 and ω̃x ∈ [0.98, 1.02]ωx, where x0 = 9.82,
px0 = 0.28 and ωx = 0.68. Similarly for the y-direction,
we have y0 = 22.41, py0 = −0.42 and ωy = 0.53 with the
same range.

http://github.com/SheffieldML/GPyOpt
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/1807.02811
http://link.aps.org/doi/10.1103/PhysRevLett.74.4972
http://link.aps.org/doi/10.1103/PhysRevLett.74.4972
https://link.aps.org/doi/10.1103/PhysRevLett.75.629
https://link.aps.org/doi/10.1103/PhysRevLett.75.629
http://stacks.iop.org/1355-5111/8/i=3/a=030
http://stacks.iop.org/1402-4896/1998/i=T78/a=001
http://stacks.iop.org/1402-4896/1998/i=T78/a=001
https://doi.org/10.1007/s100530050244
https://doi.org/10.1007/s100530050244
https://link.aps.org/doi/10.1103/PhysRevLett.83.3577
https://link.aps.org/doi/10.1103/PhysRevLett.83.3577
http://www.sciencedirect.com/science/article/pii/S0030401813001521
http://www.sciencedirect.com/science/article/pii/S0030401813001521
http://ol.osa.org/abstract.cfm?URI=ol-39-10-2932
http://ol.osa.org/abstract.cfm?URI=ol-39-10-2932
https://doi.org/10.1088/1367-2630/ab1e5f
https://doi.org/10.1088%2F1367-2630%2Fab8677
https://doi.org/10.1088%2F1367-2630%2Fab8677
https://www.sciencedirect.com/science/article/pii/B9780124080904000025
https://www.sciencedirect.com/science/article/pii/B9780124080904000025
https://link.aps.org/doi/10.1103/PhysRevLett.83.3577
https://link.aps.org/doi/10.1103/PhysRevLett.83.3577
https://doi.org/10.1209/0295-5075/89/10002
https://doi.org/10.1209/0295-5075/89/10002
https://link.aps.org/doi/10.1103/PhysRevLett.78.582
https://link.aps.org/doi/10.1103/PhysRevLett.78.582
https://link.aps.org/doi/10.1103/PhysRevA.63.063408
https://link.aps.org/doi/10.1103/PhysRevA.63.063408

	Introduction
	Theory
	Results
	Concluding Remarks
	Acknowledgments
	References

