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SUMMARYQ4

There has been rapid growth in the use of Drosophila and other invertebrate systems to dissect mechanisms
governing metabolism. New assays and approaches to physiology have aligned with superlative genetic
tools in fruit flies to provide a powerful platform for posing new questions, or dissecting classical problems
in metabolism and disease genetics. In multiple examples, these discoveries exploit experimental advan-
tages as-yet unavailable in mammalian systems. Here, we illustrate how fly studies have addressed long-
standing questions in three broad areas—inter-organ signaling through hormonal or neural mechanisms gov-
erning metabolism, intestinal interoception and feeding, and the cellular and signaling basis of sexually
dimorphic metabolism and physiology—and how these findings relate to human (patho)physiology. The
imaginative application of integrative physiology and related approaches in flies to questions in metabolism
is expanding, and will be an engine of discovery, revealing paradigmatic features of metabolism underlying
human diseases and physiological equipoise in health.Q2Q3

Progress, far from consisting in change, depends on

retentiveness.

[W]hen experience is not retained.infancy is perpetual.

—Santayana

INTRODUCTION

Studies with Drosophila melanogaster have been a wellspring of

biological discoveries for over a century, including pioneering,

widely heralded studies revealing general principles of genetics,

development, immunity, circadian physiology, neurobiology,

and behavior (Bilder and Irvine, 2017). Foundational studies in

fruit flies have repeatedly presaged important findings in humans

and other vertebrates, making Drosophila an indispensable or-

ganism for biology. Common elements of animal metabolism

include the primacy of glucose for energy generation, the need

for mobilizing energy stores like glycogen and lipids in periods

of caloric restriction or reproduction, and the mandate to adapt

feeding behavior to match nutrient needs. In both Drosophila

larvae and adults, a high-sugar diet causes hyperglycemia, hy-

perinsulinemia, and insulin resistance, with adults also demon-

strating obesity (Mattila and Hietakangas, 2017; Morris et al.,

2012; Musselman et al., 2011; Pasco and Léopold, 2012; van

Dam et al., 2020). Similarly, flies fed a high-fat diet also demon-

strate insulin resistance, elevated triglycerides, and cardiac

dysfunction (Birse et al., 2010). Akin to their effects in humans,

adipogenic diets can also promote tumor formation (Hirabaya-

shi, 2016; Hirabayashi et al., 2013; Newton et al., 2020). Based

on these and other unifying features, there is growing evidence

that integrative studies in flies can reveal important principles

of animal metabolism, including the genetic and signaling mech-

anisms that maintain health and underlie metabolic diseases like

obesity and diabetes mellitus. Here, we illustrate findings from

recent research in adult flies to expand awareness of this view.

An abbreviated selection of studies of larval metabolism and

growth is also included, but influential reports or reviews focused

on this distinct developmental stage are found elsewhere (Böhni

et al., 1999; Brankatschk et al., 2014; Gillette et al., 2021; Grenier

and Leulier, 2020; Pasco and Léopold, 2012; Rajan and Perri-

mon, 2012). Likewise, prior, more focused reports and reviews

provide excellent summaries of research on fly lipid metabolism

(Heier and K€uhnlein, 2018; K€uhnlein, 2011; Musselman and

K€uhnlein, 2018; Palm et al., 2012; Storelli et al., 2019), Warburg

effect and tumor growth (Drummond-Barbosa and Tennessen,

2020; Tennessen and Thummel, 2011), hormone biology (Ahmad

et al., 2020), circadian regulation of metabolism (King and Seh-

gal, 2020; Patke et al., 2020), and diabetes modeling (Alfa and

Kim, 2016).

The success of metazoans in navigating responses to physio-

logic and pathologic challenges to metabolism is determined by

a combination of intrinsic cellular responses, and adaptations in

multiple tissues coordinated by intercellular signaling. The
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experimental toolkit for Drosophila is arguably most powerful

when applied to the study of inter-organ communication (Drouji-

nine and Perrimon, 2016, 2019). These communication axes are

critical for the regulation of hormone or neuropeptide secretion

and their signaling. Beyond endocrine signaling of energy status

(reviewed below), lipoproteins also communicate information

about dietary lipid intake to the brain to regulate insulin secretion

(Brankatschk et al., 2014; Palm and Rodenfels, 2020). The tran-

scriptome of each organ is now available, including organ-spe-

cific single-cell transcriptomes for the adult brain and intestine

(Allen et al., 2020; Croset et al., 2018; Davie et al., 2018; Guo

et al., 2019; Hung et al., 2020; Leader et al., 2018; Robinson

et al., 2013). These descriptive datasets allow identification of

candidate systemic signals and their remote targets. Predictions

can then be probed functionally thanks to an increasing reper-

toire of binary systems (Kockel et al., 2019; Lin and Potter,

2016) for gene inhibition, overexpression, and mutation, and an

expanding nanobody-based genetic toolkit for protein degrada-

tion or re-localization (Aguilar et al., 2019). These tools include

the use of the Gal4/UAS system of binary transcriptional activa-

tion, and the CRISPR/Cas9 system of genome editing (Bassett

and Liu, 2014; Caygill and Brand, 2016; McGuire et al., 2004b;

Xu et al., 2019). These systems combine the use of tissue-spe-

cific promoters to drive the expression of a transcriptional acti-

vator (e.g., Gal4), which binds the upstream activating sequence

(UAS) to express virtually any DNA sequence of the experi-

menter’s choice. Today, multiple binary systems (e.g., Gal4/

UAS, LexA/LexAop, Q systems) can be combined in a single

fly to conduct genetic perturbations of multiple tissues simulta-

neously, and measure the effects of those perturbations

(Figure 1). Together, these tools allow exquisite spatial and tem-

poral control of gene expression and protein function, including

the ability to genetically target different tissues or organs inde-

pendently, manipulate the function of a gene in a given tissue

or their activity, and determine the interactions among different

tissues and organs (Kockel et al., 2019; Lin and Potter, 2016;

Wendler et al., 2020) (and references therein). Use of genetic

and physiological tools that can unequivocally establish the

directionality and significance of signaling across organs is high-

lighted below. This includes signaling between brain neurons;

neuroendocrine and gastrointestinal cells, including enteroendo-

crine cells; gonads; and the fat body, an organ combining fea-

tures of mammalian liver and adipose cells (Figures 2A and 2B).

ENDOCRINE REGULATION OF METABOLISM: FOCUS
ON DROSOPHILA INSULIN, GLUCAGON, AND LEPTINS

To develop, grow, and generate their progeny, all organisms ac-

quire nutrients in order to survive periodic or prolonged nutrient

scarcity. This challenge of feeding and fasting embodies one of

the ne plus ultra selective forces in evolution. The conservation

of insulin signaling across metazoa, from insects to mammals

(Srivastava et al., 2010), indicates the selective advantage of

endocrine systems in the coordination of metabolic responses

to feeding and fasting states. Here we review recent progress

in understanding the roles and regulation of fly insulin, glucagon,

and other hormones in governing metabolism.

Conserved endocrine mechanisms govern metabolism
in Drosophila and humans
Drosophila research over the past two decades has demonstrated

that glucose, amino acid, and lipidmetabolismare regulated by fly

orthologs of insulin, glucagon, leptin, and other hormones (Box 1).

In Drosophila and other insects, insulin-producing cells (IPCs) are

specializedneurons that synthesizeand secrete insulin tomaintain

glucose and lipid homeostasis (Grönke et al., 2010; Haselton and

Fridell, 2010; Ikeya et al., 2002; Rulifson et al., 2002), through acti-

vation of insulin receptor (InR) and InR substrates (IRS1/2) in

Figure 1. Binary expression systems to study
inter-organ signaling in Drosophila
The expression of specific genes, reporter genes,
guide/siRNAs, or cell activators/silencers can be
confined temporally and/or to specific cell types
using publicly available binary expression systems.
Gal4-driven expression of UAS-fused transgenes
(Brand and Perrimon, 1993) can be further refined
with a third transgene allowing for tissue-specific
and/or temporally controlled expression of a Gal80
protein, which prevents Gal4 function (McGuire
et al., 2003, 2004a). The LexA-LexAaop (Lai and
Lee, 2006) and QF-QUAS (Potter et al., 2010) sys-
tems provide alternative binary systems that, like
the Gal4-UAS system, can be further refined with
Gal80 or QS/quinic acid, respectively. The cell-type
specificity of ‘‘driver’’ (Gal4/LexA/QF) lines can be
further increased through intersectional ‘‘split’’ ap-
proaches, which use two enhancers with activity in
overlapping cell groups to confine Gal4/LexA/QF
expression to the intersection of the two groups
(Luan et al., 2006; Riabinina et al., 2019; Ting et al.,
2011). Finally, the Flp-FRT system (Golic and Lind-
quist, 1989; Lee and Luo, 2001) can be used to
further restrict these binary expression systems to
lineage-related subsets of cells, resulting in mosaic
expression within a tissue.
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targets like brain, muscle, and the fat body (Figure 2A). Corpora

cardiaca (CC) cells produce and secrete adipokinetic hormone

(AKH), the insect ortholog of glucagon (Alfa and Kim, 2016; Isabel

et al., 2005;KimandRulifson, 2004; LeeandPark, 2004).Elements

of IPCandCCdevelopmental geneticsandspecification resemble

those of pancreatic islet b and a cells (Clements et al., 2008; Kim

and Rulifson, 2004; Miguel-Aliaga et al., 2008; Park et al., 2011),

like transcription factors governing IPC and b cell development

and functional maturation (Barry and Thummel, 2016). Moreover,

direct contact between fly IPCs and CC cells with the fly heart

and other cells described below appears to be homologous to

those between b cells, a cells, and vessels in islets (Figure 2B).

Fly leptin-like adipokines and other hormones have also been

shown to regulate metabolism (Ahmad et al., 2020; Alfa et al.,

2015;Beshel et al., 2017;Hentzeet al., 2015;Mattila andHietakan-

gas, 2017; Rajan and Perrimon, 2012). Below, we focus on recent

Figure 2. Overview of anatomy and cell
interactions in adult flies
(A) Schematic of an adult female Drosophila high-
lighting organs involved in energy homeostasis and
metabolism. IPCs and other cells discussed here
(not shown) are located in the pars intercerebralis
(PI) of the brain, a distinct structure from the
abdominal ganglion or ventral nerve cord (VNC).
Cells in the corpora cardiaca (CC) secrete AKH, a
glucagon-like hormone. Processes emanating from
both IPCs and CC cells have direct contact with the
heart tube. The corpora allata (CA) produces juvenile
hormone to sustain intestinal stem cell proliferation
and remodel enterocytes in mated female flies. The
fat body, an insulin target tissue analogous to
mammalian liver and adipose tissue, lines the body
cavity of the abdomen and thorax. Neurons in the PI
and hypocerebral ganglion (HCG) innervate the fly
crop and gut. Food is stored in the crop where
digestion begins, then transits through the foregut,
midgut, hindgut, and rectal ampulla. The midgut,
analogous to the small intestine, is involved in
nutrient sensing and interoception. The Drosophila
ovary is posterior and adjacent to the gastrointes-
tinal tract.
(B) Neurons including IPCs, DH44, Ms, and CN
neurons are depicted and discussed in the text. Plus
(+) and minus (–) signs indicate activating or inhibi-
tory interactions between CN neurons and IPCs or
CC cells, which produce AKH and are adjacent to
the HCG. Projections of IPC and Ms neurons to the
crop and other GI organs, or the IPCs andCCcells to
the heart, are shown.

findings involving fly insulin-like peptides;

the glucagon ortholog, AKH; and leptins.

Secretion of insulin by pancreatic b cells

and glucagon by a cells is governed by

nutrient sensing coupled to well-delineated

electrophysiological signalingmechanisms

(Macdonald, 2016; Rorsman and Braun,

2013). Genetic studies, measures of insulin

or AKH secretion, and electrophysiology

show that principal features of a cell and

b cell ‘‘stimulus-secretion coupling’’ are

remarkably conserved in adult fly IPCs

and CC cells. For example, AKH secretion

by CC cells appears to be suppressed by

feeding or glucose, reminiscent of glucagon regulation in islet a

cells (Alfa et al., 2015; Kim and Rulifson, 2004; Oh et al., 2019).

In IPCs, secretion of insulin-like peptides is regulated by glucose

and lipids (Ahmad et al., 2020; Alfa and Kim, 2016). Also like in

islet b cells, IPC secretion is governed by mitochondrial meta-

bolism (Barry and Thummel, 2016; Fridell et al., 2009; Storelli

et al., 2019); inward rectifying potassium channel-dependent

mechanisms and depolarization, resulting in calcium transients

(Kréneisz et al., 2010); and release of a minor fraction of pre-syn-

thesized, processed, and stored insulin (Park et al., 2014). After

fasting and re-feeding, the degree and tempo of insulin-like pep-

tide 2 (Ilp2) increase and clearance in adult fly hemolymph

(Figure 3A) are strikingly similar to serum insulin excursions

observed in mice or humans after glucose challenge (Figure 3B).

The multiple homologies of IPCs and islet b cells, coupled with

the ability tomeasure total and circulating insulins (like Ilp2) using

ll

Cell Metabolism 33, July 6, 2021 3

Review

CMET 3274

Please cite this article in press as: Kim et al., Discovering signaling mechanisms governing metabolism and metabolic diseases with Drosophila, Cell
Metabolism (2021), https://doi.org/10.1016/j.cmet.2021.05.018



ELISA assays, havemotivated genetic studies to identify intrinsic

regulators of insulin production and secretion (Barry and Thum-

mel, 2016; Park et al., 2014; Peiris et al., 2018). For example, us-

ing RNAi-based suppression of genes encoding orthologs

known to regulate islet b cell insulin production or secretion, it

was shown—in 14/14 cases—that targeted loss-of-function

studies in fly IPCs led to changes in insulin output similar to those

observed after homologous loss-of-function studies in pancre-

atic islets. This included genes encoding Ilp2, and orthologs of

insulin receptor, insulin receptor substrates 1/2 (IRS1/2),

GLUT1, GLIS3, ZNT8, ABCC8, DGKB, and ADRA2. Changes of

insulin production and output were distinct or not detected after

shRNA-mediated gene suppression in the fly fat body, demon-

strating specific requirements for these factors in fly IPCs (Park

et al., 2014; Peiris et al., 2018)

Discovering regulators of pancreatic islet function
with flies
Genetic and physiological homologies between fly IPCs and islet

b cells predicted that discovery of IPC regulators could unveil

conserved mechanisms governing insulin secretion. Multiple

recent studies have supported this heuristic (Bevacqua et al.,

2021; Peiris et al., 2018). Peiris et al. (2018) investigated the

in vivo function of fly genes orthologous to imputed human dia-

betes risk genes without known roles in b cells (Mahajan et al.,

2018). Measures of insulin output after RNAi targeting in IPCs

led to identification of three novel IPC regulators, CG9650, fas-

cetto, and optix, the respective orthologs of mammalian genes

BCL11A, PRC1, and SIX2. In fly IPCs, RNAi-mediated suppres-

sion of CG9650 (BCL11A) or fascetto (PRC1) led to increased

circulating levels of insulin; remarkably, loss of BCL11A in pri-

mary human b cells or mouse b cells also led to increased insulin

output (Park et al., 2014; Peiris et al., 2018), while induction of

CG9650 in IPCs or BCL11A in b cells led to reduced insulin

output. Targeted suppression of optix in IPCs led to reduced in-

sulin secretion, and recent studies show that SIX2 loss in human

b cells also leads to reduced glucose-dependent insulin output

(Bevacqua et al., 2021). In these examples, fly studies correctly

predicted the direction of islet b cell phenotypes arising from ge-

netic loss of function. By contrast, knockdown of CG9650, fas-

cetto, or optix in the adult fat body did not detectably alter circu-

lating Ilp2HF levels (Peiris et al., 2018). Thus, integrated genetic,

molecular, and physiological approaches using fruit flies, mice,

and human tissues provide a powerful new strategy for discov-

ering tissue-specific functions of imputed diabetes risk regula-

tors (Figure 3C; Box 1).

Discovering systemic regulators of insulin and AKH
output
Communication between different tissues and cells reflecting

fluctuating nutrient availability and energy status enables

whole-organism metabolic homeostasis. For example, human b

cells are regulated by circulating adipokines and hepatokines

(Cantley, 2014; Wente et al., 2006), as well as by intra-islet para-

crine signals like somatostatin, glucagon, and the incretin

glucagon-like peptide 1 (GLP-1). Fly IPCs and CC cells also

receive and integrate long- and short-range signals to regulate in-

sulin or AKH expression and secretion (Ahmad et al., 2020), and

excitingwork has unveiled new fat body- and brain-basedmech-

anisms for controlling the output of these hormones in adult flies.

Recent studies have identifiedDrosophila neurons that coordi-

nate CC cell and IPC output (Oh et al., 2019). Genetic screens in

the brain identified a pair of glucose-sensing neurons, termed

CN, that project bifurcated axons—one toward CC cells and

the other toward IPCs (Figure 2B). CN neuronal excitation by

feeding and systemic glucose flux led to simultaneous inhibition

Box 1. Advantages of Drosophila for studies of metabolism

Conserved physiology

d Systemic insulin from insulin-producing cells (IPCs) regulates metabolism

d Systemic glucagon-like hormone (AKH from CC cells) regulates metabolism

d Functional orthologues of leptin (Upd1, Upd2) identified in Drosophila

d Insulin, AKH, and other hormone secretion are responsive to fasting and re-feeding

d Fly IPCs and human b cells have similar transcriptomes and stimulus-secretion coupling and nutrient regulation

d In multiple cases (14/14), loss of gene function in IPCs and islet b cells had a similar effect on insulin output: insulin, InR, IRS1/2,

AKT1, GLUT1, GLIS3, ZNT8, ABCC8, DGKB, SUR1, ADRA2, BCL11A, SIX2, and PRC1

d Fly AKH-secreting CC cells and human a cells have similar stimulus-secretion coupling and nutrient regulation

Conserved pathophysiology

d Can challenge flies by fasting, re-feeding, diet, and other metabolic stress

d Insulin insufficiency leads to hyperglycemia

d Insulin excess leads to excess adiposity, growth, and hypoglycemia

d Glucagon-like hormone (AKH) deficiency leads to hypoglycemia

d Insulin resistance develops from dietary challenge or mutation, and stimulates adaptive hyperinsulinemia

d Striking concordance of insulin output phenotypes after loss- or gain-of-function studies in IPCs and pancreatic islet b cells

Experimental advantages

d Unbiased screens to identify novel mechanisms governing metabolism

d Genetic toolkit permits targeted loss- or gain-of-function studies in specific cells, including simultaneous targeting in two or

more distinct cell types

d Temporal control of gene expression permitting uncoupling of developmental from homeostatic/adult effects

d Quantitative assays to measure glucose, adiposity, weight, insulin, and AKH levels
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of CC cells and AKH secretion, and stimulation of IPCs and insu-

lin secretion. Fasted flies had a reduction inCN neuronal activity,

accompanied by a reduction in insulin secretion and an increase

in AKH secretion. Electrical silencing of CN neurons resulted in

elevated glucose levels in circulating hemolymph (analogous to

hyperglycemia). Thus, in addition to their intrinsic mechanisms

of glucose sensing (Kim and Rulifson, 2004; Park et al., 2014),

these studies reveal that IPC and CC cell activity are coordinated

by glucose-sensing neurons, whose functions are required to

maintain systemic glucose homeostasis.

The fat body also releases factors that regulate insulin-like pep-

tide expression, secretion, and signaling (Colombani et al., 2005;

Géminard et al., 2009; Ghosh and O’Connor, 2014; Koyama and

Mirth, 2016; Sano et al., 2015). These include Imp-L2 and dALS,

which bind to and inhibit Ilp2 signaling (Arquier et al., 2008; Hon-

egger et al., 2008), andStunted,which stimulates insulin-like pep-

tide secretion following amino acid ingestion in larvae (Delanoue

et al., 2016). Imp-L2 has also been shown to interrupt insulin

signaling and mediate cachexia-like wasting in adult flies trans-

planted with malignant tumors (Figueroa-Clarevega and Bilder,

2015; Kwon et al., 2015). In addition to these secreted factors,

the Drosophila leptin homolog Unpaired-2 (Upd2) is secreted

from fat body following prolonged high-sugar or high-fat feeding.

Upd2 elaborates fat body signals that remotely relieve central

GABAergic neuronal inhibition of IPCs, leading to increased insu-

lin output (Rajan and Perrimon, 2012). Subsequent work has also

revealed how glucagon-leptin-insulin axes are regulated by adi-

pose tissue, demonstrating that AKH signaling in the fat body re-

duces Upd2 secretion, thereby inhibiting insulin release (Rajan

et al., 2017). Like in mammals, recent work demonstrates the

essential role of leptin-like molecules called Unpaired-1 (Upd1)

for regulating obesity-related traits in adult flies. Disrupting

brain-derived Upd1 production leads to phenotypes observed

in mammalian obesity, including increased attraction to food

cues, hyperphagia, increased weight, and disruption in insulin

secretion (Beshel et al., 2017). Thus,Upd1andUpd2may regulate

Figure 3. Using Drosophila to discover novel
regulators of human islet function
(A and B) Glucose-stimulated insulin secretion and
clearance in Drosophila (A) and mouse (B),
measured by insulin ELISA. Data in (A) adapted from
Park et al. (2014).
(C) Experimental strategy connecting human studies
like genome-wide association studies (GWAS) of
disease risk to in vivo testing in Drosophila, thereby
prioritizing secondary and tertiary studies in
mammalian systems (mice shown here) and human
cells or tissues.

distinct central neural circuits governing

growth and weight regulation in adult flies.

In adult flies with chronic nutrient excess,

Brent and Rajan (2020) recently reported

that Upd2-regulated fat body signaling led

to synapse reorganization in central

GABAergic inhibitory neurons, reducing

bouton number and promoting insulin

release (Brent and Rajan, 2020). They also

found that insulin feeds back on

GABAergic neurons to increase their bouton number and re-

enforce a negative neural tone for insulin release. Thus, two

nutrient surplus-sensing hormonal systems, Upd2 and insulin,

signal through a structurally dynamic cellular circuit to regulate in-

sulin output. Intriguingly, pancreatic islet d cells—which secrete

somatostatin to inhibit b cell insulin secretion—were recently

demonstrated to have dynamic contacts that regulateb cell secre-

tion, and are regulated by hyperglycemia (Arrojo E Drigo et al.,

2019). Moreover, prior studies have shown that mammalian

neuronal somatostatin secretion may be inhibited by leptin (Quin-

tela et al., 1997). Further studies are needed to test the possibility

that adipokines like leptin could remodel d cell contacts within

pancreatic islets to regulate insulin (or glucagon) secretion.

Investigating the polygenic and multi-organ basis of
diabetes in Drosophila

Diabetes mellitus is the most common metabolic disease world-

wide, and the preponderance of evidence shows that there are

both acquired (environmental) and intrinsic (genetic) risks in dia-

betes, whose sine qua non is hyperglycemia. Insulin resistance in

specific tissues like fat, liver, andmuscle is thought to ‘‘drive’’ the

pathogenesis of type 2 diabetes, the most common form in hu-

mans (Brown and Goldstein, 2008; Unger and Orci, 2010).

Drosophila research has made important contributions to eluci-

dating molecular and genetic regulation of insulin signaling in

larval and adult organs (Alfa and Kim, 2016), but progress in

this area has also been hampered by an overreliance on semi-

quantitative assays (Britton and Edgar, 1998; Kockel et al.,

2010; Puig et al., 2003) to assess insulin signaling. Future ad-

vances should be accelerated by the adoption of tissue-specific

assays to quantify readouts of insulin receptor activation (like

Akt/PKB phosphorylation), as described in a recent study (un-

published data Q5). Likewise, investigations of glucagon resistance,

another pathophysiological driver of human diabetes (Unger and

Cherrington, 2012), should be advanced by quantitative assays

of AKH output (Oh et al., 2019) and AKH resistance.
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Like in mammals, deficiency for insulin in adult flies elicits an

elevation of circulating glucose (Park et al., 2014) as well as

impaired regulation of trehalose, a glucose dimer (Broughton

et al., 2008; Grönke et al., 2010). While loss of insulin signaling or-

thologs of IRS1/2, AKT, and insulin receptor affects fertility, size,

and lifespan, deficiency of these factors does not reliably produce

adult hyperglycemia (Böhni et al., 1999; Park et al., 2014; Ugran-

kar et al., 2015). Likewise, loss of Upd2 does not cause hypergly-

cemia in adult flies (Rajan and Perrimon, 2012). This likely reflects

compensatory increases of insulin output from IPCs (Park et al.,

2014), analogous to human responses to insulin resistance (Hol-

lenbeck and Reaven, 1987). Thus, like multi-organ pathogenesis

of diabetes in mammals, hyperglycemia in flies may only manifest

with peripheral insulin resistance combined with insulin secretion

Figure 4. Signaling and cell interactions
coordinating fly metabolism
(A) Signaling interactions regulating AKH output by
CC cells by enteroendocrine cell-derived Bursicon a
signaling. During starvation (top half), glucose entry
into EE cells is diminished, Bursicon a is retained in
EE cells, and AKH is secreted from CC cells, leading
to subsequent catabolism of peripheral fat stores.
CC cells also secrete Limostatin (Lst), a decretin-like
hormone that suppresses insulin-producing cell
function. In the fed state (bottom half), Bursicon a is
secreted from enteroendocrine cells and sup-
presses Akh release from the CC cells. The magni-
fied insert depicts enterocytes (EC, brown), enter-
oendocrine cells (EE, blue), and intestinal
progenitors (enteroblasts [EB] or intestinal stem
cells [ISC], yellow).
(B) Gut responses to micronutrient consumption.
The midgut has a central region with high luminal
acidity harboring two types of specialized enter-
ocytes: acid-producing copper cells (CC, dark or-
ange) interspersed between interstitial cells (IC, light
orange). In response to zinc ingestion by larval flies,
Hodor in the interstitial cells sustains lysosomal
acidification and activation of Tor signaling. This
signaling increased food intake, dietary zinc prefer-
ence, and Ilp release from IPCs (dark blue).
(C) Gut responses to amino acid deprivation. In
response to essential amino acid (EAA) deprivation,
gut enterocytes secrete the neuropeptide CNMa-
mide (CNMa), which may mediate the EAA feeding
preference in flies deprived of dietary protein.
Importantly, these enterocytes do not secrete CNMa
in response to non-essential amino acid (NEAA)
deprivation.

defects in the IPCs. Reconstituting poly-

genic and multi-organ mechanisms thought

to underlie hyperglycemia in human dia-

betes is an important unmet goal, but well

matched to the experimental paradigms

available in flies.

A GUT FEELING: INTESTINAL
INTEROCEPTION

The gastrointestinal (GI) tract is recognized

as a central regulator of food intake and en-

ergy balance (Clemmensen et al., 2017;

Soty et al., 2017). It is also a remarkably

flexible organ system that can undergo

marked adaptations in response to diet and internal state

(Beumer and Clevers, 2021). Like its mammalian counterpart,

the digestive tract of Drosophila is functionally regionalized (Fig-

ures 2A and 4A) (Buchon et al., 2013; Marianes and Spradling,

2013; Miguel-Aliaga et al., 2018; O’Brien et al., 2011). It harbors

a resident microbiota and consists of different cell types similar

to those found in the human GI tract, including digestive/absorp-

tive enterocytes, hormone-secreting enteroendocrine cells, and

intestinal stem cells (Micchelli and Perrimon, 2006; Ohlstein and

Spradling, 2006). Over the past decade, Drosophila has been

leveraged to identify molecular and cellular mediators of intesti-

nal plasticity, revealing a central role for adult intestinal stem

cells; these have been recently reviewed elsewhere (Funk

et al., 2020; Miguel-Aliaga et al., 2018). Here we review recent
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studies revealing other modes of intestinal sensing and adap-

tation.

Interoception coordinates switching to catabolism
Drosophila is beginning to reveal both conserved and novel

mechanisms of intestinal interoception that modulate food

intake and choice. For example, reminiscent of the roles of the

glucose transporter Glut2 in regulating the post-prandial secre-

tion of the incretin hormone glucagon-like peptide-1 (GLP-1)

from enteroendocrine cells (Cani et al., 2007), a Drosophila

Glut1 homolog gates the release of enteroendocrine hormone

Bursa (Scopelliti et al., 2019). Circulating Bursa normally signifies

the ‘‘fed’’ state, preventing secretion of AKH from CC cells,

which are adjacent to the GI tract. During starvation (or following

Glut1 downregulation), however, Bursa is retained in EE cellsQ6 ,

leading to AKH release and the consequent mobilization of pe-

ripheral fat stores (Scopelliti et al., 2019). In parallel, starvation

also triggers the release of a decretin-like hormone (Limostatin,

Lst; Alfa et al., 2015). Lst suppresses insulin output through its

action on a G protein-coupled receptor (LstR) expressed in

IPCs (Alfa et al., 2015). Further studies are needed, however,

to identify the mammalian islet orthologs of fly IPC Lst/LstR

signaling (Alfa et al., 2015; Kuhre et al., 2019). In sum, studies

of Bursa and Lst have revealed intestine-associated mecha-

nisms that regulate AKH secretion, mediating the switch to a

catabolic state that allows flies to withstand starvation.

Discovery of mechanisms regulating nutrient uptake
and food preferences
Sufficient dietary amino acids (AAs), and micronutrients like the

trace metals, can profoundly impact health and disease in hu-

mans. Drosophila studies have revealed unexpected mecha-

nisms of intestinal micronutrient and AA sensing. The novel roles

of an intestinal metal sensor in food intake regulation and growth

control by enterocytes are a case in point. Redhai et al. identified

a novel population of zinc-sensing enterocytes that sustain the

voracious feeding of Drosophila larvae (Redhai et al., 2020).

Within these enterocytes (known as ‘‘interstitial cells’’), a zinc-

gated chloride channel (Hodor) responds to zinc ingestion by

sustaining lysosomal acidification and activating Tor signaling

(Figure 4B). Hodor-mediated Tor signaling activity within these

enterocytes leads to increased food intake and insulin-like pep-

tide release via an as-yet unidentified systemic signal. Intestinal

Hodor also mediates a larval preference for dietary zinc (Redhai

et al., 2020). Similar regulation of insulin secretion in response to

micronutrient availability is conserved in mammals. In mice, for

example, oral zinc administration enhances insulin secretion,

likely through gastric inhibitory peptide (GIP) secretion triggered

by the zinc-sensing GPR39 receptor on L- and K-cells in the gut

(Moran et al., 2019).While Hodor signaling appears specific to in-

sects, an orthologous system or a zinc-gated channel may exist

in mammals with roles that might extend beyond regulation of

food intake (Fernández-Gallego et al., 2021).

When deprived of dietary protein, Drosophila and other ani-

mals select a food source that contains a greater amount of di-

etary protein or essential AAs (EAAs) (Raubenheimer and Jones,

2006; Theall et al., 1984). This suggests that food selection is

geared toward acquiring specific macronutrient targets. How

this choice is driven has remained a mystery, since known sen-

sors of AAs including taste receptors like T1R1-T1R3 and intra-

cellular factors like GCN2 and TOR do not discriminate between

EAAs and non-essential AAs (NEAAs) (Efeyan et al., 2015; Nelson

et al., 2002). Recent work shows that protein or EAA deprivation

(but not NEAA deprivation) in flies induces production of the neu-

ropeptide CNMamide (CNMa) in a specific population of entero-

cytes in the gut. Genetic silencing of the CNMa-CNMa receptor

axis blocked the EAA preference in these flies (Kim et al., 2021).

This mechanism is reminiscent of how peripheral tissue induc-

tion of FGF21 in protein-deprived mammals can signal the brain

to regulate feeding behavior (Hill et al., 2017, 2019; Solon-Biet

et al., 2016). Moreover, gnotobiotic flies bearing an EAA-produc-

ing symbiotic microbiome exhibited reduced compensatory

appetite for EAAs. By contrast, gnotobiotic flies carrying a

mutant microbiome that failed to produce leucine or other

EAAs displayed higher CNMa expression and greater compen-

satory EAA appetite (Kim et al., 2021). These findings reveal

that different types of cells in the gut including enterocytes act

as a frontline sensor to detect and respond to micro- and mac-

ronutrients. It also raises the possibility that these nutrient-

sensing cells work together with the gut microbiome to establish

nutrient homeostasis.

Finally, beyond canonical signals like peptide hormones, sys-

temic metabolites may also play important roles in the modula-

tion of food intake and choice. Two salient examples are the

role of gut-derived citrate in promoting food intake in males,

described below (Hudry et al., 2019), and the finding that

pentose phosphate pathway activity in the female germline

increased an appetite for sugar (Carvalho-Santos et al., 2020).

Modulation in sugar appetite by the germline is achieved by

regulating the expression of the fat-body-secreted satiety factor,

Fit, a sexually dimorphic protein previously shown to suppress

protein appetite and promote insulin-like peptide release (Sun

et al., 2017). Investigating regulatory roles of metabolites on

behavior in the context of inter-organ communication should

emerge as an exciting and fruitful area of future research.

Mechanosensory mechanisms of feeding regulation
While a central role for intestinal nutrient sensing is also emerging

from studies in mice (Clemmensen et al., 2017; de Araujo et al.,

2020; Gribble and Reimann, 2019), two recent Drosophila

studies remind us that other sensory modalities like mechano-

sensation may control acute feeding (Clemmensen et al., 2017;

de Araujo et al., 2020; Gribble and Reimann, 2019; Min et al.,

2021; Wang et al., 2020). The fly homolog of Piezo, a mechano-

transduction channel, restrains feeding from at least two inde-

pendent crop-innervating neuronal populations (IPCs in the brain

and a rare population of enteric neurons); silencing or stimulating

of either neuronal population results in an increase or a decrease

of food consumption, respectively. Other work illustrates that

Piezo also inhibits sugar intake through another layer of regula-

tion. Six DH44-expressing neuronal cells, located adjacent to

IPCs (Figure 2B), detect the nutritional value of sugar and con-

sumption of sugar macronutrient specifically during food depri-

vation (Figure 2B) (Dus et al., 2011, 2015). When animals are sati-

ated in the fed state, Piezo suppresses the function of DH44

neurons, thereby suppressing sugar intake (Oh et al., 2021). In

future studies, it will be interesting to explore whether Piezo

expression and/or activity are regulated by the postmating
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signals recently reported to increase maternal food intake

through modulation of Ms neurons, a third population of crop-

innervating neurons (Hadjieconomou et al., 2020). The recent

finding of vagal mechanosensory neurons with a role in feeding

regulation in mice (Bai et al., 2019; Kim et al., 2020) also raises

the possibility that Piezo may play similar roles in mammals.

SEXUALLY DIMORPHIC CONTROL OF GUT FUNCTION,
METABOLISM, AND REPRODUCTION

There is a growing realization that many aspects of (patho)phys-

iology differ between the sexes (Mauvais-Jarvis et al., 2017;

Ober et al., 2008; Tannenbaum et al., 2019; Tramunt et al.,

2020). Drosophila is no exception: important studies have un-

covered sex differences in how IPCs and the fat body communi-

cate to control larval growth (Millington et al., 2021; Rideout

et al., 2015; Sawala and Gould, 2017). Unexpectedly, recent

studies have revealed the importance of sex differences in intes-

tinal cells and uncovered novel gut-gonad axes in both males

and females.

Sexmatters: Identifying new signaling axes between the
gut and gonads
Most, if not all, organs of the adult fly display sex differences in

gene expression (Leader et al., 2018) that impact features of

adult physiology such as lipid metabolism (Sieber and Spradling,

2015; Wat et al., 2020). Recent studies have leveraged inte-

grated genetic and physiological approaches to reveal the

importance of sex differences in intestinal cells and uncover

novel gut-gonad axes in both males and females. An earlier

study had indicated that the feces of adult Drosophila is unex-

pectedly predictive of both sex and reproductive status (Cog-

nigni et al., 2011). The subsequent finding that, in the adult

midgut (analogous to the mammalian small intestine), approxi-

mately 10% of genes are expressed and/or alternatively spliced

in a sexually dimorphic manner (Hudry et al., 2016) further sug-

gested sex-specific intestinal physiology. Since then, several

studies have illuminated the nature and significance of these

sex differences.

One prominent difference lies in themidgut: the adult intestinal

stem cells (ISCs) that normally replenish the epithelia dividemore

often in females than males (Ahmed et al., 2020; Hudry et al.,

2016). Increased ISC proliferation maintains the larger size of

the midgut in virgin females compared to males, makes females

more resistant to acute intestinal challenges such as infection,

and allows increases of intestinal size during reproduction

(Ahmed et al., 2020; Hudry et al., 2016; Regan et al., 2016; Reiff

et al., 2015). This can be good for fly mothers—genetically pre-

venting reproductive intestinal remodeling compromises their

fecundity (Ahmed et al., 2020; Reiff et al., 2015). But this advan-

tage comes at a significant cost: increased ISC proliferation ren-

ders female flies more susceptible to age-related dysplasia and

tumorigenic insults (Ahmed et al., 2020; Hudry et al., 2016; Re-

gan et al., 2016). Several mechanisms account for the sex differ-

ences in ISC proliferation. One is the intrinsic sexual identity of

ISCs, which explains the basal higher proliferation rate of virgin

female versus virgin male guts (Hudry et al., 2016). Second, after

mating, a rise in circulating levels of juvenile hormone (JH) and

ecdysone (an ovarian steroid hormone) further increases ISC

proliferation in females, amplifying this sexual dimorphism

(Ahmed et al., 2020; Reiff et al., 2015; Zipper et al., 2020).

A gut-gonad axis that sustains fertility and food intake
ISCs are not the only cells in the intestine that respond to—and

subserve—reproduction. In female flies, a postmating rise in JH

increases stem cell proliferation to yield a larger organ, but addi-

tionally remodels intestinal enterocytes to sustain fecundity (Reiff

et al., 2015). Acting through intestinal bHLH-PAS domain proteins

methoprene-tolerant (Met) and germcell-expressed (Gce), JH sig-

nals directly to enterocytes to adjust their lipidmetabolismby acti-

vating sterol regulatory element-binding protein (SREBP) and up-

regulating expression of genes involved in fatty acid synthesis and

activation. Genetically preventing the reproductive, JH-driven

metabolic remodeling of enterocytes reduces reproductive

output. Mating also leads to an increased number of enteroendo-

crine cells and increasedproduction of at least two of their peptide

hormones. Neuropeptide F (theDrosophila homolog of neuropep-

tide Y) signals back to the ovary to promote germline stem cell

proliferation (Ameku et al., 2018). Bursicon a (Bursa, an insect-

specific enteroendocrine hormone) signals, together with ecdy-

sone, to a subset of enteric neurons that, through their release

of Myosuppressin (Ms) peptide, control the expandability of the

crop: a stomach-like organ (Hadjieconomou et al., 2020) (Figures

2B and 5). The post-mating ‘‘awakening’’ of these enteric neurons

is significant because, through their effects on the crop, they are

responsible for the increased food intake apparent in female

flies—like in many mammals—during reproduction. Indeed, pre-

venting the reproductive remodeling of these enteric neurons re-

duces both reproductive hyperphagia and reproductive fitness

(Hadjieconomou et al., 2020).

It could be argued that the reproductive plasticity of all these

different intestinal cell types is an insect peculiarity, arguably

less relevant to humans and other mammals. By some mea-

sures, the nutritional demands of mammalian reproduction are

less extreme (flies lay several times their weight in eggs every

day), and mammalian adaptations like the placenta or post-par-

tum nursing might have subsumed at least some of these

nurturing roles. While descriptive, there are rather extensive

data that argue otherwise: increased cell size and proliferation

of intestinal epithelial cells have been reported in several mam-

mals including mice and rats during pregnancy and/or lactation

(Hammond, 1997; Nilaweera and Speakman, 2018). Similarly,

while the reproductive plasticity of GI innervation remains to be

investigated, mammalian enteric neurons express sex- and

reproductive-hormone receptors (Ameku et al., 2020), and enter-

oendocrine hormone levels change during reproduction (John-

son et al., 2019). These features suggest it will be productive

to explore whether the human digestive system might be simi-

larly modulated by reproductive cues to affect food intake.

Vive la différence
Like in females, singularities of the male gut sustain gametogen-

esis and fertility (Hudry et al., 2019). However, the mechanisms

involved differ from those of females. For example, the male

gonad ‘‘masculinizes’’ the enterocytes of a specific region of

the intestine by upregulating Jak-Stat signaling, leading to rewir-

ing of enterocyte carbohydrate metabolism and, ultimately, their

secretion of citrate (Figure 5). Citrate derived from male
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enterocytes is then absorbed by the male gonad and used to

sustain spermatogenesis. Gut-derived citrate also acts on (as-

yet unidentified) neurons to promote food intake in males (Hudry

et al., 2019). In mammals including humans, citrate is one of the

highest circulating TCA cycle intermediates (Costello and

Franklin, 2016; Hui et al., 2017; Mycielska et al., 2009), and

recent work in pigs has revealed citrate fluxes across specific tis-

sues (Jang et al., 2019).

Further studies exploring possibly conserved roles of citrate in

sex-biased physiology seemwarranted. The identification of a fly

gonad-to-gut signaling axis also highlights that male fly gonads

are adjacent to the gut region they communicate with, indicating

previously unappreciated spatial stereotypy in the arrangement

of internal organs (Hudry et al., 2019). This organ geometry could

facilitate or restrict inter-organ communication, suggesting un-

der-explored dimensions to the study of metabolic disorders

and interventions such as obesity and/or gastric bypass.

Mechanistically, these studies have uncovered gut-gonad

axes that are sex-specific and govern aspects of whole-body

physiology including (but not confined to) reproductive output,

and so may have broader implications for human health and dis-

eases. They demonstrate that non-gonadal organs such as the

intestine have a sexual identity that is (patho)physiologically sig-

nificant. Different cell types within an organ acquire their sexual

fate through different mechanisms—hormonal and cell-intrinsic.

The mechanisms that specify sexual fate are actively maintained

in the adult and are therefore genetically reversible. This raises

the possibility that they may be plastic in the context of (patho)

physiology, motivating and warranting studies to identify internal

or environmental cues that modulate the sexual fate of specific

intestinal cells.

CONCLUSIONS AND PROSPECTS

Recent findings highlighted here illustrate the formidable

experimental advantages of Drosophila for investigations of

metabolism and inter-organ communication that exploits

circulating hormones, short-acting neuropeptides, and neural

signaling. These advantages include (1) the ability of investiga-

tors to perform high-throughput in vivo screens or assess cell

interactions in ways less feasible or affordable in mammalian

systems; (2) the use of powerful in vivo assays to quantify fly

hormones, neuropeptides, and metabolites often in a single

fly; (3) the availability of behavioral or other physiological as-

says to discern and measure functional and signaling links be-

tween organs like the brain, endocrine cells, intestines, go-

nads, and fat body; (4) the flexibility of performing

complementary gain- or loss-of-function genetics targeted to

specific tissues and cell types; (5) the amenability of several bi-

nary systems that can be used to manipulate the activities of

multiple tissues simultaneously; and (6) the outpouring of

new fly strains that enable superlative control of gene and

cell function in the GI tract, endocrine cells, and other organ

systems (Ariyapala et al., 2020; Kockel et al., 2019; Lim et al.,

2021). These findings support the view that Drosophila studies

will continue to unveil general principles about metabolism and

metabolic diseases, serving at the vanguard of modern discov-

eries in these fields.
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Figure 5. Sexually dimorphic control of gut
function, metabolism, and reproduction
In males (upper half), testis-derived cytokines,
including Upd1, upregulate Jak-Stat signaling within
intestinal enterocytes (brown). This results in
enhanced citrate secretion from the enterocyte,
which in turn sustains spermatogenesis in the testis
and promotes food intake through the action of an
unknown neuron. In female flies (lower half), a
postmating rise in juvenile hormone (JH) secreted
from the corpora allata (CA) and 20-hydroxy ecdy-
sone (20-HE) secreted from the ovary sustains
increased intestinal stem cell (ISC, yellow) prolifer-
ation, which maintains fecundity. JH also acts
directly on enterocytes to adjust their lipid meta-
bolism. After mating, enteroendocrine cells (blue)
also increase their production of neuropeptide Y,
which promotes germline stem cell proliferation in
the ovary. The enteroendocrine cells and the ovary
also secrete Bursicon a and 20-HE, respectively, to
activate Ms neurons in the pars intercerebralis of the
brain. The Ms neurons then increase the expand-
ability of the crop, mediating the postmating rise in
food intake seen in female flies.
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